arXiv:2507.19033v1 [csIR] 25 Jul 2025

SelfRACG: Enabling LLMs to Self-Express and Retrieve for Code
Generation

Qian Dong!, Jia Chen?, Qingyao Ai'*, Hongning Wang!, Haitao Li',
Yi Wu?, Yao Hu?, Yiqun Liu', Shaoping Ma'
'DCST, Tsinghua University, Beijing, China
2Xiaohongshu Inc., China
{dg22,1iht22}@mails.tsinghua.edu.cn, {aiqy,hw-ai,yiqunliu,msp}@tsinghua.edu.cn,
{chenjia2,xiaohui,xiahou}@xiaohongshu.com

Abstract

Existing retrieval-augmented code generation
(RACG) methods typically use an external re-
trieval module to fetch semantically similar
code snippets used for generating subsequent
fragments. However, even for consecutive code
fragments, the content often diverges due to
logical progression, resulting in a content gap.
This gap undermines the performance of cur-
rent RACG methods, as external retrieval mod-
ules based on content matching fail to infer the
specific information need of LLMs to generate
the next code fragment. Therefore, we propose
SelfRACG, a novel paradigm that enables large
language models (LLMs) to Self-express their
information needs to enhance RACG. Specifi-
cally, SelfRACG includes an information need
expression module and a two-stage informa-
tion need-guided training strategy, which en-
courages LLMs to express their information
need. Extensive experiments demonstrate that
SelfRACG can retrieve external knowledge that
better aligns with the LLM’s own information
needs, resulting in superior generation perfor-
mance compared to vanilla RACG. Moreover,
both the training and deployment costs for re-
trieval in our framework are much lower than
those of the strongest retrieval model. !

1 Introduction

Current retrieval-augmented code generation
(RACG) techniques typically employ external re-
trieval modules, such as BM25 (Robertson et al.,
2009) or embedding-based retrieval models (Muen-
nighoff et al., 2024; Lee et al., 2024), to identify
code fragments that closely align in content with
preceding codes, thereby enhancing the generation
of subsequent fragments.

However, even consecutive code fragments can
differ significantly in content due to the progres-
sion of logic. As shown in Figure 1, the preceding

* Corresponding author.
"https://github.com/CSQianDong/SelfRACG

Input code

def preprocess_data(dataset):
Remove missing values
cleaned_data = dataset.dropna()

Remove duplicates
cleaned_data =\
cleaned_data.drop_duplicates()

fé 8\

External LLM
retriever itself

def clean_data(dataset):

Conflict with the Align with the
LLM information LLM information

need. need.

X 7/

def train_model(X, y, model):
Split into training and test sets
X_train, X_test, y_train, y_test =\
train_test_split(X, y,
test_size=0.2,
random_state=42)

def transform_dataset(data):
filling with median values
filed_data =\
data fillna(data.median(
numeric_only=True))

Remove duplicates
cleaned_data =\
cleaned_data.drop_duplicates()

train the model
model.fit(x_train, y_train)

Figure 1: Comparison of vanilla RACG vs. SelfRACG.

code fragment might implement a function for data
pre-processing, such as cleaning or normalizing a
dataset, while the subsequent fragment could define
an entirely different function for training a machine
learning model on the processed data. Although
these two fragments are part of the same work-
flow, their content differs substantially, as each
addresses a distinct functionality. Consequently,
existing RACG methods struggle to effectively im-
prove overall performance, as the external retrieval
modules often fail to accurately fetch the knowl-
edge required for code generation. These external
retrievers typically rely on similarity to retrieve
code fragments for RACG. However, the retrieved
fragments are often functionally similar to the ex-
isting code, rather than specifically aligned with
the LLM’s actual generation needs. Building on
the observation that LLMs inherently possess the
capability to generate the next token, we argue that
the hidden states associated with the next token
already encapsulate the information needs required
for future content generation. Therefore, a critical
research question is: Can LLMs express their
own information needs for RACG?

https://arxiv.org/abs/2507.19033v1

To enable LLMs to Self-express their infor-
mation needs and perform RACG, our Self-
RACG paradigm introduces two core components:
an Information Need Expression (INE) module
and a two-stage Information Need-Guided (ING)
training strategy. Specifically, INE module is
achieved by a parameter-efficient fine-tuning tech-
nique named Layer-wise Low-Rank Adaptation
(L-LoRA). Through L-LoRA, we implement a
retrieval-aware attention operation parallel to self-
attention at each layer of the LLM. With minimal
additional parameters and training costs, we ex-
tract the LLM’s information needs from the hidden
state of the next token. Since the retrieval-aware
attention operates completely in parallel with the
LLM’s original self-attention, the next-token hid-
den states remain unaffected. Consequently, the
original generation capabilities of the LLM can be
fully preserved. The second key technique of Sel-
fRACG is ING, a two-stage training strategy that
enables LL.Ms accurately retrieve the information
required for subsequent code generation. The first
stage of ING leverages existing code from GitHub
to create training samples, providing the LLM with
foundational code retrieval skills. The second stage
then uses a small amount of LLM-synthesized data
to further train the model, aligning its retrieval ca-
pabilities with its own generation preferences.

We conduct extensive experiments to validate
our method on two comprehensive benchmarks
using various top-tier code LLMs. The experimen-
tal results demonstrate that SelfRACG effectively
bridges the content gap between retrieved and sub-
sequent code fragments, thereby improving the
quality of code generation. Moreover, both the
training and deployment costs of our INE mod-
ule for retrieval are much lower than those of the
strongest retrieval module.

The key contributions of our work can be sum-
marized as follows:

* We propose SelfRACG, a novel paradigm that en-
ables LLMs to self-express their own information
needs for RACG.

* We introduce the INE module and ING training
strategy to equip LLMs with the capability of ex-
pressing information needs at a low cost, without
compromising the LLMs’ original capabilities.

* We conduct comprehensive experiments on two
benchmarks using multiple code LL.Ms, demon-
strating effectiveness of our method.

2 Related Work
2.1 Code Large Language Models

Recent advancements in code large language mod-
els (LLMs), such as Qwen2.5-Coder (Hui et al.,
2024), OpenCoder (Huang et al., 2024), and
DeepSeek-Coder (Guo et al., 2024), have demon-
strated impressive capabilities in code genera-
tion. These models leverage vast amounts of code
data to provide functional code snippets across
diverse tasks. However, their performance of-
ten degrades when dealing with repository-level
code completion, which requires fine-grained un-
derstanding of repository-specific contexts and de-
pendencies (Zhang et al., 2023; Wang et al., 2024).
To mitigate this issue, various retrieval-augmented
generation methods have been proposed (Zhang
et al., 2023; Liu et al., 2024b; Lu et al., 2022).

2.2 Retrieval-Augmented Code Generation

RACG has emerged as a promising paradigm for
enhancing code generation by integrating exter-
nal context into the generation pipeline (Tan et al.,
2024; Parvez et al., 2021; Gao et al., 2023). Tra-
ditional RACG methods rely on retrievers like
BM25 (Robertson et al., 2009) or embedding-
based models (Muennighoff et al., 2024; Lee
et al., 2024) to fetch contextually relevant code
snippets from repositories. For example, Re-
poCoder (Zhang et al., 2023) employs an itera-
tive retrieval-generation framework to iteratively
refine retrieved code snippets. Similarly, Repo-
hyper (Phan et al., 2024) introduces a semantic
graph-based retrieval method to capture broader
contextual relationships within repositories. RACG
could address the limitations of parametric knowl-
edge in LLMs. Despite the advantage, existing
RACG approaches often struggle to bridge the con-
tent gap between retrieved codes and the model’s
information needs, leading to suboptimal genera-
tion performance.

2.3 LLM-based Embedding Models

Beyond generative tasks, LLMs have also been
adapted for text embedding tasks, enabling
them to serve as powerful embedding models.
GritLM (Muennighoff et al., 2024) unifies gener-
ative and embedding tasks within a single model
through generative representational instruction tun-
ing through extensive training costs. This approach
enables GritLM to excel in both embedding and
generation. Besides, gte-Qwen (Li et al., 2023), in-

structor (Su et al., 2022) and NV-Embed (Lee et al.,
2024) extend embedding tasks with instruction tun-
ing, enabling fine-grained control over embedding
generation by explicitly encoding task-specific in-
structions. These works highlight the potential of
LLMs in embedding tasks, presenting new possi-
bilities for retrieval and semantic understanding.

3 Method

In this section, we introduce our proposed Self-
RACG framework. Section 3.1 introduces the In-
formation Need Expression (INE) module, which
enables LLLMs to express their information needs
from hidden states for retrieval. Section 3.2
outlines the two-stage Information Need-Guided
(ING) training strategy, which is designed to train
the INE module, ensuring that the retrieved code
snippets align with the LLM’s generation needs.
Figure 2 illustrates the workflow of SelfRACG.

3.1 Information Need Expression Module

The design of the INE module is guided by two
key principles: (1) introducing minimal additional
parameters to reduce training costs, and (2) equip-
ping the LLM to produce retrieval representations
without compromising its original generation capa-
bilities. To achieve this, the INE module is imple-
mented as a parallel component to the traditional
self-attention mechanism, incorporating a retrieval-
aware attention operation through our proposed
Layer-wise Low-Rank Adaptation (L-LoRA).

Specifically, for each transformer layer I &
[1, L], the projections X' () of original self-attention
are first computed as

x0 = pOwY, (1)

where X is a wildcard representing the {Q, K, V'}

projections in self-attention. W)((l) e R4 are
the weight matrices of the {Q, K, V'} projections.
Then, the scaled dot-product self-attention at layer

[is computed as
DT
Q()f;()) v, @
d

To enable parameter-efficient tuning of LLMs,
the vanilla LoRA (Hu et al., 2021) decomposes

weight updates AW)((I) — aAEé)BEé)T. For each
projection {@, K, V'}, the computation becomes

RUFD = Softmax (

X0 =xO0 4 an®ADBOT (3

where « is a scaling factor that controls the
magnitude of the adaptation, and rank repre-
sents the rank of low-rank matrices Ag?, Bg? €
Réxrank rank < d. Subsequently, (1) is com-
puted by Equation (2) by replacing X with X.

Vanilla LoRA shifts the hidden states of the sub-
sequent layers, potentially affecting the generation
quality of the LLM. However, there is a significant
gap between retrieval and generation tasks, making
it challenging to optimize both simultaneously with
limited training resources.

Therefore, as illustrated in Figure 2, our ap-
proach computes retrieval-related projections using
L-LoRA and introduces a parallel attention mech-
anism alongside the original self-attention to pro-
duce representations specifically for the retrieval
task. The computation of retrieval-related projec-
tions is similar to vanilla LoRA, which can be de-
fined as

xW = O 4 ah(l)Aggreth?,r—e[t : “)

ret

Extra computational cost.

Only ah(l)Ag?rethpr—le—t represents the additional
computationaf cost of calculating the retrieval-
related projections, while X(!) can be directly
reused from the original self-attention, as shown in
the left of Figure 2. Notably, we only require the
query projection of the last token ¢ to compute the
layer-wise retrieval representation. The layer-wise
retrieval representation can be computed by

! nt
Q7("e)t,tK o v

\/g ret’ (5)

r¥) = Softmax

where Qi@t’t is query projection for last token ¢.
The information need of the LLM can be ex-

pressed as the mean pooling of each layer’s re-

trieval representations, which can be computed as

r=123 00, ©)

This mean-pooling aggregation helps refine the re-
trieval process by leveraging both shallow and deep
contextual features from self-attention.

L-LoRA and vanilla LoRA primarily differ in

how the computed projections are used. Af-
ter obtaining the retrieval-related projections XT(Q

through L-LoRA, they are employed in a parallel
retrieval-aware attention operation alongside the

The I-th layer of LLM

|
xll'/(\f) = A":Tll:ion "I:I:I:I:l

self-attention

QO, KO, VO

hidden state h® projections

) T 1
x ‘4(\.'.X’L'IB,\/.I‘(N
Retrieval
- aware
Attention

retrieval-related
projections

~[]

L-LoRA

pU+D

representation .

MON

X e .
N <[> D Self-retrieve :
'\ Input code Retrieved code (MIPS) :
\ H !
“ v i
« _—————
by LLM I Avg. ! :
output L 1 1 .
Layer;, ——ip T(L) 3 —
1 1 Corpus
, 1 1 t
, Layer, r

layer-wise ’ |
retrieval K4 coo 1

Layer; ———1% 1)

Figure 2: The workflow of SelfRACG. We use the [-th layer as an example and provide a detailed explanation of the
relationship between retrieval-aware attention and self-attention within the gray box at the left of figure.

original self-attention. In contrast, projections x®
in Equation (3) obtained through vanilla LoRA are
used within the original self-attention operation.
As aresult, L-LoRA effectively decouples the gen-
eration and retrieval tasks, enabling the rich infor-
mation encoded in the LLM’s hidden states to be
efficiently extracted for retrieval, while preserving
the model’s original generation capabilities.

3.2 Information Need-Guided Training

To efficiently align the LL.M’s retrieval capability
with its generation needs, we propose a two-stage
training strategy, namely Information Need-Guided
(ING) training, as illustrated in Figure 3.

Stage 1: Retrieval Learning. In Stage 1 of ING
training, we leverage existing GitHub repositories
to construct extensive unsupervised training pairs.
For a code fragment ¢, the positive sample is the
next code fragment p, while the negative pool N/
comprises code fragments from in-batch training
pairs. After stage 1 training, the INE module gains
the ability to capture general logical patterns, such
as common design structures and typical coding
habits. However, it is not aligned with the LLM’s
generation preferences.

Stage 2: Preference Alignment. To align retrieval
capability with the LLM’s generation preference,
we synthesize candidate fragments {g1, g2, ..., gk }
via LLM itself for a code fragment gq. The posi-
tive sample g; corresponds to the LLM’s imme-
diate next-step generated code fragment, while
the negative pool N combines synthetic negatives
{92, ..., g } and in-batch negatives. This stage ad-
dresses permutation ambiguities by training the
INE module to identify the precise fragment re-

| ING training \
| SI: Retrieval Learning S2: Preference Alignment |
" |
1 Tq Tq 1
| |
| |
| Tp Ty 1
1 I
! T T y
1 ! Existing g2 Synthesized !
| code code !
1 Tng fragments Tgs fragments :
|

7

Figure 3: The illustration of two stage in ING training.

quired for next-step generation.

Both stages employ the contrastive learning ob-
jective, which can be defined as

65(7‘(1 77"?)

L =—log ((7
e

5(rq,rp) 1 Zr N es(rq,mn)’

where r, denotes the context representation from
INE. s(-,-) means the inner production operation.
rp and 7, are the positive and negative candi-
date representations, respectively. Following prior
works (Muennighoff et al., 2024; Lee et al., 2024;
Lietal., 2023), when calculating r,, and 7, through
INE, we prepend a prefix to denote them as retrieval
candidates. In contrast, r, is computed directly,
without any prefix or suffix. This distinction en-
sures that the representation of the context and the
candidates are produced in different formats.

In summary, the INE module and the ING train-
ing strategy enable LL.Ms to express their infor-
mation needs and retrieve code fragments that are
useful for subsequent generation at low computa-
tional cost.

3.3 Inference

To effectively leverage the retrieval representations
produced by the INE module during inference, we
follow a straightforward yet efficient process that
ensures efficiently code retrieval for RACG.

First, we pre-process the code repository by en-
coding each code fragment using the INE module.
These representations are then stored in a vector
database, creating a dense embedding index that
can be efficiently searched at inference time.

During inference, the incomplete code fragment
is first processed by the same INE module to gener-
ate its retrieval representation. This representation
is then used to perform Maximum Inner Product
Search (MIPS) (Karpukhin et al., 2020), allowing
LLM to identify the code snippets that align with
its generation needs. The inference process is illus-
trated on the right side of Figure 2. The solid lines
represent the process by which the LLM expresses
its information needs, while the dashed lines de-
note the subsequent step where the retrieved code
fragments (via MIPS) are combined with the orig-
inal code fragment to form a new input, which is
then used to generate the target code.

4 Experimental Setup

4.1 Baselines

The improvement of the SelfRACG paradigm lies
in integrating the retrieval module with the LLM
and ensuring that the retrieved results align closely
with the LLM’s information needs. Therefore, we
validate the effectiveness of our method by com-
paring it with different retrieval models. We refer
to the RACG paradigm with an additional retrieval
model as VanillaRACG. For VanillaRACG, we use
the following retrieval models:

« BM25 (Robertson et al., 2009): A traditional
sparse retrieval method based on term frequency-
inverse document frequency.

» OpenAl-Small/Large 2: OpenAl-Small/Large
are the two strongest closed-source em-
bedding models from OpenAl, specif-
ically text-embedding-3-small and
text-embedding-3-large. These models
can be used for effective code fragment retrieval.

e GritLM (Muennighoft et al., 2024): GritLM is
the closest baseline to SelfRACG, as it enables

“https://platform.openai.com/docs/api-
reference/embeddings

LLMs to support both embedding and generation
tasks simultaneously. However, it relies on full
parameter fine-tuning, which requires substantial
computational resources and training data.

e NV-Embed-v2 (Lee et al., 2024): A state-of-
the-art embedding model ranked top on the
MTEB (Muennighoff et al., 2022) benchmark.
However, NV-Embed-v2 can only be used to pro-
duce embeddings and is not capable of handling
generation tasks.

4.2 Benchmarks

We evaluate our method on two benchmarks:

* RepoEval (Zhang et al., 2023): This benchmark
is designed for repository-level code completion
tasks and comprises three sub-tasks:

— Line-level Completion: Tasks that require the
model to complete a single line of code based
on the context.

— API-level Completion: Tasks that involve
completing function calls or API invocations.

— Function-level Completion: Tasks that need
the model to complete the body of a function
based on its definition or usage.

* CrossCodeEval (Ding et al., 2024): This bench-
mark focuses on cross-file contextual understand-
ing. Built upon real-world code repositories, it
challenges models to utilize dependencies and
contextual information across multiple files to
generate accurate code completions.

4.3 Evaluation Metrics

We adopt multiple metrics to comprehensively eval-
uate both retrieval and generation performances:

4.3.1 Code Completion Metrics

» Exact Match (EM): Measures the percentage of
predictions that exactly match the ground-truth
code. This metric is applied to all sub-tasks.

 Edit Similarity (ES): Evaluates the similarity be-
tween the generated and ground-truth code frag-
ments using a normalized Levenshtein distance.
It is also employed for all sub-tasks.

* Pass@1: It assesses whether the code generated
via greedy decoding passes all relevant test cases
when replacing the original code. This metric is
exclusively utilized for function-level completion
task in RepoEval (Zhang et al., 2023).

4.3.2 Code Retrieval Metrics

* Recall@K: Evaluates the proportion of ground-
truth code fragments that are successfully re-
trieved within the top K results.

* MRR@10: Mean Reciprocal Rank at 10, calcu-
lated as the mean of the reciprocal ranks of the
ground-truth code fragment for each sample. The

1

reciprocal rank is given by 05 with pos being

the position of the ground-truth code fragment.

4.4 Specific Settings

To thoroughly evaluate the effectiveness of our
method, we select multiple top-tier code LLMs
across various sizes and versions. We use the in-
structed version of Qwen2.5-Coder and (Hui et al.,
2024) the base version of OpenCoder (Huang et al.,
2024). For Qwen2.5-Coder, we experiment with
both 3B and 7B parameter sizes, and for Open-
Coder, we use the 1.5B and 8B parameter sizes.

For the Stage 1 of ING, the code data is
taken from the GitHub provided by CodeRAG-
Bench (Wang et al., 2024), which contains about
1.7 million code files. We filtered out repositories
that are already used in benchmarks as well as files
containing less than 20 lines of code. After filtering,
we constructed a final corpus of about 1.3 million
files. Following prior work (Zhang et al., 2023; Liu
et al., 2024b), we split the corpus into code frag-
ments with a 20-line interval. The same splitting
method was applied to the code in benchmarks.

In the L-LoRA module, the rank is set to 16, and
the alpha parameter is set to 32. For synthetic data
generation, we use the vLLM (Kwon et al., 2023)
inference library for acceleration. Starting with
the first 20 lines of the preprocessed code corpus,
we prompt the LLM to generate and complete the
subsequent code fragments. In total, we generated
500k synthetic samples for the Stage 2 of ING.

We run all experiments on 8 NVIDIA A100
80GB GPUs. By utilizing multi-GPU parallelism,
the largest model for synthetic data generation
takes approximately 3.5 hours. The total data gen-
eration and training time for the largest model in
the second phase of ING is 48 hours, corresponding
to 384 GPU hours. In the Stage 2 of ING, we use 4
synthetic negative samples per code fragment.

5 Experimental Results

5.1 Code Completion Performance

In this section, we compare the code completion
performance of VanillaRACG at different retrieval
settings with SelfRACG. The results are presented
in Table 1 and Table 6. As the trends in Table 1
and Table 6 are similar, we have moved Table 6 to
Appendix E. From these tables, we can draw the
following conclusions:

* Compared to no retrieval, RACG significantly
improves the generation performance. Even the
simplest retrieval model, BM25, leads to sub-
stantial improvements across all code completion
sub-tasks and metrics.

* Embedding-based retrieval models outperform
BM25, further enhancing code completion per-
formance. This indicates that embedding-based
retrieval models have stronger expressive capabil-
ities than statistical methods, making them better
at capturing the information needs of LLMs.

* LLM-based retrieval models deliver better gen-
eration results, highlighting the superior under-
standing power of LLMs in capturing complex
information needs.

* Among all VanillaRACG configurations, GritLM-
7B achieves the best generation performance.
Fine-tuned on a large dataset, it is designed to
integrate both retrieval and generation capabili-
ties into one LLM. Compared to NV-Embed-v2,
which focuses solely on the retrieval task, the
data retrieved by GritLM-7B align more closely
with the information needs of generation, result-
ing in better performance. However, GritLM-
7B requires significant computational resources
to integrate both generation and embedding ca-
pabilities, according to its paper (Muennighoff
et al., 2024). In contrast, SelfRACG outperforms
GritLM-7B while using 1/8 of the GPU hours.

* SelfRACG outperforms VanillaRACG based on
GritLM-7B. This performance gain can be at-
tributed to its unified design. SelfRACG uses
the same LLM for both retrieval and generation,
allowing it to extract retrieval representations di-
rectly from the next-token hidden states. This
approach results in a closer alignment between
the retrieved information and the LLM’s own
generation needs.

Table 1: The code completion experimental results of OpenCoder-Base

RepoEval-API | RepoEval-Line RepoEval-Function CrossCodeEval MEAN
EM ES EM ES ES Pass@1 EM ES EM ES
OpenCoder-1.5B-Base
w/o Retrieval 0.258 0.557 | 0.344 0.603 | 0.050 0.388 19.8% | 0.033 0.421 | 0.171 0.492
VanillaRACG
w/BM25 | 0.297 0.604 | 0.396 0.636 | 0.065 0414 24.8% | 0.055 0.449 | 0.203 0.526
w/ OpenAl-small | 0.303 0.607 | 0408 0.647 | 0.074 0430 24.8% | 0.074 0457 | 0215 0.535
w/ OpenAl-large | 0.303 0.611 | 0415 0.652 | 0.084 0.421 263% | 0.072 0454 | 0.218 0.534
w/ NV-Embed-v2 | 0328 0.626 | 0.423 0.650 | 0.074 0.415 269% | 0.077 0.463 | 0.225 0.538
w/ GritLM-7B | 0.322 0.624 | 0428 0.657 | 0.081 0.427 27.6% | 0.086 0.470 | 0.229 0.545
SelfRACG 0.342 0.636 | 0.439 0.668 | 0.093 0.439 294% | 0.088 0.465 | 0.241 0.552
OpenCoder-8B-Base
w/o Retrieval 0.292 0.591 | 0.377 0.628 | 0.059 0.414 24.8% 0.048 0437 | 0.194 0.518
VanillaRACG
w/BM25 | 0346 0.633 | 0.444 0.675 | 0.081 0.445 29.1% | 0.084 0.477 | 0.238 0.557
w/ OpenAl-small | 0.349 0.633 | 0443 0.675 | 0.090 0.467 29.4% | 0.104 0483 | 0.247 0.565
w/ OpenAl-large | 0.338 0.631 | 0450 0.685 | 0.099 0464 31.9% | 0.106 0.487 | 0.248 0.567
w/ NV-Embed-v2 | 0.365 0.648 | 0469 0.685 | 0.087 0.459 29.1% | 0.114 0494 | 0.259 0.572
w/ GritLM-7B | 0.360 0.650 | 0.468 0.689 | 0.099 0463 30.7% | 0.128 0.501 | 0.264 0.576
SelfRACG 0.391 0.680 | 0.481 0.705 | 0.124 0.481 33.8% | 0.127 0.507 | 0.281 0.593
Table 2: Retrieval performance of different retrieval models.
Model #Params #Dims | Recall@1l Recall@3 Recall@5 Recall@10 | MRR@10
External Retriever
OpenAl-small - 1536 0.136 0.359 0.473 0.626 0.291
OpenAl-large - 3072 0.149 0.359 0.484 0.644 0.304
GritLM-7B 7B 4096 0.174 0.444 0.592 0.748 0.356
NV-Embed-v2 7B 4096 0.178 0.465 0.584 0.712 0.357
SelfRACG
OpenCoder-1.5B 1.5B 1536 0.208 0.433 0.528 0.664 0.358
Owen2.5-Coder-3B 3B 1536 0.239 0.517 0.621 0.748 0.411
Owen2.5-Coder-7B 7B 3584 0.244 0.508 0.616 0.746 0.413
OpenCoder-8B 8B 4096 0.237 0.524 0.642 0.756 0.413

5.2 Code Retrieval Performance

In this subsection, we evaluate the retrieval per-
formance of various retrieval models. Since both
API-level and Function-level completions involve
the permutation of implementations, it is difficult to
evaluate the retrieval results. Theoretically, given
the context, the line-level ground truth and the
LLM’s information need for generating the next
step are consistent. Therefore, we use the line-level
completion samples from RepoEval for retrieval
performance evaluation. Specifically, we treat the
context as the query and the code fragment con-
taining the target line as the positive ground truth,
using Recall@K and MRR@10 to assess the re-
trieval performance. The results are summarized in
Table 2. From the table, we observe the following
trends: (1) SelfRACG outperforms other retrieval
models in terms of MRR@10 and Recall@1. This
indicates that by aligning the retrieval with the gen-
eration task, SelfRACG’s retrieval capabilities are
consistent with the generation logic of LLM, lead-
ing to more refined ranking results. (2) Among the

Table 3: Retrieval strategies comparison.

Retrieval Strategy API | Line | Func
VanillaRACG (GritLM) | 0.650 | 0.690 | 0.463
w/ next fragment | 0.657 | 0.692 | 0.472

w/ next query | 0.673 | 0.705 | 0.476
SelfRACG 0.680 | 0.705 | 0.481

different settings of SelfRACG, we observe that
larger model sizes generally yield better retrieval
performance. Scaling up the model in terms of
parameters may further enhance its ability to re-
trieve information that aligns with the generation
preferences of the LLM.

5.3 Alternative Retrieval Strategies

We evaluate the generation performance of differ-
ent retrieval strategies using the three levels (API,
line and function) of completion tasks from Repo-
Eval and the ES metric. The base model used in
this experiment is OpenCoder-8B-Base. The com-
parison results are presented in Table 3. Directly
using similar code fragments to augment in gen-
erating the next code segment yields the weakest

Table 4: Ablation studies of SelfRACG.

Table 5: Overhead comparison of different methods.

OpenCoder-1.5B OpenCoder-8B
Method MRR@10 ES | MRR@10 _ ES
SelfRACG 0.358 0.6678 0413 0.7048
w/o Stage 2. 0.316 0.6531 0.364 0.6912
w/o L-LoRA 0.296 0.6518 0.338 0.6847

performance. The w/ next fragment strategy di-
rectly uses the subsequent code fragment following
the retrieved code fragment as external knowledge
for RACG. However, the improvements are limited,
as the subsequent fragment may not always align
with the LLM’s generation needs.

The w/ next query strategy leverages the LLM
itself to generate a explicit query, which is then
used to retrieve external knowledge by GritLM.
As shown in Table 3, this strategy achieves better
results, as the LLM-generated queries are more
aligned with its own generation needs. However,
it still performs worse than SelfRACG on API and
function-level completion tasks. This is because
SelfRACG directly produces a implicit query em-
bedding from the next-token hidden states, which
is more expressive than an explicit query. Addi-
tionally, it avoids the extra step of converting an
explicit query into an embedding via GritLM, re-
ducing information loss. Therefore, SelfRACG
achieves the best generation performance.

It is worth noting that the performance of differ-
ent strategies on line-level tasks is relatively similar.
This is because line-level completions are generally
more deterministic given the context, making the
LLM’s information needs easier to capture com-
pared to more complex API or function-level tasks.

5.4 Ablation Studies

We conduct a step-by-step ablation of SelfRACG
to analyze the impact of key techniques on retrieval
and generation performance. Due to limited com-
putational resources, we performed ablation experi-
ments on OpenCoder using the RepoEval line-level
completion data. The results are presented in Ta-
ble 4. The first row shows the performance of
SelfRACG using all techniques.

From the table, we can draw the following con-
clusions: The preference alignment in stage 2 of
ING plays a crucial role in the model’s perfor-
mance. Without alignment with the generation
preferences, knowledge conflicts occur, which neg-
atively affect the model’s generation quality. In
the ablation experiment for L-LoRA, we fine-tuned
the corresponding OpenCoder for embedding tasks
using full parameter tuning. However, due to com-

Method Training Deployment
GritLM-7B 3,072 GPU hours 14GB
NV-Embed-v2 - 14GB
SelfRACG 384 GPU hours 0.02GB

putational limitations, full parameter fine-tuning
results in smaller batch sizes. In the full parameter
fine-tuning setup, the batch sizes for 1.5B and 8B
OpenCoder are 32 and 4, respectively. A smaller
batch size leads to fewer negative samples in con-
trastive learning, thus decreasing the retrieval per-
formance. Therefore, under limited resources, L-
LoRA could achieve better performance.

5.5 Overhead Comparison

In this section, we present a comparison between
SelfRACG and Vanilla RACG with an LLM-based
embedding model, analyzing their overhead from
both training and deployment perspectives.

Table 5 presents a comparison of training and de-
ployment overhead for different methods. For a fair
comparison, the results for SelfRACG are reported
using Qwen-2.5-Coder-7B. Notably, GritLM-7B
requires substantial training overhead. It is de-
signed to handle both generation and embedding
tasks simultaneously, requiring 8 nodes with 8
NVIDIA A100 80GB GPUs. NV-Embed-v2 did
not report its exact training resource consumption.
SelfRACG based on Qwen-2.5-Coder-7B requires
only a single node with 8 NVIDIA A100 80GB
GPUs and a total of 384 GPU hours, equipping
the LLM with self-expressive information need ca-
pabilities without collapsing its generation ability.
Both NV-Embed-v2 and GritLM-7B are standalone
embedding models, requiring an additional 14GB
of VRAM for deployment in half-precision mode.
In comparison, SelfRACG shares the same LLM
backbone as the generation model, with only a
small number of additional parameters introduced.

6 Conclusion

In this work, we introduced SelfRACG that allows
LLMs to self-express their own information needs
for code generation. SelfRACG integrates an infor-
mation need expression module and a two-stage in-
formation need-guided training strategy, improving
retrieval performance while preserving generation
capabilities. Experiments on two benchmarks show
that SelfRACG outperforms existing retrieval mod-
els at less than 1/8 of the training cost, providing a
more efficient solution for RACG.

References

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian
Ding, Ming Tan, Nihal Jain, Murali Krishna Ra-
manathan, Ramesh Nallapati, Parminder Bhatia, Dan
Roth, et al. 2024. Crosscodeeval: A diverse and mul-
tilingual benchmark for cross-file code completion.
Advances in Neural Information Processing Systems,
36.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—

the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran
Hao, Liuyihan Song, Yang Xu, J Yang, JH Liu,
Chenchen Zhang, Linzheng Chai, et al. 2024. Open-
coder: The open cookbook for top-tier code large
language models. arXiv preprint arXiv:2411.04905.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Vladimir Karpukhin, Barlas Oguz, Sewon Min,
Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. In
EMNLP (1), pages 6769-6781.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024. Nv-embed: Improved techniques for
training llms as generalist embedding models. arXiv
preprint arXiv:2405.17428.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang,
Haiyan Zhao, Zhi Jin, and Qianxiang Wang. 2024b.
Graphcoder: Enhancing repository-level code com-
pletion via code context graph-based retrieval and
language model. arXiv preprint arXiv:2406.07003.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
arXiv preprint arXiv:2203.07722.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2024. Generative representational in-
struction tuning. arXiv preprint arXiv:2402.09906.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Retrieval augmented code generation and sum-
marization. arXiv preprint arXiv:2108.11601.

Huy N Phan, Hoang N Phan, Tien N Nguyen, and
Nghi DQ Bui. 2024. Repohyper: Better context
retrieval is all you need for repository-level code
completion. arXiv preprint arXiv:2403.06095.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-389.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A
Smith, Luke Zettlemoyer, and Tao Yu. 2022. One
embedder, any task: Instruction-finetuned text em-
beddings. arXiv preprint arXiv:2212.09741.

Hanzhuo Tan, Qi Luo, Ling Jiang, Zizheng Zhan, Jing
Li, Haotian Zhang, and Yuqun Zhang. 2024. Prompt-
based code completion via multi-retrieval augmented
generation. arXiv preprint arXiv:2405.07530.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu,
Frank F Xu, Yiqing Xie, Graham Neubig, and Daniel
Fried. 2024. Coderag-bench: Can retrieval augment
code generation? arXiv preprint arXiv:2406.14497.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. arXiv preprint arXiv:2303.12570.

A Limitation

We acknowledge several limitations in this study
and aim to address them in future work. First, due
to limited computational resources, our method has
been validated only on LLMs with up to 8B pa-
rameters. Second, our approach has been evaluated
exclusively on the RACG task; in future work, we
plan to extend it to general retrieval-augmented
generation scenarios to validate its broader appli-
cability. In fact, the potential of L-LoRA extends
beyond retrieval tasks. We will explore its applica-
tion to various embedding tasks, enabling low-cost
embedding capabilities for every LLM.

B Legal and Ethical Considerations

In our research, ethical considerations are given
top priority throughout the entire development pro-
cess. We ensure that our work is free from any dis-
criminatory elements and does not violate personal
privacy. We are committed to using only publicly
accessible and authorized datasets, avoiding any
data that could lead to biased or harmful outcomes.
All models, datasets, and code associated with this
research are publicly available, enhancing trans-
parency and enabling the community to conduct
further research and validation.

C Generation Performance with Different
Number of Fragments

In this section, we analyze the impact of the num-
ber of retrieved code fragments on the generation
performance for the line-level completion task, and
present the results in Figure 4. By jointly analyz-
ing Table 2 and Figure 4, we can draw the follow-
ing conclusions. Although OpenCoder-1.5B has a
lower Recall@10 compared to GritLM-7B and N'V-
Embed-v2, it performs better in terms of Recall@1
and MRR@10. This indicates that SelfRACG is
able to rank relevant code fragment higher, leading
to better generation results. Due to the "lost-in-
the-middle" issue (Liu et al., 2024a), LLMs tend
to ignore information from the middle of the con-
text. Thus, a more accurate relevance modeling
can significantly improve generation performance,
as useful information is placed at the beginning of
the context. As shown in the left part of Figure 4,
SelfRACG benefits from an increasing number of
recalled code fragments, with performance improv-
ing rapidly as more fragments are included. When
only five code fragments are used, SelfRACG us-
ing OpenCoder-1.5B and OpenCoder-8B already

outperforms other retrieval models that use ten frag-
ments.

D Prompt Template

Following prior studies (Zhang et al., 2023; Wang
et al., 2024; Liu et al., 2024b), we use the prompt
template as presented in Figure 5.

E The results of Qwen2.5-Coder-Instruct.

To further evaluate the generalizability of Self-
RACG, we conduct additional experiments using
the Qwen2.5-Coder-Instruct (Hui et al., 2024) mod-
els, including both 3B and 7B variants. The results
are summarized in Table 6.

Overall, the performance trends observed with
Qwen2.5-Coder-Instruct are consistent with those
reported in the main experiments using OpenCoder.
These results further reinforce the robustness and
general applicability of SelfRACG across different
model backbones.

#
#
#

H R R B R

H R OH R B R HRRHR

H R

¢ o
N
N

Average EM Score
F) o

OpenCoder-1.5B-Base OpenCoder-8B-Base

o

o

@
o
N
N

0.40
1 3 5 10 1 3 5 10

Number of Retrieved Code Fragments Number of Retrieved Code Fragments
—e— GritLtM-7B (EM) —e— NV-Embed-v2 (EM) == OpenAl-large (EM) == OpenAl-small (EM) —e— SelfRACG (EM)
~#~ GritLM-7B (ES) =#= NV-Embed-v2 (ES) =@= OpenAl-large (ES) =®= OpenAl-small (ES) == SelfRACG (ES)

Figure 4: The generation performance with different number of retrieved code fragments.

Here are some relevant code fragments from other files of the repo:
The below code fragment 1 can be found in:
file_handling/read _file.py
def read file Lines(file_path):
with open(file_path, 'r') as file:
Lines = file.readlines()
return Lines
The below code fragment 2 can be found 1in: Retrieved
data_processing/parse_data.py Code Snippets
def parse _data(lines):
result = []
for Line 1in Llines:
parts = Line.split(',”’)
result.append(parts)
return result

Based on above, complete the next statement of the following codes:

file_path = "data.txt"

read_lines = read_file_lines(file_path)

Context Code

cleaned_lines = [clean_line(line) for line in read lines]

#

parsed_result = parse_data(cleaned_lines)

Now we want to parse the cleaned Lines

Predicted
Statement

Figure 5: Prompt template used in SelfRACG.

e
o
o

0.65

Average ES Score

Table 6: The code completion experimental results of Qwen2.5-Coder-Instruct.

RepoEval-API | RepoEval-Line RepoEval-Function CrossCodeEval MEAN
EM ES EM ES EM ES Pass@l | EM ES EM ES
Qwen2.5-Coder-3B-Instruct

w/o Retrieval | 0.271 0.576 | 0.348 0.604 | 0.056 0.404 23.5% | 0.040 0.426 | 0.179 0.502
VanillaRACG

w/BM25 | 0.311 0.609 | 0.406 0.643 | 0.065 0.405 25.7% | 0.068 0.458 | 0.212 0.529

w/ OpenAl-small | 0.313 0.609 | 0.418 0.660 | 0.084 0.425 269% | 0.086 0.465 | 0.225 0.540

w/ OpenAl-large | 0.317 0.611 | 0.426 0.667 | 0.084 0.432 27.2% | 0.082 0.462 | 0.227 0.543

w/NV-Embed-v2 | 0.343 0.623 | 0436 0.669 | 0.084 0.425 279% | 0.098 0.474 | 0.240 0.548

w/GritLM-7B | 0.335 0.626 | 0.450 0.676 | 0.096 0.436 30.0% | 0.103 0.480 | 0.246 0.555

SelfRACG 0.364 0.647 | 0.459 0.688 | 0.115 0.456 32.2% | 0.105 0.484 | 0.261 0.569

Qwen2.5-Coder-7B-Instruct

w/o Retrieval | 0.274 0.575 | 0.343 0.602 | 0.056 0.404 24.8% | 0.054 0.428 | 0.182 0.502
VanillaRACG

w/BM25 | 0316 0.603 | 0.410 0.645 | 0.059 0412 279% | 0.080 0460 | 0.216 0.530

w/ OpenAl-small | 0.324 0.611 | 0.412 0.652 | 0.087 0.436 28.2% | 0.098 0.474 | 0.230 0.543

w/ OpenAl-large | 0.321 0.605 | 0.427 0.663 | 0.090 0.441 29.1% | 0.099 0.474 | 0.234 0.546

w/ NV-Embed-v2 | 0.344 0.619 | 0.438 0.668 | 0.084 0.428 269% | 0.112 0.484 | 0.244 0.550

w/GritLM-7B | 0.339 0.623 | 0.443 0.668 | 0.096 0.437 30.7% | 0.115 0.496 | 0.248 0.556

SelfRACG 0371 0.645 | 0.443 0.668 | 0.099 0.436 31.6% | 0.132 0.499 | 0.261 0.562

	Introduction
	Related Work
	Code Large Language Models
	Retrieval-Augmented Code Generation
	LLM-based Embedding Models

	Method
	Information Need Expression Module
	Information Need-Guided Training
	Inference

	Experimental Setup
	Baselines
	Benchmarks
	Evaluation Metrics
	Code Completion Metrics
	Code Retrieval Metrics

	Specific Settings

	Experimental Results
	Code Completion Performance
	Code Retrieval Performance
	Alternative Retrieval Strategies
	Ablation Studies
	Overhead Comparison

	Conclusion
	Limitation
	Legal and Ethical Considerations
	Generation Performance with Different Number of Fragments
	Prompt Template
	The results of Qwen2.5-Coder-Instruct.

