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ABSTRACT

Many previous studies attempt to utilize information from other
domains to achieve better performance of recommendation. Re-
cently, social information has been shown effective in improving
recommendation results with transfer learning frameworks, and
the transfer part helps to learn users’ preferences from both item
domain and social domain. However, two vital issues have not been
well-considered in existing methods: 1) Usually, a static transfer
scheme is adopted to share a user’s common preference between
item and social domains, which is not robust in real life where the
degrees of sharing and information richness are varied for different
users. Hence a non-personalized transfer scheme may be insuffi-
cient and unsuccessful. 2) Most previous neural recommendation
methods rely on negative sampling in training to increase compu-
tational efficiency, which makes them highly sensitive to sampling
strategies and hence difficult to achieve optimal results in practical
applications.

To address the above problems, we propose an Efficient Adaptive
Transfer Neural Network (EATNN). By introducing attention mech-
anisms, the proposed model automatically assign a personalized
transfer scheme for each user. Moreover, we devise an efficient opti-
mization method to learn from the whole training set without neg-
ative sampling, and further extend it to support multi-task learning.
Extensive experiments on three real-world public datasets indicate
that our EATNN method consistently outperforms the state-of-the-
art methods on Top-K recommendation task, especially for cold-
start users who have few item interactions. Remarkably, EATNN
shows significant advantages in training efficiency, which makes
it more practical to be applied in real E-commerce scenarios. The
code is available at (https://github.com/chenchongthu/EATNN).
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Figure 1: Social connections have been shown to be helpful
for user preference modeling, but the preference sharing be-
tween item domain and social domain are varied for differ-
ent users in real life.
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1 INTRODUCTION

Recommender systems provide essential web services on the Inter-
net to alleviate the information overload problem. Recently, many
E-commerce sites, such as Ciao, Epinion, and Flixster, have become
popular social platforms in which users can follow other users,
discuss, and select items. The social connections in these applica-
tions reflect users’ interests or profiles, which are helpful for user
modeling and personalized recommendation.

Traditional Collaborative Filtering (CF) methods [12-14, 28]
mainly make use of users’ historical records such as ratings, clicks,
and purchases. Although they have shown good results, the per-
formance will degrade significantly when the records matrix is
very sparse. To address the lack of data, there has been a trend to
augment user-item interactions with users’ social connections for
recommendation [4, 18, 20, 27, 43]. Generally, a user’s preferences
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can not only be inferred from the items he/she bought and clicked,
but also be affected by his/her social connections. As a result, social-
aware methods can utilize a much larger volume of data to tackle
the data sparsity issue, and further improve the performance of
recommender systems [4].

Many social-aware recommendation methods are based on trans-
fer learning [15, 18, 25], as it is a suitable choice for the coordina-
tion of user-item interactions and user-user connections. The key
concept behind transfer learning is to transfer the shared knowl-
edge from one domain to other domains. However, most existing
methods simply transfer a fixed proportion of common knowledge
between item domain and social domain for each user [15, 18, 31],
which is not robust in real life due to: 1) the information rich-
ness of the two domains usually varies for different users; 2) the
degrees of the preference sharing between the two domains are
varied for different users. As shown in Figure 1, user B has simi-
lar preferences in item domain and social domain, while A only
shares very few preferences between the two domains. Therefore,
a non-personalized transfer is insufficient and unsuccessful. To bet-
ter characterize users’ preferences, recommender systems require
adaptive transfer schemes for different users.

In addition, since implicit data is often a natural byproduct of
users’ behavior (e.g., browsing histories, click logs), user interac-
tions that can be observed in both item and social domains are
rather limited, and non-observed instances, which is taken as neg-
ative examples in model learning, are with much larger scale. To
increase computational efficiency, existing neural recommendation
methods [4, 10, 33, 34, 40] mainly rely on negative sampling for
optimization, which is, however, highly sensitive to the sampling
distribution and the number of negative samples [10]. Moreover,
social-aware recommendation usually needs to optimize the loss
function in both item and social domains, which is a multi-task
problem. Hence for social-aware problem, it is more difficult for
sampling-based strategy to converge to the optimum performance.
By contrast, whole-data based strategy computes the gradient on
all training data. Thus it can easily converge to a better optimum
[12, 41]. Unfortunately, the difficulty in applying whole-data based
strategy lies in the expensive computational cost for large-scale
data, which makes it less applicable to neural models.

Motivated by the above observations, in this paper, we propose
an Efficient Adaptive Transfer Neural Network (EATNN) for social-
aware recommendation. To adaptively capture the interplay be-
tween item and social domain for each user, we introduce attention
mechanisms [1, 3] to automatically estimate the difference of mu-
tual influence between item domain and social domain. The key
idea is to learn two attention-based kernels to model the weights
of the outputs come from different domains. Besides, we propose
an efficient optimization method to learn from the whole training
set without negative sampling, and extend it to support multi-task
learning. To ensure training efficiency, we accelerate the optimiza-
tion method by reformulating a commonly used square loss function
with rigorous mathematical reasoning. By leveraging sparsity in
implicit data, we succeed to update each parameter in a manageable
time complexity without sampling.

To evaluate the recommendation performance and training effi-
ciency of our model, we apply EATNN on three real-world datasets
with extensive experiments. The results indicate that our model
consistently outperforms the state-of-the-art methods on Top-K

personalized recommendation task, especially for cold-start users
who have few item interactions. Furthermore, EATNN also shows
significant advantages in training efficiency, which makes it more
practical in real E-commerce scenarios. The main contributions of
this work are as follows:

(1) We propose a novel Efficient Adaptive Transfer Neural Network
for social-aware recommendation. By introducing attention
mechanisms, the proposed model can adaptively capture the
interplay between item domain and social domain for each user.

(2) We devise an efficient optimization method to avoid negative
sampling and achieve more accurate performance. The pro-
posed method is not only suitable for learning from implicit
data that only contains positive examples, but also capable of
jointly learning multi-task problems.

(3) Extensive experiments are conducted on three benchmark datasets.
The results show that EATNN consistently and significantly
outperforms the state-of-the-art models in terms of both rec-
ommendation performance and training efficiency.

2 RELATED WORK
2.1 Social-aware Recommendation

Social-aware recommendation aims at leveraging users’ social con-
nections to improve the performance of recommender systems. It
works based on the assumption that users tend to share similar
preferences with their friends. In previous work, Krohn et al. [15]
proposed a Multi-Relational Bayesian Personalized Ranking (MR-
BPR) model based on Collective Matrix Factorization (CMF) [31],
which predicts both user feedback on items and on social connec-
tions. Zhao et al. [43] assumed that users are more likely to have
seen items consumed by their friends, and extended BPR [28] by
changing the negative sampling strategy (SBPR). Recently, the au-
thors in [18] proposed to consider the visibility of both items and
social relationships, and utilized transfer learning to combine the
item and social domains for recommendation (TranSIV).

Since deep learning has yielded great success in many fields,
some researchers also tried to explore different neural network
structures for social-aware recommendation task. For instance, Sun
et al. [33] presented an attentive recurrent network for temporal
social-aware recommendation (ARSE). Wang et al. [37] enhanced
NCF method [10] by combining with the graph regularization tech-
nique to model the cross-domain social relations. Recently, Chen
et al. [4] proposed a Social Attentional Memory Network (SAMN),
which considered to model both aspect- and friend-level differ-
ences in social-aware recommendation. However, existing neural
methods [4, 10, 33, 37] mainly rely on negative sampling for model
optimization, which may limit the performance of recommender
systems. Efficient optimization from all training data without sam-
pling is one of the main concerns of this paper.

2.2 Transfer Learning

Transfer learning has been adopted in various systems for cross-
domain tasks [2, 22, 29, 45]. The key idea of transfer learning is to
transfer the common knowledge from the source domain to the tar-
get domain. As previously noted [44], social media contains multi-
domain information, which provides a bridge for transfer learning.
In previous studies, Roy et al. [29] utilized transfer learning to deal
with multi-relational data representation in social networks, but it



did not specifically focus on recommendation tasks. Eaton et al. [9]
pointed out that parts of the source domain data are inconsistent
with the target domain observations, which may affect the con-
struction of the model in the target domain. Based on that, some
researchers [18, 19] designed selective latent factor transfer models
to better capture the consistency and heterogeneity across domains.
However, in these work, the transfer ratio needs to be properly
selected through human effort and can not change dynamically in
different scenarios.

There are also some studies considering the adaption issue in
transfer learning. However, existing methods mainly focus on task
adaptation or domain adaption. E.g., based on Gaussian Processes,
Cao et al. [2] proposed to adapt the transfer-all and transfer-none
schemes by estimating the similarity between a source and a target
task. Zhang et al. [42] studied domain adaptive transfer learning
which assumed that the pre-training and test sets have different
distributions. The authors in [22] designed a method for completely
heterogeneous transfer learning to determine different transferabil-
ity of source knowledge. Our work differs from the above studies
as the designed model is not limited to task adaptation or domain
adaption. Instead, we propose to adapt each user’s two kinds of
information (item interactions and social connections) with a finer
granularity, which allows the shared knowledge of each user to be
transferred in a personalized manner.

2.3 Model Learning in Recommendation

There are two strategies to optimize a recommendation model with
implicit feedback: 1) negative sampling strategy [4, 10, 28] that
samples negative instances from missing data; 2) whole-data based
strategy [7, 12, 17, 18] that sees all the missing data as negative.
As shown in previous studies [11, 41], both strategies have pros
and cons: negative sampling strategy is more efficient by reducing
negative examples in training, but may decrease the model’s per-
formance; whole-data based strategy leverages the full data with a
potentially better coverage, but inefficiency can be an issue. Exist-
ing neural recommendation methods [4, 10, 33, 40] mainly rely on
negative sampling for efficient optimization. To retain the model’s
fidelity, we persist in whole-data based learning in this paper, and
develop a fast optimization method to address the inefficiency issue.

Some efforts have been devoted to resolving the inefficiency
issue of whole-data based strategy. Most of them are based on Al-
ternating Least Squares (ALS) [12]. E.g., Pilaszy et al. [26] described
an approximate solution of ALS. He et al. [11] proposed an efficient
element-wise ALS with non-uniform missing data. Unfortunately,
ALS based methods are not applicable to neural models which use
Gradient Descent (GD) for optimization. Recently, some researchers
[39, 41] studied fast Batch Gradient Descent (BGD) methods to learn
from all training examples. However, they only focus on optimizing
traditional non-neural models. Distinct from previous studies, we
derive a new whole-data based loss function, which is, to the best
of our knowledge, the first efficient whole-data based learning strat-
egy tailored for neural recommendation models. The loss function
is further extended to jointly learn both item and social domains in
our model.

3 PRELIMINARY

We first introduce the key notations used in this work and the
whole-data based MF method for learning from implicit data.

Table 1: A summary of key notations in this work.

Symbol Description

U set of users

B batch of users

\% set of items

R user-item interactions

R the set of user-item pairs whose values are non-zero

X user-user social connections

X the set of user-user social pairs whose values are non-zero

u! item-specific latent factor vector of user u

u’ social-specific latent factor vector of user u

u€ common latent factor vector of user u

pl, latent vector of user u for item domain after transferring
> latent vector of user u for social domain after transferring

q, latent factor vector of item v

g, latent factor vector of user ¢ as a friend

cl,, the weight of entry Ry,

cg ‘ the weight of entry Xy,;

1, u) the weight of item-specific vector u! for item domain

C,u) the weight of common vector u€ for item domain

Bis,u) the weight of social-specific vector u® for social domain

Bic,u the weight of common vector u€ for social domain

d latent factor number

C) set of neural parameters

3.1 Notations

Table 1 depicts the notations and key concepts. Suppose we have M
users and N items in the dataset, and we use the index u to denote
a user, t to denote another user, and v to denote an item. There
are two kinds of observed interactions: user-item interactions R =
[Ruv]mxnN € {0, 1} indicates whether u has purchased or clicked
on item v, and user-user social interactions X = [ Xy |pxm € {0, 1}
indicates whether u trusts (or is a friend of) ¢ in the social network.
R and X denote the sets of interactions whose values are non-zero
for the item domain and the social domain, respectively.

For user u, u® represents the latent factors shared between the
item and social domains; u! and u® represent user latent factors
corresponding to the item and social domains, respectively. Vector
q,, denotes the latent vector of v, and g, denotes the latent vector
of t as a friend. a and f are the parameters for adaptive transfer
learning. Vector p, and p3 are the representations of user u for item
domain and social domain after transferring, respectively. More
details are introduced in Section 4.

3.2 MF Method for Implicit Feedback

Matrix Factorization (MF) maps both users and items into a joint
latent feature space of d dimension such that interactions are mod-
eled as inner products in that space. Mathematically, each entry
Ry of R is estimated as:

Ruv =< Py 4o >= Pudo (1)
The item recommendation problem is formulated as estimating the
scoring function Ry, which is used to rank items.

For implicit data, the observed interactions are rather limited,
and non-observed examples are of a much larger scale. To learn
model parameters, Hu et al. [12] introduced a weighted regression
function, which associates a confidence to each prediction in the



implicit feedback matrix R:

L(@) = Z Z Cuv(Ruv - Ru‘u)z (2)

ueUveV
where ¢, denotes the weight of entry R,,,. Note that in implicit
feedback learning, missing entries are usually assigned a zero Ry,
value but non-zero ¢, weight.

As can be seen, the time complexity of computing the loss in
Eq.(2) is O(|U[|V]|d). Clearly, the straightforward way to calculate
gradients is generally infeasible, because |U||V| can easily reach
billion level or even higher in real life.

4 EFFICIENT ADAPTIVE TRANSFER NEURAL
NETWORK (EATNN)

In this section, we first present a general overview of the EATNN
framework, then introduce the two key ingredients of our proposed
model in detail, which are: 1) attention-based adaptive transfer
learning and 2) efficient whole-data based optimization.

4.1 Model Overview

The goal of our model is to make item recommendations based on
implicit feedback and social data. The overall model architecture
is described in Figure 2. From the figure, we can present a simple
high-level overview of our model:

(1) Users and items are converted to dense vector representations
through embeddings. Specifically, as the bridge of transfer learn-
ing, each user u has three latent vectors. u® represents the
knowledge shared between the item and social domains. u! and
u’ represent user u’s specific preference corresponding to item
domain and social domain, respectively.

(2) An attention-based adaptive transfer layer is designed to au-
tomatically model the domain relationships and learn domain-
specific functionalities to leverage shared representations. It
allows parameters to be automatically allocated to capture both
shared knowledge and domain-specific knowledge, while avoid-
ing the need of adding many new parameters.

(3) The model is jointly optimized by a newly derived efficient
whole-data based training strategy.

4.2 Attention-based Adaptive Transfer

Attention mechanism has been widely utilized in many fields, such
as computer vision [5], machine translation [1], and recommen-
dation [3, 4, 38]. Since attention mechanism has superior ability
to assign non-uniform weights according to input instances, it is
adopted in our model to achieve personalized adaptive transfer
learning. Specifically, we apply attention networks for item domain
and social domain respectively. Each is a two-layer network with
user representations (uc, ul, v’ ) as the inputs. For a user, if the
two domains are less related, then the shared knowledge (u€) will
be penalized and the attention network will learn to utilize more
domain-specific information (u’ or u’) instead. Formally, the item
domain attention and the social domain attention are defined as:

a(*C,u) = hgd(wauc + ba); 0{&,“) = hgg(waul + ba) (3)
Bic.uy = DpoWpu® +bp) fig ) =hgo(Wgu® +bp)

where W, € Rkxd by € R, h, € R¥ are parameters of the item
domain attention, Wﬁ € RkXd, bﬁ € Rk, h/; € RF are parameters
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Figure 2: Illustration of our Efficient Adaptive Transfer Neu-
ral Network (EATNN).

of the social domain attention. d is the dimension of embedding
vector, k is the dimension of the attention network, and o is the
nonlinear activation function ReLU [23].

Then, the final attention scores are normalized with a softmax
function:

exp(a(* c. u))
) + exp(a

HCu) =

*

(C.u)
exp(fic )
exp(Bc ) +exp(By )

” ) = l—a([’u)

exp(a (Lu)

4)

Bcowy = 1= fs,u)

a(c,u) and f(c,y,) are the weights of shared knowledge (uC) for item
domain and social domain respectively, which determine how much
to transfer in each domain. After obtaining the above attention
weights, the representations of user u for the two domains are
calculated as follows:

Ph = o’ +acwuSs Pl = Bsuu’ + fewut 6

pL and pi are two feature vectors, which represent the user’s
preferences for items and other users after transferring the common
knowledge between the two domains.

Based on the learnt feature vectors, the prediction part aims to
generate a score that indicates a user’s preferences for an item or a
friend. The prediction part is built on a neural form of MF [10]. For
each domain task, a specific output layer is employed. The scores
of user u for item v and another user ¢ are calculated as follows:

Ruv = h;(P{; 0qy); Xut = hg(Pﬁ 0g,) (6)

where q,, € R? and g € R are latent vectors of item v and user t
as a friend, © denotes the element-wise product of vectors, and hy €
R9 and hg € R? denote the output layer for item domain and social
domain, respectively. Then for our target task — recommendation,
the candidate items will be ranked in descending order of Ry to
provide Top-K item recommendation list.



4.3 Efficient Whole-data based Learning

To improve the speed of whole-data based optimization, we derive
an efficient loss function for learning from implicit feedback.

4.3.1 Weighting Strategy. We first present the weighting strat-
egy for each entry in matrices R and X. There have been many
studies on how to assign proper weights for implicit interactions,
such as uniform weighting strategy [12, 26, 36] and frequency-based
weighting strategy [11, 17]. Since this is not the main concern of our
work, we follow the settings of previous work [11]: 1) the weight
of each positive entry (c and c 7) is set to 1; 2) the weights of
negative instances are calculated as follows, which assign the larger
weights to the items and friends with higher frequencies:

P1
uv — v T M0 Qv L, V4
Zj:1 }Dl Zj:l |Rj|
™)
ST oSS ny | X |
Cut = TNy e M T ST
Zj:l j Z]‘:l |Xj|

where m,, and n; denote the frequency of item v and friend ¢t in
R and X, respectively; R, and X; denote the positive interactions
of vandt; cé and cg determine the overall weight of missing data,
and p; and py control the significance level of popular items over
unpopular ones.

4.3.2 Loss Inference. In our method, the loss functions of item
domain and social domain only differ in their inputs, thus we focus
on illustrating the inference of the item domain in detail.

According Eq.(2), for a batch of users, the loss of item domain is:

L7(©) = Z Z Cﬁv(Ruv - Ruv)z

ueBovev

= Z Z Ciﬂv(Riv

ueBovev

. . ®)
- 2RyuRyw + R2,)

In implicit data, since Ry, € {0,1} indicates whether u has
purchased or clicked on item v, it can be replaced by a constant to
simplify the equation. Also, the loss of missing data can be expressed
by the residual between the loss of all data and that of positive data:

L7(0) = const — 2 Z Z It Ryo + Z Z cuok’,

ueByevt ueBovev
—const—ZZ Z Ruv"'z Z I+l§iv
ueB pev+ ueB pev+
I- pH2
DIPIT A
ueBovev-
_ I+ p2
= const — 2 Z Z Ruv + Z Z oRio
ueBoev* ueByev* )
ADIDICAAED WYL
ueBvev ueB pevt
= const + Z Z ((cﬂz —cl R, - ZCL;RM,)
ueB vev*
]
SDIPITA
ueBovev
L}ﬂ(@)

where const denotes a ©-invariant constant value, and L?(@)
denotes the loss for all data. Thus, £ 7(©) can be seen as a combi-
nation of the loss of positive data and the loss of all data. And the
loss of missing data has been eliminated. The new computational
bottleneck lies in .Ejﬂ (®) now.
Recall the prediction of Ruw, we have:
d
Rup =] (pl, ©q,) = D h1ipl, 9o, (10)
i=1
Based on a decouple manipulation for the inner product opera-
tion, the summation operator and elements in p,, and q,, can be
rearranged.

d d

D2 I 1

R = D hriph 00,1 ), b by, 10,
: =

d
= Z Z (hr,ihr;) (pi,ipi,j) (90,190,5)

By substituting Eq.(11) in L? (©), there emerges a nice structure: if

(11)

we set ¢, to ¢, (Eq.(7)), the interaction between pi’i and gy, ; can
be properly separated. Thus, the optimization of Yo, ey ¢S g0, 190, j
and ), cp pi’ iplll’j are independent of each other, which means
we could achieve a significant speed-up by precomputing the two

terms:

d d
£00= 333t Sl ) 3 e

i=1 j=1 ueB veV
(12)

The rearrangement of nested sums in Eq.(12) is the key transforma-
tion that allows the fast optimization. The computing complexity
of L?(@) has been reduced from O(|B||V|d) to O((|B| + [V])d?).
By substituting Eq.(12) in Eq.(9) and removing the const part, we
get the final efficient whole-data based loss of the item domain as

follows:

d d

£70) = Z ( (hr,ihr,;) (Z Pi,ipi,j) (Z C-{)qv,i‘h),j))
i=1 j=1 ueB veV
£33 (A= eRE, - 2Ry )
ueBovev*
(13)

where cL¥, is set to 1 and cL, is simplified to ¢~ as discussed before.

4.3.3 Joint Learning. Similarly, we can derive the loss func-
tion of social domain:

d d
L5(0) = Z Z ((hs,ihs,j) (Z pi,ipg,j) (Z Cts_gt,igt,j))

i=1 =1 ucB teU
Py ((1 —S$HRE, - ZXM)
u€B teU*

(14)

After that, we integrate both the subtasks of item domain and
social domain into a unified multi-task learning framework whose
objective function is:

L(©) = L1(0)+pLs(©) (15)



where .CNI(G) is the item domain loss from Eq.(13), .ES(@) is the
social domain loss from Eq.(14), and y is the parameter to adjust
the weight proportion of each term. The whole framework can
be efficiently trained using existing optimizers in an end-to-end
manner.

4.3.4 Discussion. So far we have derived the efficient whole-
data based learning method. Note that the method is not limited to
optimize recommendation models. It has the potential to benefit
many other tasks where only positive data is observed, such as
word embedding [21] and multi-label classification [35].

To analyze the time complexity of our optimization method,
we exclude the time overhead of adaptive transfer learning in the
model. In Eq.(15), updating a batch of users in item domain takes
O((IB| + |V|)d? + |Rp|d) time, where Rp denotes positive item
interactions of this batch of users. Similarly, in social domain it takes
O((|B| + |U|)d? + | Xg|d) time. Thus, one batch takes total O((2|B| +
[U| + |V])d? + (|RB| + | X |)d) time. For the original regression loss,
it takes O((|B||V| + |B||U]|)d) time. Since |Rp| < |B||V], |XB| <
|B||U|, and d < |B| in practice, the computional complexity of
our optimization method is reduced by several magnitudes. This
makes it possible to apply whole-data based optimization strategy
for neural models. Moreover, since no approximation is introduced
during the derivation process, the optimization results are exactly
the same with the original whole-data based regression loss.

As fast whole-data based learning is a challenging problem, our
current efficient optimization method is still preliminary and has a
limitation. It is not suitable for models with non-linear prediction
layers, because the rearrange operation in Eq.(11) requires the pre-
diction of Ry, to be linear. We leave the extension of the method
as future work.

4.4 Model Training

To optimize the objective function, we adopt mini-batch Adagrad [8]
as the optimizer. Its main advantage is that the learning rate can
be self-adapted during the training phase, which eases the pain of
choosing a proper learning rate. Specifically, users are first divided
into multiple batches. Then, for each batch of users, all positive
interactions in both item domain and social domain are utilized to
form the training instances.

Dropout is an effective solution to prevent deep neural networks
from overfitting [32], which randomly drops part of neurons during
training. In this work, we employ dropout to improve our model’s
generalization ability. Specifically, after transferring, we randomly
drop p percent of pl, and pz,where p is the dropout ratio.

5 EXPERIMENTS
5.1 Experimental Settings

5.1.1 Datasets. We experimented with three public accessible
datasets: Ciao!, Epinion? and Flixster’. The three datasets are
widely used in previous studies [4, 18, 33]. Each dataset contains
users’ ratings to the items they have purchased and the social
connections between users. Among all the benchmark datasets,
Flixster is the largest one and contains more than seven million
item interactions from about seventy thousand users.

http://www.jiliang xyz/trust.html
Zhttp://alchemy.cs.washington.edu/data/epinions/
3http://www.cs.ubc.ca/jamalim/datasets/

Table 2: Statistical details of the evaluation datasets. “Item
Interaction” means user-item historical records, and “Social
Connection” denotes user relationships in social networks.

Ciao | Epinion | Flixster
#User 7,267 20,608 69,251
#Item 11,211 23,585 17,318
#Item Interaction 157,995 454,002 | 7,940,096
#Social Connection | 111,781 351,486 967,195

Table 3: Comparison of the methods

Characteristics BPR | ExpoMF | NCF | SBPR | TranSIV | SAMN | EATNN
Item domain vV vV vV vV vV vV v
Social domain \ \ \ vV vV vV vV
Neural model \ \ vV \ \ vV v
Adaptive transfer \ \ \ \ \ \ Vv
Whole-data \ v \ \ vV \ v

All the datasets are preprocessed to make sure that all items have
at least five interactions. As long as there exist some user—user or
user—item interactions, the corresponding rating is assigned a value
of 1 as implicit feedback. The statistical details of these datasets are
summarized in Table 2.

5.1.2 Baselines. To evaluate the performance of Top-K recom-
mendation, we compare our EATNN with the following methods.

e Bayesian Personalized Ranking (BPR) [28]: This method
optimizes MF with the Bayesian Personalized Ranking objective
function.

e Exposure MF (ExpoMF) [17]: This is a whole-data based
method for item recommendation. It treats all missing interac-
tions as negative and weighs them by item popularity.

o Neural Collaborative Filtering (NCF) [10]: This is the state-
of-the-art deep learning method which uses users’ historical
feedback for item ranking. It combines MF with a multilayer
perceptron (MLP) model .

e Social Bayesian Personalized Ranking (SBPR) [43]: This
is a ranking model which assumes that users tend to assign
higher scores to items that their friends prefer.

e Transfer Model with Social and Item Visibilities (Tran-
SIV) [18]: This is a state-of-the-art social-aware recommenda-
tion method. It considers the visibility of both items and friend
relationships, and utilizes transfer learning to combine the item
domain and social domain for recommendation.

e Social Attentional Memory Network (SAMN) [4]: SAMN
is a state-of-the-art deep learning method, which leverages
attention mechanisms to model both aspect- and friend-level
differences for social-aware recommendation.

The comparison of EATNN and the baseline methods are listed in
Table 3.

5.1.3 Evaluation Metrics. We adopt Recall@K and NDCG@K
to evaluate the performance of all methods. The two metrics have
been widely used in previous recommendation studies [4, 18, 40].
Recall@K considers whether the ground truth is ranked among the
top K items, while NDCG@K is a position-aware ranking metric.

5.1.4 Experiments Details. We randomly split each dataset
into training (80%), validation (10%), and test (10%) sets. The parame-
ters for all baseline methods were initialized as in the corresponding
papers, and were then carefully tuned to achieve optimal perfor-
mances. The learning rate for all models were tuned amongst [0.005,



Table 4: Comparisons of different methods on Three datasets. Best baselines are underlined. The proposed method achieves
best performances on all metrics which are in boldface. ** denotes the statistical significance for p < 0.01, compared to the best
baseline. The last column “RI” indicates the relative improvement of EATNN over the corresponding baseline on average.

Ciao Recall@10 | Recall@50 | Recall@100 | NDCG@10 | NDCG@50 | NDCG@100 RI
BPR 0.0591 0.1600 0.2135 0.0409 0.0688 0.0805 +20.08%
ExpoMF 0.0642 0.1556 0.2050 0.0445 0.0706 0.0816 +17.03%
NCF 0.0667 0.1584 0.2141 0.0456 0.0718 0.0837 +13.84%
SBPR 0.0623 0.1631 0.2146 0.0436 0.0695 0.0832 +16.30%
TranSIV 0.0678 0.1651 0.2184 0.0473 0.0753 0.0865 +10.20%
SAMN 0.0719 0.1671 0.2233 0.0495 0.0768 0.0883 +6.97%
EATNN 0.0778** 0.1764** 0.2305** 0.0547** 0.0824** 0.0943** -
Epinion | Recall@10 | Recall@50 | Recall@100 | NDCG@10 | NDCG@50 | NDCG@100 RI
BPR 0.0528 0.1477 0.2115 0.0353 0.0613 0.0751 +21.49%
ExpoMF 0.0611 0.1508 0.2077 0.0422 0.0673 0.0798 +11.82%
NCF 0.0535 0.1489 0.2144 0.0367 0.0624 0.0772 +19.06%
SBPR 0.0547 0.1511 0.2142 0.0387 0.0665 0.0783 +15.71%
TranSIV 0.0631 0.1552 0.2227 0.0423 0.0681 0.0829 +8.49%
SAMN 0.0621 0.1583 0.2274 0.0417 0.0698 0.0842 +7.62%
EATNN 0.0696"* 0.1675** 0.2309** 0.0474*" 0.0749** 0.0887** -
Flixster | Recall@10 | Recall@50 | Recall@100 | NDCG@10 | NDCG@50 | NDCG@100 RI
BPR 0.1733 0.3945 0.5272 0.1612 0.2193 0.2568 +35.88%
ExpoMF 0.2596 0.4488 0.5659 0.2012 0.2633 0.3002 +10.94%
NCF 0.2613 0.4564 0.5632 0.2112 0.2687 0.3075 +8.81%
SBPR 0.2314 0.4517 0.5697 0.1989 0.2514 0.3016 +14.05%
TranSIV 0.2748 0.4633 0.5749 0.2277 0.2804 0.3224 +4.35%
SAMN 0.2767 0.4661 0.5746 0.2316 0.2833 0.3251 +3.51%
EATNN 0.2948*" 0.4736*" 0.5896* 0.2401** 0.2962** 0.3319** -

0.01, 0.02, 0.05]. To prevent overfitting, we tuned the dropout ratio
in [0.1, 0.3, 0.5, 0.7, 0.9]. The batch size was tested in [128, 256,
512,1024], the dimension of attention network k and the latent fac-
tor number d were tested in [32, 64, 128]. After the tuning process,
the batch size was set to 512, the size of the latent factor dimension
d was set to 64. For our EATNN model, the attention size k was
set to 32, the learning rate was set to 0.05, and the dropout ratio
p was set to 0.3 for Ciao and Epinion, and 0.7 for Flixster. For the
optimization objective, we set the weight parameter y=0.1.

5.2 Comparative Analyses on Overall
Performances

The results of the comparison of different methods on three datasets
are shown in Table 4. To evaluate on different recommendation
lengths, we set the length K = 10, 50, and 100 in our experiments.
From the results, the following observations can be made:

First, methods incorporating social information generally per-
form better than non-social methods. For example, in Table 4, the
performance of SBPR is better than BPR, and TranSIV, SAMN, and
EATNN outperform BPR, ExpoMF, and NCF. This is consistent with
previous work [4, 18, 43], which indicates that social information
reflects users’ interests, and hence is helpful in the recommendation.

Second, our method EATNN achieves the best performance on
the three datasets, and significantly outperforms all baseline meth-
ods (including neural models NCF and SAMN) with p-values smaller
than 0.01. Specifically, compared to SAMN - a recently proposed
and very expressive deep learning model, EATNN exhibits average
improvements of 6.97%, 7.62% and 3.51% on the three datasets. The
substantial improvement of our model over the baselines could

be attributed to two reasons: (1) our model uses attention mecha-
nisms to adaptively transfer the common knowledge between item
domain and social domain, which allows the social information
to be modeled with a finer granularity; (2) the parameters in our
model are jointly optimized on the whole data, while sample-based
methods (BPR, NCF, SAMN) only use a fraction of sampled data
and may ignore important negative examples.

Third, considering the performance on each dataset, we find
the improvements of EATNN depend on the sparsity of the item
domain data. The Flixster dataset is relatively dense in terms of
user—item interactions (averaging 114.66 interactions per user, com-
pared with 21.74 and 22.03 for Ciao and Epinions, respectively).
User preferences are more difficult to learn from sparse user—item
interactions (cold-start data), but can be enriched by the knowledge
learnt from social domain. Thus, the results show that our transfer
learning based model is more useful on sparse datasets. To make
further verifications, we conduct experiments on less training data
and the results are shown in Section 5.4.

5.3 Efficiency Analyses

In this section, we conducted experiments to explore the training
efficiencies of our EATNN and two state-of-the-art social-aware
recommendation methods: TranSIV and SAMN.

We first compared the overall runtime of the three methods. The
results of EATNN-E is also added to show the efficiency of our
proposed optimization method, where EATNN-E represents the
variant model of EATNN using the original regression loss (Eq.2).
In our experiments, the traditional method TranSIV was trained
with 8 threads on the Intel Xeon 8-Core CPU of 2.4 GHz, while the
neural models SAMN, EATNN-E and EATNN were trained on a
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Figure 3: Performance curves of SAMN and EATNN on Ciao and Epinion datasets.

Table 5: Comparisons of runtime (second/minute/hour/day
[s/m/h/d]). “S”, “I”, and “T” represents the training time for
a single iteration, the number of iterations to converge, and
the total training time, respectively.

Ciao Epinion Flixster
S 1 T S 1 T S 1 T
TranSIV 55s 50 46m | 410s 50 342m | 37m 50 31h
SAMN 31s 500 258m | 92s 500 767m | 56m 200 &d
EATNN-E | 13s 200 43m 97s 200 324m | 32m 200 5d
EATNN 1.8s 200 6m 11s 200 37m | 8m 200 27h

Model

single NVIDIA GeForce GTX TITAN X GPU. The runtime results
are shown in Table 5. We can first observe that the training time
cost of EATNN is much less than EATNN-E, which certifies that
our derived loss can be learned more efficiently compared to the
original regression loss. Second, generally the training of EATNN
is much faster than TranSIV, SAMN and EATNN-E. In particular,
for the biggest dataset Flixster, EATNN only needs 27 hours to
achieve the optimal performance, while SAMN and EATNN-E need
about 8 and 5 days, respectively. For other datasets, the results of
EATNN are also remarkable. In real E-commerce scenarios, the cost
of training time is also an important factor to be considered. Our
EATNN model shows significant advantages in training efficiency,
which makes it more practical in real life.

We also investigated the training process of the neural models
SAMN and our EATNN (The results of EATNN-E and EATNN are
exactly the same). Figure 3 shows the prediction accuracy of the two
models with respect to different training epochs. Due to the space
limitation, we only show the results of Ciao and Epinion datasets on
Recall@50 and NDCG@50 metrics. For Flixster dataset and other
metrics, the observations are similar. From the figure, we can see
that EATNN converges much faster than SAMN and consistently
achieves better performance. The reason is that EATNN is optimized
with a newly derived whole-data based method, while SAMN is
based on negative sampling, which can be sub-optimal.

5.4 Handling Cold-Start Issue

We validated the ability of our model in handling the cold-start prob-
lem, where users have few interactions in item domain. Specifically,
the experiments were conducted by using different proportions of
the training data, including: 1) 25% for training, 75% for testing and
2) 50% for training, 50% for testing. All of the social information is
used in the social-aware algorithms (SBPR, TranSIV, SAMN, and
EATNN). The results are similar for all the three datasets. Due to the
space limitation, we show the results of Epinion dataset in Table 6.
Note that a larger test set contains more positive examples, which

may lead to bigger values of Recall and NDCG compared to Table 4
where only 10% data is used for testing [18]. From Table 6, we have
the following observations:

Firstly, compared with non-social methods, social-aware meth-
ods show much better performances, and more improvements are
achieved when fewer data are used for training. Considering that
social domain and item domain are correlated, the knowledge learnt
from social behavior can compensate for the shortage of user feed-
back on items. As a result, the use of social information produces
great improvement when the training data are scarce. Secondly, our
EATNN demonstrates significant improvements over other base-
lines including social-aware methods SBPR, TranSIV, and SAMN.
Specifically, the improvements over the best baseline are 8.68% for
25% training and 7.81% for 50% training. This indicates the effec-
tiveness of EATNN in addressing the cold-start issue by leveraging
adaptive transfer learning and users’ social information. Thirdly,
TranSIV, and EATNN generally achieve greater improvements when
the training data are scarce. This observation coincides with pre-
vious work [16, 18], which states that transfer learning methods
contribute even more when data in the target domain is sparse.

5.5 Ablation Study

To further understand the effectiveness of social information and
the designed attention-based adaptive transfer learning framework,
we conducted experiments with the following variants of EATNN:

e EATNN-S: A variant model of EATNN without using social
information.

e EATNN-A: A variant model of EATNN in which the transfer
framework is not adaptive. A constant weight (0.5 in our exper-
iments) is assigned to the shared knowledge between item and
social domains for every user.

Figure 4 shows the performance of different variants. The results
of the state-of-art methods NCF (non-social) and SAMN (social-
aware) are shown as baselines. Due to the space limitation, we also
only show the results of Ciao and Epinion datasets on Recall@50
and NDCG@50 metrics. From Figure 4, two observations are made:

1) When using social information, EATNN and the variant EATNN-
A both perform better than SAMN (p<0.01). And when the attention-
based adaptive transfer framework is applied, the performances are
further improved significantly compared with the constant weight
method EATNN-A (p<0.05). It indicates that the shared knowledge
between the item and social domains are varied and should be adap-
tively transferred for different users. The better results of EATNN
also show that our attention-based adaptive transfer framework
can effectively learn the weight of the shared knowledge.



Table 6: Performance comparisons on Epinion in cold scenarios (training : test = 25% : 75%, and 50% : 50%). ** : p < 0.01 compared
to the best baseline. “RI” (last column) : the relative improvement of EATNN over the corresponding baseline on average.

25% Recall@10 | Recall@50 | Recall@100 | NDCG@10 | NDCG@50 | NDCG@100 RI
BPR 0.0211 0.0656 0.1009 0.0394 0.0501 0.0625 +61.84%
ExpoMF 0.0466 0.0752 0.1068 0.0497 0.0584 0.0699 +22.13%
NCF 0.0440 0.0781 0.1162 0.0449 0.0570 0.0709 +23.22%
SBPR 0.0387 0.0784 0.1157 0.0423 0.0543 0.0691 +29.07%
TranSIV 0.0519 0.0859 0.1211 0.0549 0.0657 0.0785 +8.68%
SAMN 0.0494 0.0832 0.1197 0.0517 0.0604 0.0731 +14.43%
EATNN 0.0567** 0.0934** 0.1328** 0.0593** 0.0708** 0.0853** -
50% Recall@10 | Recall@50 | Recall@100 | NDCG@10 | NDCG@50 | NDCG@100 RI
BPR 0.0408 0.1143 0.1680 0.0525 0.0743 0.0912 +31.03%
ExpoMF 0.0611 0.1223 0.1701 0.0606 0.0827 0.0982 +13.30%
NCF 0.0576 0.1216 0.1745 0.0559 0.0784 0.0955 +17.30%
SBPR 0.0433 0.1257 0.1742 0.0554 0.0798 0.0974 +23.00%
TranSIV 0.0648 0.1284 0.1797 0.0633 0.0856 0.1010 +8.34%
SAMN 0.0642 0.1301 0.1805 0.0630 0.0867 0.1024 +7.81%
EATNN 0.0712** 0.1352** 0.1909** 0.0709"* 0.0921"* 0.1101** -
Ciao Ciao Epinion Epinion

0.180 0.085

— = SAMN
— - NCF

0.175
0.080
0.170

0.165

Recall@50
NDCG@50
4
=
N1
b

0.160
0.070
0.155

0.150 0.065

50

Recall@.

0.170 0.080

— = SAMN
NCF

0.160

— = SAMN
—_ NCF

0.165
0.075

0.155 > 0.070

NDCG@50

0150 |
0.065
0145 |

0.140 0.060

EATNN-S EATNN-A
Model Variants

EATNN-A

EATNN-S
Model Variants

Figure 4: Performance of variants of EATNN on Ciao and Epinion datasets. EATNN-S is EATNN without social information,
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2) EATNN-S performs the worst among the variant models since
no social interactions are utilized. Nevertheless, when using only
item interactions, EATNN-S still significantly outperforms NCF
(p<0.01), indicating the effectiveness of whole-data based learning.

5.6 Case Study on Adaptive Transfer

The attention weights reflect how the model learns and recom-
mends. We provide some examples to show the adaptive transfer
learning process when making recommendations. Table 7 shows
some samples in different scenarios from Epinion dataset. EATNN
learns the difference between these two domains and automatically
balances the shared and non-shared parameters. The first user in
EX1 has rich interactions in both item and social domains, and
attention weights reflect how the shared knowledge is transferred.
66.3% of u€ is used to predict user preferences to items, while 77.4%
of u€ is to predict user preferences to other users in social net-
works. EX2 is an example that the user has no item interactions
in training set, whose attention weight of item-specific vector is
around 0. Note that in EX2, both u€ and u® are trained only on
social data after random initialization, thus fc, ,,) and fs, ) exhibit
similar weights. It is shown that attention weights also reflect the
richness of feedback information. Opposite case is shown in EX3
which has no social interactions in training set, where ¢(c ,,) and
a1, are similar. EX4 shows that the item feedback information is
not rich enough to dominate the recommendation.

EATNN-S EATNN-A
Model Variants

EATNN-S EATNN-A
Model Variants

EATNN EATNN

Table 7: Examples of attention weights on Epinion dataset.
Each example is a user with the number of interactions
he/she has in item domain and social domain.

#Interaction Item Domain Social Domain

in Training Attention Attention

Item Social acu)y %rw Bcow  Bsw
EX1 72 85 0.663  0.337 0.774 0.226
EX2 0 29 0.914  0.086  0.479 0.521
EX3 34 0 0.422 0578 0.882 0.118
EX4 1 15 0.823 0.177 0.511 0.489

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel Efficient Adaptive Transfer Neural
Network (EATNN) for social-aware recommendation. Specifically,
by introducing attention mechanisms, EATNN is able to adaptively
assign a personalized scheme to transfer the shared knowledge
between item domain and social domain. We also derive an effi-
cient whole-data based optimization method, whose complexity is
reduced significantly. Extensive experiments have been made on
three real-life datasets. The proposed EATNN consistently and sig-
nificantly outperforms the state-of-the-art recommendation models
on different evaluation metrics, especially for cold-start users that



have few item interactions. Moreover, EATNN shows significant
advantages in training efficiency, which makes it more practical to
be applied in real E-commerce scenarios.

Our efficient whole-data based strategy has the potential to ben-
efit many other tasks where only positive data is observed. The
EATNN model is also not limited to the task in this paper. In the
future, we are interested in exploring EATNN and our efficient
whole-data based strategy in other related tasks like content rec-
ommendation [6], network embedding [21, 30], and multi-domain
classification [24]. Also, we will try to extend our optimization
method to make it suitable for learning deep non-linear models.
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