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ABSTRACT
Result ranking is one of themajor concerns forWeb search technolo-
gies. Most existing methodologies rank search results in descending
order according to pointwise relevance estimation of single results.
However, the dependency relationship between dierent search
results are not taken into account. While search engine result pages
contain more and more heterogenous components, a better ranking
strategy should be a context-aware process and optimize result rank-
ing globally. In this paper, we propose a novel framework which
aims to improve context-aware listwise ranking performance by
optimizing online evaluation metrics. The ranking problem is for-
malized as a Markov Decision Process (MDP) and solved with the
reinforcement learning paradigm. To avoid the great cost to online
systems during the training of the ranking model, we construct a
virtual environment with millions of historical click logs to simulate
the behavior of real users. Extensive experiments on both simulated
and real datasets show that: 1) constructing a virtual environment
can eectively leverage the large scale click logs and capture some
important properties of real users. 2) the proposed framework can
improve search ranking performance by a large margin.
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1 INTRODUCTION
Web search engines usually rank results according to relevance
scores in descending order. Assuming that users browse search
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results sequentially from top to bottom on search engine result
pages (SERPs), ranking relevant results at the top positions will
reduce users’ eorts in locating useful information. To obtain rel-
evance estimation for search results without manual annotations,
users’ click logs have been used as implicit relevance feedback.
While the click signal is vulnerable to some behavior biases, such
as the position bias [13, 14] and attention bias [28], click mod-
els [6, 11, 12, 15, 21] have been proposed to derive an unbiased
relevance estimation from the large scale click logs. To our best
knowledge, most of these existing methods estimate the relevance
of each query-document pair in a pointwise manner. Although this
framework gains much success in improving search ranking per-
formance, it faces two important challenges with the development
of recent search techniques.

First, the sequential browsing hypothesis no longer holds in to-
day’s heterogeneous search scenarios where apart from the ten
blue hyperlinks, images, videos, news, and even applications are
aggregated in a unied result list. Dierent types of vertical results
have distinct presentation styles. Multimedia contents are also in-
corporated in the snippets of vertical results [40]. Previous studies
have revealed that users’ attention may be attracted by non-textual
information items [28]. Meanwhile, many works have observed the
vertical bias [7, 34] that users may examine vertical results rst,
which alters users’ behavior and leads to a non-sequential exami-
nation sequence. Therefore, ranking search results in descending
order of relevance may be suboptimal in heterogeneous search
scenarios.

Second, the interaction eect between search results is usually ig-
nored by existing methods. The selection and ranking of the search
result depends not only on its own relevance but also on the context.
For example, a user searching for the ocial website of a university
may also be interested in its wikipedia page. Putting them nearby
may facilitate the user’s search process. Besides, when a user seeks
for a video, putting a number of similar video sites at the top may
be considered as redundant, although they are all relevant. Thus,
beside relevance, the dependency relationship between search re-
sults also needs to be considered in a listwise optimization process.
Although diversied ranking or novelty-based ranking [5, 38, 41]
techniques take the interaction eect into consideration, they usu-
ally treat the eect as another ranking factor and try to incorporate
it into existing ranking methods. A better solution should be an
end-to-end process which directly optimize the nal ranking list
considering both the relevance and interaction eect.
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Figure 1: The RL ranking framework. The yellow circles represent search results. The RL Ranker acts as the agent while the
virtual environment adopts click simulators to return rewards.

Regarding above issues, a context-aware listwise ranking process
is needed to take the heterogeneity and dependency relationship of
search results into account. Wei et al. has formulated the ranking
problem as aMarkov Decision Process (MDP) in [36]. However, they
aim to improve the learning to rank (LTR) algorithms by leveraging
the evaluation measures calculated at all the ranking positions. In
this work, we adopt the MDP formulation and propose a novel
reinforcement learning [18, 19, 32] (RL) framework to improve the
listwise ranking performance by optimizing online evaluation met-
rics. As shown in the lower part of Figure 1, at each step t , the
ranking agent will choose a result from the candidates (actions)
to place at position t in the ranking list. By regarding the already
placed results as the current state and setting a proper immediate
reward, the MDP ranking model can take both the dependency rela-
tionship between search results and the listwise evaluation metrics
into consideration. A unied representation for the heterogeneous
verticals is also derived from the multimodal contents displayed on
SERPs. By training the RL model with the unied representation,
the heterogeneity of search results is considered in the ranking
process.

While the RL framework is suitable for modeling the context-
aware ranking problem, training the model can be a great challenge.
Previous works [36] train the RL model based on relevance labels in
an oine manner, which requires much human eorts in generat-
ing the labels. However, when utilizing users’ click feedback to train
reinforcement learning in online search systems, there are some
serious problems. First, to learn an optimal policy, the RL model
usually requires a large number of trials of the agent and rewards
from the environment. Failed trials will seriously aect search en-
gine users’ experience. Second, it takes time to collect enough trials
and rewards from users. For example, a reranked list for a query
may not be searched for a long time and we can not know whether
this reranking strategy is good or not. To avoid harming the perfor-
mance of online systems and train the RL model more eciently,
we propose to construct a virtual environment with historical click
logs to simulate the behavior of real users (as shown in Figure 1).
The RL model is then trained in the virtual environment to optimize
multiple online evaluation metrics. Previous studies have shown
that online evaluation metrics have stronger correlations with user
satisfaction in heterogeneous search environment [8, 9]. Building a

virtual environment not only alleviates the training cost of RL mod-
els, but may also help to optimize user satisfaction more directly.
The advantages of the proposed framework can be summarized as
three-folds:

• The heterogeneity and dependency relationship of search
results are taken into consideration for ranking. The context-
aware listwise ranking optimization helps to model users’
browsing process in heterogeneous search scenarios and
considers the interaction eects between search results.

• A virtual environment is constructed with historical click
logs for costless and ecient training of RL models in search
systems.

• By optimizing online evaluation metrics in the virtual envi-
ronment, users’ feedbacks are exploited to improve ranking
performance. The RL ranking framework can be further ex-
tended to online training for a wide range of optimization
tasks for commercial search engines.

The rest of the paper is organized as follows. We describe related
work in Section 2. Section 3 formally introduces the RL ranking
framework. The experiment settings and results are presented in
Section 4 and 5. Finally, we conclude this paper and discuss future
work in Section 6.

2 RELATEDWORK
2.1 Heterogeneous Search Scenarios
Modern search engines aggregate dierent information items such
as images, news and videos to a unied result page. The aggregated
vertical results contain multimedia contents and vary a lot in pre-
sentation styles. Dierent from ten blue hyperlinks, vertical results
alter users’ browsing behavior on SERPs to a large extend. Users
may be attracted by multimedia contents or vertical results and
the examining process is no longer from the top to the bottom. As
shown in [20, 40], users can judge the relevance of search results
directly from the contents displayed on SERPs as they provide valu-
able signals for users’ information needs. Users will not necessarily
click the url to browse the landing page in some cases, such as
the knowledge graph results and the direct answer results. It is
essential to take the heterogeneity of search results into account
for ranking algorithm design and user behavior modeling.



2.2 Diversied Ranking and Novelty Retrieval
Diversied ranking aims to provide search results that can cover
a wide range of users’ information needs. One important goal is
to rank documents according to the relevance as well as novelty
scores [5, 16, 37, 41]. Based on the assumption that users browse
search results in a top-downmanner, typical methods regard diversi-
ed ranking as a sequential result selection process. The interaction
eect of search results is considered to maximize the diversity of
the ranking list. However, most of the methods treat relevance
and novelty as two independent factors, and rank search results
according to a linear combination of relevance and novelty fea-
tures [16, 37]. To explicitly model the dynamic utility that the user
perceives from the preceding results, Xia et al. proposes to model
diversied ranking as a Markov Decision Process (MDP). However,
the diversity measures of search results are calculated based on
relevance annotations, which is not adaptable for large-scale online
training.

2.3 Click Models
Click logs are valuable sources of users’ implicit relevance feedback.
A lot of click models have been proposed to utilize click logs for
user behavior simulation and relevance estimation, such as User
Browsing Model (UBM) [12], Dynamic Bayesian Networks model
(DBN) [6], and Dependent Click Model (DCM)[15]. As the heteroge-
neous search results account for more and more in search engines,
some works [7, 34] nd that users may examine vertical results
rst, which alters users’ behavior and leads to a non-sequential
examination process. Some advanced click models such as UBM-
Layout [11] and Mobile Click Model (MCM) [21] are proposed to
take the vertical bias into consideration in heterogeneous search
scenarios.

As deep neural networks have shown astonishing advantages in
broad applications, some works have tried to model user behavior
with neural networks. The Neural Click Model (NCM) [2] learns to
represent concepts that are useful for modeling user behavior with
Recurrent Neural Networks. The Click Sequence Model (CSM) [3]
is implemented as an encoder-decoder to predict the order in which
a user will interact with search results. Dierent from these mod-
els, we propose a hierarchical neural architecture to model the
dependency relationship of search results. The result feature is
also derived from the multimodal contents displayed on SERPs to
leverage the heterogeneity of search results.

2.4 Reinforcement Learning
Reinforcement learning [18, 19] is originated from psychology and
neuroscience understanding of how humans learn to take actions
in the environment. It can be formulated as a Markov Decision
Process (MDP). Recently, combining reinforcement learning and
deep learning techniques has shown great success in broad applica-
tions [23], such as games [30, 33], robotics [39], computer vision [4]
and natural language processing [31] tasks.

Recently, many works have applied reinforcement learningmeth-
ods for ranking tasks [25, 29, 35, 36]. Oosterhuis and De Rijke adopts
the RL approach to deal with complex ranking settings, which learns
both the user preferred document order and display position or-
der for result presentation. The page presentation optimization of
SERPs has also been recast as a reinforcement learning problem

Table 1: Notations of the RL ranking framework.

Notation Description
q, xi Query, the ith search result in the session
ci ,pi Click label of xi , Predicted click probability of xi
fq , fses Query feature, Session feature
fr es,i , fclick,i Feature of xi , Feature of ci
fstate,t State feature at time step t
s,S State, State space
a,A Action, Action space
T Transition function
γ Discount factor
R, r Reward function, Step reward
R Discounted cumulative reward
π ,π∗ Policy, Optimal policy

in [35]. Wei et al. formulates the ranking problem as a Markov
Decision Process (MDP) to optimize the evaluation measure calcu-
lated at all positions. Some work has adapted RL for complex online
system optimization [29]. They construct a virtual retail platform
to train the ranking policy oine. Assuming that the environment
is static, the inverse reinforcement learning (IRL) methods [24] can
learn a reward function from the data and train the policy according
to the reward function.

Dierent from these works [25, 35, 36], we aim to improve the
ranking performance of search engines by optimizing the listwise
online metrics through the deep reinforcement learning approach.
To solve the oine training problem, we construct a static virtual
environment to simulate search engine users and provide rewards,
which is similar with that in [29].

3 RL RANKING FRAMEWORK
Problem Formulation. In search systems, the users act as the
environment, while the ranking strategy of the system is the agent.
As shown in Figure 1, the RL ranking framework consists of two
major components. The rst one is the click simulator, which is
learned from historical click logs and serves as the virtual environ-
ment. The second one is the RL Ranker. The RL ranking framework
is model-based [32] as the RL Ranker interacts with the learned
virtual environment, which can be formulated as follows:

Let S = {q,x1,x2, . . . ,xN } denote a query session, where q is
the query and x j is the jth search result in the original ranking
list of the search engine, N is the number of results in the session.
The RL Ranker reranks the result list to Ŝ = {q,xi1 ,xi2 , . . . ,xiN },
where {i1, i2, . . . , iN } is the permutation of {1, 2, . . . ,N }. The click
simulator samples clicks C = {ci1 , ci2 , . . . , ciN } on the reranked
list Ŝ . The reward at each time step is given by reward = R(C).
When training the RL Ranker, the parameters in the click simulator
are xed and the parameters in the RL Ranker are updated by the
reward signals. The notations used in this paper are summarized in
Table 1.
Result Representation. As heterogeneous search results account
for more and more in search engines, the contents displayed on
SERPs provide valuable signals for relevance judgement [20, 40]. To
provide a unied representation of heterogeneous search results for
the click simulator and RL Ranker, we train a feature extractor based
on the approach proposed in Tree-based Deep Neural Network
(TreeNN) [20]. We adopt their approach by embedding the visual
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Figure 2: Context-aware Click Simulator. The hollow purple
circles represent user clicks.

and textual information into the HTML tree, which can better
leverage the structure information to represent the heterogeneous
results. The SRR1 dataset is adopted to train the feature extractor
to obtain a good representation for search results. Limited by the
space, we do not describe the feature extractor network in details.
The implementation of the network is published online 2.

3.1 Environment: Context-aware Click
Simulator

Click models can be adopted to simulate click feedbacks. However,
there are two main limitations. First, the contents of search results
can not be incorporated in click models, which are valuable signals
for ranking especially in heterogeneous search scenarios. Second,
click models can only deal with query-document pairs seen before.
However, search results for a query are always changing rapidly.
The click model trained at one time can not work eectively as
time goes by.

To solve the two issues, in this work, we propose a novel neural
Context-aware Click Simulator (CCS) as the virtual environment for
the RL Ranker. CCS learns from the historical click logs to simulate
the real users, which predicts click probability not only according
to click signals, but also the multimodal contents of search results.
As users’ click behavior is aected not only by the relevance of a
single search result but also its context, the dependency relation-
ship of search results can not be ignored. To model the context, a
hierarchical structure is proposed. The framework of CCS is shown
in Figure 2.

3.1.1 Session Level. The lower level of CCS is the session based
module. It is implemented as a bi-direction GRU [10] framework.
The concatenation of the last hidden states of the two directions
in BiGRU is adopted as the session feature. From top to bottom
and bottom to top, the session feature captures the global context
information of the result list.

ht = [u1:t ,uN :N−t+1] (1)
ht+1 = BiGRU(ht , fr es,t+1) (2)
fses = hN = [u1:N ,uN :1] (3)

1http://www.thuir.cn/data-srr/
2https://github.com/IR-Ranker/RLRank

where N is the number of search results in a query session, u1:i or
uN :j is the hidden state of BiGRU at time step t in two directions, [·]
denotes concatenation of dierent features, fr es,t is the t th search
result in the session, fses is the session feature. The initial hidden
state h0 for BiGRU is the query feature fq .

3.1.2 Result Level. The higher result level module is designed to
predict click probability of each search result sequentially based
on the session context. At each time step, three dierent kinds of
features are aggregated as the input to a single-direction GRU. The
rst one is the session feature encoding the global context. The
second one is the respective result feature at each step. A common
assumption in click models is that previous clicks will inuence
the click behavior in the following browsing process of the user.
Following this assumption, we take the click behavior at previous
step as the third input feature.

The click behavior can be click, skip or unknown (for the initial
step), which is embedded into vectorial representation through the
click encoder (Equation 4). At each step of GRU, the hidden state is
projected into a click probability score between 0 and 1 through the
click decoder (Equation 9). The prediction of the result level module
can be formulated as follows:

fclick,t = embedding(ct−1) (4)

f̂r es,t =Wr es fr es,t + br es (5)

f̂ses =Wses fses + bses (6)

ft = [fclick,t , f̂r es,t , f̂ses ] (7)
ht = GRU(ht−1, ft ) (8)
pt = sigmoid(Wclickht + bclick ) (9)

where ct−1 ∈ {click, skip,unknown} denotes the click behavior
in step t − 1,Wr es ,Wses ,Wclick and br es ,bses ,bclick are weights
and biases for each kind of features respectively, pt is the nal
predicted click probability of the tth search result in the ranking
list, pt ∈ [0, 1].

The loss function is CrossEntropy, which is dened as:

L(p, c;θ ) = 1
M

M∑
j=1

N∑
i=1

(−c j,i logpj,i − (1 − c j,i ) log (1 − pj,i )) + λ | |θ | |
2
2

(10)
where M is the number of training sessions, N is the number of
results in the query session, c j,i and pj,i denote the click label and
predicted click probability of the ith result in the jth training sample,
θ includes all the parameters in the neural network, λ denotes the
L2 regularizer coecient.

When training the Context-aware Click Simulator, the feature
representations of search results are xed and we focus on the
optimization of the click simulator.

3.2 Agent: RL Ranker
To model the dependency and context of search results, we recast
the context-aware listwise ranking problem as a sequential lling
game (as shown in Figure 1). At the initial time step, the result list
is empty, while all the results are in the candidate set. Based on the
query information, one search result is chosen to the rst position.
Regarding the results already placed in the ranking list, we compare
between the candidate results and choose the most proper one to
the next position.



The ranking problem can be formulated as a Markov Decision
Process (MDP), which is described by a tuple {S,A,T ,R,γ }. S
denotes the state space, and A denotes the action space. T : S ×

A → S is the transition function T(st+1 |st ,at ) to generate the
next state st+1 from current state st and action at .R : S×A → R is
the reward function, while the reward at t th time step rt = R(st ,at ).
γ ∈ [0, 1] is the discounting factor for future rewards. Formally, the
MDP components are specied with the following denitions:

State s is the global information of the search results already
ranked in the list. At the initial time, s0 is the query information.

Action a is a search result that the RL Ranker chooses to the
next position in the ranking list.

Transition T changes the state of the ranking list, adding one
search result at each time step.

Reward R is the reward function which can be the online users’
feedbacks. In this work, the reward is given by the virtual environ-
ment based on simulated clicks.

In this paper, the MDP problem is solved with the policy gradi-
ent algorithm of REINFORCE [32]. At each time step t , the policy
π (at |st ) denes the probability of sampling action at ∈ A in state
st ∈ S. The sampling strategy can be randomized according to the
probability or just choose the action with the highest one. These
two strategies are denoted as "RandomSample" and "MaxSample"
respectively. The aim of RL is to learn an optimal policy π∗ by
maximize the expected cumulative reward Rt = E[

∑∞
k=0 γ

krt+k ].

3.2.1 Policy Network. The structure of the policy network is shown
in Figure 3. The deep neural network architecture can learn policies
from high-dimensional raw input data in complex RL environment.
Specically, the state feature is extracted by a single-direction GRU.
The search results which have been placed at proper positions are
input to the GRU sequentially according to the ranking order. The
last hidden state of GRU is adopted as the state feature for RL. The
state feature is then concatenated with the candidate result features
and input to a multi-layer perceptron to assess the probability of
each candidate to be chosen as the action at this time step. The
action is then sampled according to dierent strategies (Random-
Sample or MaxSample) as the next result to be lled into the ranking
list. At time step t , there are t and N − t results in the ranking list
and candidate set respectively, where N is the number of results in
the query session. The policy network can be formulated as follows:

hk = GRU(hk−1, fr es,ik ),k = 1, 2, . . . , t (11)
fstate,t = ht (12)

fi j = MLP([fstate,t , fr es,i j ]), j = t + 1, t + 2, . . . ,N (13)
πt = softmax(fit+1 , fit+2 , . . . , fiN ) (14)
at = sample(πt ) (15)

where {i1, i2, . . . , iN } is a permutation of {1, 2, . . . ,N }, MLP de-
notes the multi-layer perceptron, the sampling strategy can be
"RandomSample" or "MaxSample" as described above, at is the
chosen action in time step t , h0 is the query feature fq .

3.2.2 Reward Design. The virtual environment for RL is imple-
mented as the click simulator. Given the reranked list of search
results, the click simulator predicts the click feedbacks. A lot of
online evaluation metrics can be designed as the rewards based on
the click sequence. In this work, we try two kinds of typical on-
line evaluation metrics CTR (Click Through Rate) and MRR(Mean
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Figure 3: The policy network for RL Ranker.

Reciprocal Rank), and two kinds of typical oine metrics DCG
(Discounted Cumulative Gain) [27] and RBP (Rank-Biased Preci-
sion) [22] for reward design. All these metrics are modied to utilize
the sequential clicks as reward signals, and be capable to give re-
ward at each RL step. The clicks at top K positions are accumulated
as the reward for the Kth time step as we nd that it works better
in training than just giving the click signal at the Kth position. The
denition of the four modied rewards are as follows ("AC" means
"accumulated"). p is set to 0.8 in RBP-AC.

CTR-AC: CTR-AC@K = 1
K

∑K

i=1 ci (16)

MRR-AC: MRR-AC@K =
∑K

i=1
ci
i
/
∑K

i=1
1
i

(17)

RBP-AC: RBP-AC@K =
∑K

i=1 p
i−1ci/

∑K

i=1 p
i−1 (18)

DCG-AC: DCG-AC@K =
∑K

i=1
ci

loд2(i + 1)
/
∑K

i=1 loд2(i + 1)

(19)

3.2.3 RL Training. A trajectory τ = s0,a0, s1,a1, . . . , sN ,aN is
sampled according to the policy π in each episode. The episode
terminates when the ranking list is lled with results. The objective
of the training process is to maximum J (θ ).

J (θ ) = Eπθ [R(τ )] (20)
∇θ J (θ ) = Eπθ [∇θ loдπθ (τ )R(τ )] (21)

Equation 21 can be approximated by a Monte Carlo estima-
tor [19]:

∇θ J (θ ) ∝
1
M

M∑
i=1

N∑
j=1

∇θ loдπθ (si, j ,ai, j )Ri, j (22)

where θ is the parameters of the policy network,M is the number
of samples, N is the number of results in a session.

It is known that training a RL model from scratch is not eec-
tive. As the original ranking list has already achieved a generally
satisfactory performance, we add the original ranking list to the
training samples. This may introduce bias into the Monte Carlo
estimator and deriving an approximately unbiased policy gradient
estimator is left for future work. Specically,M is set to 21 in the
experiments, including one sample of the original ranking list and
the others reranked by πθ .



When training the RL Ranker, the feature representation of
search results and the click simulator are all xed as a stable en-
vironment. In this manner, we can make sure the training of the
RL Ranker will not change the virtual environment or result repre-
sentations. This is important because if we do not x the virtual
environment, the performance improvement may be caused by the
click simulator rather than the RL Ranker.

4 EXPERIMENT SETUP
4.1 Datasets and Training Process
The datasets used in our experiments are sampled from SRR pub-
lished in [40]. Each query has corresponding top 10 search results.
Each search result is represented by the parse tree and annotated
with a 4-graded relevance label. The parse tree of the search result
incorporates the images and texts into the HTML codes. The two
real datasets "Real 2017" and "Real 2018" are constructed in Septem-
ber, 2017 and December, 2018 respectively with click logs recorded
by a popular commercial search engine in China. The queries of
Real 2018 are subset of Real 2017. Search results of the same query
in the two datasets are not exactly the same as time has changed.
There are 3.24 same results for each query in the two datasets on
average. The number of same results is from 0 to 8.

For the simulation experiments in Section 5.2, we sample simu-
lated click logs according to the rule in Equation 28. The queries
and results in Simulation dataset are the same with Real 2017. We
split the 1, 971 queries and corresponding results as well as simu-
lated click logs in Simulation dataset into two parts at a ratio of 4:1
(1, 569 : 402), which are denoted as "Seen Set" and "Unseen Set".

When training the click simulators, the click logs are split into
training, validation and testing sets at a ratio of 3 : 1 : 1. The training
process of the whole RL ranking framework is shown in Figure 5.
For simulation study, X is the Seen Set and Y is either the Seen Set
or Unseen Set. For real data study, X is the Real 2017 dataset and Y
is either Real 2017 or Real 2018 dataset.

Table 2: Statistics of real and simulated datasets.

Dataset Real Data Simulation Data
Real 2017 Real 2018 Seen Unseen

#Queries 1,971 1,239 1,569 402
Training 1,498,227 - 940,854 241,745

#Logs Validation 499,671 - 315,131 80,270
Testing 500,470 533,254 313,015 79,985
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Figure 4: Statistics of click logs in dierent datasets.

4.2 Experiment Settings
The dimension of result features is 1, 000. For the Context-aware
Click Simulator (CCS), the dimensions of hidden states in the session
level and result level are all set to 100. The dimension of hidden state
of the policy network in the RL Ranker is 1, 000. The discounting

Adopting the trained RL Ranker to rank search results on YDataset
Y

Dataset
X

Training the Click Simulator
on click logs of X as the virtual environment

Training the RL Ranker
on result lists of X in the virtual environment

Figure 5: Training and utilization of the RL ranking frame-
work.
factor γ is set to 0.9. The ve click models are all trained for 1, 000
epochs. The RL Ranker under each reward function are trained
for 500 epochs as the loss begins to converge. When training the
RL Ranker, we adopt the "RandomSample" strategy for πθ , while
"MaxSample" is adopted for evaluation as we fully trust the learned
policy.

5 EXPERIMENTS
The proposed framework aims to improve the ranking performance
by using a click simulator to construct a virtual environment for
the RL Ranker. To demonstrate the eectiveness of this framework,
in this section, we conduct a series of experiments to address the
following research questions:

• RQ1: Can click simulators capture the important properties
of real search engine users?

• RQ2: Can RL Ranker optimize the online evaluation metrics
eectively in the virtual environment?

• RQ3: How does the whole RL ranking framework perform
on real click logs?

Online and oine metrics measure users’ search experience
from dierent perspectives. They both signicantly correlate with
actual user satisfaction [9]. Click logs are utilized to train the RL
ranking framework for online metric optimization. To the best of
our knowledge, there is no ranking algorithm directly optimizing
online evaluation metrics. Thus, we evaluate how the RL rank-
ing framework can improve the online metrics compared with the
original ranking lists by a simulated user in Section 5.2. To demon-
strate the eectiveness of the RL ranking framework on oine
metrics, we compare it with some state-of-the-art ranking methods
in Section 5.3 (note that the RL ranking framework is not directly
optimized for the oine metrics based on relevance judgements).

5.1 Evaluating Click Simulators (RQ1)
To show that the Context-aware Click Simulator (CCS) can accu-
rately predict users’ click behavior, especially in the heterogeneous
search environment, we compare it with ve existing click mod-
els. The ve conventional click models can be divided into two
categories. DCM [15], UBM [12] and DBN [6] do not take the ver-
tical bias into account, while UBM-Layout [11] and MCM [21]
incorporate the inuence of heterogeneous verticals on users’ click
behavior into the assumptions.

5.1.1 Training and Evaluation. All these models are trained on the
training logs of Real 2017 and tested on the testing logs of Real
2017 and Real 2018 respectively. The models are evaluated in terms
of Perplexity and LogLikelihood. A lower Perplexity and a higher
LogLikelihood indicate the click simulator can predict users’ clicks



more accurately. The denitions of the two metrics are as follows:

Perplexityi = 2
− 1
M

M∑
j=1

(c ji logpji+(1−c ji ) log (1−pji ))
(23)

LL = 1
MN

M∑
j=1

N∑
i=1

(c ji logpji + (1 − c ji ) log (1 − pji )) (24)

where c ji and pji refer to the binary click and predicted click prob-
ability of the ith result in the jth query session respectively. N is
the number of results in a session.M is the number of sessions in
the dataset.

5.1.2 Analysis. The performance of dierent click models and the
CCS is shown in Table 3. From the results, we can see that the ve
click models and CCS perform well on Real 2017 dataset, where the
query-document pairs in the testing set are all seen in the training
set. This indicates that the click simulators can accurately model
the user click by exploiting large-scale click logs. However, on Real
2018 dataset, where some new search results that are not included
in training set occur, the performance of conventional click models
declines a lot. As the proposed CCS takes the content of search
results into account, it has a stronger generalization ability and
performs the best on Real 2018 dataset.

Because results in search engines are changing rapidly and con-
ventional click models can not work eectively on new search
results, we will adopt the Context-aware Click Simulator as the
virtual environment in the following experiments.
Table 3: Performance of dierent click simulators. The per-
plexity score is the average of Perplexityi over all positions
(top 10).

Model Real 2017 Real 2018
Perplexity LL Perplexity LL

Basic
DCM 1.1489 -0.1301 1.2666 -0.2230
UBM 1.1435 -0.1253 1.2164 -0.1779
DBN 1.1401 -0.1225 1.2012 -0.1653

Vertical- UBM-Layout 1.1433 -0.1252 1.2246 -0.1856
Aware MCM 1.1401 -0.1224 1.2001 -0.1647

CCS 1.1409 -0.1230 1.1994 -0.1625

5.2 Simulation Study (RQ2)
To verify that the proposed framework can optimize a range of
online evaluation metrics, we conduct a simulation study with
simulated users, which is similar to those conducted in [1, 35]. A
simulation rule is designed according to some prior knowledge
and assumptions to generate simulated click behavior based on the
relevance and vertical type annotations. In this way, we create a
simulated user that can: 1) generate click logs on original result lists
for training; 2) produce ground truth user behavior on the reranked
list to test the eectiveness of the RL ranker.

5.2.1 Simulation Rule. The simulation rule in [1] is extended to
the heterogeneous search scenario by incorporating the vertical
bias. The extended assumption is that, users click a search result x
belonging to query q (cxq = 1) only when it is both observed (oxq = 1)
and perceived as relevant (rxq = 1), and at the same time, the vertical
type is preferred to click (vxq = 1) by users. oxq , rxq ,vxq and cxq are
all Bernoulli random variables. We sample these variables by the
following formulations:

oxq : The position bias ρ estimated through eye-tracking exper-
iments in [17] is adopted to sample oxq . ν ∈ [0,+∞) controls the

severity of position biases, which is set to 2.0 in our experiment. i
denotes the ranked position of the search result.

P(oxq = 1) = ρνi (25)
rxq : The relevance annotations are utilized to sample rxq .y ∈ [0, 3]

is the 4-level relevance label for result x andymax is 3 in our dataset.
Parameter ϵ introduces click noise into the click decision process.
A search result not very relevant to the query also has a small but
positive probability to be clicked. ϵ is set to 0.2 in our experiment.

P(rxq = 1) = ϵ + (1 − ϵ)
2y − 1

2ymax − 1 (26)

vxq : The vertical bias ω is estimated on a large number of real
click logs. There are 19 dierent result types in SRR. The average
click through rate (CTR) for each result type is computed as ω =
AveraдeCTR(v), where v denotes the vertical type of the search
result. The statistical results show that the variances of CTR of
results belonging to the same type across dierent queries are small
(most of them are less than 0.01). This indicates that the vertical bias
holds for a wide range of search intends. µ ∈ [0,+∞) controls the
severity of the vertical bias, which is set to 0.5 in our experiment.

P(vxq = 1) = ω
µ
v (27)

cxq : The nal clicks are sampled according to the multiplication
of the probabilities of oxq , rxq ,vxq . To control the severity of position
bias and vertical bias, we need to adjust the hyper-parameters ν
and µ, which can cause P(oxq = 1) and P(vxq = 1) to be really small.
Thus, P(oxq = 1) and P(vxq = 1) are linearly mapped to [0.3, 1] in
our experiment. The click probability of result x is given by:

P(cxq = 1) = P(oxq = 1)P(rxq = 1)P(vxq = 1) (28)

5.2.2 Simulation Data. The rule designed in Equation 28 is re-
garded as a simulated user, who clicks on the result lists and pro-
duces click logs. 1, 000 click sessions are produced by the simulated
user for each query, resulting in 1, 971, 000 sessions. As shown
in Figure 4, the simulated click logs are close to the two real log
datasets in terms of CTR@3,5,10. This shows the designed rule has
actually captured some important properties of real users. As there
is strong rst-click bias for real users, CTR@1 for real log data is
higher than the simulated data. The rst click and last click position
are also a little higher than the real click logs. The properties of the
simulated logs can be adjusted by the severity parameters.

5.2.3 Training of RL Ranker. Figure 6 shows the performance curves
during training. The clicks for training and validation are all sam-
pled by CCS. The RL Ranker has close performance on the Seen Set
and Unseen Set. We adopt the "MaxSample" strategy for validation
and "RandomSample" strategy for training. There is stable improve-
ment during training and the performance begins to converge after
500 epochs. The performance of the validation curves are higher
than the training curve, which shows that the learned policy is
reliable by "MaxSample".

5.2.4 Evaluation of RL Ranker. As the search engine needs to han-
dle both the repeated queries and new queries that has never ap-
peared in the search logs, we evaluate the performance of the pro-
posed framework on both the previously seen queries (Seen Set) and
unseen queries (Unseen Set). The trained RL Ranker is adopted to
rerank result lists of the testing queries. The rule-based simulated
user described in Section 5.2.1 interacts with the reranked list to



Table 4: Performance of RL Ranker with dierent rewards on Seen Set. The improvement of reranked lists under dierent
reward functions is signicant on all evaluation metrics compared to the original ranking ("Label") with p-value< 0.001.

MRR CTR cRBP cDCG Click Position
@1 @3 @5 @10 @3 @5 @10 @3 @5 @10 First Click Last CLick

Label 0.5884 0.4548 0.3187 0.2461 0.1702 0.1647 0.1902 0.2113 0.7445 0.8570 1.0081 2.3766 5.2122
CCS 0.5890 0.4562 0.3187 0.2462 0.1702 0.1647 0.1903 0.2114 0.7450 0.8580 1.0088 2.3731 5.2105

CTR-AC 0.6104 0.4742 0.3454 0.2647 0.1758 0.1776 0.2044 0.2243 0.7995 0.9177 1.0574 2.2279 5.0033
MRR-AC 0.6086 0.4738 0.3413 0.2610 0.1749 0.1759 0.2021 0.2223 0.7928 0.9085 1.0510 2.2473 5.0552
RBP-AC 0.6100 0.4743 0.3440 0.2641 0.1756 0.1771 0.2040 0.2239 0.7975 0.9161 1.0561 2.2320 5.0130
DCG-AC 0.6086 0.4729 0.3423 0.2624 0.1751 0.1763 0.2029 0.2229 0.7940 0.9113 1.0525 2.2405 5.0247

Table 5: Performance of RL Ranker with dierent rewards on Unseen Set. The improvement of reranked lists under dierent
reward functions is signicant on all evaluation metrics compared to the original ranking ("Label") with p-value< 0.001.

MRR CTR cRBP cDCG Click Position
@1 @3 @5 @10 @3 @5 @10 @3 @5 @10 First Click Last CLick

Label 0.5908 0.4572 0.3224 0.2494 0.1728 0.1663 0.1924 0.2140 0.7516 0.8665 1.0206 2.3697 5.2513
CCS 0.5907 0.4567 0.3232 0.2500 0.1733 0.1667 0.1928 0.2145 0.7530 0.8682 1.0229 2.3723 5.2583

CTR-AC 0.6156 0.4797 0.3536 0.2689 0.1788 0.1816 0.2081 0.2283 0.8165 0.9331 1.0758 2.2064 5.0333
MRR-AC 0.6142 0.4805 0.3485 0.2652 0.1776 0.1795 0.2057 0.2261 0.8085 0.9239 1.0685 2.2265 5.0777
RBP-AC 0.6163 0.4801 0.3532 0.2687 0.1788 0.1816 0.2080 0.2283 0.8164 0.9331 1.0760 2.2037 5.0349
DCG-AC 0.6118 0.4754 0.3481 0.2654 0.1777 0.1791 0.2055 0.2260 0.8058 0.9219 1.0667 2.2258 5.0641

Figure 6: The performance curves during the training process. The line in green denotes the rewards of training samples. The
lines in orange and red refer to the validation performance on the Seen Set and Unseen Set, respectively.

simulate online testing. Besides the intuitive CTR and the rst/last
click position, we use the following online evaluation metrics, MRR,
cRBP, and cDCG (RBP and DCG computed with click labels):

cRBP@K = (1 − p)
K∑
i=1

pi−1ci , cDCG@K =
K∑
i=1

ci
loд2(i + 1)

(29)

where p is set to 0.8 in cRBP, ci is the click label at position i . As
cRBP@1 = (1−p) CTR@1 and cDCG@1 = CTR@1, we do not show
cRBP@1 and cDCG@1 for simplicity.

Table 4 and 5 show the performance of the RL Ranker under
dierent rewards on the Seen and Unseen datasets. The rst and
second row (denoted as "Label" and "CCS") show the performance
of the original ranking lists when the clicks are sampled by the
rule-based simulated user (the labels of the Simulation dataset) and
CCS respectively.

From the results we can nd that, rst, the RL Ranker improves
the online evaluation metrics by a large margin over the original
rankings (Line "Label" in Table 4 and Table 5) under dierent reward
functions. The average position of the rst and last click also moves
forward. As the rule-based simulated user can imitate real users’
behavior to some extent and is independent of the proposed model
and the training process, the improvements suggest that the pro-
posed framework can potentially improve the ranking performance
eectively.

Second, all the online metrics can be optimized through the train-
ing process. This shows the potential capability of the RL Ranker to
optimize a wide range of objectives for commercial search engines
as long as a proper reward is designed. It is also an interesting
nding that the specic reward may not be the best choice to opti-
mize the corresponding evaluation metric. For example, the reward
"CTR-AC" performs the best to optimize all theMRR, CTR, cRBP and
cDCG evaluation metrics on the Seen Set in Table 4. We will leave
nding the best reward function for a specic online evaluation
metric for future work.

Third, the RL Ranker performs well on both the seen and unseen
results. This reveals the strong generalization ability of the RL
ranking framework in the changing situations, which is important
for real-world online systems.

5.3 Real Data Study (RQ3)
As we have demonstrated that the proposed framework works well
in the simulation study to optimize online evaluation metrics, we
would further investigate how it performs on real click logs recorded
by the search engine, and whether the RL Ranker trained in virtual
environment actually helps to improve the ranking performance.
We evaluate the RL ranking framework on datasets constructed at
dierent time to show the generalizability of the framework, which
is an important concern for online search systems.



Table 6: Oline performance of dierent models on Real
2017 dataset. The improvement of the RL Ranker compared
to the best baseline models (DCM and UBM-Layout) is not
signicant with p-value< 0.05.

NDCG NDCG NDCG NDCG MRR RBP@1 @3 @5 @10
DLA 0.6822 0.7282 0.7821 0.8942 0.9435 0.6224
JRE 0.7553 0.7631 0.8056 0.9090 0.9302 0.6264
DCM 0.7987 0.7926 0.8318 0.9219 0.9491 0.6345
UBM 0.7900 0.7885 0.8259 0.9196 0.9462 0.6334
DBN 0.7792 0.7819 0.8195 0.9161 0.9472 0.6314

UBM-Layout 0.7947 0.7934 0.8312 0.9217 0.9466 0.6348
MCM 0.7628 0.7725 0.8151 0.9128 0.9463 0.6304

CTR-AC 0.7694 0.7725 0.8188 0.9141 0.9462 0.6300
MRR-AC 0.7961 0.7879 0.8247 0.9192 0.9489 0.6315
RBP-AC 0.7830 0.7756 0.8178 0.9160 0.9451 0.6301
DCG-AC 0.8024 0.7950 0.8341 0.9226 0.9498 0.6340

5.3.1 Baselines. Dierent from the simulation experiments, there
is no rule-based simulated user to judge the reranked result lists. We
need to evaluate the ranking performance by the relevance-based
oine metrics. The RL ranking framework is compared with the
click models, the unbiased learning to rank approach Dual Learning
Algorithm (DLA) [1], and the state-of-the-art method on SRR dataset
Joint Relevance Estimation (JRE) [40] model. All the baselines are
adapted to utilize click logs for training.

• Click Models: The estimated query-document relevance
scores (default to 0.5 for unseen pairs) are utilized to rank
results.

• JRE: As UBM-Layout performs well on both Real 2017 and
Real 2018 datasets, the estimated query-document relevance
scores on Real 2017 by UBM-Layout is adopted as weak labels
to train JRE.

• DLA: DLA learns an automatic unbiased learning-to-rank
model from biased click logs. We extract 33 features based on
the texts of the landing pages corresponding to each search
result as in [1, 26].

5.3.2 Analysis. The experiment results on the Real 2017 and Real
2018 datasets are shown in Table 6 and 7. From the results, we can
see that:

First, click models perform the best among the baselines which
directly utilize the debiased query-document relevance for ranking.
Although unifying the learning of propensity models and ranking
models, it is hard for the unbiased learning to rank method DLA to
beat the click models. JRE achieves close performance with UBM-
Layout which provides the weak relevance labels.

Second, although the RL Ranker is trained to optimize the online
evaluation metrics, the learned policy also performs well on the
oine metrics. The RL Ranker trained with DCG-AC achieves com-
parable and slightly better performance than the best click models
DCM and UBM-Layout on Real 2017. However, as the RL Ranker is
not optimized for the oine metrics, the improvements are not so
signicant. On Real 2018 dataset, the RL Ranker under all reward
functions achieves much better performance than the baselines.
This shows the RL ranking framework can eectively leverage the
implicit relevance signals in click logs, even without making any
explicit assumptions on user behavior. The virtual environment
captures important properties of real users and serves as a reliable
reward provider and performance judger for the RL Ranker. The

Table 7: Oline performance of dierent models on Real
2018 dataset. ∗ and ∗∗ denote the signicant improvement
compared to the best baseline model (UBM-Layout) with p-
value< 0.05 and < 0.01 respectively.

NDCG NDCG NDCG NDCG MRR RBP@1 @3 @5 @10
DLA 0.5422 0.6211 0.6930 0.8416 0.7577 0.5316
JRE 0.6508 0.6851 0.7320 0.8673 0.8038 0.5444
DCM 0.7084 0.7011 0.7374 0.8766 0.8364 0.5460
UBM 0.7090 0.7006 0.7379 0.8764 0.8402 0.5457
DBN 0.6897 0.6903 0.7292 0.8715 0.8283 0.5433

UBM-Layout 0.7173 0.7066 0.7426 0.8791 0.8419 0.5472
MCM 0.6923 0.6937 0.7323 0.8729 0.8314 0.5440

CTR-AC 0.7328 0.7468 0.7825 0.8941 0.8538 0.5596
MRR-AC 0.7389 0.7655 0.7945 0.8996 0.8597 0.5626
RBP-AC 0.7459∗ 0.7667∗∗ 0.7986∗∗ 0.9018∗∗ 0.8606∗ 0.5634∗∗

DCG-AC 0.7307 0.7591 0.7926 0.8975 0.8553 0.5613

versatility of the RL ranking framework is potentially important in
the heterogeneous search scenarios.

Third, the RL ranking framework has stronger generalizability
than other methods based on click logs. As shown in Table 7, the RL
Ranker performs much better than DLA, JRE and click models on
Real 2018 dataset. The RL ranking framework trained on historical
data performs well in the new environment, while a sharp decline
in performance is spotted for the baselines. Generalizability is an
important concern for search engines. A large amount of Web
documents or multimedia contents come to the online system at
every moment. It is infeasible to train the model constantly for new
contents, which is required by the click models. The proposed RL
ranking framework is more adaptable for practical search engines.

6 CONCLUSION
Ranking the heterogeneous search results with complex depen-
dency relationship is an emerging but critical problem for mod-
ern search engines. In this work, we formulate the context-aware
ranking as a listwise optimization problem and try to solve it in
a reinforcement learning paradigm. For oine training, a virtual
environment is constructed to simulate real search engine users.
By extensive experiments on both simulation data and real data,
we demonstrate the eectiveness of the click simulator in modeling
user behavior and the strong capability of RL Ranker in optimiz-
ing online as well as oine evaluation metrics. We also show that
the RL ranking framework has a strong generalizability over time,
which is valuable for the search engines dealing with ever-changing
information on the Web. The framework also shows potential in
optimizing a wide range of ranking objectives for online systems,
which can be exploited to enhance users’ search experience in a
more direct manner.

Finally, we discuss some issues about applying the proposed
framework to online systems. The online training can be built
upon the policy learned oine with the log data and the virtual
environment, which is more ecient and brings little harm to the
online system. Besides, dierent components of the RL ranking
framework can utilize dierent features in practical applications.
For example, the click simulator can be trained oine with highly
computational deep neural features to achieve better performance,
while the RL Ranker, which will be used to rank the results online,
can utilize some more cost-ecient handcrafted features.
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