
Decoupling Reasoning and Knowledge Injection for In-Context Knowledge
Editing

Changyue Wang, Weihang Su, Qingyao Ai, Yujia Zhou, Yiqun Liu
Department of Computer Science and Technology, Tsinghua University

Abstract

Knowledge editing enables efficient updates to
Large Language Models (LLMs) by modifying
specific knowledge without full-model retrain-
ing. Among knowledge editing approaches,
in-context editing (ICE) stands out for its abil-
ity to inject knowledge without modifying the
model’s parameters. However, existing ICE ap-
proaches directly edit model context without
isolating target knowledge from the reasoning
path of model inference, resulting in unreliable
and low-quality outputs, particularly in multi-
hop tasks. To investigate this issue, we analyze
the interaction between reasoning path plan-
ning and knowledge injection, showing that the
reasoning ability of a LLM is usually coupled
with its original knowledge, and directly replac-
ing old knowledge with new one could simul-
taneously hurt the LLM’s performance in task
reasoning. Based on these findings, we propose
DecKER, a novel ICE framework that separates
model reasoning from knowledge editing. Ex-
tensive experiments show that DecKER signif-
icantly improves multi-hop reasoning perfor-
mance by mitigating knowledge conflicts and
preserving reasoning integrity. 1

1 Introduction

Large language models (LLMs) have achieved
remarkable performance in knowledge-intensive
tasks. Yet, as real-world knowledge evolves rapidly,
ensuring these models consistently maintain accu-
rate and up-to-date knowledge remains a significant
challenge. The most straightforward knowledge up-
date approach is continued pre-training. However,
the computational cost and memory requirements
for retraining the entire model are prohibitively
high. In response, knowledge editing has emerged
as an effective alternative to full-model retraining.
The goal of knowledge editing is to conduct rapid,

1Our code is available at:
https://github.com/bebr2/DecKER

targeted modifications to specific embedded knowl-
edge, enabling LLMs to stay updated without the
need for retraining the entire model.

Existing knowledge editing approaches can be
broadly categorized into two categories: parame-
terized methods that modify model weights (e.g.,
ROME (Meng et al., 2022)) and non-parameterized
in-context editing (ICE) that injects knowledge
through model context (Wang et al., 2024b). While
parameterized editing directly modifies knowledge
stored in LLMs, it often hurt the performance
of LLMs on general tasks (Gu et al., 2024b; Li
et al., 2024) and struggles with complex reasoning
(Zhong et al., 2023). In contrast, ICE methods ad-
dress the limitations of parameterized editing by
preserving the original parameters of LLMs and di-
rectly edit the input context (e.g., prompts) to guide
LLMs to behave based on the updated knowledge.
They have received considerable attention due to
their superior performance in managing knowledge
ripple effects and multi-hop reasoning (Cohen et al.,
2024; Zhong et al., 2023).

Nonetheless, despite of their relative advantages
comparing to parameterized methods, we still ob-
serve a significant averaged performance drops on
LLMs before and after applying existing methods.
As discussed in section 3, we test several state-of-
the-art ICE methods, and find that the performance
of answering the same questions before and after
using these methods drops more than 80% on multi-
hop question answering tasks. Ideally, knowledge
editing techniques should edit the knowledge of
LLMs without hurting their ability to solve the
task, and ICE should be able to achieve this as they
haven’t modified the model parameters. Obviously,
existing ICE methods fail to achieve this goal.

Our analytical experiments reveal that an impor-
tant reason behind this phenomenon is that existing
ICE methods often hurt the reasoning ability of
LLMs. When answering questions with their in-
ternal knowledge, LLMs have exhibited superior

1

reasoning ability to solve multi-hop questions step
by step, which is also referred to as the chain-of-
thought (COT) (Wei et al., 2022) ability. However,
after replacing its context with updated knowledge,
LLMs often "forget" how to do reasoning in the
same task due to the conflicts between its context
and internal knowledge. In other words, the rea-
soning ability of LLMs is often coupled with its
internal knowledge, and ICE without separating
knowledge with reasoning would inevitably hurt
the performance of LLMs. This phenomenon could
limit the future applications of ICE methods, partic-
ularly when inference scaling, which heavily relies
on the reasoning ability of LLMs, has recently be-
come the dominant direction for super-intelligence
development (DeepSeek-AI et al., 2025).

In light of these findings, we propose DecKER,
a novel in-context editing method that Decouples
Knowledge Editing and model Reasoning. Taking
multi-hop QA as an example, our method first ex-
tract a masked reasoning path from LLMs, where
entities subject to potential edits are replaced with
placeholders along with corresponding type hints.
Then, for each placeholder, we propose a hybrid
mechanism combining retrieval-based conflict de-
tection and model judgment to determine if the
entity is related to edited knowledge and fill it ac-
cordingly. Furthermore, by sampling multiple rea-
soning paths and evaluating them based on a couple
of intuitive criteria on reasoning and knowledge
injection, our method selects the best candidate
accordingly so that it can preserve the reasoning
framework originally generated by LLMs while
answering the question with updated knowledge.

In summary, this paper makes the following key
contributions:

1. We explore the impact of the conflict between
injected contextual knowledge and LLMs’ para-
metric knowledge, revealing how entangled rea-
soning and editing processes lead to significant
performance degradation in multihop tasks.

2. We introduce DecKER, a novel ICE framework
that employs global planning to decouple rea-
soning from knowledge injection via masked
reasoning path generation.

3. We conduct comprehensive experiments to
demonstrate that decoupling reasoning from
knowledge injection significantly enhances
multi-hop reasoning performance, addressing
the limitations of prior ICE approaches.

2 Related Work

Knowledge Editing (KE) aims to efficiently up-
date knowledge in LLMs, divided into parameter-
ized and non-parameterized methods (Wang et al.,
2024b). ROME (Meng et al., 2022), a typical pa-
rameterized method, uses causal intervention to lo-
cate and edit related neurons, while MEMIT(Meng
et al., 2023) extends this capability to handle larger
edit batch. Non-parameterized methods leverage
the LLM’s in-context learning(Brown et al., 2020)
abilities. Mello (Zhong et al., 2023) employs in-
context editing (ICE) to tackle complex problems
by breaking them into subtasks and performing fine-
grained edits. Built on this, PokeMQA(Gu et al.,
2024a) enhances robustness and DeepEdit(Wang
et al., 2024c) focuses on the reasoning process.
Additionally, Shi et al. (2024) address multi-hop
tasks in knowledge editing by emphasizing the
retrieval process with their RAE method, which
employs knowledge graph editing and retrieval to
boost multi-hop reasoning performance.

To evaluate LLMs’ reasoning abilities post-
editing, Cohen et al. (2024) introduce the con-
cept of Ripple Effects, where altering one piece
of knowledge can impact related facts. Zhong et al.
(2023) develop a multi-hop QA dataset to assess
if edited models can utilize new knowledge for
complex reasoning. Their findings indicate that
ICE methods outperform parameterized methods
in managing Ripple Effects and complex reasoning.

3 Preliminary Study

This section begins by introducing the multi-hop
question-answering (MQA) task under knowledge
editing. Then, we discuss the phenomenon of rea-
soning degradation in existing ICE methods and
design an analytical experiment to explain it.

3.1 MQA under Knowledge Editing

Knowledge editing in the MQA task involves mod-
ifying the object component of a knowledge triple.
Given an initial fact e = (s, r, o), comprising a sub-
ject (s), a relation (r), and an object (o), this fact
is edited to e∗ = (s, r, o∗). For a multi-hop ques-
tion Q and a set of edited facts E associated with
Q, the reasoning path PQ,E is represented as <
e1, . . . , en >=< (s1, r1, o1), . . . , (sn, rn, on) >,
where n is the number of reasoning hops, si+1 =
oi, and on is the final answer. The reasoning path
before editing is denoted as PQ,∅. If E is non-empty,
indicating modifications to one or more knowledge

2

What is the official language of the country of citizenship of the author of the First Folio?
[Related Edited Fact]: The author of First Folio is William Shakespeare → Hendrik Lorentz

Planner: subquestion generation prompting ...

{{ Planning for Step 1 }}
The author of First Folio is William Shakespeare.
{{ Planning for Step 2 }}
William Shakespeare is a citizen of Kingdom of England.
{{ Planning for Step 3 }}
The official language of Kingdom of England is English.

The author of First Folio is William Shakespeare.
The author of First Folio is Hendrik Lorentz.

{{ Planning for Step 2 }}
The fact is incorrect. Let’s correct the answer...

... Fail to Reasoning and Get Final Answer

{{ Planning for Step 1 }}

Before Editing After Editing

Reasoning Path Planning

The author of First Folio is William Shakespeare.

William Shakespeare is a citizen of Kingdom of England.

The official language of Kingdom of England is English.

Final Reasoning Path

The author of the First Folio is Hendrik Lorentz.

Hendrik Lorentz is a citizen of the country of Netherlands.

The official language of Netherlands is Dutch.

Answer: Dutch.
Knowledge Injection

The author of First Folio is Hendrik Lorentz.

Hendrik Lorentz is a citizen of

The official language of is

Injector: Masked Path Filling

Figure 1: Comparisons of two types of ICE paradigms.

triples in Q (e.g., ek = (sk, rk, ok) is edited into
(sk, rk, o

∗
k)), the reasoning path PQ,E will reflect

changes to ek and all subsequent triples, thus alter-
ing the final answer. Notably, successfully address-
ing MQA depends on two key components: accu-
rate reasoning path planning and precise knowledge
injection. Reasoning path planning involves deter-
mining the reasoning framework, i.e., the list of
relations RQ = [r1, . . . , rn] in the reasoning path
PQ,E , while knowledge injection ensures the model
accurately provides ok given (sk, rk). In real tasks,
the edit batch size (the size of the union set of all
E) is often greater than one, and one reasoning path
PQ,E may involve multiple edits, adding significant
complexity to knowledge editing methods.

3.2 Reasoning Degradation in ICE

The upper part of Figure 1 illustrates a typical ex-
ample of Reasoning Degradation in current ICE
methods. These methods can be abstracted as in-
teractions between a Planner, which determines
the next reasoning step through sub-question gen-
eration (e.g., Mello and PokeMQA) or prompting
(e.g., DeepEdit and EditCoT), and an Editor, which
incorporates edited knowledge by replacing inter-
mediate answers or prompting the model to revise
them. Before the relevant knowledge is edited, the
LLM uses its internal knowledge for reasoning,
allowing the interaction between the Planner and
Editor to proceed normally and produce the correct
reasoning path. However, after the knowledge is
edited and the Editor replaces the contextual knowl-
edge with new one, the Planner does not continue
reasoning as expected. Instead, it shifts direction,

MEMIT Mello PokeMQA EditCoT
DecKER-Base

0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

 (
%

) 61.0
55.0

69.7 61.0 58.0

3.7 6.0
13.3

25.0

47.3

Accuracy Comparison
Before Edit
After Edit

MEMIT Mello PokeMQA EditCoT
DecKER-Base

0.0
0.2
0.4
0.6
0.8
1.0

Re
as

on
in

g
Si

m

0.287 0.337

0.632 0.610

 1.000
Similarity Comparison

Figure 2: Performance and reasoning similarity of dif-
ferent KE Methods before and after editing. The second
image indicates the similarity between the post-editing
and pre-editing reasoning framework.

such as attempting to resolve conflicting knowl-
edge. Moreover, as demonstrated in Appendix E,
we present additional examples where the Planner
influenced by edited knowledge exhibits behaviors
like causing reasoning interruptions or redirecting
to different reasoning paths. Clearly, current ICE
methods fail to separate knowledge from reasoning,
thereby impairing the reasoning abilities of LLMs.
We design an experiment to quantitatively assess
the Reasoning Degradation phenomenon.

Experimental Setup We randomly select 300
questions from MQuAKE-CF-3k-v2 (Zhong et al.,
2023), along with the associated edited facts, for
our experiment. We apply a knowledge editing
method to Llama-3.1-8B-Instruct (Dubey et al.,
2024) and compare its performance before and
after editing. We evaluate several methods, in-
cluding MEMIT (a parameterized method), Mello,
PokeMQA, and EditCoT. The first two are classic
methods of parameterized knowledge editing and
in-context editing, while the latter two represent
the state-of-the-art ICE methods. The experiment
consists of two main parts:

Performance Comparison: For multi-hop ques-
tions involving edited knowledge, the answers
change before and after editing. We use the ground
truths before and after editing as references, with
accuracy as the metric, to evaluate performance
before and after editing, respectively. For MEMIT,
whether before or after editing, we prompt the LLM
to generate a CoT during inference. For EditCoT,

3

we also get pre-editing answers through CoT rea-
soning. For Mello and PokeMQA, pre-editing per-
formance is obtained by replacing the edited fact
in the retrieval corpus with the original one.

Reasoning Framework Comparison: The rea-
soning framework RQ for a question is independent
of the edit set E , meaning the relation lists in the
paths should remain unchanged after editing. A
good ICE method should maintain this similarity
to preserve the model’s reasoning ability. We use
regular expressions to identify the reasoning paths
generated by each knowledge editing method. For
CoT-based methods, the CoT itself serves as the
reasoning path, while for sub-question decomposi-
tion methods, we combine the answers to all sub-
questions into the reasoning path. We then use GPT-
4o-mini-0718 (OpenAI et al., 2023) to identify the
relations in the knowledge triples involved at each
reasoning step, forming the reasoning framework
R. Prompts are detailed in Appendix G.

Then, we compare the similarity of reason-
ing framework before and after editing for each
method. Given two reasoning frameworks R1 =
[r11, . . . , r1n] and R2 = [r21, . . . , r2m], we com-
pute the similarity using the following formula:

Simlarity(R1, R2) =

∑min(n,m)
i=1 Sim(r1i, r2i)

max(n,m)
. (1)

It calculates the similarity between correspond-
ing elements of two ordered lists, padding the
shorter list with zeros if they differ in length.
In Equation 1, the "Sim" function employs jina-
embeddings-v3(Sturua et al., 2024) to compute the
embeddings of the two elements individually and
calculates their cosine similarity.

Results and Analysis Figure 2 presents the re-
sults. Both MEMIT and current ICE methods
show significant performance degradation. Ide-
ally, a knowledge editing method should maintain
a reasoning framework similarity close to 1.00, but
the tested methods do not exceed 0.65, demon-
strating substantial reasoning degradation. This
phenomenon is most severe for the parameterized
method MEMIT, as noted in previous research (Li
et al., 2024). ICE, which does not modify LLM pa-
rameters, should theoretically maintain the model’s
reasoning capability, but the low reasoning frame-
work similarity for the three ICE methods suggests
that they fail to achieve this goal. Additionally,
we observe a positive correlation between editing
performance and reasoning framework similarity,

What is the occupation of the spouse of the author of "Three Sisters"?

[STEP 1] The author of "Three Sisters" is [MASK 1].
[STEP 2] The spouse of [MASK 1] is [MASK 2].
[STEP 3] The occupation of [MASK 2] is [MASK ANS].

[MASK 1]: Person
[MASK 2]: Person
[MASK ANS]: Occupation

[STEP 1] The author of "Three Sisters" is Anton Chekhov. [STEP] The spouse of Anton Chekhov is [MASK 2].

 The author of "Three Sisters" is .

1. The author of Ball Four is Jim Bouton Score: 1.28

2. Score: 1.22

[MASK 1]

Anton Chekhov

Knowledge Injection [STEP 1]

person

[STEP 2] The spouse of Anton Chekhov is Frederick IV. [STEP] The occupation of Frederick IV is [MASK ANS].

Global Planning

 Anton Chekhov \ The spouse of Anton Chekhov is .

1. Anton Chekhov is married to Frederick IV Score: 1.80

2. Score: 1.65

[MASK 2]

Frederick IV

Knowledge Injection [STEP 2]

[STEP 3] The occupation of Frederick IV is watercolourist.

No EditedEdited

 Frederick IV \ The occupation of Frederick IV is .

[MASK ANS] watercolourist

1. Frederick IV works in the field of watercolourist Score: 1.80

2. Score: 1.65

Knowledge Injection [STEP 3]
Score Score

Detector

...

No Edited

Edited

Edited

Figure 3: The workflow of DecKER, only showing the
processing of a single path, omitting the final answer
selection stage for multiple sampled reasoning paths.

further emphasizing the importance of maintaining
the reasoning framework. In reasoning tasks, the
reasoning planning and knowledge injection of cur-
rent ICE methods are coupled, and the injection
of conflicting knowledge affects reasoning plan-
ning. Therefore, this highlights the importance of
decoupling reasoning from editing.

4 Methodology

We propose DecKER, a method decoupling reason-
ing and knowledge injection to maintain reasoning
framework while editing. The workflow is shown
in Figure 3, with its pseudocode in Appendix A.

4.1 Masked Reasoning Path Generation

We separate reasoning from editing by initially hav-
ing the LLM conduct global planning. Specifically,
we first prompt the LLM to generate a masked rea-
soning path for the provided multi-hop question Q.
"Masked" means that during generation, the LLM
replaces all positions that require entity generation
(except those already present in the question) with
[MASK *] symbols, where * can be an integer or
string. We provide the LLM with a 5-shot prompt,
leveraging the instruction-following and in-context
learning capabilities of the LLM to accomplish this.
This approach aims to preserve high-quality rea-
soning paths from the original LLM before editing.
In practice, we instruct the LLM to start each rea-
soning step with a [STEP] symbol. Entities are
numbered sequentially by the LLM to maintain
consistency, as illustrated in Figure 3, where the

4

author of "Three Sisters" is represented as [MASK
1] in the first two steps. The final answer is repre-
sented as [MASK ANS].

We also have the LLM provide entity type hints,
such as "country", "company", etc. This is cru-
cial because each filling step is completed inde-
pendently. Without type hints, the model might
generate completions that fit the instructions but do
not align with the reasoning framework. All of the
prompt templates are detailed in Appendix G.

4.2 Stepwise Knowledge Injection
Then we fill in each masked entity step by step.
1. Retrieval: For a masked step currently being
filled, we remove the [MASK *] tag in it and use it
as a query to search within the edited memory (i.e.,
the union set of all E in the dataset). If previous
entities have been filled, we include the most recent
entity in the query.
2. Conflict Detection: Conflict detection is per-
formed by comparing the retrieval results with the
query, using a hybrid method that combines re-
trieval scores and LLM judgments. When a query
involves edits, the retrieval scores exhibit two key
features: a notably high score for the top result and
a substantial gap between the highest and second-
highest scores, mathematically represented as:

S(d1) > α , (2a)

S(d1)− S(d2) > β , (2b)

where S is the retrieval score. In our experiments, it
denotes the dot-product similarity between the em-
beddings of documents and queries, with di repre-
senting the result ranked i. α and β are hyperparam-
eters. If both criteria yield consistent results, we
accept them without further LLM evaluation. Oth-
erwise, LLM analysis is conducted. Each edited
fact maps to an original one, allowing the LLM
to determine if the original supports the masked
step’s filling. Support indicates a conflict between
the edited fact and the masked step.
3. Filling: When a retrieval result conflicts with
the masked step, we directly replace the masked
part with the object from the knowledge triple cor-
responding to the retrieval result, and also update
subsequent identical masked parts. For example, in
Figure 3, all instances of [MASK 2] are replaced
with "Frederick IV". If no conflict is detected, the
model treats the masked part as a fill-in-the-blank
task, guided by the previously assigned entity type.
This process continues until [MASK ANS] is filled,
providing the final answer to the question.

4.3 Final Answer Selection
In the workflow, we assume that each masked step
involves only one entity to be filled, which is rea-
sonable for the MQA task. However, due to insuf-
ficient few-shot learning ability, the model might
generate incorrect or incomplete masked reasoning
paths, and the filled entities might not align with
the intended types. To ensure the quality of the
final answers, we filter multiple candidate answers
generated through the above process with two eval-
uation methods — reasoning path planning and
knowledge injection — to select the final answer.
1. Reasoning Path Planning Evaluation (RPP
Eval): Inspired by the work on hallucinations(Su
et al., 2024) in LLMs, we can evaluate the reason-
ing path by calculating the model’s uncertainty, as
LLMs are prone to hallucinations or incorrect out-
puts when uncertain. For each generated token,
Predictive Entropy (PE) is defined as follows:

PE = −
∑
w̃∈W

pi(w̃)log pi(w̃) , (3)

where W is the vocabulary of the LLM, and pi(w̃)
is the generation probability of token w̃ at this step.
For each masked path, we use the negative average
PE over all generated tokens as the evaluation score,
with higher scores indicating greater certainty.
2. Knowledge Injection Evaluation (KI Eval):
After filling the reasoning path, we obtain a list of
filled entities. For each filled entity ei, we instruct
the model to determine whether it matches the pre-
assigned type ti. The score is calculated as follows:
KI(ei, ti) = 1

[
PM (“yes” | ei, ti) > PM (“no” | ei, ti)

]
, (4)

where M is the LLM and 1 is an indicator function.
The prompt template is detailed in Appendix G. We
compute the KI Eval score by averaging the scores
of all filled entities. In practice, RPP Eval is used
to retain the top 50% of sampled masked reasoning
paths for filling. The final answer is selected from
the filled path with the highest KI Eval score.

4.4 Discussion
We conduct the experiments in subsection 3.2 on
DecKER. For the pre-editing settings, we replace
the edited memory with the corresponding origi-
nal facts. The results indicate DecKER exhibits
only a slight accuracy drop post-editing and signif-
icantly outperforms other baselines. Additionally,
DecKER maintains complete consistency in reason-
ing frameworks between pre- and post-editing, as
they share the same masked reasoning path, high-
lighting the reason behind its strong performance.

5

Table 1: The overall results. Ripple-Pop and Ripple-Rand denote the popular and random subsets of RippleEdits.
The metric is Multi-Hop Accuracy (%). We bold the top performing methods and underline the second-best ones.

Models Methods MQuAKE-CF-3k-v2 MQuAKE-T Ripple-Pop Ripple-Rand

Llama-3.1-8B-Instruct

MEMIT 6.8 44.1 8.4 9.1
AlphaEdit 7.0 42.0 8.6 9.6
Mello 11.0 57.7 25.8 32.7
PokeMQA 16.8 77.8 30.4 33.1
DeepEdit 8.9 57.5 3.4 5.0
RAE 54.3 50.9 20.6 17.0
EditCoT 36.0 74.6 31.6 22.3

DecKER-Base 57.8 80.9 46.6 46.1
DecKER-BoN (N = 6) 59.0 81.3 47.4 44.9

Qwen2.5-7B-Instruct

MEMIT 6.6 21.5 9.8 17.2
AlphaEdit 7.1 21.1 11.0 17.0
Mello 1.7 50.3 3.6 1.4
PokeMQA 7.1 45.3 7.0 7.6
DeepEdit 12.3 25.3 6.0 12.0
RAE 38.3 28.7 24.0 18.3
EditCoT 26.2 74.5 29.2 30.7

DecKER-Base 42.1 67.7 35.8 32.1
DecKER-BoN (N = 6) 49.8 70.8 39.8 38.3

Qwen2.5-14B-Instruct

Mello 1.2 26.4 4.6 2.3
PokeMQA 2.3 32.4 5.9 3.9
DeepEdit 7.3 51.7 9.4 14.4
EditCoT 37.0 82.7 35.0 33.5

DecKER-Base 50.8 81.4 45.0 45.6
DecKER-BoN (N = 6) 56.6 83.6 44.0 46.1

5 Experimental Settings

5.1 Evaluation Details
We evaluate our methods using four datasets:
MQuAKE-CF-3k-v2, MQuAKE-T(Zhong et al.,
2023), and the Popular and Random subsets of
RippleEdits(Cohen et al., 2024). MQuAKE-CF-
3k-v2 comprises 3,000 questions with 2,764 edits,
with 2-, 3-, and 4-hop questions. MQuAKE-T con-
tains 1,868 questions and 96 edits, with 2- and
3-hop questions. RippleEdits-Popular has 500 2-
hop questions and 266 edits, while RippleEdits-
Random has 1,137 2-hop questions and 626 edits.

As in the original paper of Mello, we employ
the Multi-Hop Accuracy metric, where a question
is correct if at least one rewritten version is an-
swered correctly. For MQuAKE datasets, each test
includes 3 rewritten questions, while RippleEdits
datasets contain only 1 question per test.

Three LLMs are evaluated: Meta-Llama-3.1-8B-
Instruct(Dubey et al., 2024), Qwen2.5-7B-Instruct,
and Qwen2.5-14B-Instruct(Team, 2024), using
their official chat templates across all baselines.

5.2 Baselines
We compare DecKER with other ICE methods
and two parameterized approaches: MEMIT(Meng
et al., 2023) and AlphaEdit(Fang et al., 2024).
These two approaches focus on editing neurons

related to the targeted knowledge, with AlphaEdit
mitigating unintended disruptions through matrix
projection. ICE methods include: (1) Mello(Zhong
et al., 2023) and PokeMQA(Gu et al., 2024a),
subproblem-based methods; (2) DeepEdit(Wang
et al., 2024c), depth-first search-based methods;
and (3) EditCoT(Wang et al., 2024a), CoT edit-
ing methods. We also evaluate RAE(Shi et al.,
2024), a method that achieves knowledge editing by
modifying knowledge graphs. Due to the resource-
intensive nature of the parameterized methods and
RAE, we test them only on the two smaller LLMs.
Detailed implementation is in Appendix B.

5.3 Implementation Details of DecKER

We evaluate two settings:
DecKER-BoN: Sample N masked reasoning

paths, use RPP Eval (Equation 3) to select the best
half for filling, and then employ KI Eval (Equa-
tion 4) to choose the best result. One greedy decod-
ing is followed by N − 1 top-p sampling (probabil-
ity threshold 0.95, temperature 1.2). Other genera-
tion processes use greedy decoding. In our experi-
ments, N is set to 6.

DecKER-Base: This method does not utilize
two round evaluation. Instead, it generates one
masked reasoning path using greedy decoding. If
the format is incorrect, e.g. no masked parts, a new

6

Table 2: Results on GPT-4o-mini. The dataset is
MQuAKE-300. The best is in bold.

Mello PokeMQA EditCoT RAE DecKER-Base
11.0 51.3 46.7 67.0 69.7

path is sampled by nucleus sampling. Failure in
both attempts is viewed as an error result.

In conflict detection, α is set to 1.5 and β is 0.1.

5.4 Retrieval Settings
Except for RAE, which uses knowledge graph re-
trieval, all ICE methods pertaining to retrieval,
following Mello with contriever-msmarco(Izacard
et al., 2022) as the retriever, accessing a knowledge
base of edited knowledge. Notably, RAE accesses
Wikidata(Wang et al., 2021) during inference steps
even involving unedited knowledge, creating an un-
fair comparison. To ensure consistency, we modify
its graph retrieval process: if the subject and the re-
trieved relation involve unedited knowledge triples,
the LLM generates the object of the triple instead
of getting it from Wikidata. This adjustment pre-
vents data leakage, ensuring a uniform retrieval
scope across all methods.

6 Experimental Results

6.1 Main Results
DecKER outperforms all baselines. Table 1
presents the main results, showing that DecKER-
Base and DecKER-BoN outperform previous meth-
ods across most models and datasets, particularly
excelling in the Popular subset of RippleEdits.
This highlights DecKER’s effectiveness in han-
dling multi-hop reasoning and the Ripple Effect af-
ter editing. Moreover, DecKER demonstrates con-
sistent performance, unlike other baselines, such
as PokeMQA, which may excel in some datasets
and models but perform poorly in others. This sug-
gests that DecKER achieves a stable decoupling
of reasoning and editing, maintaining the model’s
original reasoning capabilities.

Sampling multiple paths enhances DecKER’s
performance. DecKER-BoN outperforms the
Base version by selecting reasoning paths through
two evaluation rounds from options, prioritizing
paths with higher LLM confidence and better entity
type matching. However, the BoN version occa-
sionally underperforms the Base version, suggest-
ing the potential of improving evaluation design.

Preserving the reasoning framework is cru-
cial. EditCoT and PokeMQA exhibit more com-

petitive performance than Mello and MEMIT. As
analyzed in subsection 3.2, despite these two meth-
ods not being able to completely retain the pre-edit
reasoning framework, they still surpass Mello and
MEMIT in the similarity dimension, leading to
higher answer accuracy. RAE, a graph retrieval
method, constrains the search space for the con-
struction of reasoning frameworks by LLMs, as
the edges in the graph are fixed, resulting in com-
mendable performance. These results confirm that
maintaining the reasoning framework is essential.

6.2 Comparative Analysis
Performance on Proprietary LLMs One advan-
tage of in-context editing is its applicability to pro-
prietary models. We test GPT-4o-mini-0718. Fol-
lowing Shi et al. (2024), we randomly select 300
questions from MQuAKE-CF-3k-v2 along with the
corresponding edits, named MQuAKE-300. Since
some processes in EditCoT and RAE, such as the
editor or the complete output probabilities, cannot
be executed on proprietary LLMs, we use Llama-
3.1-8B-Instruct as a proxy model, following Wang
et al. (2024a). The results are presented in Table 2.
DecKER-Base outperforms all baselines, indicat-
ing its potential for editing proprietary LLMs.

Efficiency Figure 4 presents the average in-
ference time per problem and performance on
MQuAKE-3k-CF-v2 for various ICE methods. The
LLM is Llama-3.1-8B-Instruct. DecKER-Base is
positioned in the upper left corner, achieving supe-
rior editing results over other baselines in the short-
est time. DecKER-BoN, due to the additional eval-
uation and more sampled sentences, takes slightly
longer but achieves the best. Among all the base-
lines, the top-performing RAE requires over 24
seconds per problem, while the fastest EditCoT ex-
hibits weaker performance compared to ours, high-
lighting the efficiency advantage of our method.
The details are in Appendix C.

Performance on Problems with Different Hop
Numbers We analyze the performance of several
competitive methods on two MQuAKE datasets
based on the number of hops, as shown in Figure 5.
DecKER-BoN consistently ranks first or second
in 2-4 hop problems, with particularly strong per-
formance on 2-hop problems, reflecting the inher-
ent reasoning abilities of LLMs. RAE leverages a
knowledge graph, maintaining stable performance
across 2-4 hops by constraining the exploration
space during inference with fixed graph edges. De-
spite this, DecKER matches or exceeds RAE’s per-

7

Figure 4: Avg. time vs. Performance.
We truncate the x-axis due to its length.

PokeMQA EditCoT RAE DecKER-BoN
Llama-3.1-8B-Instruct

0

20

40

60

80

M
ul

ti
-H

op
 A

cc
ur

ac
y

(%
) 2-Hop

3-Hop
4-Hop

PokeMQA EditCoT RAE DecKER-BoN
Qwen2.5-7B-Instruct

0

20

40

60

M
ul

ti
-H

op
 A

cc
ur

ac
y

(%
) 2-Hop

3-Hop
4-Hop

Figure 5: #Hop vs. Performance: performance on the MQuAKE-CF-3k-
v2 and -T datasets based on the number of hops of each problem.

Table 3: An ablation study on the selection process on
MQuAKE-CF-3k-v2. Using "L" for Llama-3.1-Instruct
and "Q" for Qwen2.5-Instruct. "Random Choice" refers
to randomly selecting one answer from 6 sampled paths.

L-8B Q-7B Q-14B
DecKER-BoN 59.9 49.8 56.6

w/o RPP Eval 60.2 49.4 56.2
w/o KI Eval 58.1 49.5 55

DecKER-Base 57.8 42.1 50.8
Random Choice 55.2 47.1 51.6

formance on 3 and 4 hop problems.

6.3 Ablation Studies

In this section, We perform ablation studies on
Llama-3.1-8B-Instruct.

Components of Conflict Detection In Figure 6,
we compare the performance of DecKER-Base
with three experimental settings on MQuAKE-300:
conflict detection 1) using only LLM; 2) using only
the highest retrieval score as shown in Equation 2a
(Only detected by α); 3) using only the difference
between retrieval scores of the top two documents
as shown in Equation 2b (Only detected by β).
The hyperparameter settings are consistent with
the main experiments. Results indicate that single-
method detection degrades performance, especially
with LLM-only detection. The combination of all
three methods achieves the best performance. Ad-
ditionally, we analyze hyperparameter impact by
fixing either α or β while varying the other, as
shown in Figure 6. The stability of performance
within a certain range of these parameters demon-
strates the robustness of conflict detection.

Two-round Evaluation In Table 3, we present
the impact of RPP eval and KI eval in DecKER-
BoN on MQuAKE-CF-3k-v2. The Reasoning Path
Planning Evaluation alone yields the poorest perfor-
mance, while the Knowledge Injection Evaluation
alone performs comparably to using both evalua-

Figure 6: Ablation studies for conflict detection on
DecKER-Base. The dashed lines compare single versus
composite detection, with identical hyperparameters to
main experiments. The solid line shows the effect of
varying one hyperparameter while fixing the other, with
the color of x-axis labels matching the solid line.

tions. Notably, RPP Eval involves filtering multiple
masked reasoning paths, thus the computational
load during filling is less than that of performing
only KI Eval, demonstrating its effective of reduc-
ing computational costs. Additionally, selecting
one answer randomly from 6 sampled paths signifi-
cantly underperforms compared to DecKER-BoN.
Additionally, we explore the impact of edit batch
size and the number of sampled masked paths on
our method. The results are shown in Appendix D.

7 Conclusion

In this paper, we explore Multi-hop QA to high-
light the importance of decoupling reasoning and
knowledge injection when applying in-context edit-
ing. Consequently, we propose a novel in-context
editing method, DecKER, which achieves this de-
coupling by first planning the reasoning path and
then filling knowledge entities. Our method demon-
strates strong performance across 3 LLMs and 4
datasets, offering a new perspective for optimizing
in-context editing methods.

8

8 Limitations

In this work, we conduct evaluations using three
widely-used open-source LLMs with parameter
sizes ranging from 7B to 14B, as well as a pro-
prietary LLM. Due to resource constraints, we do
not perform experiments on larger parameter-scale
open-source models. Additionally, experiments
with the three resource-intensive baselines are con-
ducted only on the 7B and 8B parameter LLMs.

Besides, we focus on the enhancement of the
knowledge editing process, with DecKER’s perfor-
mance relying solely on the LLM’s own reasoning
capabilities. The integration of knowledge augmen-
tation techniques, such as knowledge graphs, to
further improve DecKER’s performance remains
an open area of research.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2024. Evaluating the ripple effects
of knowledge editing in language models. Transac-
tions of the Association for Computational Linguis-
tics, 12:283–298.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan

Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph

9

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1162/tacl_a_00644
https://doi.org/10.1162/tacl_a_00644
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash-
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra-
jjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon
Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro-
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun
Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gu-
rurangan, Sydney Borodinsky, Tamar Herman, Tara
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen-
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, An-
drei Lupu, Andres Alvarado, Andrew Caples, An-
drew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Tes-
tuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-

land, Edward Dowling, Eissa Jamil, Elaine Mont-
gomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzmán,
Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-
wen Zha, Haroun Habeeb, Harrison Rudolph, He-
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena
Veliche, Itai Gat, Jake Weissman, James Geboski,
James Kohli, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres,
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Karthik Prasad, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,
Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru,

10

Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3
herd of models.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan
Ma, Xiang Wang, Xiangnan He, and Tat seng
Chua. 2024. Alphaedit: Null-space constrained
knowledge editing for language models. Preprint,
arXiv:2410.02355.

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ning-
hao Liu, Ruobing Wang, and Xin Wang. 2024a.
PokeMQA: Programmable knowledge editing for
multi-hop question answering. In Proceedings of
the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8069–8083, Bangkok, Thailand. Association
for Computational Linguistics.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024b.
Model editing harms general abilities of large lan-
guage models: Regularization to the rescue. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pages
16801–16819. Association for Computational Lin-
guistics.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

Qi Li, Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li,
Xinglin Pan, and Xiaowen Chu. 2024. Should we re-
ally edit language models? on the evaluation of edited
language models. Preprint, arXiv:2410.18785.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,

Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.02355
https://arxiv.org/abs/2410.02355
https://doi.org/10.18653/v1/2024.acl-long.438
https://doi.org/10.18653/v1/2024.acl-long.438
https://aclanthology.org/2024.emnlp-main.934
https://aclanthology.org/2024.emnlp-main.934
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://arxiv.org/abs/2410.18785
https://arxiv.org/abs/2410.18785
https://arxiv.org/abs/2410.18785
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS

Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. 2023. Gpt-4 technical report.

Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen
Zhong, Kaixiong Zhou, and Ninghao Liu. 2024.
Retrieval-enhanced knowledge editing in language
models for multi-hop question answering. In Pro-
ceedings of the 33rd ACM International Conference
on Information and Knowledge Management, CIKM
2024, Boise, ID, USA, October 21-25, 2024, pages
2056–2066. ACM.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram,
Michael Günther, Bo Wang, Markus Krimmel, Feng
Wang, Georgios Mastrapas, Andreas Koukounas,
Nan Wang, and Han Xiao. 2024. jina-embeddings-
v3: Multilingual embeddings with task lora. Preprint,
arXiv:2409.10173.

Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu,
Zhijing Wu, Yujia Zhou, and Yiqun Liu. 2024. Unsu-
pervised real-time hallucination detection based on
the internal states of large language models. In Find-
ings of the Association for Computational Linguistics
ACL 2024, pages 14379–14391, Bangkok, Thailand
and virtual meeting. Association for Computational
Linguistics.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Changyue Wang, Weihang Su, Qingyao Ai, and Yiqun
Liu. 2024a. Knowledge editing through chain-of-
thought. Preprint, arXiv:2412.17727.

Changyue Wang, Weihang Su, Yiran Hu, Qingyao Ai,
Yueyue Wu, Cheng Luo, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2024b. Lekube: A knowledge up-
date benchmark for legal domain. In Proceedings of
the 2024 Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval in the Asia Pacific Region, pages 175–185.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176–194.

Yiwei Wang, Muhao Chen, Nanyun Peng, and Kai-Wei
Chang. 2024c. Deepedit: Knowledge editing as de-
coding with constraints. Preprint, arXiv:2401.10471.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zexuan Zhong, Zhengxuan Wu, Christopher Manning,
Christopher Potts, and Danqi Chen. 2023. MQuAKE:
Assessing knowledge editing in language models via
multi-hop questions. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 15686–15702, Singapore.
Association for Computational Linguistics.

A Pseudocode Description of
DecKER-BoN

The pseudocode of DecKER-BoN is shown in Al-
gorithm 1.

B Details of Baselines

MEMIT (Meng et al., 2023) and AlphaEdit
(Fang et al., 2024): We adopt the official imple-
mentation of AlphaEdit, setting the target editing
layers to 4-8, with a learning rate of 0.1 and a
weight decay of 0.5. The nullspace threshold for
AlphaEdit is set to 0.02.

Mello (Zhong et al., 2023): We adhere to the
original paper’s settings, decomposing up to 4 sub-
problems.

PokeMQA (Gu et al., 2024a): We follow the
original paper’s settings, decomposing up to 5 sub-
problems. As the original repository does not pro-
vide entities for the new dataset, we allow the
model to extract problem entities in a similar for-
mat.

DeepEdit (Wang et al., 2024c): In line with the
official implementation, we set the search width
limit to 2 and the depth limit to 9.

12

https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3627673.3679722
https://doi.org/10.1145/3627673.3679722
https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/2409.10173
https://doi.org/10.18653/v1/2024.findings-acl.854
https://doi.org/10.18653/v1/2024.findings-acl.854
https://doi.org/10.18653/v1/2024.findings-acl.854
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2412.17727
https://arxiv.org/abs/2412.17727
https://arxiv.org/abs/2401.10471
https://arxiv.org/abs/2401.10471
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971
https://doi.org/10.18653/v1/2023.emnlp-main.971

Algorithm 1 DecKER
Input: Question Q, LLM M , Knowledge Edits E , Hyperparameters α, β, Sample Size N
Output: Final Answer A

1: Step 1: Generate Masked Reasoning Paths and Entity Types
2: for i← 1 to N do
3: R

(i)
Q , {t1, t2, . . . } ← GENERATEMASKEDREASONINGPATH(M,Q)

4: end for
5: Step 2: Fill Masked Entities
6: for each masked reasoning path R

(i)
Q do

7: PathLength← length(R(i)
Q)

8: P
(i)
Q ← [R

(i)
Q [0]]

9: for j in [0, 1, . . . , PathLength− 1] do
10: sk ← P

(i)
Q [j] ▷ The current masked step

11: MaskTag← GetMaskTag(sk)
12: Query← PrevFilledEntity() + RemoveMaskTag(sk)
13: {(d1, score1), (d2, score2), ...} ← RETRIEVE(E ,Query)
14: IsEdited← False
15: if (score1 > α) = (score1 − score2 > β) then
16: IsEdited← (score1 > α)
17: else
18: IsEdited← CONFLICTCHECK(M, sk,OriginalFact(d1))
19: end if
20: if IsEdited then
21: ek ← GetObjectEntity(d1)
22: else
23: ek ←M("Fill {MaskTag} with type tk") ▷ LLM-based completion
24: end if
25: Replace all MaskTag in R

(i)
Q with ek

26: if MaskTag = "[MASK ANS]" then
27: A(i) ← ek
28: break
29: end if
30: P

(i)
Q ← P

(i)
Q + [R

(i)
Q [j + 1]]

31: end for
32: end for
33: Step 3: Select the Best Sample
34: RPP Scores← − COMPUTEAVGPE(M, {R(i)

Q })
35: KI Scores← []
36: Answers← []
37: TopPaths← Top 50% PQ by RPP Scores
38: for each filled reasoning path P

(i)
Q in TopPaths do

39: KI Scores.append(1

length(P (i)
Q)

∑
1[PM ("yes"|"Is ej type tj?") > PM ("no"|"Is ej type tj?")])

40: Answers.append(A(i))
41: end for
42: A← Answers[argmaxKI Scores]

13

RAE (Shi et al., 2024): We use the code pro-
vided by the official implementation and adjust its
retrieval process as described in subsection 5.4 to
ensure a fair comparison.

EditCoT (Wang et al., 2024a): We adhere to
the original paper’s settings, conducting up to 4
rounds of CoT editing. The retrieval process is
configured to operate solely on edit memory, as
one of the official implementations, to ensure a fair
comparison.

For all ICE methods, we use the official prompt
templates and adapt them to fit the chat template
format of each LLM. The LLMs we used are im-
plemented by Huggingface Transformers library
(Wolf et al., 2020).

C Details of Efficiency Experiments

All efficiency experiments are conducted on a sin-
gle NVIDIA A100 (40G) GPU. We exclude net-
work latency from the reported inference time of
RAE. In accordance with the official implementa-
tion, RAE employs float32 floating point numbers,
while other methods use float16, as we observe a
considerable performance degradation in RAE with
half-precision. In our implementation, many opera-
tions in DecKER use batch processing, including
the sampling of multiple masked reasoning paths
and parallel filling processes.

D Further Ablation Studies

D.1 Performance with Different Edit Batch
Sizes

We define Edit Batch Size as the number of
questions in an editing batch. We conduct ex-
periments on MQuAKE-300 and Llama-3.1-8B-
Instruct, with batch sizes of 1, 10, and 100, and
compare DecKER-Base with EditCoT. The results
are shown in Figure 7. We observe that both meth-
ods experience a decline in performance as the
batch size increases. However, our method is more
robust and exhibits lower sensitivity to editbatch
compared to EditCoT.

D.2 Impact of Sample Number on
DecKER-BoN

Table 4 illustrates the effect of the number of sam-
pled masked paths (N). Performance initially im-
proves and then levels off as N increases. This
indicates the effectiveness of the two-round evalu-
ation while also suggesting that a larger N is not

1 10 100
Edit Batch Size

30

35

40

45

50

55

60

65

70

M
ul

ti
-h

op
 A

cc
 (

%
)

EditCoT
DecKER-Base

Figure 7: Edit Batch Size vs. Performance. The model
is Llama-3.1-8B-Instruct and the dataset is MQuAKE-
300.

Table 4: The relationship between sampling paths and
performance in DecKER-BoN. The model is Llama-3.1-
8B-Instruct and the dataset is MQuAKE-300.

DecKER-Base 66.0

DecKER-BoN N = 2 N = 6 N = 10 N = 14

67.7 70.3 69.3 69.7

necessarily better, as an increased number of candi-
dates can introduce noise and impact the selection
process.

E Case Study

We showcase two examples of Meta-Llama-3.1-8B-
Instruct from MQuAKE-CF-3k-v2. Table 5 illus-
trates a 2-hop question involving two edits. None
of the other three baselines can solve this problem.
Although PokeMQA correctly infers "basketball
player," the presence of editing knowledge in the
context causes the model to revise its answer. RAE
fails to accurately complete the retrieval in this
example. EditCoT fails to preserve the reason-
ing framework of the original CoT, resulting in a
disruption of the reasoning process, revealing its
black-box nature. Our method closely matches the
ground truth, with reasoning unaffected by edit-
ing knowledge, and accurately arrives at the final
answer.

Table 6 is a 4-hop question involving three edits.
While PokeMQA identifies the final answer "Chi-
avari" during the reasoning process, the model con-
tinues to decompose the next sub-question, trying
to assess whether Chiavari is the capital of South
Korea because it is editing knowledge. RAE’s re-
trieval error occurs in the intermediate step, leading
to an incorrect result, demonstrating its lack of ro-
bustness. EditCoT’s final answer is correct, but its

14

Table 5: An example of a 2-hop problem on Meta-Llama-3.1-8B-Instruct. In the "Results" column, the red sections
indicate where reasoning fails. We omit the display of intermediate steps, such as retrieval scores.

Question: What is the occupation of the chairperson of the Palestine Liberation Organization?

Related Edits:
The chairperson of Palestine Liberation Organization is Mahmoud Abbas → Regina Ip
Regina Ip works in the field of politician → basketball player

Ground Truth Reasoning Path:
The chairperson of Palestine Liberation Organization is Regina Ip.
Regina Ip works in the field of basketball player.

Method Results Correctness

PokeMQA

Entity of Question: Palestine Liberation Organization, an organization.
Subquestion: Who is the chairperson of the Palestine Liberation Organization?
Generated answer: The chairperson of Palestine Liberation Organization is Regina Ip.
According to Generated answer, the entity of Subquestion is: Regina Ip
Subquestion: What is the occupation of Regina Ip?
Generated answer: Regina Ip works in the field of basketball player.
According to Generated answer, the entity of Subquestion is: basketball player
However, the chairperson of Palestine Liberation Organization is actually Mahmoud Abbas

Wrong

RAE

Retrieved Facts:
Palestine Liberation Organization has chairperson named as Regina Ip.
Regina Ip has the religion of Catholicism.
Catholic Church has the religion of Catholicism.
Catholic Church has chairperson named as Pope.

Answer:
there is no information about regina ip being the chairperson of the palestine liberation organization

Wrong

EditCoT

Original CoT:
The chairperson of the Palestine Liberation Organization is Mahmoud Abbas.
Mahmoud Abbas is a public figure associated with the Palestinian National Authority.
The Palestinian National Authority is a government entity, and its leaders are typically involved in politics.
Therefore, Mahmoud Abbas, as the chairperson of the Palestine Liberation Organization, is likely a politician.

Edited CoT:
The chairperson of the Palestine Liberation Organization is Regina Ip.

Wrong

DecKER

Masked Reasoning Path:
The chairperson of the Palestine Liberation Organization is [MASK 1].
The occupation of [MASK 1] is [MASK ANS].

Filled Reasoning Path:
The chairperson of the Palestine Liberation Organization is Regina Ip.
The occupation of Regina Ip is basketball player.

Right

reasoning process does not align with the ground
truth. Our method accurately completes the reason-
ing and filling.

F Licensing

Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct
is released under the Apache License 2.0.
Meta-Llama-3.1-8B-Instruct is released under the
LLAMA 3.1 COMMUNITY LICENSE. MEMIT,
PokeMQA, and Mello are released under the MIT
license. Contriever is released under the CC BY-SA
4.0 License.

The datasets MQuAKE and RippleEdits are re-
leased under the MIT license. The objective of this
research is to conduct an academic investigation,
which is consistent with the stipulations outlined

in the associated licensing agreement.

G Prompt Templates

G.1 Prompt Templates in Analytical
Experiments

We provide GPT-4o-mini with the following system
prompt:

"Extract the relation from the knowledge triples
(subject, relation, object) involved in each sentence,
and return a list of relations that is equal in length
to the given list of sentences. You only need to
provide a JSON structure that contains one key
relations, whose value is the list of relations."

In the user input section, we provide a list, with
each element representing a step in a reasoning
path. We utilize GPT-4o-mini’s format decoding

15

function to ensure the output is a dictionary with
the key "relations" and the value being the list of
extracted relations.

G.2 Prompt Templates of DecKER
Table 7, Table 8, Table 9, and Table 10 present the
prompt templates used by DecKER. We provide a
5-shot prompt template, with the blue sections in
the tables corresponding to the roles in the LLM’s
chat template.

16

Table 6: An example of a 4-hop problem on Meta-Llama-3.1-8B-Instruct. In the "Results" column, the red sections
indicate where reasoning fails. We omit the display of intermediate steps, such as retrieval scores.

Question: Which city is the capital of the country where the CEO of the developer of iOS 9 holds citizenship?

Related Edits: The developer of iOS 9 is Apple Inc. → NeXT Computer, Inc.
Steve Jobs holds citizenship in the country of United States of America → South Korea
The capital of South Korea is Seoul → Chiavari

Ground Truth Reasoning Path:
iOS 9 was developed by NeXT Computer, Inc.
The CEO of NeXT Computer, Inc. is Steve Jobs.
Steve Jobs is a citizen of South Korea.
The capital of South Korea is Chiavari.

Method Results Correctness

PokeMQA

Entity of Question: iOS 9, a subclass of iOS.
Subquestion: Which company is iOS 9 developed by?
Generated answer: iOS 9 was developed by NeXT Computer, Inc..
According to Generated answer, the entity of Subquestion is: NeXT Computer, Inc.
Subquestion: Who is the CEO of NeXT Computer, Inc.?
Generated answer: The CEO of NeXT Computer, Inc. is Steve Jobs.
According to Generated answer, the entity of Subquestion is: Steve Jobs
Subquestion: What is the country of citizenship of Steve Jobs?
Generated answer: Steve Jobs is a citizen of South Korea.
According to Generated answer, the entity of Subquestion is: South Korea
Subquestion: Which city is the capital of South Korea?
Generated answer: The capital of South Korea is Chiavari.
According to Generated answer, the entity of Subquestion is: Chiavari
Subquestion: Is Chiavari the capital of South Korea?
Generated answer:

Wrong

RAE

Retrieved Facts:
iOS 9 was developed by NeXT.
NeXT is located in the country of Switzerland.
Switzerland has its capital city named as Bern.
Bern capital of Switzerland.

Answer:
there is no information about the ceo of next

Wrong

EditCoT

Original CoT:
The CEO of Apple is Tim Cook.
Tim Cook holds citizenship in the United States.
The capital of the United States is Washington, D.C.

Edited CoT:
The CEO of the developer of iOS 9 is Steve Jobs.
Steve Jobs is a citizen of South Korea.
The capital of South Korea is Chiavari.

Right

DecKER

Masked Reasoning Path:
The developer of iOS 9 is [MASK 1].
The CEO of [MASK 1] is [MASK 2].
[MASK 2] holds citizenship in the country of [MASK 3].
The capital of [MASK 3] is [MASK ANS].

Filled Reasoning Path:
The developer of iOS 9 is NeXT Computer, Inc..
The CEO of NeXT Computer, Inc. is Steve Jobs.
Steve Jobs holds citizenship in the country of South Korea.
The capital of South Korea is Chiavari.

Right

17

Table 7: The prompt template of masked reasoning path generation.

System:
Generate a detailed chain of thought with each reasoning step labeled as [STEP]. Replace any specific knowledge, entities, dates, or locations that are not
in the text of question with [MASK]. Focus only on the logical steps and flow. And then include the category of each [MASK *] in order in the chain of
thought as [CATEGORY], to clarify the type of entity that should be filled in.

User: Question: What is the capital of the country where Plainfield Town Hall is located?
Assistant: [STEP] Plainfield Town Hall is located in the country of [MASK 1].
[STEP] The capital of [MASK 1] is [MASK ANS].
[CATEGORY]
[MASK 1] [country]
[MASK ANS] [city]

User: Question: In which country is the company that created Nissan 200SX located?
Assistant: [STEP] Nissan 200SX was created by [MASK 1].
[STEP] [MASK 1] is located in the country of [MASK ANS].
[CATEGORY]
[MASK 1] [company]
[MASK ANS] [country]

User: Question: Which continent is the country where the director of M̈y House Husband: Ikaw Na!ẅas educated located in?
Assistant: [STEP] The director of M̈y House Husband: Ikaw Na!ïs [MASK 1].
[STEP] [MASK 1] was educated at [MASK 2].
[STEP] [MASK 2] is located in the country of [MASK 3].
[STEP] [MASK 3] is located in the continent of [MASK ANS].
[CATEGORY]
[MASK 1] [person]
[MASK 2] [school]
[MASK 3] [country]
[MASK ANS] [continent]

User: Question: Who is the spouse of the US president?
Assistant: [STEP] The US president is [MASK 1]. [STEP] The spouse of [MASK 1] is [MASK ANS].
[CATEGORY]
[MASK 1] [person]
[MASK ANS] [person]

User: Question: Who has ownership of the developer of the Chevrolet Corvette (C4)?
Assistant: [STEP] The developer of Chevrolet Corvette (C4) is [MASK 1].
[STEP] [MASK 1] is owned by [MASK ANS].
[CATEGORY]
[MASK 1] [company]
[MASK ANS] [person]

User: Question: {A question}
Assistant:

Table 8: The prompt template of conflict detection by LLMs.

System:
Determine whether the provided Fact sentence supports filling the MASKed part in the given Sentence. Only output Yes or No.

User: Fact: Club Nouveau is a group.
Sentence: Club Nouveau originated from [MASK 1].
Assistant: No

User: Fact: Paris is the capital of France.
Sentence: The capital of France is [MASK ANS].
Assistant: Yes

User: Fact: The Venus de Milo is located in the Louvre Museum.
Sentence: The Mona Lisa is located in the [MASK 2] Museum.
Assistant: No

User: Fact: The first person to get to the South Pole is Roald Amundsen.
Sentence: The first person to walk on the moon was [MASK 3].
Assistant: No

User: Fact: The Python programming language was created by Guido van Rossum.
Sentence: The creator of Python is [MASK 1].
Assistant: Yes

User: Fact: {A retrieved fact.}
Sentence: {A masked step.}
Assistant:

18

Table 9: The prompt template of entity filling.

System:
Given the first masked entity without any analysis. The answer you give must match the given type.

User: Type of the masked entity: country.
Sentence: Club Nouveau originated from [MASK 1].
Assistant: United States

User: Type of the masked entity: country.
Sentence: The country where the creator of the Chevrolet Corvette (C4) is located is [MASK ANS].
Assistant: United States

User: Type of the masked entity: place.
Sentence: The Mona Lisa is located in the [MASK 2] Museum.
Assistant: Louvre

User: Type of the masked entity: person.
Sentence: The first person to walk on the moon was [MASK 3].
Assistant: Neil Armstrong

User: Type of the masked entity: person.
Sentence: The creator of Python is [MASK 1].
Assistant: Guido van Rossum

User: Type of the masked entity: {Type of the masked entity.}
Sentence: {A masked sentence.}
Assistant:

Table 10: The prompt template of determining if entity types match, i.e. the KI Eval.

System:
You are given an entity along with its supposed types. Your task is to determine whether the entity matches the type it has been assigned.
Only output Yes or No. Yes if the entity matches the type, No otherwise.

User: Entity: New York
Assigned Type: country
Assistant: No

User: Entity: Apple Inc.
Assigned Type: company
Assistant: Yes

User: Entity: Steve Jobs
Assigned Type: city
Assistant: No

User: Entity: baseball
Assigned Type: position
Assistant: No

User: Entity: USD
Assigned Type: currency
Assistant: Yes

User: Entity: {An entity.}
Assigned Type: {A type.}
Assistant:

19

	Introduction
	Related Work
	Preliminary Study
	MQA under Knowledge Editing
	Reasoning Degradation in ICE

	Methodology
	Masked Reasoning Path Generation
	Stepwise Knowledge Injection
	Final Answer Selection
	Discussion

	Experimental Settings
	Evaluation Details
	Baselines
	Implementation Details of DecKER
	Retrieval Settings

	Experimental Results
	Main Results
	Comparative Analysis
	Ablation Studies

	Conclusion
	Limitations
	Pseudocode Description of DecKER-BoN
	Details of Baselines
	Details of Efficiency Experiments
	Further Ablation Studies
	Performance with Different Edit Batch Sizes
	Impact of Sample Number on DecKER-BoN

	Case Study
	Licensing
	Prompt Templates
	Prompt Templates in Analytical Experiments
	Prompt Templates of DecKER

