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ABSTRACT
To provide more accurate recommendation, it is a trending topic

to go beyond modeling user-item interactions and take context

features into account. Factorization Machines (FM) with negative

sampling is a popular solution for context-aware recommendation.

However, it is not robust as sampling may lost important informa-

tion and usually leads to non-optimal performances in practical.

Several recent e�orts have enhanced FM with deep learning archi-

tectures for modelling high-order feature interactions. While they

either focus on rating prediction task only, or typically adopt the

negative sampling strategy for optimizing the ranking performance.

Due to the dramatic �uctuation of sampling, it is reasonable to ar-

gue that these sampling-based FM methods are still suboptimal for

context-aware recommendation.

In this paper, we propose to learn FM without sampling for rank-

ing tasks that helps context-aware recommendation particularly.

Despite e�ectiveness, such a non-sampling strategy presents strong

challenge in learning e�ciency of the model. Accordingly, we fur-

ther design a new ideal framework named E�cient Non-Sampling

Factorization Machines (ENSFM). ENSFM not only seamlessly con-

nects the relationship between FM and Matrix Factorization (MF),

but also resolves the challenging e�ciency issue via novel memo-

rization strategies. Through extensive experiments on three real-

world public datasets, we show that 1) the proposed ENSFM consis-

tently and signi�cantly outperforms the state-of-the-art methods

on context-aware Top-K recommendation, and 2) ENSFM achieves

signi�cant advantages in training e�ciency, which makes it more

applicable to real-world large-scale systems. Moreover, the empir-

ical results indicate that a proper learning method is even more

important than advanced neural network structures for Top-K rec-

ommendation task. Our implementation has been released
1
to

facilitate further developments on e�cient non-sampling methods.
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1 INTRODUCTION
With the continuous development of the Internet, information ex-

plosion has become a great challenge that people are faced with [4,

36]. Keeping pace with the growing requirements of customiza-

tion and personalization, recommender systems that are capable of

learning �ne-grained individual preferences with a concise, �exible,

and e�cient structure are eagerly expected.

Context-aware recommender systems exploit contextual infor-

mation such as user demographics, item attributes, and time/location

of the current transaction to personalize item recommendation

for users [2, 35, 46]. To learn from such context-rich data, sev-

eral e�ective models have been proposed, among which Factor-

ization Machines (FM) [31] gains signi�cant attention from re-

searchers [15, 16, 23, 44, 46] due to its elegant theory in seamless

integration of sparse context and increasing popularity in industrial

applications.

FM is originally developed for rating prediction task, which is

based on explicit user feedback (e.g., ratings). However, most ob-

served user feedback is implicit in practice [22, 34], such as views,

clicks, and purchases. Besides, previous literature [12] has pointed

out that algorithms optimized for rating prediction may not per-

form well on Top-K recommendation, which is widely used in real

scenarios. To address both context-aware and implicit feedback

scenarios, the ranking-based FM methods have been recently inves-

tigated [30, 44, 46]. By far, existing ranking-based FM algorithms

mainly rely on negative sampling for e�cient model learning. De-

spite e�ectiveness, it is reasonable to argue that sampling is not

robust as it is highly sensitive to the sampling distribution. Essen-

tially, sampling is biased, making it di�cult to converge to the

same performance with all training examples, regardless of how

many update steps have been taken [6, 45]. Hence, sampling-based

FM is still a suboptimal scheme for ranking tasks such as Top-K

recommendation.

Despite the overwhelming research on FM, the majority of ex-

isting studies are conducted to apply deep neural networks for
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https://doi.org/10.1145/3366423.3380303


modelling high-order feature interactions, such as multi-layer per-

ception (MLP) [15, 16], attention mechanisms [43], and Convolu-

tional Neural Network (CNN) [25, 44], etc. However, these studies

either focus on rating prediction task only, or typically adopt con-

venient negative sampling for optimizing the ranking performance.

Although these methods have yielded great promise in many predic-

tion tasks, their ranking performances are limited by the inherent

weakness of sampling-based learning strategy.

In this paper, we propose to learn FM without sampling for

ranking tasks, which is particularly intended for context-aware

recommendation. In contrast to sampling, non-sampling strategy

computes the gradient over the whole data (including all missing

data). As such, it can easily converge to a better optimum in a

more stable way [6, 22]. Unfortunately, the di�culty in applying

non-sampling strategy lies in the expensive computational cost.

Although some studies have been made to explore e�cient non-

sampling Matrix Factorization (MF) methods [6, 21, 24, 47], it is

non-trivial to directly apply MF learning methods for existing FM

formulations. Because compared to FM that has a huge amount

of cross-feature interactions, MF only considers pure user-item ID

interactions. When such a nice structure is broken, these e�cient

algorithms become invalid and the complexity return to intractable.

This creates an impending need of e�cient learning methods for

non-sampling FM.

In light of the above problems of existing solutions, we design a

new framework named E�cient Non-Sampling Factorization Ma-

chines (ENSFM). Through novel designs of memorization strategies,

we �rst reformulate FM into a generalized MF framework, and then

leverages the bi-linear structure of MF to achieve speedups. The pro-

posed ENSFM framework builds up a clear bridge between the two

most popular recommendationmethods —MF and FM, with theoret-

ical guarantees, and resolves the challenging e�ciency issue caused

by non-sampling learning strategy. As a result, ENSFM achieves

two remarkable advantages over state-of-the-art context-aware rec-

ommendationmethods: 1) e�ective non-sampling optimization and

2) e�cient model training. To evaluate the recommendation per-

formance and training e�ciency of our model, we apply ENSFM on

three real-world datasets with extensive experiments. The results

indicate that our model signi�cantly outperforms the state-of-the-

art context-aware methods (including neural models DeepFM, NFM,

and CFM) with a much simpler structure and fewer model parame-

ters. Furthermore, ENSFM shows signi�cant advantages in training

e�ciency, which makes it more practical in real E-commerce sce-

narios. The main contributions of this work are as follows:

(1) We highlight the importance of learning FM without sampling

for context-aware recommendation, which is more e�ective and

stable as considering all samples’ information in each parameter

update.

(2) We present a novel embedding-based ENSFM framework to

achievemore accurate performance while maintaining low com-

plexity. It not only complements the mainstream sampling-

based context-aware models, but also provides an e�cient, ef-

fective, and theoretical guaranteed solution to improve FM.

(3) Extensive experiments are conducted on three benchmark datasets.

The results show that ENSFM consistently and signi�cantly

Table 1: Summary of symbols and notation.

Symbol Description
U Set of users

B Batch of users

V Set of items

X Set of features

Y User-item interactions

R Set of user-item pairs whose values are non-zero

x Sparse feature input

ei Latent vector of feature i
h Neuron weights of the prediction layer

pu Auxiliary vector of user context u
qv Auxiliary vector of item context v
haux Auxiliary neuron weights of the prediction layer

wi First-order feature interaction weight

w0 Global bias

cuv Weight of entry yuv
m The number of user context

n The number of item context

d Latent factor number

Θ Set of neural parameters

outperforms the state-of-the-art models in terms of both rec-

ommendation performance and training e�ciency.

(4) This work empirically shows that a proper learning method is

even more important than advanced neural networks for Top-K

recommendation task.

2 PRELIMINARIES
In this section, we �rst introduce the key notations used in this

work, and then provide an introduction to factorization machines

and the e�cient non-sampling matrix factorization methods.

2.1 Notations
Table 1 depicts the notations and key concepts . Suppose we have

usersU, itemsV, and featuresX in the dataset, and we use the index

u to denote a user context, and v to denote an item context. The

user-item data matrix is denoted as Y = [yuv ] ∈ {0, 1}, indicating

whether u has an interaction with item v . We use R to denote

the set of observed entries in Y, i.e., for which the values are non-

zero. x denotes a real valued feature vector, which utilizes one-hot

encoding to depict contextual information. An example is illustrated

as follows with �ve feature �elds:

user context︷                                       ︸︸                                       ︷
[0, 1, 0, . . . , 0︸        ︷︷        ︸

user ID

][ 1, 0︸︷︷︸
gender

][ 0, 1, . . . , 0︸     ︷︷     ︸
organization

]

item context︷                                 ︸︸                                 ︷
[0, 0, 1, . . . , 0︸        ︷︷        ︸

item ID

][0, 1, 0, 1, . . . , 0︸           ︷︷           ︸
category

]

We use m and n to denote the number of user context features

and item context features, respectively. To support e�cient opti-

mization, we speci�cally build three auxiliary vectors: pu—auxiliary
vector of useru, qv—auxiliary vector of itemv , andhaux—auxiliary
prediction vector. More details are introduced in Section 3.
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2.2 Factorization Machines
Factorization machines [31] is a generic framework which inte-

grates the advantages of �exible feature engineering and high-

accuracy prediction of latent factor models. Given a real valued

feature vector x, FM estimates the target by modelling all inter-

actions between each pair of features via factorized interaction

parameters:

ŷFM (x) = w0 +

m+n∑
i=1

wixi +
m+n∑
i=1

m+n∑
j=i+1

eTi ej · xix j (1)

wherew0 is the global bias,wi models the interaction of the i-th fea-
ture to the target. The eTi ej term denotes the factorized interaction,

ei ∈ Rd denotes the embedding vector for feature i , and d denotes

the latent factor number. Note that Eq.(1) can be reformulated as:

ŷFM (x) = w0 +

m+n∑
i=1

wixi +
1

2

d∑
f =1

©­«
(m+n∑
i=1

ei,f xi

)
2

−

m+n∑
i=1

e2i,f x
2

i
ª®¬
(2)

resulting in linear time complexity O((m + n)d) for each training

instance [31].

2.2.1 Complexity Issue of Non-sampling FM. Since sam-

pling has been shown to be non-optimal in many existing stud-

ies [6, 45, 47], we propose to learn FM without sampling to achieve

optimal ranking performance. For implicit data, the observed in-

teractions are rather limited, and non-observed examples are of

a much larger scale. A commonly used non-sampling loss is as

follows [22], which associates a con�dence to each prediction in

the implicit feedback matrix Y:

L(Θ) =
∑
u ∈U

∑
v ∈V

cuv (yuv − ŷuv )
2

(3)

where cuv denotes the weight of entry yuv . Note that in implicit

feedback learning, missing entries are usually assigned a zero yuv
value but non-zero cuv weight.

As can be seen, although FM has a linear time complexity for one

training instance, the whole complexity of computing the loss in

Eq.(3) is still generally una�ordable — O((m + n)|U| |V|d), because
|U| |V| can easily reach billion level or even higher in real life.

Recently, many variants of FM have been developed, such as

DeepFM [15], NFM [16], AFM [43], xDeepFM [25], and CFM [44],

etc. However, these variants mainly focus on utilizing di�erent

neural networks to model high-order features interactions. Despite

e�ectiveness on rating prediction, the complex network structures

make them even harder to apply non-sampling learning for ranking

optimization. For recommendation which is a ranking task, deeper

models do not necessarily lead to better results since they are more

di�cult to optimize and tune [13, 16]. We empirically show the

details in Section 4.

2.3 E�cient Non-sampling Matrix
Factorization

To address the ine�ciency issue of non-sampling matrix factoriza-

tion, several methods have been proposed [6, 21, 45, 47]. Speci�cally,

Chen et al. [6] derive an e�cient loss for generalized MF, and prove:

Theorem 2.1. For a generalized matrix factorization framework
whose prediction function is:

ŷuv = hT (pu � qv ) (4)

where pu ∈ Rd and qv ∈ Rd are latent vectors of user u and item
v , � denotes the element-wise product of vectors, the gradient of loss
Eq.(3) is exactly equal to that of:

˜L(Θ) =
∑
u ∈U

∑
v ∈V+

(
(c+v − c−v )ŷ

2

uv − 2c+v ŷuv
)

+

d∑
i=1

d∑
j=1

((
hihj

) (∑
u ∈U

pu,ipu, j

) (∑
v ∈V

c−vqv,iqv, j

))
(5)

if the instance weight cuv is simpli�ed to cv .

The complexity of Eq.(5) isO((|U| + |V|)d2 + |R |d) while that of
Eq.(3) isO(|U| |V|d). Since |R | � |U| |V| in practice, the complexity

of training a MF model without sampling is reduced by several mag-

nitudes. The proof of this theorem can be made by reformulating

the expensive loss over all negative instances using a partition and

a decouple operation, which largely follows from that in [6, 7] with

little variations. To avoid repetition, we do not prove it step by step.

Although e�cient MF methods have achieved great success, it is

non-trivial to directly apply them for existing FM frameworks since

MF only considers pure user-item ID interactions. When such a

nice structure is broken, these e�cient algorithms becomes invalid

and the complexity return to intractable. In this study, we design a

novel ENSFM framework to address the above problems based on

Theorem 2.1.

3 EFFICIENT NON-SAMPLING
FACTORIZATION MACHINES (ENSFM)

This section elaborates our proposed ENSFMmethod, which uni�es

the strengths of FM and non-sampling strategy for optimal ranking

optimization. We �rst present a general overview of ENSFM. Then

we elaborate how to express a generalized FM as matrix factoriza-

tion with our key designs of memorization strategies. After that an

e�cient non-sampling learning algorithm for our FM formulation is

presented. Finally, some discussions about the learning procedure,

generalization, and complexity of our ENSFM are made.

3.1 Overview
The goal of our ENSFM is to e�ciently learn FM models without

negative sampling, so as to achieve optimal ranking performance for

context-aware recommendation. The prediction function of ENSFM

follows the generalized embedding-based FM [16, 43], which is:

ŷFM (x) = w0 +

m+n∑
i=1

wixi + hT
m+n∑
i=1

m+n∑
j=i+1

(xiei � x jej )︸                            ︷︷                            ︸
f (x)

(6)

where � denotes the element-wise product of two vectors and h
denotes the neuron weights of the prediction layer. The framework

of our ENSFM is shown in Figure 1. We �rst make a simple high-

level overview of the proposed ENSFM:
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Figure 1: Illustration of our ENSFM framework, showing
how to represent FM in a matrix factorization manner (for
clarity purpose, the �rst-order linear regression part is not
shown in the �gure, which can be trivially incorporated).

(1) The context inputs are converted to dense vector representa-

tions through embeddings. Speci�cally, user context and item

context are denoted as eu and ev , respectively. The output

ŷFM (x) is a predicted score that indicates user u’s preference
for item v .

(2) Through novel designs of memorization strategies, we reformu-

late the FM score of Eq.(6) into a generalized matrix factoriza-

tion functionwithout any approximation: ŷFM (x) = hTaux (pu�
qv ) where pu ,qv , and haux are auxiliary vectors denote user

u, item v , and prediction parameter, respectively. It present a

new view of FM framework.

(3) We propose an e�cient mini-batch non-sampling algorithm to

optimize our ENSFM framework, which is more e�ective and

stable due to the consideration of all samples in each parameter

update.

3.2 ENSFM Methodology
3.2.1 Theoretical Analysis. We �rst present the theoretical

guarantee of our proposed ENSFM in this subsection.

Theorem 3.1. The prediction function of a generalized factoriza-
tion machines (Eq.(6)) can be reformulated into a matrix factorization
function:

ŷFM (x) = hT (pu � qv ) (7)

where pu only depends on user context u and qv only depends on
item context v .

Theorem 3.1 connects the relationship between the two most

popular recommendation methods —Matrix Factorization (MF) and

Factorization Machines (FM). Next, we prove Theorem 3.1 based on

𝐴

B

𝐷

𝐶

𝐴𝐶

AD

𝐵𝐷

𝐵𝐶

𝐴𝐵

𝐶𝐷

User-self Feature Interactions

User-Item
Feature Interactions

Item-self Feature Interactions

User Context

Item Context

Figure 2: An example of feature interactions, which can be
divided into three groups: user-self, item-self, and user-item.
User-self feature interactions are independent of item fea-
tures, while item-self interactions are also independent of
user features.

a generalized FM function (Eq.(6)) while elaborating our ENSFM

framework
2
.

Proof. Recall the second-order feature interactions f (x) in Eq.(6),
it can be rearranged as follows:

f (x) = hT
1

©­­­­­­­­«
m∑
i=1

m∑
j=i+1

(xui e
u
i � xuj e

u
j )︸                         ︷︷                         ︸

fBI (u)

+

n∑
i=1

n∑
j=i+1

(xvi e
v
i � xvj e

v
j )︸                         ︷︷                         ︸

fBI (v)

ª®®®®®®®®¬
+ hT

2

( m∑
i=1

xui e
u
i �

n∑
i=1

xvi e
v
i

)
(8)

where fBI (u) and fBI (v) indicate the second-order interactions

among user-self features and item-self features, respectively (see

Figure 2). Note that the prediction parameter h can be extended

to h1 and h2. This setting allows more �exible modelling of self

feature interactions and user-item feature interactions respectively,

which also leads to better generalization ability of our framework.

Other advanced structures like attention mechanism [4, 43] can

also be applied, we leave it as future work as this is not the main

concern of this paper.

As shown in Figure 2, user-self feature interactions are inde-

pendent of item features, and item-self interactions are also inde-

pendent of user features. Therefore, we could apply memorization

strategy to precomputing the two terms. We detail above process

by building three auxiliary vectors pu ∈ Rd+2, qv ∈ Rd+2, and

haux ∈ Rd+2 to denote user u, item v , and prediction parameter

(see Figure 3):

pu =

pu,d
pu,d+1
pu,d+2

 ;qv =

qv,d
qv,d+1
qv,d+2

 ;haux =

haux,d
haux,d+1
haux,d+2

 (9)

2
The proof of vanilla FM can be made similarly.
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Figure 3: Illustration of the three built auxiliary vectors. pu ,
qv , and haux denote useru, itemv, and prediction parameter,
respectively.

where

pu,d =
m∑
i=1

xui e
u
i ;pu,d+1 = hT

1
fBI (u) +w0 +

m∑
i=1

wu
i x

u
i ;pu,d+2 = 1

(10)

qv,d =
n∑
i=1

xvi e
v
i ;qv,d+1 = 1;qv,d+2 = hT

1
fBI (v) +

n∑
i=1

wv
i x

v
i

(11)

haux,d = h2;haux,d+1 = 1;haux,d+2 = 1 (12)

As a result, the prediction function of a generalized FM can be

reformulated as a matrix factorization function:

ŷFM (x) = hTaux (pu � qv ) (13)

where pu only depends on user context u and qv only depends on

item context v . The result of Eq. (13) is exactly the same as Eq(6)

when setting h1 = h2 = h. �

3.2.2 E�icient Mini-batch Learning Algorithm. Here we

present our mini-batch ENSFM learning algorithm, which can be

derived from the following analysis.

First, fBI (u) and fBI (v) in Eq.(8) can be rewritten to achieve

linear time complexity [16, 31]. Take fBI (u) as an example:

fBI (u) =
1

2

(
(

m∑
i=1

xui e
u
i )

2 −

m∑
i=1

(xui e
u
i )

2

)
(14)

The time complexity is O(md) for fBI (u) and O(nd) for fBI (v).
Second, the proof of Theorem 3.1 shows that pu and qv in Eq.(13)

are independent of each other (i.e., pu does not change when u
interacts with di�erent items). Therefore, we could achieve a sig-

ni�cant speed-up by precomputing the auxiliary vectors to avoid

the massive repeated computations.

Finally, after we build the auxiliary vectors, the prediction of

our ENSFM is reformulated into a MF function, which satis�es the

requirements of THEOREM 2.1. Thus we have the non-sampling

loss for a batch of users as follows:

˜L(Θ) =
∑
u ∈B

∑
v ∈V+

(
(c+v − c−v )ŷ(x)

2 − 2c+v ŷ(x)
)

+

d∑
i=1

d∑
j=1

((
haux,ihaux, j

) (∑
u ∈B

pu,ipu, j

) (∑
v ∈V

c−vqv,iqv, j

))
(15)

Algorithm 1 ENSFM Learning algorithm

Require: Training data {Y,U,V,X}; weights of entries c ; learning
rate η; embedding size d

Ensure: Neural parameters Θ
1: Randomly initialize neural parameters Θ
2: while Stopping criteria is not met do
3: while An epoch is not end do
4: Randomly draw a training batch {YB,B,V,X}
5: Build auxiliary vectors PB for users (Eq.(9,10))

6: Build auxiliary vectors Q for items (Eq.(9,11))

7: Build auxiliary vector h (Eq.(9,12))

8: Compute the loss
˜L(Θ) (Eq.(15))

9: Update model parameters

10: end while
11: end while
12: return Θ

where B denotes a batch of users, V denotes all the items in the

data set, and cuv is simpli�ed to cv that denotes the weight of entry

Ruv . Algorithm 1 summarizes the accelerated algorithm for our

ENSFM.

3.3 Discussion
3.3.1 Computational Complexity. The computational com-

plexity of our ENSFM can be divided into two parts. The �rst part

is to build auxiliary vectors and the second part is cost for e�cient

non-sampling learning. For a training batch, building auxiliary vec-

tors PB takesO(m |B|d), Q takesO(n |V|d). Note that PB and Q can

be updated in synchronization with the changes in
˜L(Θ). There-

fore, updating a training batch takes O((m |B| + n |V|)d2 + |RB |d).
The total cost of Algorithm 1 for one epoch over all variables is

O((m |U| +
n |U | |V |

|B |
)d2 + |R |d), where R denotes the set of positive

user-item interactions. For the original regression loss (Eq.(3)), one

epoch takes O((m + n)|U| |V|d). Since |R | � |U| |V| and d � |B|
in practice, the computational complexity of training FM without

sampling is reduced by several magnitudes. This makes it possible

to apply non-sampling optimization strategy for FM models. More-

over, the optimization results are exactly the same with the original

non-sampling regression loss since no approximation is introduced

during the learning algorithm.

3.3.2 Relation to ExistingMethods. Our ENSFMgeneralizes

several existing context-aware solutions [9, 16, 31]. Speci�cally, by

�xing h1 and h2 to a constant vector of (1, ..., 1), we can exactly

recover the vanilla FM [31]; By �xing h1 = h2, we recover NFM
without hidden layers [16]; By �xing h1 to (0, ..., 0) and h2 to (1, ...,

1), we can recover the SVDFeature framework [9]. In addition to

the above di�erences, the key ingredient of our ENSFM is that we

propose an e�cient non-sampling algorithm for model learning,

which complements the mainstream sampling-based context-aware

models and provides a new approach to improve FM.

Note that some previous studies have also discussed the re-

lationship between Matrix Factorization and Factorization Ma-

chines [32, 33]. Speci�cally, Rendel et al. showed that FM recovers

MF when the context input only contains ID information [32] and

rewrote FM into a MF model [33]: ŷFM (x) = vTc vi , however, the
5



built auxiliary vector vi is not user-independent and changes when
interacting with di�erent users. This makes it impossible to safely

separate user context and item context for e�cient non-sampling

learning. Our ENSFM reformulates the prediction of FM into a MF

function, where the two multiplied vectors only depend on user

context and item context, respectively (THEOREM 3.1).

The proposed e�cient learning algorithm of our ENSFM is based

on THEOREM 2.1 [6], which is not applicable for models with non-

linear prediction layers. Thus our current ENSFM framework has

a linear prediction layer on the top. We leave the extensions as

future work. Nevertheless, it is worth mention that compared to the

state-of-the-art deep learning methods — the 1-layer NFM [16], 3-

layer DeepFM [15], and CNN based CFM [44], our ENSFM achieves

signi�cant improvements on context-aware Top-K recommendation

task, while maintaining a much simpler structure, fewer model

parameters, and much fast training process. We show the details in

Section 4.

3.4 Training
Modern computing units such as GPU usually provide speedups for

matrix-wise �oat operations. Thus our mini-batch based optimiza-

tion methods can be naturally implemented in modern machine

learning tools like Tensor�ow and PyTorch. The model parame-

ters can be calculated with standard back-propagation. To optimize

the objective function, we adopt mini-batch Adagrad [14] as the

optimizer. Its main advantage is that the learning rate can be self-

adapted during the training phase, which eases the pain of choosing

a proper learning rate.

Dropout is an e�ective solution to prevent deep neural networks

from over�tting [39], which randomly drops part of neurons during

training. In this work, we employ dropout to improve our model’s

generalization ability. Speci�cally, we randomly drop ρ percent of

latent factors after obtaining fBI (u), fBI (v), and the element-wise

production in Eq.(13) to improve the model’s generalization ability,

where ρ is termed as the dropout ratio.

4 EXPERIMENTS
In this section, we perform experiments to verify the correctness,

e�ciency, and e�ectiveness of our proposed E�cient Non-Sampling

Factorization Machines. We aim to answer the following research

questions:

RQ1 Does our proposed ENSFM outperform state-of-the-art meth-

ods for context-aware Top-K recommendation task?

RQ2 How is the training e�ciency of ENSFM compared with state-

of-the-art FM methods?

RQ3 How do the key hyper-parameter settings impose in�uence

on the performance of ENSFM?

4.1 Experimental Setup
4.1.1 Data Description. To evaluate the performance of the

proposed ENSFM, we conduct extensive experiments on three real-

world implicit feedback datasets: Frappe3, Last.fm4
, and Movie-

lens5. We brie�y introduce the three datasets:

3
http://baltrunas.info/research-menu/frappe

4
https://grouplens.org/datasets/hetrec-2011/

5
https://grouplens.org/datasets/movielens/1m/

Table 2: Statistical details of the datasets.

Dataset #User #Item #Feature #Instance #Field

Frappe 957 4,082 5,382 96,203 10

Last.fm 1,000 20,301 37,358 214,574 4

Movielens 6,040 3,706 10,021 1,000,209 6

• Frappe: Frappe is a context-aware app discovery tool. This

dataset is conducted by [1]. Frappe contains 96,203 app usage

logs of di�erent user contexts. Each log contains 10 contextual

feature �elds including user ID, item ID, daytime and some

other information.

• Last.fm: The Last.fm dataset is for music recommendation. In

our experiments, we use the latest one day listen history of

1,000 users. The user context is described by user ID and the

last music ID that the user has listened within 90 minutes. The

item context includes music ID and artist ID.

• Movielens: MovieLens is a dataset of movie rating which has

been leveraged extensively to investigate the performance of

recommendation algorithms. In our experiments, we choose

the version including one million ratings and binarize it into

implicit feedback. The user context is described by user ID,

gender, age, and occupation. The item context is composed of

movie ID and movie genres

Note that for Frappe and Last.fm, we use exactly the same splits

as in [44]
6
. The statistical details of these datasets are summarized

in Table 2.

4.1.2 Baselines. We compare the performance of ENSFM with

the following baselines:

• PopRank: This method returns Top-K most popular items. It

acts as a basic benchmark.

• FM [31]: The original Factorization Machine. It has shown

strong performance for context-aware prediction.

• NFM [16]: Neural factorization machine is one of the state-of-

the-art deep learning method which uses MLP to learn nonlin-

ear and high-order interaction signals.

• DeepFM [15]: This method ensembles the original FM and a

MLP to generate recommendation.

• ONCF [17]: This method is a newly proposed algorithm which

improves MF with outer product for item recommendation.

• CFM [44]: Convolutional Factorization Machine models higher-

order interactions through outer product and CNN, which is

the state-of-the-art neural extension of factorization machines.

• ENMF [6, 7]: E�cient Neural Matrix Factorization is a newly

proposed non-sampling neural recommendation method. It is a

state-of-the-art method for Top-K recommendation which only

based on the historical feedback information.

Note that the o�cial implementations of FM, NFM, and DeepFM

are speci�cally optimized for rating prediction. Following the set-

tings of previous work [10, 44, 46], these methods are optimized

with negative sampling and Bayesian Personalized Ranking [34]

objective function to �t the ranking task. As we have discussed,

non-sampling optimization is generally infeasible for existing FM

models (especially neural methods) since they can not �nish the

6
https://github.com/chenboability/CFM
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Table 3: Performance of di�erent models on three datasets. ** denotes the statistical signi�cance for p < 0.01, compared to the
best baseline. “RI” indicate the average relative improvements of our ENSFM over the corresponding baseline.

Frappe1 HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 RI

PopRank 0.2539 0.3493 0.4136 0.1595 0.1898 0.2060 +143.3%

FM (Rendle et al., 2010) 0.4204 0.5486 0.6590 0.3054 0.3469 0.3750 +39.86%

DeepFM (Guo et al., 2017 ) 0.4632 0.6035 0.7322 0.3308 0.3765 0.4092 +27.77%

NFM (He et al., 2017 ) 0.4798 0.6197 0.7382 0.3469 0.3924 0.4225 +23.64%

ONCF (He et al., 2018) 0.5359 0.6531 0.7691 0.3940 0.4320 0.4614 +13.24%

CFM (Xin et al., 2019) 0.5462 0.6720 0.7774 0.4153 0.4560 0.4859 +9.15%

ENMF (Chen et al., 2019) 0.5682 0.6833 0.7749 0.4314 0.4642 0.4914 +6.95%

ENSFM 0.6094** 0.7118** 0.7889** 0.4771** 0.5105** 0.5301** –

Last.fm1 HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 RI

PopRank 0.0013 0.0023 0.0032 0.0007 0.0011 0.0013 +26566%

FM (Rendle et al., 2010) 0.1658 0.2382 0.3537 0.1142 0.1374 0.1665 +108.4%

DeepFM (Guo et al., 2017 ) 0.1773 0.2612 0.3799 0.1204 0.1473 0.1772 +94.59%

NFM (He et al., 2017 ) 0.1827 0.2678 0.3783 0.1235 0.1488 0.1765 +91.76%

ONCF (He et al., 2018) 0.2183 0.3208 0.4611 0.1493 0.1823 0.2176 +58.11%

CFM (Xin et al., 2019) 0.2375 0.3538 0.4841 0.1573 0.1948 0.2277 +48.05%

ENMF (Chen et al., 2019) 0.3188 0.4254 0.5279 0.2256 0.2531 0.2894 +15.94%

ENSFM 0.3683** 0.4729** 0.5793** 0.2744** 0.3082** 0.3352** –

Movielens HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 RI

PopRank 0.0084 0.0308 0.0763 0.0041 0.0111 0.0227 +388.9%

FM (Rendle et al., 2010) 0.0377 0.0687 0.1164 0.0234 0.0334 0.0453 +52.32%

DeepFM (Guo et al., 2017 ) 0.0413 0.0754 0.1351 0.0247 0.0365 0.0503 +38.43%

NFM (He et al., 2017 ) 0.0421 0.0775 0.1334 0.0268 0.0381 0.0521 +33.91%

ONCF (He et al., 2018) 0.0491 0.0801 0.1368 0.0301 0.0402 0.0543 +24.70%

CFM (Xin et al., 2019) 0.0514 0.0812 0.1398 0.0318 0.0419 0.0567 +20.22%

ENMF (Chen et al., 2019) 0.0534 0.0867 0.1523 0.0332 0.0448 0.0606 +13.10%

ENSFM 0.0601** 0.1024** 0.1690** 0.0373** 0.0508** 0.0674** –

1
For Frappe and Last.fm datasets, the results of FM, DeepFM, NFM, ONCF, and CFM are the same as those reported in [44] since we share exactly the same

data splits and experimental settings.

training process in acceptable time and computing resources, which

is the main concern of this work.

All models except PopRank are implementedwith TensorFlow
7
, a

well-known open-source software library for deep learning. For FM,

NFM, ONCF and CFM, we use the implementations released by the

authors of [44]
6
. For DeepFM, we use the implementation released

by the authors of [15]
8
. For ENMF, we use the implementation

released by the authors of [6]
9
.

4.1.3 Evaluation Metrics. The leave-one-out evaluation pro-

tocol [10, 19, 20, 44] is employed here to study the performance

of item recommendation. Speci�cally, for Last.fm and MovieLens,

the latest transaction of each user is held out for testing and the

remaining data is treated as the training set. For the Frappe dataset,

as there is no timestamp information, we randomly select one

instance for each speci�c user context as the test example. We

evaluate the ranking list using Hit Ratio (HR) and Normalized

7
https://www.tensor�ow.org/

8
https://github.com/ChenglongChen/tensor�ow-DeepFM

9
https://github.com/chenchongthu/ENMF

Discounted Cumulative Gain (NDCG). HR is a recall-based met-

ric, measuring whether the testing item is in the Top-K list, while

NDCG is position-sensitive, which assigns higher scores to hits at

higher positions. The two metrics have been widely used in pre-

vious recommendation studies [10, 19–21, 44]. For both metrics,

larger values indicate better performance.

4.1.4 Parameter Se�ings. The parameters for all baseline

methods are initialized as in the corresponding papers, and are

then carefully tuned to achieve optimal performances. The learning

rate for all models are tuned amongst [0.005, 0.01, 0.02, 0.05]. To

prevent over�tting, we tune the dropout ratio in [0.1, 0.3, 0.5, 0.7,

0.9, 1]. The batch size is tested in [128, 256, 512], the dimension of

the latent factor number d is tested in [8, 16, 32, 64]. Note that we

uniformly set the weight of missing data as c0, as the e�ectiveness
of popularity-biased weighting strategy is beyond the scope of this

paper. c0 is tuned amongst [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]. After

the tuning process, the batch size is set to 512, the size of the latent

factor dimension d is set to 64, and the learning rate is set to 0.05.

The output channels of CNN-based models (i.e., ONCF and CFM)

are set as 32 according to their original paper [17, 44]. Regarding

7
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Figure 4: Comparison on the per iteration training time of FM, DeepFM, NFM, CFM, and ENSFM with di�erent embedding
size d .
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Figure 5: Performance curves of FM, DeepFM, NFM, CFM, and ENSFM on the three datasets.

NFM, the number of MLP layers is set as 1 with 64 neurons, which

is the recommended setting of their original paper [16]. For the

deep component of DeepFM, we set the MLP according to their

original paper [15], which has 3 layers and 200 neurons in each

layer. The dropout ratio ρ is set to 0.9. c0 is set 0.05 for Frappe, 0.005
for Last.fm, and 0.5 for Movielens, respectively.

4.2 Performance Comparison (RQ1)
The results of the comparison of di�erent methods on three datasets

are shown in Table 3. To evaluate on di�erent recommendation

lengths, we set the length K = 5, 10, and 20 in our experiments.

From the results, the following observations can be made:

First and foremost, our proposed ENSFM achieves the best per-

formance on the three datasets, signi�cantly outperforming all the

state-of-the-art baseline methods. Speci�cally, compared to CFM —

a recently proposed and very expressive deep learning-based FM

model, our ENSFM exhibits average improvements of 9.15%, 48.05%,

and 20.22% on the three datasets. This is very remarkable, since

ENSFM is a shallow FM framework that has much fewer parameters.

The substantial improvement could be attributed to the proposed

non-sampling learning algorithm. The parameters in ENSFM is

optimized on the whole data, while sample-based methods (FM,

DeepFM, NFM, ONCF, CFM) only use a fraction of sampled data and

may ignore important negative examples. The results also imply

the potential of improving conventional shallow methods with a

better learning algorithm. The performance of ENSFM is signi�-

cantly better than ENMF, which indicates that context information

is helpful in recommendation [2, 33, 44].

Second, we observe that methods using non-sampling learning

strategy generally perform better than sampling-based methods.

For example, in Table 3, ENMF (which utilizing no context informa-

tion) and our ENSFM both perform better than the state-of-the-art

methods: NFM, DeepFM, ONCF, and CFM. This is consistent with

previous work [6, 45, 47], which indicates that sampling is a biased

learning strategy for optimizing ranking tasks.

Lastly, although deep learning-based FMmethods do achieve bet-

ter performance than vanilla FM when adopting the same sampling-

based learning strategy, the improvements are relatively small com-

pared with our non-sampling ENSFM. It reveals that on ranking

tasks, deeper models do not necessarily lead to optimal results. A

better learning strategy is even more important than advanced

neural network structures. The large performance gap between

baselines and our ENSFM re�ects the value of learning FM without

sampling for ranking tasks.

4.3 E�ciency Analyses (RQ2)
Many deep learning studies only focused on obtaining better results

but ignored the computational e�ciency of reaching the reported

accuracy [37]. However, expensive training cost can limit the ap-

plicability of a model to real-world large-scale systems. In this

section, we conduct experiments to explore the training e�ciencies

of our ENSFM and four state-of-the-art FM methods: FM, DeepFM,

NFM, and CFM. All experiments in this section are run on the same

machine (Intel Xeon 8-Core CPU of 2.4 GHz and single NVIDIA

GeForce GTX TITAN X GPU) for fair comparison on the e�ciency.

We �rst investigate the training time of FM, DeepFM, NFM, CFM

and our ENSFM with di�erent embedding size d . The results are
shown in Figure 4. From the �gure, we can see that the training

time cost of ENSFM is much less than other FM methods with

di�erent size of d . As d increases, the costs of baseline methods

increase signi�cantly, while our ENSFM still maintains a very fast

8
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Figure 6: Performance of FM, DeepFM, NFM, CFM, ENMF, and ENSFM w.r.t the embedding size on the three datasets.
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Figure 7: Performance of ENSFM w.r.t the negative weight on the three datasets.

Table 4: Comparisons of runtime (second/minute/hour/day
[s/m/h/d]). “S”, “I”, and “T” represents the training time for
a single iteration, the number of iterations to converge, and
the total training time, respectively.

Model Frappe Last.fm Movielens
S I T S I T S I T

FM 3.2s 500 27m 6.2s 500 52m 35s 500 5h

NFM 3.6s 500 30m 7.3s 500 61m 42s 500 6h

DeepFM 6.4s 500 54m 15s 500 324m 64s 500 9h

CFM 203s 500 28h 54s 500 125m 9m 500 3d

ENSFM 0.9s 200 3m 1.1s 500 10m 2s 200 7m

training process (e.g., 2 seconds per iteration on Movielens with

a large d of 64). We then conduct comparing among the overall

training time of the above methods. The embedding size is set

to 64 for all the methods and the results are shown in Table 4.

We can obviously observe that the overall training time of our

ENSFM is several magnitudes faster than the baseline models.

In particular, for the largest dataset Movielens, our ENSFM only

needs 7 minutes to achieve the optimal performance, while the state-

of-the-art models NFM, DeepFM, and CFM take about 6 hours, 9

hours, and 3 days, respectively. This acceleration is over 50 times

than NFM and 600 times than CFM, which is highly valuable in

practice and is di�cult to achieve with simple engineering e�orts.

For other datasets, the results of ENSFM are also remarkable. In

real E-commerce scenarios, the cost of training time is also an

important factor to be considered [6]. Our ENSFM shows signi�cant

advantages in training e�ciency, which makes it more practical in

real life.

We also investigate the training process of the baselines and

our ENSFM. Figure 5 demonstrates the state of each method at

embedding size 64 on three datasets. Due to the space limitation,

we only show the results on HR@10 metric. For other metrics, the

observations are similar. From the �gure, we can see that ENSFM

converges much faster than other FM methods and consistently

achieves the best performance. The reason is that our ENSFM is

optimized with a newly derived non-sampling algorithm, while

other FM methods are based on negative sampling, which generally

requires more iterations and can be sub-optimal.

4.4 Hyper-parameter Analyses (RQ3)
In this section, we conduct experiments to investigate the impact

of di�erent values of the embedding size d and di�erent negative

weight c0 on our ENSFM method. It is worth mention that our

ENSFM can be tuned very easily in practice due to: 1) The overall

training process of ENSFM is very fast; 2) Unlike most existing deep

learning FM methods, our ENSFM does not require pre-training

from FM; 3) Generally only one hyper-parameter — negative weight

c0 needs to be tuned for di�erent datasets.

4.4.1 Impact of Embedding Size. Figure 6 shows the perfor-
mance of HR@10 with respect to the embedding size d . For other
metrics, the observations are similar. As can be seen from this �g-

ure, our ENSFM outperforms all the other models with di�erent

values of d . Notably, ENSFM with d of 32 even performs better

than the state-of-the-art context-aware method CFM with a larger

d of 64. This further veri�es the positive e�ect of non-sampling

learning in our ENSFM method. Moreover, as the latent dimension

size increases, the performance of all models increase. This indi-

cates that a larger dimension could capture more hidden factors of

users and items, which is bene�cial to Top-K recommendation due

to the increased modeling capability. This observation is similar

to previous work [5, 18, 20]. However, for most methods, a larger

dimension also requires more time for training. Thus it is crucial to

9



increase a model’s e�ciency by learning with e�cient optimization

methods.

4.4.2 Impact of Negative Weight. We demonstrate the re-

sults of our ENSFM with di�erent negative weights in Figure 7.

Note that in our experiments we uniformly set the weight of miss-

ing data as c0 and leave the item-dependent weighting strategy

[21, 26] to a future work. For di�erent datasets, c0 is tuned amongst

[0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]. From the �gure, we can make

the following observations: 1) For Frappe, Last.fm, and Movielens,

the peak performance is achieved when c0 is around 0.05, 0.005,

and 0.5, respectively. When c0 becomes smaller or too larger, the

performance of ENSFM degrades. This highlights the necessity

of accounting for the missing data when modeling implicit feed-

back for item recommendation. 2) Considering the performance on

each dataset, we �nd that the optimal weight of missing instance

depends on the density of the dataset. The Movielens dataset is

more dense compared to Frappe and Last.fm. As shown in previous

work [21, 26], popular items are more likely to be known by users,

thus it is reasonable to assign a larger weight to a missing popular

item as it is more probable to be a truly negative instance. 3) Our

ENSFM is very robust to the value of c0. Generally, ENSFM outper-

forms the best context-aware baseline CFM with a wide range of

c0 on the three datasets (e.g., c0 between 0.1 to 1 on Movielens).

5 RELATEDWORK
5.1 Context-aware Recommendation
Context-aware recommendation aims to leverage rich context infor-

mation such as user demographics, item attributes, and time/location

of the current transaction to improve the performance of recom-

mender systems [35, 46]. Existing solutions mainly account for the

interactions among features, which can be categorized into two

types [41, 44]: 1) manually construction of features and 2) auto-

matically learning feature interactions. The �rst type manually

constructs combinatorial features to explicitly encode feature in-

teractions. Then the cross features are fed into predictive models

such as logistic regression [11] and deep neural networks [42]. Ap-

parently, this type requires heavy engineering e�orts and domain

knowledge, making the solutions less adaptable to other domains.

The second type automatically learn feature interactions in a uni-

�ed model. A typical paradigm is to integrate context features into

factorization models. For example, FM [31] models the interaction

of two features as the inner product of their embeddings, and Deep

Crossing [38] concatenates feature embeddings and feeds them into

a multi-layer perception (MLP) to learn high-order interactions.

Due to the popularity of FM, many e�orts have been made to

enhance its framework. The majority of existing studies are con-

ducted to apply deep neural networks for modelling high-order

feature interactions, such as MLP ( DeepFM [15], NFM [16]), atten-

tion mechanisms (AFM [43]), and CNN (xDeepFM [25], CFM [44]),

etc. However, note that previous FM studies generally focus on

rating prediction task [3, 16, 27, 31, 35, 43], while the goal of recom-

mendation is preferred as ranking task rather than rating predic-

tion [12]. Although some methods by combining negative sampling

and FM models provide promising solutions [30, 44, 46], their rank-

ing performance can still be limited by the inherent weakness of

sampling-based learning strategy.

5.2 Model Learning for Top-K
Recommendation

Learning sparse features from implicit data is a fundamental ingre-

dient for Top-K recommendation. Generally, there are two strate-

gies: 1) negative sampling strategy [5, 20, 34] and 2) non-sampling

(whole-data based) strategy [6, 21, 22]. The �rst strategy samples

negative instances from missing entries, while the second one sees

all themissing data as negative. In previouswork, negative sampling

is widely adopted for e�cient training. However, some studies have

shown that sampling can limit the performance of recommendation

as it is not robust and highly sensitive to the sampling distribu-

tions [6, 21, 45, 47]. In contrast, non-sampling strategy leverages

the whole data with a potentially better coverage, but ine�ciency

can be an issue. To retain the �delity of FM for context-aware Top-K

recommendation, we persist in non-sampling learning and develop

an e�cient FM framework to address the ine�ciency issue.

Recently, some e�orts have been devoted to resolving the inef-

�ciency issue of non-sampling learning. For example, Pilaszy et

al. [29] described an approximate solution of element-wise Alter-

nating Least Squares (ALS). He et al. [21] proposed an e�cient ALS

with non-uniform missing data. The authors of [45, 47] studied fast

Batch Gradient Descent (BGD) methods. Chen et al. [6, 8] derived

a �exible non-sampling loss for neural recommendation models.

However, existing e�cient studies mainly focus on MF methods

that only consider pure user-item ID interactions. To the best of

our knowledge, this is the �rst work that provides an e�cient

mini-batch non-sampling algorithm to learn FM for ranking tasks.

6 CONCLUSION AND FUTUREWORK
In this work, we propose a novel E�cient Non-Sampling Factoriza-

tionMachines (ENSFM) framework for context-aware Top-K recom-

mendation. ENSFM not only seamlessly connects the relationship

between factorization machines and matrix factorization, but also

resolves the challenging e�ciency issue of non-sampling learning.

As a result, ENSFM achieves two remarkable advantages: 1) e�ec-
tive non-sampling optimization and 2) e�cient model training.

Extensive experiments have been made on three real-word datasets.

The proposed ENSFM consistently and signi�cantly outperforms

the state-of-the-art methods including deep learning models NFM,

DeepFM, and CFM, in terms of both recommendation performance

and training e�ciency.

Recently, there is a surge of interest in applying novel neural

networks for recommendation tasks. However, more complex mod-

els do not always lead to better results since they are more di�cult

to optimize and tune [6]. Our work empirically shows that a proper

learning method is even more important than advanced neural

network structures. As such, we expect future research should pay

more attention to design models with better learning algorithms for

speci�c tasks, rather than only relying on complex models and ex-

pensive computational power for minor improvements. This work

complements the mainstream sampling-based context-aware mod-

els and provides a new approach to improve FM methods. The

10



proposed ENSFM framework is not limited to the recommendation

task presented in this paper, it has the potential to bene�t many

other tasks where only positive data is observed. In the future, we

will explore our ENSFM method on other related tasks like network

embedding [28] and multi-label classi�cation [40]. Also, since our

mini-batch learning algorithm can be naturally implemented in

modern machine learning tools like Tensor�ow and PyTorch, we

are interested in extending ENSFM by incorporating more advanced

deep learning techniques.
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