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ABSTRACT
Relevance judgments play an essential role in the evaluation of
information retrieval systems. As many different relevance judg-
ment settings have been proposed in recent years, an evaluation
metric to compare relevance judgments in different annotation
settings has become a necessity. Traditional metrics, such as 𝜅,
Krippendorff’s 𝛼 and Φ have mainly focused on the inter-assessor
consistency to evaluate the quality of relevance judgments. They
encounter “reliable but useless” problem when employed to com-
pare different annotation settings (e.g. binary judgment v.s. 4-grade
judgment). Meanwhile, other existing popular metrics such as dis-
criminative power (DP) are not designed to compare relevance
judgments across different annotation settings, they therefore suf-
fer from limitations, such as the requirement of result ranking lists
from different systems. Therefore, how to design an evaluation met-
ric to compare relevance judgments under different grade settings
needs further investigation. In this work, we propose a novel metric
named pairwise discriminative power (PDP) to evaluate the quality
of relevance judgment collections. By leveraging a small amount of
document-level preference tests, PDP estimates the discriminative
ability of relevance judgments on separating ranking lists with var-
ious qualities. With comprehensive experiments on both synthetic
and real-world datasets, we show that PDP maintains a high degree
of consistency with annotation quality in various grade settings.
Compared with existing metrics (e.g., Krippendorff’s 𝛼 , Φ, DP, etc),
it provides reliable evaluation results with affordable additional
annotation efforts.
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1 INTRODUCTION
Relevance judgments play a vital role in the evaluation of informa-
tion retrieval systems and the optimization of machine learning
based ranking models. Either in the practical application of large-
scale commercial search engine or in the construction of various
benchmarks (e.g., TREC [41], CLEF [19], NTCIR [31]), relevance
judgments are still a necessary component. As different multi-grade
settings have been proposed in recent years, such as 3-grade [11],
4-grade [25], 6-grade [17], 100-grade [27], or even magnitude esti-
mation [38], an evaluation metric to compare relevance judgments
in different annotation settings, especially in different grade set-
tings, has become a necessity.

Traditional metrics, such as 𝜅 [16, 20, 39], Krippendorff’s 𝛼 [24]
and Φ [10], adopt inter-assessor consistency to evaluate the quality
of relevance judgments. However, these metrics are incompetent
to compare relevance judgments collected in different settings be-
cause of the “reliable but useless” problem. To better illustrate this
problem, we show an example of the relevance judgments collected
in the image search scenario in Figure 1. This instance presents
7-grade relevance judgment results, as well as the 4-grade results. Al-
though the annotation consistency calculated with Krippendorff’s
𝛼 (ordinal version) in the 7-grade (0.57) setting is lower than that
of the 4-grade (0.68) setting, we can obtain more valuable infor-
mation from the 7-grade relevance judgments. For example, the
fourth image is more useful for users to understand the complete
movement flow of butterfly stroke legs than others. The 7-grade
judgment results can notice this difference, but not for the 4-grade
results.

Another way to measure the quality of the relevance judgments
and the relevance-based evaluation metrics is to test whether they
can be used to reliably evaluate and compare different retrieval
systems. Discriminative power (DP) [30], as a representative, can
be applied to the evaluation of IR effective measures as well as dif-
ferent relevance judgment settings. However, evaluating relevance
judgment collections with DP requires a number of ranking lists
from different retrieval systems, which cannot be collected easily
in some cases.
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4-grade 3, 3, 3 2, 3, 3 2, 2, 2 3, 3, 3 3, 3, 3
7-grade 5, 6, 5 4, 5, 5 3, 5, 3 6, 6, 6 5, 5, 4

Figure 1: An example of relevance judgment with three assessors under different grade settings in the image search scenario
(query content: butterfly stroke leg movement)

To better compare different relevance judgment settings, in this
paper, we propose a novel evaluation metric for relevance judg-
ments: pairwise discriminative power (PDP). Based on an affordable
amount of additional user preference annotations [43], PDP esti-
mates the discrimination ability of the relevance judgments on
potential ranking lists to evaluate the quality of relevance judg-
ments. Given the estimation of PDP, researchers can evaluate the
annotation methods of relevance judgments and design a more rea-
sonable annotation framework that can leverage both evaluation
credibility and ranking algorithms’ training effectiveness.

Inspired by the concept of informational entropy [35], we define
PDP as the uncertainty of ranking list under topics (in Sec 3.3 ).
To obtain PDP, we propose two methods to utilize the preference
test results and then regard them as the gold standard to train for
the permutation probability of the ranking list (in Sec 3.4). We
summarize our main contributions as follows:

• We propose a novel metric to evaluate the discriminative
ability of relevance judgment collections under different
annotation settings.

• We present a unified framework for generating synthetic
relevance judgment collections under multi-grade settings
and then generate a series of synthetic datasets on different
grade settings.

• We conduct extensive experiments on both synthetic and
real-world datasets to verify the feasibility of our novel met-
ric. The results show that our metric performs competitively
compared to existing metrics.

2 RELATEDWORK
Currently, Cranfield-like approach [15] is widely used to evaluate
information retrieval systems. In this paradigm, researchers need to
construct representative samples of topic and document collections,
then conduct relevance assessments for the results returned by the
retrieval system, and finally use evaluation metrics [9, 23, 26, 32, 34]
to measure the goodness of the retrieved ranking list.

Many existing works have focused on the design of relevance
assessments scale and setting [36]. Historically, binary scale (rel-
evant or not) was used to conduct relevance assessments [40]. In
recent years, a series of multi-grade relevance judgment settings
have been proposed, including 3-grade scale used in TREC Terabyte
Track [11], 4-grade scale in NTCIR WWW task [25], 6-grade scale
in TREC Web Track [17], and so on. Tang et al. [37] compared the
relevance scales ranging from 2 to 11 points, and found that themax-
imum confidence can be achieved in 7-grade scale. Turpin et al. [38]
introduced the unbounded scale method, magnitude estimation,
into document relevance judgments and observed a considerable

consistency with traditional ordinal judgment settings. In [27], Roi-
tero et al. tried a 100-grade relevance scale (S100) and showed the
effectiveness and robustness of S100.

Another research direction attempts to validate the feasibility of
preference judgment. Carterette et al. [6] first proposed to evaluate
search engines using preference judgments rather than absolute
judgments; they also designed the interface to conduct preference
judgments. Chandar et al. [7, 8] introduced preference judgments to
novelty and diversity search tasks, and proposed preference based
metrics to evaluate it. Yang et al. [42] compared preference judg-
ments with ordinal relevance judgments and found that preference
judgments seem to be the same or even more reliable. Recently,
Sakai et al. [34] proposed two novel types of preference-based mea-
sures, and also released a large-scale document preference judg-
ments dataset. Clarke et al. [12–14] focused on evaluating top re-
trieved documents, and utilized preference judgments to estimate
the maximum similarity between actual ranking and ideal ranking
list.

Because of the importance of relevance judgments in the cranfield-
like approach, it is critical to measure and control its quality. Tra-
ditionally, the quality of relevance judgments has been measured
using the consistency of annotations between assessors, such as
the widely used metrics Cohen’s 𝜅 [16], Fleiss’ 𝜅 [20], Weighted
𝜅 [20] and Krippendorff’s 𝛼 [24]. Based on the probabilistic pa-
rameter estimation, Checco et al. proposed Φ [10] to overcome
the limitations existed in 𝜅 and 𝛼 . Most of the consistency metrics
are easy and convenient to calculate without any additional prior
knowledge . However, they suffer from the phenomenon “reliable
but useless”, and perform poorly in the cross-scale relevance judg-
ment comparison tasks, as we have shown in Figure 1. Sakai [30]
proposed discriminative power (DP) measure to evaluate the sensi-
tivity of evaluation metrics. DP can also be extended to compare
the discriminative ability of different relevance judgment collec-
tions. However, DP is calculated based on a number of ranking lists
from retrieval systems, which is difficult to obtain in some cases.
Another way to compare relevance judgments collected in different
relevance scales is to conduct scale transformation. Han et al [22]
described several strategies to transform scale from fine-grained
to coarse-grained, their experimental results illustrate that scale
transformation strategies strongly affect the results of evaluation
experiments. Also, Bailey et al. [3] categorized relevance judgments
into three categories: “gold/silver/bronze/ standard” judges, and
found a low agreement in relevance judgements between these
three groups. In this work, we mainly deal with “silver standard”
judges.
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3 MODELS
3.1 Evaluation Metric for Relevance Judgments
We first establish a unified evaluation framework for relevance
judgment collections. We assume Q is the total topic space. For each
topic 𝑞 ∈ Q, the ranking system retrieves a series of corresponding
documents, which are denoted as a set D𝑞 .

To construct a relevance judgment collection R, we only sam-
ple a representative topic set from Q, denoted as QR . Empirically,
we often only select the top rank documents to conduct relevance
judgments for each topic. We assume the set of top-𝐾 rank docu-
ments in topic 𝑞 is the set D𝑞;≤𝐾 . In most scenarios, we hire the
same batch of assessors to conduct relevance judgments within
each topic. We can denote the assessor set under topic 𝑞 as U𝑞 . In
practice, the collection R contains a series of relevance judgment
records. Just as Eq 1 shows, each record is identified by a tuple
(topic 𝑞, document 𝑑, assessor 𝑢), denoted as 𝑟𝑑,𝑞;𝑢 .

R = {𝑟𝑑,𝑞;𝑢 |𝑞 ∈ QR , 𝑑 ∈ D𝑞;≤𝐾 , 𝑢 ∈ U𝑞} (1)

The evaluation metric for relevance judgments is then a mapping
function from the collection R to a real number. Eq 2 shows the
specific calculation formula:

metric = 𝑓 (R|O) = 1
|QR |

∑
𝑞∈QR

𝑓 (R𝑞 |O𝑞). (2)

In practice, the original metric is calculated at the topic-level, so
we take themean ofmetrics upon all the sampled topic setQR as our
collection-level evaluation metric. Sometimes, we need to introduce
some empirical knowledge (O) to enhance themetric’s performance.
For example, in discriminative power (DP) [30] measure, the set O
includes a series of collected ranking runs. In kappa [39] measure,
O is just an empty set. In our PDP measure, the set O contains
some preference judgment results.
3.2 The Architecture to Evaluate Relevance

Judgments Based on Our Metric
When collecting a series of trial relevance judgment results under
different settings, one might wonder which setting is better and
deserves further annotation on a larger scale of data. In this case, our
metric is a good choice to help evaluate relevance judgment results.
Following shows the procedures to evaluate relevance judgment
collections based on our metric:

(1) Determine the scale of preference tests, sample the prefer-
ence test data, and then conduct preference tests.

(2) Estimate the document-level preference matrix under each
topic based on the preference test results.

(3) Obtain the value of our metric on the basis of the preference
matrix and relevance judgment results.

3.3 Pairwise Discriminative Power
Given the above framework, now we define our pairwise discrimi-
native power (PDP) metric. With the relevance judgment results,
we naturally obtain the ideal ranking results [12–14], that is, just
ranking the documents based on the decreasing order of the doc-
uments’ true relevance. The certainty of the ideal ranking results
reflects the discriminative ability of relevance judgments. Inspired

by informational entropy [35], we define PDP as the uncertainty of
the ideal ranking list1 , just as Eq 3 shows.

PDP(𝑞) =
∑
𝜋 ∈Π𝑞

−𝑝 (𝜋 |𝑞) log𝑝 (𝜋 |𝑞), (3)

where 𝜋 is a potential ranking list in topic𝑞,Π𝑞 is the set of all possi-
ble 𝜋 . The probability 𝑝 (𝜋 |𝑞) represents the permutation probability
in which the ranking list under 𝑞 is just the same as 𝜋 . It is worth
noting that Amigó et al. [2] also proposed an entropy-based topic-
level metric, and perceived each preference relationship between
documents as an uncertain unit and evaluated the observational
uncertainty of topic based on the collected ranking lists. In contrast,
PDP regards each potential ranking list as an uncertain unit, and
then adopts preference information to estimate it.

Eq 4 shows our method to calculate the permutation probability
𝑝 (𝜋 |𝑞), which is inspired by Plackett-Luce model [21]:

𝑝 (𝜋 |𝑞) =
𝐾∏
𝑖=1

𝑝 (𝜋𝑖 = 𝜋 (𝑖) |𝜋<𝑖 , 𝑞) =
𝐾∏
𝑖=1

exp(𝑠∗
𝜋 (𝑖) |𝑞)∑𝐾

𝑗=𝑖 exp(𝑠∗𝜋 ( 𝑗) |𝑞)
. (4)

In Eq 4, the score vector 𝑠∗ indicates the relevance information of
documents in topic 𝑞, and it is also the parameter we need to train.
Some previous works [6, 34] have demonstrated that preference
judgments have advantages over absolute relevance judgments.
Thus, in our setting, we assume the preference judgment results as
the gold standard. And our training goal is to make 𝑠∗ match the
preference judgment results as much as possible. Here, we use the
cross entropy [18] to evaluate the similarity between the preference
judgment result and the score vector 𝑠∗. Eq 5 shows the optimization
function to obtain the vector 𝑠∗, where 𝑝 (𝜋 (𝑖) ≻ 𝜋 ( 𝑗) |𝑞) is the
document-level preference probability, which will be discussed in
Sec 3.4 . Specifically, we adopt stochastic gradient descent (SGD) [4]
algorithm to optimize this loss function.

𝑠∗· |𝑞 = min
𝑠·|𝑞

−
∑
𝑖≠𝑗

𝑝 (𝜋 (𝑖) ≻ 𝜋 ( 𝑗) |𝑞) log 𝑒𝑠𝜋 (𝑖 ) |𝑞

𝑒𝑠𝜋 (𝑖 ) |𝑞 + 𝑒𝑠𝜋 ( 𝑗 ) |𝑞
(5)

In practice, to calculate PDP defined by Eq 3, the potential rank-
ing list set might be large-scale, so we adopt the Monte Carlo simu-
lation [29] strategy. In each simulation, we generate the sampling
ranking list based on the permutation probability shown in Eq 4.
Eq 6 shows the practical calculation formula of PDP, where the
parameter 𝑇 is the sampling scale:

PDP(𝑞) = − 1
𝑇

𝑇∑
𝑡=1

log
𝐾∏
𝑖=1

exp(𝑠∗
𝜋𝑡 (𝑖) |𝑞)∑𝐾

𝑗=𝑖 exp(𝑠∗𝜋𝑡 ( 𝑗) |𝑞)
. (6)

Note that we can generate the samples step by step. In each
step, we use the probability 𝑝 (𝜋𝑖 = 𝜋 (𝑖) |𝜋<𝑖 , 𝑞) to determine the
document selected at the 𝑖-th position. With this trick, the total
simulation computational complexity isO(𝑇𝐾2) rather thanO(𝐾 !+
𝑇𝐾 log𝐾).
3.4 Estimate for Preference Matrix
Given the above introduction of PDP, there still exists an unclear
question in the process of its calculation, that is, how to estimate
the document-level preference probability 𝑝 (𝜋 (𝑖) ≻ 𝜋 ( 𝑗) |𝑞)?
1Analogous to informational entropy, the value of PDP ranges from 0 to log𝐾 !, where
𝐾 is the scale of ranking list 𝜋 .
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Figure 2: Description of notations used in Sec 3.4

Before introducing the specific methods, we first present the
notation used in the subsequent introduction, just as Figure 2 shows.
The symbols 𝑢𝑖 , 𝑑 𝑗 , 𝑔𝛼 represent an assessor, a document, and a
relevance grade, respectively. The relevance grades set G contains
a series of valid relevance grades. For example, in 4-grade setting,
G = {0, 1, 2, 3}, while in magnitude estimation setting, G = R+.
𝑟𝑑 𝑗 ,𝑞;𝑢𝑖 means that the assessor𝑢𝑖 annotates the document 𝑑 𝑗 under
topic 𝑞 with relevance level 𝑟𝑑 𝑗 ,𝑞;𝑢𝑖 .

3.4.1 Estimation of Document-Level Preference Matrix. In the
subsequent content, we just take 𝑝 (𝑑1 ≻ 𝑑2 |𝑞) as a representative
to show how to estimate for document-level preference matrix. In
our setting, we assume that the relevance grade is the key factor to
affect the preference probability between documents. For example,
if the assessor 𝑢 annotates both document 𝑑1 and 𝑑 ′1 as grade 𝑔𝛼
under topic 𝑞, we perceive that they have the same degree of prefer-
ence compared with document 𝑑2 in the view of 𝑢. The preference
probabilities 𝑝 (𝑑1 ≻ 𝑑2 |𝑞) and 𝑝 (𝑑 ′1 ≻ 𝑑2 |𝑞) are both controlled
by the grade-level preference probability 𝑝 (𝑔𝛼 ≻ 𝑔𝛽 ), where 𝑔𝛽
is the relevance score that assessor 𝑢 annotates document 𝑑2 as.
To establish the connection between document-level preference
probability 𝑝 (𝑑1 ≻ 𝑑2 |𝑞) and grade-level preference probability
𝑝 (𝑔𝛼 ≻ 𝑔𝛽 ), we propose two kinds of strategies: individual mode
and aggregate mode.

In individual mode, we perceive that the relevance judgment
result of each assessor as an independent sample. The document-
level preference probability of each query-document-document
tuple (𝑞, 𝑑1, 𝑑2) is the mean value of all the assessors’ preference
probability. Eq 7 shows the calculation formula for document-level
preference probability in individual mode:

𝑝 (𝑑1 ≻ 𝑑2 |𝑞) =
1

|U𝑞 |
∑
𝑢∈U𝑞

𝑝 (𝑔𝛼 ≻ 𝑔𝛽 |𝑔𝛼 = 𝑟𝑑1,𝑞;𝑢 , 𝑔𝛽 = 𝑟𝑑2,𝑞;𝑢 ) .

(7)
In aggregate mode, we perceive that the aggregation result of

all the relevance judgments in a query-document pair is a single
sample. The document-level preference probability just equals to
the preference probability between the aggregation relevance scores
of these two documents, as Eq 8 shows. Eq 9 shows the definition of

the symbol 𝑟𝑑,𝑞 , where 𝐴𝑔𝑔(·) is denoted as the aggregate function
to combine all the relevance judgment results under a particular
document into a single relevance signal. We choose the median
function as our aggregate function in the subsequent sections.

𝑝 (𝑑1 ≻ 𝑑2 |𝑞) = 𝑝
(
𝑔𝛼 ≻ 𝑔𝛽 |𝑔𝛼 = 𝑟𝑑1,𝑞, 𝑔𝛽 = 𝑟𝑑2,𝑞

)
(8)

𝑟𝑑,𝑞 = 𝐴𝑔𝑔

({
𝑟𝑑,𝑞;𝑢 |𝑢 ∈ U𝑞

})
(9)

3.4.2 The Requirement of Preference Tests. To estimate the grade-
level preference probability, we need to introduce the preference
judgments. In each time of preference judgment process, we show a
topic 𝑞, and two related document 𝑑1, 𝑑2 to assessors. The assessors
need to determine which document better satisfies the search needs.
Finally, we combine all the assessors’ preference judgments into
a single signal 𝑝 𝑓𝑑1≻𝑑2 |𝑞 , to judge whether document 𝑑1 is better
than 𝑑2 in topic 𝑞. When 𝑝𝑓𝑑1≻𝑑2 > (<)0, it means that document
𝑑1 is (not) better than 𝑑2. It is worth noting that we do not need to
conduct preference test for all the preference tuples (𝑞, 𝑑1, 𝑑2), we
just need to sample some representative tuples for preference anno-
tation instead. The sampling scale would be discussed in Sec 3.4.4.

3.4.3 Estimation of Grade-Level Preference Matrix. We estimate
the grade-level preference matrix based on the collected preference
test results.

In individual mode, we adopt all the independent tuple samples
(e.g. tuple (𝑞, 𝑟𝑑1,𝑞;𝑢 , 𝑟𝑑2,𝑞;𝑢 )) to estimate for grade-level preference
matrix

{
𝑝 (𝑔𝛼 ≻ 𝑔𝛽 )

}��
𝛼,𝛽∈G . Eq 10 shows the specific calculation

formula, where the set 𝑆 contains all the preference test tuples
(𝑞, 𝑑1, 𝑑2). The function 𝐼 (𝑥) represents indicative function. When
event 𝑥 occurs, 𝐼 (𝑥) equals to 1, otherwise it equals to 0.

𝑝 (𝑔𝛼 ≻ 𝑔𝛽 ) =

∑
(𝑞,𝑑1,𝑑2) ∈𝑆

∑
𝑢∈U𝑞

𝐼

(
𝑔𝛼 = 𝑟𝑑1,𝑞;𝑢 , 𝑔𝛽 = 𝑟𝑑2,𝑞;𝑢 , 𝑝 𝑓𝑑1≻𝑑2 |𝑞 > 0

)
∑

(𝑞,𝑑1,𝑑2) ∈𝑆

∑
𝑢∈U𝑞

𝐼

(
𝑔𝛼 = 𝑟𝑑1,𝑞;𝑢 , 𝑔𝛽 = 𝑟𝑑2,𝑞;𝑢

)
(10)

In aggregate mode, we need to aggregate the relevance judg-
ment result and then estimate the grade-level preference probabil-
ity. Eq 11 shows the specific calculation formula for grade-level
preference probability:

𝑝 (𝑔𝛼 ≻ 𝑔𝛽 ) =

∑
(𝑞,𝑑1,𝑑2) ∈𝑆

𝐼

(
𝑔𝛼 = 𝑟𝑑1,𝑞, 𝑔𝛽 = 𝑟𝑑2,𝑞, 𝑝 𝑓𝑑1≻𝑑2 |𝑞 > 0

)
∑

(𝑞,𝑑1,𝑑2) ∈𝑆
𝐼

(
𝑔𝛼 = 𝑟𝑑1,𝑞, 𝑔𝛽 = 𝑟𝑑2,𝑞

) .

(11)
3.4.4 The Scale of Preference Judgments. One more problem we

are concerned with is how to determine the scale of preference
judgments. When we conducted more preference judgments, the
estimate for preference matrix could be more reliable, but at the
same time we need to spend more funds. We need to find a balanced
position between gain and cost.

Here, we will derive the relationship between the estimation
reliability of the preference matrix and the scale of preference
results. Due to lack of space, we only show the derivation process in
aggregate mode. The process in individual mode is almost the same.
Suppose we need to estimate for the probability 𝑝 (𝑔𝛼 ≻ 𝑔𝛽 ), its
ideal value is 𝑝 . For each related preference test sample, we denote
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it as tuple (𝑞, 𝑑1, 𝑑2), where 𝑟𝑑1,𝑞 = 𝑔𝛼 , 𝑟𝑑2,𝑞 = 𝑔𝛽 . The random
variable 𝐼 (𝑝𝑓𝑑1≻𝑑2 |𝑞 > 0) is sampled from Bernoulli distribution
𝐵(𝑝). Therefore, in Eq 11, our estimated probability |𝑆 |𝑝 (𝑔𝛼 ≻
𝑔𝛽 ) obeys binomial distribution 𝐵( |𝑆 |, 𝑝). Based on central limit
theorem [28], when the random samples size |𝑆 | is large enough,

we can perceive that the random variable
|𝑆 | (𝑝 (𝑔𝛼 ≻ 𝑔𝛽 ) − 𝑝)√

|𝑆 |𝑝 (1 − 𝑝)
∼

𝑁 (0, 1). Eq 12 shows the relationship between |𝑆 | and parameters
𝛿 . It illustrates that we can obtain a reliable preference probability
estimate 𝑝 (𝑔𝛼 ≻ 𝑔𝛽 ) under any parameter 𝛿 , as long as the scale
|𝑆 | is large enough.

|𝑆 | = 𝑝 (1 − 𝑝)
𝛿2

Φ−1
[
1
2𝑃

(
𝑝 (𝑔𝛼 ≻ 𝑔𝛽 ) ∈ (𝑝 − 𝛿, 𝑝 + 𝛿)

)
+ 1
2

]
(12)

3.5 An Example to Calculate PDP
In this subsection, we will show the calculation method of PDP
measure2 through the example in Figure 1.

Following the procedures introduced in Sec 3.2, first we need to
determine the details of preference tests, and then conduct pref-
erence tests. For simplicity, here we directly set the grade-level
preference matrix in 4-grade and 7-grade setting as shown in Eq 13
and Eq 14 respectively. For example, in Eq 13, 𝑃4𝑔 (3, 1) = 0.93 ,
which means the probability that the user prefers a 3-grade docu-
ment to a 1-grade document is 0.9 in 4-grade setting. Noting that in
the real situation, the grade-level preference matrix in individual
mode and aggregate mode are different, here we predefine them as
the same value for simplicity.

𝑃4𝑔 =


0.50 0.15 0.10 0.05
0.85 0.50 0.15 0.10
0.90 0.85 0.50 0.15
0.95 0.90 0.85 0.50

 (13)

𝑃7𝑔 =



0.50 0.20 0.15 0.10 0.06 0.03 0.01
0.80 0.50 0.20 0.15 0.10 0.06 0.03
0.85 0.80 0.50 0.20 0.15 0.10 0.06
0.90 0.85 0.80 0.50 0.20 0.15 0.10
0.94 0.90 0.85 0.80 0.50 0.20 0.15
0.97 0.94 0.90 0.85 0.80 0.50 0.20
0.99 0.97 0.94 0.90 0.85 0.80 0.50


(14)

Next, we need to estimate the document-level preference matrix
in each setting. Here, we take the first image 𝑑1 and the second im-
age 𝑑2 as an example. In 7-grade setting, using Eq 7, we can get that
in individualmode 𝑝 (𝑑1 ≻ 𝑑2 |𝑞) =

1
3×

[
𝑃7𝑔 (5, 4) + 𝑃7𝑔 (6, 5) + 𝑃7𝑔 (5, 5)

]
= 0.70. In aggregate mode, based on Eq 8, when we use median func-
tion as the aggregate function, then in 7-grade setting, 𝑟𝑑1,𝑞 = 5,
𝑟𝑑2,𝑞 = 5, thus, 𝑝 (𝑑1 ≻ 𝑑2 |𝑞) = 𝑃7𝑔 (5, 5) = 0.50. Using these
methods, ultimately we can obtain the document-level preference
matrices.

Finally, we calculate PDP based on the document-level preference
matrices. We need to first optimize score vector 𝑠∗ based on Eq 5,
and then conduct simulation using Eq 6. As a result of this run4 , in
4-grade setting, PDP equals to 4.2142 and 4.1705 in individual and
2The code can be found in https://github.com/chuzhumin98/PDP
3Here we build the index of the matrix starting from 0.
4Because of the randomness in the process of simulation, the values of PDP are slightly
different between runs.

Figure 3: Diagram of synthetic dataset generation architec-
ture

aggregate modes respectively, while in 7-grade setting the values
of PDP in individual and aggregate modes are 4.0249 and 3.8180
respectively. As expected, the PDP in 7-grade setting is lower than
in 4-grade setting, which indicates that the 7-grade data is much
more discriminative than the 4-grade data.

In the subsequent sections, we aim to answer the following three
research questions:

• RQ1: What impacts do the quality and relevance scale of rel-
evance judgments have on PDP? Can we use PDP to evaluate
the quality of relevance judgments?

• RQ2: Howmany preference test results do we need to obtain
a reliable PDP value?

• RQ3: Can we use PDP to evaluate the existing relevance
judgment collections effectively?

In Sec 4, we conduct extensive experiments on synthetic datasets
to answer RQ1 and RQ2. To answer RQ3, we further conduct
experiments on real-world datasets in Sec 5.
4 EXPERIMENTS ON SYNTHETIC DATASETS
4.1 Experimental Setting
To answer RQ1, we require a relevance judgment dataset with
gold standard for measuring its quality. Also, this dataset needs to
contain relevance judgment results under different grade settings,
so that we can test the influence of relevance scale on PDP. These
requirements are difficult to satisfy in real-world datasets, so we
generate a large-scale synthetic dataset to answer RQ1. Figure 3
shows the synthetic dataset generation architecture.

In our setting, we perceive the true relevance of each query-
document pair 𝑟𝑑,𝑞 is a real number within the interval [0, 1]. The
larger value of 𝑟𝑑,𝑞 indicates the higher relevance between topic 𝑞
and document 𝑑 . To generate 𝑟𝑑,𝑞 , we introduced two topic-level
variables 𝛼𝑞 and 𝛽𝑞 . We assume that 𝑟𝑑,𝑞 obeys a beta distribution
with parameter 𝛼𝑞 and 𝛽𝑞 , i.e., 𝑟𝑑,𝑞 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑞, 𝛽𝑞). As for 𝛼𝑞, 𝛽𝑞 un-
der each topic 𝑞, they are all sampled from the uniform distribution
𝑈 (𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 ).

With the true relevance set
{
𝑟𝑑,𝑞 |𝑑 ∈ D𝑞;≤𝐾

}
, next, we need to

generate the corresponding relevance judgment result 𝑟𝑑,𝑞;𝑢 . In
general, the value of 𝑟𝑑,𝑞;𝑢 is limited to a finite set. For example, in
𝐺-grade setting, usually 𝑟𝑑,𝑞;𝑢 ∈ {0, 1, · · ·,𝐺 − 1}. To bridge the gap
from 𝑟𝑑,𝑞 and 𝑟𝑑,𝑞;𝑢 , we introduce intermediate hidden variables
𝑟𝑑,𝑞;𝑢 (∈ [0, 1]). We assume that the assessor’s perceived relevance
𝑟𝑑,𝑞;𝑢 is determined by true relevance 𝑟𝑑,𝑞 , assessor-level bias fac-
tor 𝜎𝑢 and annotation-level bias factor𝑤𝑑,𝑞;𝑢 . The factors 𝜎𝑢 and
𝑤𝑑,𝑞;𝑢 are sampled from the uniform distribution 𝑈 (𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 )
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and 𝑈 (𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 ), respectively. Eq 15 shows the specific calcu-
lation formula for assessor’s perceived relevance, where 𝜖1, 𝜖2 are
two random factors independently sampled from standard normal
distribution.

𝑟𝑑,𝑞;𝑢 = 𝑟𝑑,𝑞 + 𝜎𝑢𝜖1 + 𝜎𝑢𝑒𝑤𝑑,𝑞;𝑢𝜖2 (15)

To obtain 𝑟𝑑,𝑞;𝑢 , we uniformly split the interval [0, 1] into 𝐺
slices: [0, 1/𝐺), [1/𝐺, 2/𝐺), · · ·, [(𝐺−1)/𝐺, 1]. We just need to check
which interval 𝑟𝑑,𝑞;𝑢 belongs to, then we can set 𝑟𝑑,𝑞;𝑢 to be 0, 1, · ·
·,𝐺 − 1, respectively.

To reduce the variance of metrics, for every 𝑌 topics, we choose
the same batch of “assessors” to conduct relevance judgments. Also,
to better evaluate the quality of relevance judgments under these 𝑌
topics with a single parameter, we set the assessor-level bias factors
𝜎𝑢 of the same batch assessors as the same.

In our experiments, we set |QR | = 10, 000, 𝑌 = 100, 𝐾 = 5, |U𝑞 | =
15. We change the relevance scale |𝐺 | ranging from 2 to 30. Also, we
set 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 , 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 as 2, 5, 0.001, 0.3,−0.5, 0.5,
respectively.

At the same time, we need to generate synthetic preference
judgment results in the process of PDP calculation. To answer RQ1,
for the sake of the PDP value stability, we use the preference results
of all the preference tuples (𝑞, 𝑑1, 𝑑2) to estimate document-level
preference matrix. To answer RQ2, we sample 𝐵 preference tuples
under each grade pair (𝑔𝛼 , 𝑔𝛽 ) using the sampling with replacement
approach. We choose the parameter 𝐵 from {10, 20, 40, 80, 160, 320}.
Also, due to the high computational cost, we only select three
representative batches of topics to conduct experiments in RQ2.
The 𝜎𝑢 of these three batches are closest to 0.05, 0.15 and 0.25,
which represent high-quality, medium-quality and low-quality of
relevance judgments respectively.

Meanwhile, since we consider the preference judgments as the
gold standard, all these preference results are generated without
noise based on the true labels. In other words, we set 𝑝𝑓𝑑1≻𝑑2 |𝑞 > 0
if and only if 𝑟𝑑1,𝑞 > 𝑟𝑑2,𝑞 .

4.2 Experimental Results
4.2.1 Influence of the Quality and Relevance Scale of Relevance

Judgments on PDP. To answer RQ1, we first investigate how PDP
varies with different relevance scales and different annotation qual-
ities. We select the relevance scale 𝐺 ranging from 2 to 30. Based
on 𝜎𝑢 , we divide the relevance judgment data into three categories:
high quality (0.001 ≤ 𝜎𝑢 ≤ 0.1), medium quality (0.1 < 𝜎𝑢 ≤ 0.2),
and low quality (0.2 < 𝜎𝑢 ≤ 0.3).

Figure 4 shows how relevance scale and annotation quality affect
the mean of PDP. We can find that the mean value of PDP decreases
when the relevance scale 𝐺 increases. It indicates that if we can
maintain the same annotation quality while the relevance scale
increases, we will get a more discriminative relevance collection.
However, in practice, that is not easy to achieve. A higher relevance
scale setting requiresmore granular relevance perception. Assessors
are more likely to be confused in the annotation process.

Considering the relationship between annotation quality and
mean value of PDP, we observe that higher annotation qualities
bring lower PDP values, when controlling the relevance scale as
the same. That is what we expect.

Results also show that the mean value of PDP in aggregate mode
is lower than the one in individual mode, which illustrates that

in most cases the aggregation relevance scores could be more dis-
criminative than directly using the original judgment scores. More
specifically, we find that PDP in aggregate mode can extract dis-
criminative information even in the low-quality collection, but not
for PDP in individual mode. The mean of individual-mode PDP in
the low-quality collection is about 4.6, which is only slightly better
than the random annotation case (4.7875).
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(a) Individual mode
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(b) Aggregate mode

Figure 4: PDP varies with different grade settings and anno-
tation qualities in synthetic dataset, subfigures (a) and (b)
represent PDP in individual mode and aggregate mode re-
spectively

4.2.2 The Consistency Between Evaluation Metrics and Anno-
tation Quality. To answer RQ1, we also analyze the consistency
between evaluation metrics and annotation quality. Here, we use
Fleiss’ 𝜅 [20], Weighted 𝜅[20], Krippendorff’s 𝛼 [24] and Φ [10] as
comparisons. From Eq 15, we know that larger 𝜎𝑢 indicates that
assessor 𝑢 is more confused with the given grade setting to make
more mistakes in the judgment process. In our experiments, we
set the parameters 𝜎𝑢 of assessors annotated for each 𝑌 topics (i.e.,
a batch) as the same. Therefore, we can take the parameter 𝜎𝑢 to
evaluate the mean annotation quality of the judgment results under
these 𝑌 topics.

Figure 5 shows the consistency between these evaluation metrics
and 𝜎𝑢 , where we use Spearman’s rank correlation coefficient [1] to
evaluate for the consistency. We can find that when the relevance
scale increases, individual mode PDP, Krippendorff’s 𝛼 , weighted
𝜅 and Φ keep high consistency with annotation quality, aggregate
mode PDP becomes more reliable, while kappa performs worse.
This phenomenon is in line with our expectations. When relevance
scale increases, even excellent assessors can hardly guarantee that
the judgment results are identical. Hence, in high-grade settings,
Fleiss’ 𝜅 fails to distinguish the better one from given relevance
collections. In contrast, the calculation of PDP is based on the pair-
wise comparison. When the relevance scale increases, the impact
of annotation quality on PDP value is even more significant. High-
quality assessors are more likely to bring consistent preference
information compared with assessors in low quality. As for Krip-
pendorff’s 𝛼 andWeighted 𝜅 , they consider the ordinal difference to
design penalty weights of inconsistency. That seems to be reliable
even when the relevance grade becomes large. Another consistency
metric, Φ, maps different relevance grades into different real num-
bers within the interval [0, 1]. Higher relevance scale has no harm
to estimate the posterior distribution 𝑃 ( ®𝜇,Φ|𝑋 ). Thus, Φ still keeps
high agreement with 𝜎𝑢 when relevance scale increases.

Figure 5 also depicts the differences between two modes of PDP.
We observe that PDP in individual mode holds the highest consis-
tency with annotation quality in all these metrics, no matter what
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Figure 5: The consistency between evaluation metrics and
annotation quality in different grade settings

the relevance scale is. PDP in aggregate mode performs not well,
especially when the relevance scale is small. We assume that is
because aggregate mode PDP might devote more attention to the
intrinsic distinguishability characteristics among the documents,
rather than the relevance judgments.

Thus, if one only focuses on the quality of relevance judgments,
we recommend to employ individual mode PDP. If one expects to
take the documents themselves into account, aggregate mode PDP
might be a better choice.

4.2.3 Effect of the Preference Judgment Scale on the Reliability
of PDP. To answer RQ2, we choose different scales of preference
tuples to conduct experiments. Figure 6 shows the experimental
results. We choose the relevance scale four, seven, and sixteen as
representatives. The results of other relevance scales are similar to
them. For each scale of preference test samples, we repeat the ex-
periments 100 times independently to obtain each box-and-whisker
in the graph.

From Figure 6, we observe a significant improvement of PDP’s
reliability when the scale of preference test samples become larger.
When the relevance scale becomes larger, we can see a slight reli-
ability improvement when keeping the same scale of preference
test samples in each grade pair. However, the total required scale
of preference test samples still becomes larger when the relevance
scale increases, because the number of grade pair shows a quadratic
relationship with the relevance scale. Compared with aggregate
mode PDP, individual mode PDP shows more stable performance
even on the small preference test samples and low-quality anno-
tations condition. We assume that is because the actual samples
size in individual mode is |U𝑞 | larger than the size in aggregate
mode, as the difference demonstrated by Eq 10 and Eq 11. Another
interesting phenomenon occurs in Figure 6d: Aggregate mode PDP
draws the wrong conclusion when comparing low-quality and
medium-quality relevance judgment data in 4-grade setting. This
phenomenon coincides with our findings in Sec 4.2.2: aggregate
mode PDP exhibits lower consistency with relevance annotation
quality when the relevance scale is not too large.

To answer the specific quantity required to obtain a reliable PDP
value, we recommend to use individual mode PDP when the budget
is not sufficient enough. In this case, no more than 40 preference
test samples for each grade pair are required to evaluate relevance
judgments with PDP reliably. The aggregate mode PDP can also
be applied when we can collect no less than 160 preference test
samples for each grade pair.

Table 1: Statistics of Original NTCIR-15 WWW-3 Data

subtask Chinese English
#topics 80 160
#assessors/topic 3 8
pool depth 30 15
total #docs pooled 11, 172 32, 375
relevance scale 4 3
submitted #runs 11 37

5 EXPERIMENTS ON REAL-WORLD
DATASETS

5.1 Experimental Setting
We select two datasets to test the performance of our metric: NTCIR-
15 WWW-3 Chinese and English subtask [33] datasets. Table 1
summarizes the statistics of the original NTCIR-15 WWW-3 data.
Next, we will show more details about these two datasets.

5.1.1 Chinese Subtask. In the Chinese subtask data, the original
relevance judgments were conducted in a 4-grade setting. To obtain
more types of relevance judgments data, we additionally conduct
7-grade relevance judgments. In our setting, we present a statement
to assessors: the search need can be satisfied with document𝑑 under
topic 𝑞. Assessors need to annotate the degree of agreement from 0
(strongly disagree), 1 (disagree), 2(a little disagree), 3 (neutral), 4 (a
little agree), 5 (agree), and 6 (strongly agree). We conduct 7-grade
relevance assessments in the top-10 documents pooling set, totaling
of 5, 098 query-document pairs. For each query-document pair, we
ask three assessors to annotate independently.

Based on a set of 4-grade relevance judgment results, we perform
relevance grade reduction to obtain binary relevance assessments by
treating all assessments with grade𝑀 (<= 3) or above as relevant
and others as nonrelevant. We denote the result by 4to2 (≥ 𝑀). For
example, “4to2 (≥ 1)” means relevance grades 3,2,1 are treated as
relevant and 0 as nonrelevant. In our experiments, we try all three
reduction strategies (4to2 (≥ 1), 4to2 (≥ 2), and 4to2 (≥ 3)) to obtain
binary relevance collections from original 4-grade data.

As the requirement of preference judgment results in the process
of PDP calculation, we also conduct preference tests to estimate the
document-level preference matrix. To ensure the accuracy of the
estimates, we randomly sample no less than 100 preference tuples
(𝑞, 𝑑1, 𝑑2) for each different grade pair (𝑔𝛼 , 𝑔𝛽 ) in original 4-grade
and 7-grade settings, totaling 2, 244 preference tuples.We conducted
preference tests under strict mode5 [6], i.e., each assessor needs
to choose from the preference levels −2/−1/1/2, which indicate
the document 𝑑1 is substantially-better/better/worse/substantially-
worse than document𝑑2 under topic 𝑞, respectively. For each prefer-
ence tuple, we asked three assessors to annotate. As the preference
judgment results are perceived as ground truth in our experiments,
these assessors are permitted to discuss the contradictory results to
improve the annotation quality further after judgments. The final
preference signal 𝑝𝑓𝑑1≻𝑑2 |𝑞 is set as the median of the assessors’
judgment results.

5.1.2 English Subtask. In the English subtask data, due to the
limited resources, we only make use of its original relevance judg-
ments. In the WWW-3 task’s overview paper [33], Sakai et al.
5The calculation method of PDP with weak mode preference tests is almost the same.
Here we only conducted preference judgments under strict mode due to the limited
resources.
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(a) Individual Mode in 4-grade
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(b) Individual Mode in 7-grade
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(c) Individual Mode in 16-grade
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(d) Aggregate Mode in 4-grade
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(e) Aggregate Mode in 7-grade
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(f) Aggregate Mode in 16-grade

Figure 6: The reliability of PDP varieswith different preference judgments scale in different grade settings and differentmodes.
Under each samples scale of each graph, the left, middle and right boxes represent the high quality, medium quality and low
quality annotation data respectively.

adopted another interesting method to aggregate the judgment
results. They obtained a 5-grade relevance score by taking the inte-
ger part of log2 (𝑆 + 1), where 𝑆 is the sum of the raw labels.

In our experiments, we adopt these 5-grade aggregation results,
as well as the original 3-grade setting and two kinds of reduced
2-grade settings (3to2 (≥ 1) and 3to2 (≥ 2)).

As for preference judgments, we use the same strategies as the
Chinese subtask to conduct. In total, we collect 300 preference
tuples for the follow-up experiments.
5.2 Experimental Results
Due to the effectiveness of Krippendorff’s 𝛼 and Φ on synthetic
experiments, we continue to use them as comparisons with PDP
on real-world data. Discriminative power (DP) [30], as an existing
evaluationmetric which is able to evaluate the discriminative power
of relevance judgment collections, is also calculated.

Table 2 summarizes the experimental results on real-world dataset.
We calculate all the evaluation metrics on both top-5 and top-10
relevance judgment collections. As for the top-𝐾 (𝐾 = 5, 10) col-
lection, PDP is calculated based on the top-𝐾 ranking list of each
collected run. The value of PDP shown in Table 2 is the mean value
of PDP upon all the topics and all the submitted runs. Based on [30],
we calculate the values of DP on a series of evaluation measures,
including linear nDCG, exponential nDCG [5, 23] , Q-measure [32],
nERR [9] and RBP [26]. As for consistency metrics, Krippendorff’s
𝛼 and Φ are calculated with top-𝐾 pooling document set.

5.2.1 Overall Analysis in Chinese Subtask. Table 2 shows the
experimental results in the Chinese subtask. The value of Krip-
pendorff’s 𝛼 decays dramatically when relevance scale increases.
However, we cannot draw any conclusions from this decay because
the annotation consistency between assessors would naturally de-
cay as the relevance scale increases. Therefore, Krippendorff’s 𝛼 is
not an appropriate metric to evaluate annotation quality in cross-
grade scenarios.

As for another consistency metric Φ, when focusing on the three
4to2 collections, it draws an opposite conclusion compared with
DP and PDP: Φ points that 4to2(≥ 3) performs best, while both DP
and PDP assume that 4to2(≥ 1) performs best. This phenomenon

reflects the contradiction between high consistency (Φ) and high
distinction (DP and PDP). We perceive that the conclusions drawn
by DP and PDP are a bit more plausible because of the existing
“reliable but useless” phenomenon.

Two kinds of PDP measures tell us completely opposite conclu-
sions when comparing collections in 4-grade and 7-grade settings.
We conduct significance tests, and find that the differences of all
kinds of PDP between these two settings are not significant even
when we relax the 𝑝-value to 0.1. DP measure also has a mix results
on the comparison of these two datasets. Some indicate 4-grade
setting is better, while other stand for 7-grade setting. This phenom-
enon indicates that the discriminative ability of these two datasets
is relatively close.

When compared the original 4-grade collection with the reduced
binary collections, we find that the reduction strategies harm the
quality of relevance judgment data. Among these reduction strate-
gies, DP and PDP show that 4to2 (≥ 1) performs best while 4to2
(≥ 3) performs worst. It illustrates that the difference between grade
0 and higher grades contains most information in original 4-grade
relevance judgment data, while the difference between grade 3 and
lower grades makes the least contribution in original data. These
conclusions are consistent with the findings in [36].

5.2.2 Overall Analysis in English Subtask. In English subtask,
an interesting finding is that the aggregation 5-grade setting used
in WWW-3 overview paper [33] performs best. We assume that is
because the document distribution under the original 3-grade is
unbalanced. The conversion from 3-grade into 5-grade makes data
distribution more even.

The reduction strategies in English subtask also harm the anno-
tation quality. It is worth noting that the 3to2 (≥ 1) collection has a
competitive performance against with original 3-grade relevance
collection. This phenomenon indicates that the difference between
grade 1 and grade 2 in original relevance judgment data is not reli-
able. The data confirm our conjecture: the grade-level preference
probability 𝑝 (2 ≻ 1) is only 0.73 in aggregate mode.

In the English subtask, we can also observe the high consistency
between PDP and DP. The low values of Krippendorff’s 𝛼 and Φ
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Table 2: The mean values of Krippendorff’s 𝛼 , Φ, DP and PDP(ours) on both WWW-3 Chinese and English subtask datasets.
The boldface highlights the best-performing annotation setting.

Subtask Chinese Subtask English Subtask
#grade 4to2(≥ 1) 4to2(≥ 2) 4to2(≥ 3) 4(orig) 7(orig) 3to2(≥ 1) 3to2(≥ 2) 3(orig) 3to5(logS)

𝛼[24] top-5 0.6256 0.6779 0.4799 0.6598 0.3848 0.1213 0.0850 0.1312 /
top-10 0.6048 0.6782 0.4715 0.6468 0.4037 0.1198 0.0833 0.1291 /

Φ[10] top-5 0.7806 0.8743 0.8885 0.9811 0.9552 -0.2202 0.1062 0.1501 /
top-10 0.7781 0.8866 0.9123 0.9851 0.9595 -0.2214 0.0822 0.1313 /

DP[30]

top-5

linear_nDCG 69.09% 65.45% 47.27% 69.09% 69.09% 69.52% 56.61% 72.82% 74.32%
exp_nDCG 67.27% 65.45% 49.09% 67.27% 65.45% 69.07% 54.80% 70.57% 73.57%
Q-measure 72.73% 69.09% 45.45% 78.18% 67.27% 69.37% 53.30% 72.07% 73.57%

nERR 61.82% 56.36% 47.27% 63.64% 63.64% 65.62% 54.80% 68.17% 69.52%
RBP 69.09% 67.27% 52.73% 74.55% 69.09% 70.27% 58.26% 72.07% 75.38%

top-10

linear_nDCG 72.73% 72.73% 50.91% 72.73% 80.00% 75.53% 63.96% 76.28% 78.83%
exp_nDCG 72.73% 70.91% 50.91% 69.09% 70.91% 75.08% 62.31% 75.68% 79.43%
Q-measure 72.73% 70.91% 45.45% 72.73% 80.00% 73.87% 58.11% 74.77% 78.38%

nERR 63.64% 60.00% 47.27% 61.82% 63.64% 67.72% 60.66% 69.67% 68.92%
RBP 74.55% 72.73% 56.36% 80.00% 80.00% 76.43% 66.52% 77.33% 80.48%

PDP(ours)
top-5 aggregate 4.2442 4.2810 4.5682 4.1060 3.9864 4.4386 4.6871 4.4885 4.1821

individual 4.3652 4.4013 4.6317 4.2289 4.3290 4.6931 4.7343 4.6790 /

top-10 aggregate 13.5859 13.7294 14.5224 13.2123 12.8050 14.1281 14.8191 14.2650 13.4380
individual 13.9136 14.0529 14.6942 13.5511 13.8157 14.8135 14.9304 14.7831 /

in all the collections indicates the low reliability of the original
relevance judgment results.

5.2.3 The Relevance Grade Extension Experiments. In Chinese
subtask, we observe the close performance between the original
4-grade and 7-grade data. We wonder if we just extend the original
4-grade data into 7-grade to generate pseudo 7-grade assessments,
whether the pseudo 7-grade collection can have a similar or even
better performance.

In the extension process to obtain pseudo 7-grade relevance judg-
ment collection, we introduced parameter𝑤 to depict the degree
of uncertainty. For simplicity, we shall refer to the resultant data
as 4to7 (𝑤 ), e.g. “4to7 (1.0)” (4-grade relevance grades extended to
7-grade data with𝑤 = 1.0).

Eq 16 shows the specific transition probability. The degree of
uncertainty becomes weaker when the parameter𝑤 becomes larger.
In particular, when 𝑤 approaches positive infinity, the extension
results become completely certain. The grade 0/2/4/6 in 4to7 (+∞)
setting exactly corresponds to grade 0/1/2/3 in original 4-grade
setting. In our experiments, we choose parameter𝑤 from the set
{0.5, 1.0, 2.0, 3.0, 4.0, +∞}. For each 𝑤 , we randomly generated 5
slices of extension 7-grade collections to obtain a more stable values
of evaluation metrics.

𝑃 (𝑔7-grade = 𝑔 (7) |𝑔4-grade = 𝑔 (4) ) =
𝑒−𝑤 |2𝑔 (4)−𝑔 (7) |∑
𝑔∈G (7) 𝑒−𝑤 |2𝑔 (4)−𝑔 |

(16)

Figure 7 shows the the mean and standard derivation of PDP
and DP under different parameters 𝑤 . Almost all the evaluation
metrics indicate that the collection discrimination becomes stronger
when the𝑤 becomes larger. This phenomenon demonstrates that
introducing randomness in the extension process has a side-effect
on the annotation quality to some extents.

Another interesting phenomenon occurs on the data 4to7 (+∞).
When comparing it with original 4-grade collection, we expect the
values of evaluation metric in these two datasets would be the same
due to their equivalence. As a result, we observe that PDP on 4to7
(+∞) is just the same as the 4-grade setting due to their identical
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Figure 7: The mean and standard derivation of PDP and DP
in top-5 and top-10 ranking lists under different extension
parameters𝑤

document-level preference matrices. However, on DP measures,
there exists a significant shift between two collections. The DP
values of most metrics on 4to7 (+∞) setting are lower than those
on the 4-grade setting. We assume that this phenomenon occurs
because many ranking evaluation measures are not scalable. The
linear or exponential gain of nDCG and Q-measure, the exponential
stop probability of nERR cause the variability of measures when
the relevance scale changes. This phenomenon is not a good signal.
It might lead us to get wrong conclusions when using DP measures
to compare annotation quality in cross-grade scenarios.
6 CONCLUSIONS
In this paper, we propose a novel metric PDP to evaluate the dis-
criminative ability of relevance judgment collections. Unlike the
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DP measure proposed by Sakai et al. [30], PDP does not need to
be calculated based on a series of ranking lists from different re-
trieval systems but only requires introducing affordable amount
of additional preference tests to evaluate the relevance judgment
collections. We propose a unified framework for generating rel-
evance judgment collections under multi-grade setting and then
generate a series of synthetic data sets on different grade settings.
We conduct a series of experiments on both synthetic and real-
world datasets. Experimental results confirm that PDP, especially
the individual mode version, can characterize the annotation qual-
ity to some extent and show competitive performance compared
with 𝜅, Krippendorff’s 𝛼 , Φ and DP. In our experiments, we also
observe that consistency metrics is not appropriate to compare the
annotation quality in cross-grade scenarios. PDP and DP can satisfy
this evaluation need, but DP suffers from the value shift between
different grades. We recommend the follow-up researchers adopt
PDP metric to compare relevance judgments collected on differ-
ent annotation settings. Then they can decide which setting to be
employed for larger-scale annotation experiments.
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