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Abstract

Knowledge editing enables efficient updates to
Large Language Models (LLMs) by modifying
specific knowledge without full-model retrain-
ing. Among knowledge editing approaches,
in-context editing (ICE) stands out for its abil-
ity to inject knowledge without modifying the
model’s parameters. However, existing ICE ap-
proaches directly edit model context without
isolating target knowledge from the reasoning
path of model inference, resulting in unreliable
and low-quality outputs, particularly in multi-
hop tasks. To investigate this issue, we analyze
the interaction between reasoning path plan-
ning and knowledge injection, showing that the
reasoning ability of a LLM is usually coupled
with its original knowledge, and directly replac-
ing old knowledge with new one could simul-
taneously hurt the LLM’s performance in task
reasoning. Based on these findings, we propose
DecKER, a novel ICE framework that separates
model reasoning from knowledge editing. Ex-
tensive experiments show that DecKER signif-
icantly improves multi-hop reasoning perfor-
mance by mitigating knowledge conflicts and
preserving reasoning integrity. 1

1 Introduction

Large language models (LLMs) have achieved
remarkable performance in knowledge-intensive
tasks. Yet, as real-world knowledge evolves rapidly,
ensuring these models consistently maintain accu-
rate and up-to-date knowledge remains a significant
challenge. The most straightforward knowledge up-
date approach is continued pre-training. However,
the computational cost and memory requirements
for retraining the entire model are prohibitively
high. In response, knowledge editing has emerged
as an effective alternative to full-model retraining.
The goal of knowledge editing is to conduct rapid,

1Our code is available at:
https://github.com/bebr2/DecKER

targeted modifications to specific embedded knowl-
edge, enabling LLMs to stay updated without the
need for retraining the entire model.

Existing knowledge editing approaches can be
broadly categorized into two categories: parame-
terized methods that modify model weights (e.g.,
ROME (Meng et al., 2022)) and non-parameterized
in-context editing (ICE) that injects knowledge
through model context (Wang et al., 2024b). While
parameterized editing directly modifies knowledge
stored in LLMs, it often hurt the performance
of LLMs on general tasks (Gu et al., 2024b; Li
et al., 2024) and struggles with complex reasoning
(Zhong et al., 2023). In contrast, ICE methods ad-
dress the limitations of parameterized editing by
preserving the original parameters of LLMs and di-
rectly edit the input context (e.g., prompts) to guide
LLMs to behave based on the updated knowledge.
They have received considerable attention due to
their superior performance in managing knowledge
ripple effects and multi-hop reasoning (Cohen et al.,
2024; Zhong et al., 2023).

Nonetheless, despite of their relative advantages
comparing to parameterized methods, we still ob-
serve a significant averaged performance drops on
LLMs before and after applying existing methods.
As discussed in section 3, we test several state-of-
the-art ICE methods, and find that the performance
of answering the same questions before and after
using these methods drops more than 80% on multi-
hop question answering tasks. Ideally, knowledge
editing techniques should edit the knowledge of
LLMs without hurting their ability to solve the
task, and ICE should be able to achieve this as they
haven’t modified the model parameters. Obviously,
existing ICE methods fail to achieve this goal.

Our analytical experiments reveal that an impor-
tant reason behind this phenomenon is that existing
ICE methods often hurt the reasoning ability of
LLMs. When answering questions with their in-
ternal knowledge, LLMs have exhibited superior
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reasoning ability to solve multi-hop questions step
by step, which is also referred to as the chain-of-
thought (COT) (Wei et al., 2022) ability. However,
after replacing its context with updated knowledge,
LLMs often "forget" how to do reasoning in the
same task due to the conflicts between its context
and internal knowledge. In other words, the rea-
soning ability of LLMs is often coupled with its
internal knowledge, and ICE without separating
knowledge with reasoning would inevitably hurt
the performance of LLMs. This phenomenon could
limit the future applications of ICE methods, partic-
ularly when inference scaling, which heavily relies
on the reasoning ability of LLMs, has recently be-
come the dominant direction for super-intelligence
development (DeepSeek-AI et al., 2025).

In light of these findings, we propose DecKER,
a novel in-context editing method that Decouples
Knowledge Editing and model Reasoning. Taking
multi-hop QA as an example, our method first ex-
tract a masked reasoning path from LLMs, where
entities subject to potential edits are replaced with
placeholders along with corresponding type hints.
Then, for each placeholder, we propose a hybrid
mechanism combining retrieval-based conflict de-
tection and model judgment to determine if the
entity is related to edited knowledge and fill it ac-
cordingly. Furthermore, by sampling multiple rea-
soning paths and evaluating them based on a couple
of intuitive criteria on reasoning and knowledge
injection, our method selects the best candidate
accordingly so that it can preserve the reasoning
framework originally generated by LLMs while
answering the question with updated knowledge.

In summary, this paper makes the following key
contributions:

1. We explore the impact of the conflict between
injected contextual knowledge and LLMs’ para-
metric knowledge, revealing how entangled rea-
soning and editing processes lead to significant
performance degradation in multihop tasks.

2. We introduce DecKER, a novel ICE framework
that employs global planning to decouple rea-
soning from knowledge injection via masked
reasoning path generation.

3. We conduct comprehensive experiments to
demonstrate that decoupling reasoning from
knowledge injection significantly enhances
multi-hop reasoning performance, addressing
the limitations of prior ICE approaches.

2 Related Work

Knowledge Editing (KE) aims to efficiently up-
date knowledge in LLMs, divided into parameter-
ized and non-parameterized methods (Wang et al.,
2024b). ROME (Meng et al., 2022), a typical pa-
rameterized method, uses causal intervention to lo-
cate and edit related neurons, while MEMIT(Meng
et al., 2023) extends this capability to handle larger
edit batch. Non-parameterized methods leverage
the LLM’s in-context learning(Brown et al., 2020)
abilities. Mello (Zhong et al., 2023) employs in-
context editing (ICE) to tackle complex problems
by breaking them into subtasks and performing fine-
grained edits. Built on this, PokeMQA(Gu et al.,
2024a) enhances robustness and DeepEdit(Wang
et al., 2024c) focuses on the reasoning process.
Additionally, Shi et al. (2024) address multi-hop
tasks in knowledge editing by emphasizing the
retrieval process with their RAE method, which
employs knowledge graph editing and retrieval to
boost multi-hop reasoning performance.

To evaluate LLMs’ reasoning abilities post-
editing, Cohen et al. (2024) introduce the con-
cept of Ripple Effects, where altering one piece
of knowledge can impact related facts. Zhong et al.
(2023) develop a multi-hop QA dataset to assess
if edited models can utilize new knowledge for
complex reasoning. Their findings indicate that
ICE methods outperform parameterized methods
in managing Ripple Effects and complex reasoning.

3 Preliminary Study

This section begins by introducing the multi-hop
question-answering (MQA) task under knowledge
editing. Then, we discuss the phenomenon of rea-
soning degradation in existing ICE methods and
design an analytical experiment to explain it.

3.1 MQA under Knowledge Editing

Knowledge editing in the MQA task involves mod-
ifying the object component of a knowledge triple.
Given an initial fact e = (s, r, o), comprising a sub-
ject (s), a relation (r), and an object (o), this fact
is edited to e∗ = (s, r, o∗). For a multi-hop ques-
tion Q and a set of edited facts E associated with
Q, the reasoning path PQ,E is represented as <
e1, . . . , en >=< (s1, r1, o1), . . . , (sn, rn, on) >,
where n is the number of reasoning hops, si+1 =
oi, and on is the final answer. The reasoning path
before editing is denoted as PQ,∅. If E is non-empty,
indicating modifications to one or more knowledge
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What is the official language of the country of citizenship of the author of the First Folio?
[Related Edited Fact]: The author of First Folio is William Shakespeare  →  Hendrik Lorentz

Planner:    subquestion generation    prompting    ...

{{ Planning for Step 1 }}
The author of First Folio is William Shakespeare.
{{ Planning for Step 2 }}
William Shakespeare is a citizen of Kingdom of England.
{{ Planning for Step 3 }}
The official language of Kingdom of England is English.

The author of First Folio is William Shakespeare.
The author of First Folio is Hendrik Lorentz.

{{ Planning for Step 2 }}
The fact is incorrect. Let’s correct the answer...

... Fail to Reasoning and Get Final Answer

{{ Planning for Step 1 }}

Before Editing After Editing

Reasoning Path Planning

The author of First Folio is William Shakespeare.

William Shakespeare is a citizen of Kingdom of England.

The official language of Kingdom of England is English.

Final Reasoning Path

The author of the First Folio is Hendrik Lorentz.

Hendrik Lorentz is a citizen of the country of Netherlands.

The official language of Netherlands is Dutch.

Answer: Dutch.
Knowledge Injection

The author of First Folio is Hendrik Lorentz.

Hendrik Lorentz is a citizen of ......

The official language of ...... is ......

Injector:    Masked Path Filling   

Figure 1: Comparisons of two types of ICE paradigms.

triples in Q (e.g., ek = (sk, rk, ok) is edited into
(sk, rk, o

∗
k)), the reasoning path PQ,E will reflect

changes to ek and all subsequent triples, thus alter-
ing the final answer. Notably, successfully address-
ing MQA depends on two key components: accu-
rate reasoning path planning and precise knowledge
injection. Reasoning path planning involves deter-
mining the reasoning framework, i.e., the list of
relations RQ = [r1, . . . , rn] in the reasoning path
PQ,E , while knowledge injection ensures the model
accurately provides ok given (sk, rk). In real tasks,
the edit batch size (the size of the union set of all
E) is often greater than one, and one reasoning path
PQ,E may involve multiple edits, adding significant
complexity to knowledge editing methods.

3.2 Reasoning Degradation in ICE

The upper part of Figure 1 illustrates a typical ex-
ample of Reasoning Degradation in current ICE
methods. These methods can be abstracted as in-
teractions between a Planner, which determines
the next reasoning step through sub-question gen-
eration (e.g., Mello and PokeMQA) or prompting
(e.g., DeepEdit and EditCoT), and an Editor, which
incorporates edited knowledge by replacing inter-
mediate answers or prompting the model to revise
them. Before the relevant knowledge is edited, the
LLM uses its internal knowledge for reasoning,
allowing the interaction between the Planner and
Editor to proceed normally and produce the correct
reasoning path. However, after the knowledge is
edited and the Editor replaces the contextual knowl-
edge with new one, the Planner does not continue
reasoning as expected. Instead, it shifts direction,
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Figure 2: Performance and reasoning similarity of dif-
ferent KE Methods before and after editing. The second
image indicates the similarity between the post-editing
and pre-editing reasoning framework.

such as attempting to resolve conflicting knowl-
edge. Moreover, as demonstrated in Appendix E,
we present additional examples where the Planner
influenced by edited knowledge exhibits behaviors
like causing reasoning interruptions or redirecting
to different reasoning paths. Clearly, current ICE
methods fail to separate knowledge from reasoning,
thereby impairing the reasoning abilities of LLMs.
We design an experiment to quantitatively assess
the Reasoning Degradation phenomenon.

Experimental Setup We randomly select 300
questions from MQuAKE-CF-3k-v2 (Zhong et al.,
2023), along with the associated edited facts, for
our experiment. We apply a knowledge editing
method to Llama-3.1-8B-Instruct (Dubey et al.,
2024) and compare its performance before and
after editing. We evaluate several methods, in-
cluding MEMIT (a parameterized method), Mello,
PokeMQA, and EditCoT. The first two are classic
methods of parameterized knowledge editing and
in-context editing, while the latter two represent
the state-of-the-art ICE methods. The experiment
consists of two main parts:

Performance Comparison: For multi-hop ques-
tions involving edited knowledge, the answers
change before and after editing. We use the ground
truths before and after editing as references, with
accuracy as the metric, to evaluate performance
before and after editing, respectively. For MEMIT,
whether before or after editing, we prompt the LLM
to generate a CoT during inference. For EditCoT,
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we also get pre-editing answers through CoT rea-
soning. For Mello and PokeMQA, pre-editing per-
formance is obtained by replacing the edited fact
in the retrieval corpus with the original one.

Reasoning Framework Comparison: The rea-
soning framework RQ for a question is independent
of the edit set E , meaning the relation lists in the
paths should remain unchanged after editing. A
good ICE method should maintain this similarity
to preserve the model’s reasoning ability. We use
regular expressions to identify the reasoning paths
generated by each knowledge editing method. For
CoT-based methods, the CoT itself serves as the
reasoning path, while for sub-question decomposi-
tion methods, we combine the answers to all sub-
questions into the reasoning path. We then use GPT-
4o-mini-0718 (OpenAI et al., 2023) to identify the
relations in the knowledge triples involved at each
reasoning step, forming the reasoning framework
R. Prompts are detailed in Appendix G.

Then, we compare the similarity of reason-
ing framework before and after editing for each
method. Given two reasoning frameworks R1 =
[r11, . . . , r1n] and R2 = [r21, . . . , r2m], we com-
pute the similarity using the following formula:

Simlarity(R1, R2) =

∑min(n,m)
i=1 Sim(r1i, r2i)

max(n,m)
. (1)

It calculates the similarity between correspond-
ing elements of two ordered lists, padding the
shorter list with zeros if they differ in length.
In Equation 1, the "Sim" function employs jina-
embeddings-v3(Sturua et al., 2024) to compute the
embeddings of the two elements individually and
calculates their cosine similarity.

Results and Analysis Figure 2 presents the re-
sults. Both MEMIT and current ICE methods
show significant performance degradation. Ide-
ally, a knowledge editing method should maintain
a reasoning framework similarity close to 1.00, but
the tested methods do not exceed 0.65, demon-
strating substantial reasoning degradation. This
phenomenon is most severe for the parameterized
method MEMIT, as noted in previous research (Li
et al., 2024). ICE, which does not modify LLM pa-
rameters, should theoretically maintain the model’s
reasoning capability, but the low reasoning frame-
work similarity for the three ICE methods suggests
that they fail to achieve this goal. Additionally,
we observe a positive correlation between editing
performance and reasoning framework similarity,

What is the occupation of the spouse of the author of "Three Sisters"?

[STEP 1] The author of "Three Sisters" is [MASK 1].
[STEP 2] The spouse of [MASK 1] is [MASK 2].
[STEP 3] The occupation of [MASK 2] is [MASK ANS].

[MASK 1]:    Person
[MASK 2]:    Person
[MASK ANS]: Occupation

[STEP 1] The author of "Three Sisters" is Anton Chekhov.    [STEP] The spouse of Anton Chekhov is [MASK 2]. 

 The author of "Three Sisters" is   .

1. The author of Ball Four is Jim Bouton         Score: 1.28

2. .......                                                          Score: 1.22

[MASK 1]

Anton Chekhov

Knowledge Injection [STEP 1]

person

[STEP 2] The spouse of Anton Chekhov is Frederick IV.  [STEP] The occupation of Frederick IV is  [MASK ANS]. 

Global Planning

 Anton Chekhov \ The spouse of Anton Chekhov is  .

1. Anton Chekhov is married to Frederick IV     Score: 1.80

2. ......                                                              Score: 1.65

[MASK 2]

Frederick IV

Knowledge Injection [STEP 2]

[STEP 3] The occupation of Frederick IV is  watercolourist. 

No EditedEdited

 Frederick IV \ The occupation of Frederick IV is  .

[MASK  ANS] watercolourist 

1. Frederick IV works in the field of watercolourist  Score: 1.80

2. ......                                                                     Score: 1.65

Knowledge Injection [STEP 3]
Score Score

Detector 

...

No Edited

Edited

Edited

Figure 3: The workflow of DecKER, only showing the
processing of a single path, omitting the final answer
selection stage for multiple sampled reasoning paths.

further emphasizing the importance of maintaining
the reasoning framework. In reasoning tasks, the
reasoning planning and knowledge injection of cur-
rent ICE methods are coupled, and the injection
of conflicting knowledge affects reasoning plan-
ning. Therefore, this highlights the importance of
decoupling reasoning from editing.

4 Methodology

We propose DecKER, a method decoupling reason-
ing and knowledge injection to maintain reasoning
framework while editing. The workflow is shown
in Figure 3, with its pseudocode in Appendix A.

4.1 Masked Reasoning Path Generation

We separate reasoning from editing by initially hav-
ing the LLM conduct global planning. Specifically,
we first prompt the LLM to generate a masked rea-
soning path for the provided multi-hop question Q.
"Masked" means that during generation, the LLM
replaces all positions that require entity generation
(except those already present in the question) with
[MASK *] symbols, where * can be an integer or
string. We provide the LLM with a 5-shot prompt,
leveraging the instruction-following and in-context
learning capabilities of the LLM to accomplish this.
This approach aims to preserve high-quality rea-
soning paths from the original LLM before editing.
In practice, we instruct the LLM to start each rea-
soning step with a [STEP] symbol. Entities are
numbered sequentially by the LLM to maintain
consistency, as illustrated in Figure 3, where the
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author of "Three Sisters" is represented as [MASK
1] in the first two steps. The final answer is repre-
sented as [MASK ANS].

We also have the LLM provide entity type hints,
such as "country", "company", etc. This is cru-
cial because each filling step is completed inde-
pendently. Without type hints, the model might
generate completions that fit the instructions but do
not align with the reasoning framework. All of the
prompt templates are detailed in Appendix G.

4.2 Stepwise Knowledge Injection
Then we fill in each masked entity step by step.
1. Retrieval: For a masked step currently being
filled, we remove the [MASK *] tag in it and use it
as a query to search within the edited memory (i.e.,
the union set of all E in the dataset). If previous
entities have been filled, we include the most recent
entity in the query.
2. Conflict Detection: Conflict detection is per-
formed by comparing the retrieval results with the
query, using a hybrid method that combines re-
trieval scores and LLM judgments. When a query
involves edits, the retrieval scores exhibit two key
features: a notably high score for the top result and
a substantial gap between the highest and second-
highest scores, mathematically represented as:

S(d1) > α , (2a)

S(d1)− S(d2) > β , (2b)

where S is the retrieval score. In our experiments, it
denotes the dot-product similarity between the em-
beddings of documents and queries, with di repre-
senting the result ranked i. α and β are hyperparam-
eters. If both criteria yield consistent results, we
accept them without further LLM evaluation. Oth-
erwise, LLM analysis is conducted. Each edited
fact maps to an original one, allowing the LLM
to determine if the original supports the masked
step’s filling. Support indicates a conflict between
the edited fact and the masked step.
3. Filling: When a retrieval result conflicts with
the masked step, we directly replace the masked
part with the object from the knowledge triple cor-
responding to the retrieval result, and also update
subsequent identical masked parts. For example, in
Figure 3, all instances of [MASK 2] are replaced
with "Frederick IV". If no conflict is detected, the
model treats the masked part as a fill-in-the-blank
task, guided by the previously assigned entity type.
This process continues until [MASK ANS] is filled,
providing the final answer to the question.

4.3 Final Answer Selection
In the workflow, we assume that each masked step
involves only one entity to be filled, which is rea-
sonable for the MQA task. However, due to insuf-
ficient few-shot learning ability, the model might
generate incorrect or incomplete masked reasoning
paths, and the filled entities might not align with
the intended types. To ensure the quality of the
final answers, we filter multiple candidate answers
generated through the above process with two eval-
uation methods — reasoning path planning and
knowledge injection — to select the final answer.
1. Reasoning Path Planning Evaluation (RPP
Eval): Inspired by the work on hallucinations(Su
et al., 2024) in LLMs, we can evaluate the reason-
ing path by calculating the model’s uncertainty, as
LLMs are prone to hallucinations or incorrect out-
puts when uncertain. For each generated token,
Predictive Entropy (PE) is defined as follows:

PE = −
∑
w̃∈W

pi(w̃)log pi(w̃) , (3)

where W is the vocabulary of the LLM, and pi(w̃)
is the generation probability of token w̃ at this step.
For each masked path, we use the negative average
PE over all generated tokens as the evaluation score,
with higher scores indicating greater certainty.
2. Knowledge Injection Evaluation (KI Eval):
After filling the reasoning path, we obtain a list of
filled entities. For each filled entity ei, we instruct
the model to determine whether it matches the pre-
assigned type ti. The score is calculated as follows:
KI(ei, ti) = 1

[
PM (“yes” | ei, ti) > PM (“no” | ei, ti)

]
, (4)

where M is the LLM and 1 is an indicator function.
The prompt template is detailed in Appendix G. We
compute the KI Eval score by averaging the scores
of all filled entities. In practice, RPP Eval is used
to retain the top 50% of sampled masked reasoning
paths for filling. The final answer is selected from
the filled path with the highest KI Eval score.

4.4 Discussion
We conduct the experiments in subsection 3.2 on
DecKER. For the pre-editing settings, we replace
the edited memory with the corresponding origi-
nal facts. The results indicate DecKER exhibits
only a slight accuracy drop post-editing and signif-
icantly outperforms other baselines. Additionally,
DecKER maintains complete consistency in reason-
ing frameworks between pre- and post-editing, as
they share the same masked reasoning path, high-
lighting the reason behind its strong performance.
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Table 1: The overall results. Ripple-Pop and Ripple-Rand denote the popular and random subsets of RippleEdits.
The metric is Multi-Hop Accuracy (%). We bold the top performing methods and underline the second-best ones.

Models Methods MQuAKE-CF-3k-v2 MQuAKE-T Ripple-Pop Ripple-Rand

Llama-3.1-8B-Instruct

MEMIT 6.8 44.1 8.4 9.1
AlphaEdit 7.0 42.0 8.6 9.6
Mello 11.0 57.7 25.8 32.7
PokeMQA 16.8 77.8 30.4 33.1
DeepEdit 8.9 57.5 3.4 5.0
RAE 54.3 50.9 20.6 17.0
EditCoT 36.0 74.6 31.6 22.3

DecKER-Base 57.8 80.9 46.6 46.1
DecKER-BoN (N = 6) 59.0 81.3 47.4 44.9

Qwen2.5-7B-Instruct

MEMIT 6.6 21.5 9.8 17.2
AlphaEdit 7.1 21.1 11.0 17.0
Mello 1.7 50.3 3.6 1.4
PokeMQA 7.1 45.3 7.0 7.6
DeepEdit 12.3 25.3 6.0 12.0
RAE 38.3 28.7 24.0 18.3
EditCoT 26.2 74.5 29.2 30.7

DecKER-Base 42.1 67.7 35.8 32.1
DecKER-BoN (N = 6) 49.8 70.8 39.8 38.3

Qwen2.5-14B-Instruct

Mello 1.2 26.4 4.6 2.3
PokeMQA 2.3 32.4 5.9 3.9
DeepEdit 7.3 51.7 9.4 14.4
EditCoT 37.0 82.7 35.0 33.5

DecKER-Base 50.8 81.4 45.0 45.6
DecKER-BoN (N = 6) 56.6 83.6 44.0 46.1

5 Experimental Settings

5.1 Evaluation Details
We evaluate our methods using four datasets:
MQuAKE-CF-3k-v2, MQuAKE-T(Zhong et al.,
2023), and the Popular and Random subsets of
RippleEdits(Cohen et al., 2024). MQuAKE-CF-
3k-v2 comprises 3,000 questions with 2,764 edits,
with 2-, 3-, and 4-hop questions. MQuAKE-T con-
tains 1,868 questions and 96 edits, with 2- and
3-hop questions. RippleEdits-Popular has 500 2-
hop questions and 266 edits, while RippleEdits-
Random has 1,137 2-hop questions and 626 edits.

As in the original paper of Mello, we employ
the Multi-Hop Accuracy metric, where a question
is correct if at least one rewritten version is an-
swered correctly. For MQuAKE datasets, each test
includes 3 rewritten questions, while RippleEdits
datasets contain only 1 question per test.

Three LLMs are evaluated: Meta-Llama-3.1-8B-
Instruct(Dubey et al., 2024), Qwen2.5-7B-Instruct,
and Qwen2.5-14B-Instruct(Team, 2024), using
their official chat templates across all baselines.

5.2 Baselines
We compare DecKER with other ICE methods
and two parameterized approaches: MEMIT(Meng
et al., 2023) and AlphaEdit(Fang et al., 2024).
These two approaches focus on editing neurons

related to the targeted knowledge, with AlphaEdit
mitigating unintended disruptions through matrix
projection. ICE methods include: (1) Mello(Zhong
et al., 2023) and PokeMQA(Gu et al., 2024a),
subproblem-based methods; (2) DeepEdit(Wang
et al., 2024c), depth-first search-based methods;
and (3) EditCoT(Wang et al., 2024a), CoT edit-
ing methods. We also evaluate RAE(Shi et al.,
2024), a method that achieves knowledge editing by
modifying knowledge graphs. Due to the resource-
intensive nature of the parameterized methods and
RAE, we test them only on the two smaller LLMs.
Detailed implementation is in Appendix B.

5.3 Implementation Details of DecKER

We evaluate two settings:
DecKER-BoN: Sample N masked reasoning

paths, use RPP Eval (Equation 3) to select the best
half for filling, and then employ KI Eval (Equa-
tion 4) to choose the best result. One greedy decod-
ing is followed by N − 1 top-p sampling (probabil-
ity threshold 0.95, temperature 1.2). Other genera-
tion processes use greedy decoding. In our experi-
ments, N is set to 6.

DecKER-Base: This method does not utilize
two round evaluation. Instead, it generates one
masked reasoning path using greedy decoding. If
the format is incorrect, e.g. no masked parts, a new
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Table 2: Results on GPT-4o-mini. The dataset is
MQuAKE-300. The best is in bold.

Mello PokeMQA EditCoT RAE DecKER-Base
11.0 51.3 46.7 67.0 69.7

path is sampled by nucleus sampling. Failure in
both attempts is viewed as an error result.

In conflict detection, α is set to 1.5 and β is 0.1.

5.4 Retrieval Settings
Except for RAE, which uses knowledge graph re-
trieval, all ICE methods pertaining to retrieval,
following Mello with contriever-msmarco(Izacard
et al., 2022) as the retriever, accessing a knowledge
base of edited knowledge. Notably, RAE accesses
Wikidata(Wang et al., 2021) during inference steps
even involving unedited knowledge, creating an un-
fair comparison. To ensure consistency, we modify
its graph retrieval process: if the subject and the re-
trieved relation involve unedited knowledge triples,
the LLM generates the object of the triple instead
of getting it from Wikidata. This adjustment pre-
vents data leakage, ensuring a uniform retrieval
scope across all methods.

6 Experimental Results

6.1 Main Results
DecKER outperforms all baselines. Table 1
presents the main results, showing that DecKER-
Base and DecKER-BoN outperform previous meth-
ods across most models and datasets, particularly
excelling in the Popular subset of RippleEdits.
This highlights DecKER’s effectiveness in han-
dling multi-hop reasoning and the Ripple Effect af-
ter editing. Moreover, DecKER demonstrates con-
sistent performance, unlike other baselines, such
as PokeMQA, which may excel in some datasets
and models but perform poorly in others. This sug-
gests that DecKER achieves a stable decoupling
of reasoning and editing, maintaining the model’s
original reasoning capabilities.

Sampling multiple paths enhances DecKER’s
performance. DecKER-BoN outperforms the
Base version by selecting reasoning paths through
two evaluation rounds from options, prioritizing
paths with higher LLM confidence and better entity
type matching. However, the BoN version occa-
sionally underperforms the Base version, suggest-
ing the potential of improving evaluation design.

Preserving the reasoning framework is cru-
cial. EditCoT and PokeMQA exhibit more com-

petitive performance than Mello and MEMIT. As
analyzed in subsection 3.2, despite these two meth-
ods not being able to completely retain the pre-edit
reasoning framework, they still surpass Mello and
MEMIT in the similarity dimension, leading to
higher answer accuracy. RAE, a graph retrieval
method, constrains the search space for the con-
struction of reasoning frameworks by LLMs, as
the edges in the graph are fixed, resulting in com-
mendable performance. These results confirm that
maintaining the reasoning framework is essential.

6.2 Comparative Analysis
Performance on Proprietary LLMs One advan-
tage of in-context editing is its applicability to pro-
prietary models. We test GPT-4o-mini-0718. Fol-
lowing Shi et al. (2024), we randomly select 300
questions from MQuAKE-CF-3k-v2 along with the
corresponding edits, named MQuAKE-300. Since
some processes in EditCoT and RAE, such as the
editor or the complete output probabilities, cannot
be executed on proprietary LLMs, we use Llama-
3.1-8B-Instruct as a proxy model, following Wang
et al. (2024a). The results are presented in Table 2.
DecKER-Base outperforms all baselines, indicat-
ing its potential for editing proprietary LLMs.

Efficiency Figure 4 presents the average in-
ference time per problem and performance on
MQuAKE-3k-CF-v2 for various ICE methods. The
LLM is Llama-3.1-8B-Instruct. DecKER-Base is
positioned in the upper left corner, achieving supe-
rior editing results over other baselines in the short-
est time. DecKER-BoN, due to the additional eval-
uation and more sampled sentences, takes slightly
longer but achieves the best. Among all the base-
lines, the top-performing RAE requires over 24
seconds per problem, while the fastest EditCoT ex-
hibits weaker performance compared to ours, high-
lighting the efficiency advantage of our method.
The details are in Appendix C.

Performance on Problems with Different Hop
Numbers We analyze the performance of several
competitive methods on two MQuAKE datasets
based on the number of hops, as shown in Figure 5.
DecKER-BoN consistently ranks first or second
in 2-4 hop problems, with particularly strong per-
formance on 2-hop problems, reflecting the inher-
ent reasoning abilities of LLMs. RAE leverages a
knowledge graph, maintaining stable performance
across 2-4 hops by constraining the exploration
space during inference with fixed graph edges. De-
spite this, DecKER matches or exceeds RAE’s per-
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Figure 4: Avg. time vs. Performance.
We truncate the x-axis due to its length.
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Figure 5: #Hop vs. Performance: performance on the MQuAKE-CF-3k-
v2 and -T datasets based on the number of hops of each problem.

Table 3: An ablation study on the selection process on
MQuAKE-CF-3k-v2. Using "L" for Llama-3.1-Instruct
and "Q" for Qwen2.5-Instruct. "Random Choice" refers
to randomly selecting one answer from 6 sampled paths.

L-8B Q-7B Q-14B
DecKER-BoN 59.9 49.8 56.6

w/o RPP Eval 60.2 49.4 56.2
w/o KI Eval 58.1 49.5 55

DecKER-Base 57.8 42.1 50.8
Random Choice 55.2 47.1 51.6

formance on 3 and 4 hop problems.

6.3 Ablation Studies

In this section, We perform ablation studies on
Llama-3.1-8B-Instruct.

Components of Conflict Detection In Figure 6,
we compare the performance of DecKER-Base
with three experimental settings on MQuAKE-300:
conflict detection 1) using only LLM; 2) using only
the highest retrieval score as shown in Equation 2a
(Only detected by α); 3) using only the difference
between retrieval scores of the top two documents
as shown in Equation 2b (Only detected by β).
The hyperparameter settings are consistent with
the main experiments. Results indicate that single-
method detection degrades performance, especially
with LLM-only detection. The combination of all
three methods achieves the best performance. Ad-
ditionally, we analyze hyperparameter impact by
fixing either α or β while varying the other, as
shown in Figure 6. The stability of performance
within a certain range of these parameters demon-
strates the robustness of conflict detection.

Two-round Evaluation In Table 3, we present
the impact of RPP eval and KI eval in DecKER-
BoN on MQuAKE-CF-3k-v2. The Reasoning Path
Planning Evaluation alone yields the poorest perfor-
mance, while the Knowledge Injection Evaluation
alone performs comparably to using both evalua-

Figure 6: Ablation studies for conflict detection on
DecKER-Base. The dashed lines compare single versus
composite detection, with identical hyperparameters to
main experiments. The solid line shows the effect of
varying one hyperparameter while fixing the other, with
the color of x-axis labels matching the solid line.

tions. Notably, RPP Eval involves filtering multiple
masked reasoning paths, thus the computational
load during filling is less than that of performing
only KI Eval, demonstrating its effective of reduc-
ing computational costs. Additionally, selecting
one answer randomly from 6 sampled paths signifi-
cantly underperforms compared to DecKER-BoN.
Additionally, we explore the impact of edit batch
size and the number of sampled masked paths on
our method. The results are shown in Appendix D.

7 Conclusion

In this paper, we explore Multi-hop QA to high-
light the importance of decoupling reasoning and
knowledge injection when applying in-context edit-
ing. Consequently, we propose a novel in-context
editing method, DecKER, which achieves this de-
coupling by first planning the reasoning path and
then filling knowledge entities. Our method demon-
strates strong performance across 3 LLMs and 4
datasets, offering a new perspective for optimizing
in-context editing methods.
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8 Limitations

In this work, we conduct evaluations using three
widely-used open-source LLMs with parameter
sizes ranging from 7B to 14B, as well as a pro-
prietary LLM. Due to resource constraints, we do
not perform experiments on larger parameter-scale
open-source models. Additionally, experiments
with the three resource-intensive baselines are con-
ducted only on the 7B and 8B parameter LLMs.

Besides, we focus on the enhancement of the
knowledge editing process, with DecKER’s perfor-
mance relying solely on the LLM’s own reasoning
capabilities. The integration of knowledge augmen-
tation techniques, such as knowledge graphs, to
further improve DecKER’s performance remains
an open area of research.
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A Pseudocode Description of
DecKER-BoN

The pseudocode of DecKER-BoN is shown in Al-
gorithm 1.

B Details of Baselines

MEMIT (Meng et al., 2023) and AlphaEdit
(Fang et al., 2024): We adopt the official imple-
mentation of AlphaEdit, setting the target editing
layers to 4-8, with a learning rate of 0.1 and a
weight decay of 0.5. The nullspace threshold for
AlphaEdit is set to 0.02.

Mello (Zhong et al., 2023): We adhere to the
original paper’s settings, decomposing up to 4 sub-
problems.

PokeMQA (Gu et al., 2024a): We follow the
original paper’s settings, decomposing up to 5 sub-
problems. As the original repository does not pro-
vide entities for the new dataset, we allow the
model to extract problem entities in a similar for-
mat.

DeepEdit (Wang et al., 2024c): In line with the
official implementation, we set the search width
limit to 2 and the depth limit to 9.
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Algorithm 1 DecKER
Input: Question Q, LLM M , Knowledge Edits E , Hyperparameters α, β, Sample Size N
Output: Final Answer A

1: Step 1: Generate Masked Reasoning Paths and Entity Types
2: for i← 1 to N do
3: R

(i)
Q , {t1, t2, . . . } ← GENERATEMASKEDREASONINGPATH(M,Q)

4: end for
5: Step 2: Fill Masked Entities
6: for each masked reasoning path R

(i)
Q do

7: PathLength← length(R(i)
Q )

8: P
(i)
Q ← [R

(i)
Q [0]]

9: for j in [0, 1, . . . , PathLength− 1] do
10: sk ← P

(i)
Q [j] ▷ The current masked step

11: MaskTag← GetMaskTag(sk)
12: Query← PrevFilledEntity() + RemoveMaskTag(sk)
13: {(d1, score1), (d2, score2), ...} ← RETRIEVE(E ,Query)
14: IsEdited← False
15: if (score1 > α) = (score1 − score2 > β) then
16: IsEdited← (score1 > α)
17: else
18: IsEdited← CONFLICTCHECK(M, sk,OriginalFact(d1))
19: end if
20: if IsEdited then
21: ek ← GetObjectEntity(d1)
22: else
23: ek ←M("Fill {MaskTag} with type tk") ▷ LLM-based completion
24: end if
25: Replace all MaskTag in R

(i)
Q with ek

26: if MaskTag = "[MASK ANS]" then
27: A(i) ← ek
28: break
29: end if
30: P

(i)
Q ← P

(i)
Q + [R

(i)
Q [j + 1]]

31: end for
32: end for
33: Step 3: Select the Best Sample
34: RPP Scores← − COMPUTEAVGPE(M, {R(i)

Q })
35: KI Scores← [ ]
36: Answers← [ ]
37: TopPaths← Top 50% PQ by RPP Scores
38: for each filled reasoning path P

(i)
Q in TopPaths do

39: KI Scores.append( 1

length(P (i)
Q )

∑
1[PM ("yes"|"Is ej type tj?") > PM ("no"|"Is ej type tj?")])

40: Answers.append(A(i))
41: end for
42: A← Answers[argmaxKI Scores]
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RAE (Shi et al., 2024): We use the code pro-
vided by the official implementation and adjust its
retrieval process as described in subsection 5.4 to
ensure a fair comparison.

EditCoT (Wang et al., 2024a): We adhere to
the original paper’s settings, conducting up to 4
rounds of CoT editing. The retrieval process is
configured to operate solely on edit memory, as
one of the official implementations, to ensure a fair
comparison.

For all ICE methods, we use the official prompt
templates and adapt them to fit the chat template
format of each LLM. The LLMs we used are im-
plemented by Huggingface Transformers library
(Wolf et al., 2020).

C Details of Efficiency Experiments

All efficiency experiments are conducted on a sin-
gle NVIDIA A100 (40G) GPU. We exclude net-
work latency from the reported inference time of
RAE. In accordance with the official implementa-
tion, RAE employs float32 floating point numbers,
while other methods use float16, as we observe a
considerable performance degradation in RAE with
half-precision. In our implementation, many opera-
tions in DecKER use batch processing, including
the sampling of multiple masked reasoning paths
and parallel filling processes.

D Further Ablation Studies

D.1 Performance with Different Edit Batch
Sizes

We define Edit Batch Size as the number of
questions in an editing batch. We conduct ex-
periments on MQuAKE-300 and Llama-3.1-8B-
Instruct, with batch sizes of 1, 10, and 100, and
compare DecKER-Base with EditCoT. The results
are shown in Figure 7. We observe that both meth-
ods experience a decline in performance as the
batch size increases. However, our method is more
robust and exhibits lower sensitivity to editbatch
compared to EditCoT.

D.2 Impact of Sample Number on
DecKER-BoN

Table 4 illustrates the effect of the number of sam-
pled masked paths (N ). Performance initially im-
proves and then levels off as N increases. This
indicates the effectiveness of the two-round evalu-
ation while also suggesting that a larger N is not
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Figure 7: Edit Batch Size vs. Performance. The model
is Llama-3.1-8B-Instruct and the dataset is MQuAKE-
300.

Table 4: The relationship between sampling paths and
performance in DecKER-BoN. The model is Llama-3.1-
8B-Instruct and the dataset is MQuAKE-300.

DecKER-Base 66.0

DecKER-BoN N = 2 N = 6 N = 10 N = 14

67.7 70.3 69.3 69.7

necessarily better, as an increased number of candi-
dates can introduce noise and impact the selection
process.

E Case Study

We showcase two examples of Meta-Llama-3.1-8B-
Instruct from MQuAKE-CF-3k-v2. Table 5 illus-
trates a 2-hop question involving two edits. None
of the other three baselines can solve this problem.
Although PokeMQA correctly infers "basketball
player," the presence of editing knowledge in the
context causes the model to revise its answer. RAE
fails to accurately complete the retrieval in this
example. EditCoT fails to preserve the reason-
ing framework of the original CoT, resulting in a
disruption of the reasoning process, revealing its
black-box nature. Our method closely matches the
ground truth, with reasoning unaffected by edit-
ing knowledge, and accurately arrives at the final
answer.

Table 6 is a 4-hop question involving three edits.
While PokeMQA identifies the final answer "Chi-
avari" during the reasoning process, the model con-
tinues to decompose the next sub-question, trying
to assess whether Chiavari is the capital of South
Korea because it is editing knowledge. RAE’s re-
trieval error occurs in the intermediate step, leading
to an incorrect result, demonstrating its lack of ro-
bustness. EditCoT’s final answer is correct, but its
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Table 5: An example of a 2-hop problem on Meta-Llama-3.1-8B-Instruct. In the "Results" column, the red sections
indicate where reasoning fails. We omit the display of intermediate steps, such as retrieval scores.

Question: What is the occupation of the chairperson of the Palestine Liberation Organization?

Related Edits:
The chairperson of Palestine Liberation Organization is Mahmoud Abbas → Regina Ip
Regina Ip works in the field of politician → basketball player

Ground Truth Reasoning Path:
The chairperson of Palestine Liberation Organization is Regina Ip.
Regina Ip works in the field of basketball player.

Method Results Correctness

PokeMQA

Entity of Question: Palestine Liberation Organization, an organization.
Subquestion: Who is the chairperson of the Palestine Liberation Organization?
Generated answer: The chairperson of Palestine Liberation Organization is Regina Ip.
According to Generated answer, the entity of Subquestion is: Regina Ip
Subquestion: What is the occupation of Regina Ip?
Generated answer: Regina Ip works in the field of basketball player.
According to Generated answer, the entity of Subquestion is: basketball player
However, the chairperson of Palestine Liberation Organization is actually Mahmoud Abbas

Wrong

RAE

Retrieved Facts:
Palestine Liberation Organization has chairperson named as Regina Ip.
Regina Ip has the religion of Catholicism.
Catholic Church has the religion of Catholicism.
Catholic Church has chairperson named as Pope.

Answer:
there is no information about regina ip being the chairperson of the palestine liberation organization

Wrong

EditCoT

Original CoT:
The chairperson of the Palestine Liberation Organization is Mahmoud Abbas.
Mahmoud Abbas is a public figure associated with the Palestinian National Authority.
The Palestinian National Authority is a government entity, and its leaders are typically involved in politics.
Therefore, Mahmoud Abbas, as the chairperson of the Palestine Liberation Organization, is likely a politician.

Edited CoT:
The chairperson of the Palestine Liberation Organization is Regina Ip.

Wrong

DecKER

Masked Reasoning Path:
The chairperson of the Palestine Liberation Organization is [MASK 1].
The occupation of [MASK 1] is [MASK ANS].

Filled Reasoning Path:
The chairperson of the Palestine Liberation Organization is Regina Ip.
The occupation of Regina Ip is basketball player.

Right

reasoning process does not align with the ground
truth. Our method accurately completes the reason-
ing and filling.

F Licensing

Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct
is released under the Apache License 2.0.
Meta-Llama-3.1-8B-Instruct is released under the
LLAMA 3.1 COMMUNITY LICENSE. MEMIT,
PokeMQA, and Mello are released under the MIT
license. Contriever is released under the CC BY-SA
4.0 License.

The datasets MQuAKE and RippleEdits are re-
leased under the MIT license. The objective of this
research is to conduct an academic investigation,
which is consistent with the stipulations outlined

in the associated licensing agreement.

G Prompt Templates

G.1 Prompt Templates in Analytical
Experiments

We provide GPT-4o-mini with the following system
prompt:

"Extract the relation from the knowledge triples
(subject, relation, object) involved in each sentence,
and return a list of relations that is equal in length
to the given list of sentences. You only need to
provide a JSON structure that contains one key
relations, whose value is the list of relations."

In the user input section, we provide a list, with
each element representing a step in a reasoning
path. We utilize GPT-4o-mini’s format decoding
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function to ensure the output is a dictionary with
the key "relations" and the value being the list of
extracted relations.

G.2 Prompt Templates of DecKER
Table 7, Table 8, Table 9, and Table 10 present the
prompt templates used by DecKER. We provide a
5-shot prompt template, with the blue sections in
the tables corresponding to the roles in the LLM’s
chat template.
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Table 6: An example of a 4-hop problem on Meta-Llama-3.1-8B-Instruct. In the "Results" column, the red sections
indicate where reasoning fails. We omit the display of intermediate steps, such as retrieval scores.

Question: Which city is the capital of the country where the CEO of the developer of iOS 9 holds citizenship?

Related Edits: The developer of iOS 9 is Apple Inc. → NeXT Computer, Inc.
Steve Jobs holds citizenship in the country of United States of America → South Korea
The capital of South Korea is Seoul → Chiavari

Ground Truth Reasoning Path:
iOS 9 was developed by NeXT Computer, Inc.
The CEO of NeXT Computer, Inc. is Steve Jobs.
Steve Jobs is a citizen of South Korea.
The capital of South Korea is Chiavari.

Method Results Correctness

PokeMQA

Entity of Question: iOS 9, a subclass of iOS.
Subquestion: Which company is iOS 9 developed by?
Generated answer: iOS 9 was developed by NeXT Computer, Inc..
According to Generated answer, the entity of Subquestion is: NeXT Computer, Inc.
Subquestion: Who is the CEO of NeXT Computer, Inc.?
Generated answer: The CEO of NeXT Computer, Inc. is Steve Jobs.
According to Generated answer, the entity of Subquestion is: Steve Jobs
Subquestion: What is the country of citizenship of Steve Jobs?
Generated answer: Steve Jobs is a citizen of South Korea.
According to Generated answer, the entity of Subquestion is: South Korea
Subquestion: Which city is the capital of South Korea?
Generated answer: The capital of South Korea is Chiavari.
According to Generated answer, the entity of Subquestion is: Chiavari
Subquestion: Is Chiavari the capital of South Korea?
Generated answer:

Wrong

RAE

Retrieved Facts:
iOS 9 was developed by NeXT.
NeXT is located in the country of Switzerland.
Switzerland has its capital city named as Bern.
Bern capital of Switzerland.

Answer:
there is no information about the ceo of next

Wrong

EditCoT

Original CoT:
The CEO of Apple is Tim Cook.
Tim Cook holds citizenship in the United States.
The capital of the United States is Washington, D.C.

Edited CoT:
The CEO of the developer of iOS 9 is Steve Jobs.
Steve Jobs is a citizen of South Korea.
The capital of South Korea is Chiavari.

Right

DecKER

Masked Reasoning Path:
The developer of iOS 9 is [MASK 1].
The CEO of [MASK 1] is [MASK 2].
[MASK 2] holds citizenship in the country of [MASK 3].
The capital of [MASK 3] is [MASK ANS].

Filled Reasoning Path:
The developer of iOS 9 is NeXT Computer, Inc..
The CEO of NeXT Computer, Inc. is Steve Jobs.
Steve Jobs holds citizenship in the country of South Korea.
The capital of South Korea is Chiavari.

Right
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Table 7: The prompt template of masked reasoning path generation.

System:
Generate a detailed chain of thought with each reasoning step labeled as [STEP]. Replace any specific knowledge, entities, dates, or locations that are not
in the text of question with [MASK]. Focus only on the logical steps and flow. And then include the category of each [MASK *] in order in the chain of
thought as [CATEGORY], to clarify the type of entity that should be filled in.

User: Question: What is the capital of the country where Plainfield Town Hall is located?
Assistant: [STEP] Plainfield Town Hall is located in the country of [MASK 1].
[STEP] The capital of [MASK 1] is [MASK ANS].
[CATEGORY]
[MASK 1] [country]
[MASK ANS] [city]

User: Question: In which country is the company that created Nissan 200SX located?
Assistant: [STEP] Nissan 200SX was created by [MASK 1].
[STEP] [MASK 1] is located in the country of [MASK ANS].
[CATEGORY]
[MASK 1] [company]
[MASK ANS] [country]

User: Question: Which continent is the country where the director of M̈y House Husband: Ikaw Na!ẅas educated located in?
Assistant: [STEP] The director of M̈y House Husband: Ikaw Na!ïs [MASK 1].
[STEP] [MASK 1] was educated at [MASK 2].
[STEP] [MASK 2] is located in the country of [MASK 3].
[STEP] [MASK 3] is located in the continent of [MASK ANS].
[CATEGORY]
[MASK 1] [person]
[MASK 2] [school]
[MASK 3] [country]
[MASK ANS] [continent]

User: Question: Who is the spouse of the US president?
Assistant: [STEP] The US president is [MASK 1]. [STEP] The spouse of [MASK 1] is [MASK ANS].
[CATEGORY]
[MASK 1] [person]
[MASK ANS] [person]

User: Question: Who has ownership of the developer of the Chevrolet Corvette (C4)?
Assistant: [STEP] The developer of Chevrolet Corvette (C4) is [MASK 1].
[STEP] [MASK 1] is owned by [MASK ANS].
[CATEGORY]
[MASK 1] [company]
[MASK ANS] [person]

User: Question: {A question}
Assistant:

Table 8: The prompt template of conflict detection by LLMs.

System:
Determine whether the provided Fact sentence supports filling the MASKed part in the given Sentence. Only output Yes or No.

User: Fact: Club Nouveau is a group.
Sentence: Club Nouveau originated from [MASK 1].
Assistant: No

User: Fact: Paris is the capital of France.
Sentence: The capital of France is [MASK ANS].
Assistant: Yes

User: Fact: The Venus de Milo is located in the Louvre Museum.
Sentence: The Mona Lisa is located in the [MASK 2] Museum.
Assistant: No

User: Fact: The first person to get to the South Pole is Roald Amundsen.
Sentence: The first person to walk on the moon was [MASK 3].
Assistant: No

User: Fact: The Python programming language was created by Guido van Rossum.
Sentence: The creator of Python is [MASK 1].
Assistant: Yes

User: Fact: {A retrieved fact.}
Sentence: {A masked step.}
Assistant:

18



Table 9: The prompt template of entity filling.

System:
Given the first masked entity without any analysis. The answer you give must match the given type.

User: Type of the masked entity: country.
Sentence: Club Nouveau originated from [MASK 1].
Assistant: United States

User: Type of the masked entity: country.
Sentence: The country where the creator of the Chevrolet Corvette (C4) is located is [MASK ANS].
Assistant: United States

User: Type of the masked entity: place.
Sentence: The Mona Lisa is located in the [MASK 2] Museum.
Assistant: Louvre

User: Type of the masked entity: person.
Sentence: The first person to walk on the moon was [MASK 3].
Assistant: Neil Armstrong

User: Type of the masked entity: person.
Sentence: The creator of Python is [MASK 1].
Assistant: Guido van Rossum

User: Type of the masked entity: {Type of the masked entity.}
Sentence: {A masked sentence.}
Assistant:

Table 10: The prompt template of determining if entity types match, i.e. the KI Eval.

System:
You are given an entity along with its supposed types. Your task is to determine whether the entity matches the type it has been assigned.
Only output Yes or No. Yes if the entity matches the type, No otherwise.

User: Entity: New York
Assigned Type: country
Assistant: No

User: Entity: Apple Inc.
Assigned Type: company
Assistant: Yes

User: Entity: Steve Jobs
Assigned Type: city
Assistant: No

User: Entity: baseball
Assigned Type: position
Assistant: No

User: Entity: USD
Assigned Type: currency
Assistant: Yes

User: Entity: {An entity.}
Assigned Type: {A type.}
Assistant:
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