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Abstract Modern search engines record user interactions

and use them to improve search quality. In particular, user

click-through has been successfully used to improve click-

through rate (CTR), Web search ranking, and query rec-

ommendations and suggestions. Although click-through logs

can provide implicit feedback of users’ click preferences, de-

riving accurate absolute relevance judgments is difficult be-

cause of the existence of click noises and behavior biases.

Previous studies showed that user clicking behaviors are bi-

ased toward many aspects such as “position” (user’s attention

decreases from top to bottom) and “trust” (Web site reputa-

tions will affect user’s judgment). To address these problems,

researchers have proposed several behavior models (usually

referred to as click models) to describe users? practical

browsing behaviors and to obtain an unbiased estimation of

result relevance. In this study, we review recent efforts to

construct click models for better search ranking and propose

a novel convolutional neural network architecture for build-

ing click models. Compared to traditional click models, our

model not only considers user behavior assumptions as input

signals but also uses the content and context information of

search engine result pages. In addition, our model uses pa-

rameters from traditional click models to restrict the meaning

of some outputs in our model’s hidden layer. Experimental

results show that the proposed model can achieve consider-

able improvement over state-of-the-art click models based on

the evaluation metric of click perplexity.
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1 Introduction

Learning from user feedback is a popular approach used in

modern search engines. Commercial search engines usually

record large-scale user interaction logs every day, and many

research issues related to Web search (e.g., click prediction,

Web search ranking, query suggestion) are closely related to

these behavior logs.

Although user clicks provide implicit information about
user’s perceived relevance on results, they do not repre-
sent true and accurate relevance feedback. Therefore, var-
ious methods have been proposed to cope with the noisy
nature of user clicks. Joachims et al. [1] worked on ex-
tracting reliable implicit feedback from user behaviors and
concluded that click logs are informative yet biased. Previ-

ous studies revealed several biases such as “position” [1,2],
“trust” [3], and “presentation” [4] factors. To address these
issues, researchers have proposed a number of click models

to describe user behavior with respect to search engine result
pages (SERPs) and to obtain an unbiased estimation of result
relevance [5–7]. Through this kind of estimation, a search en-
gine can achieve better search ranking either through rerank-
ing or incorporating the estimation as a ranking signal.

Most existing click models are formulated within the

framework of a probabilistic graphic model. In these mod-

els, a group of variables are typically used to model each

search result for a specific query. The variables include the

observable click actions and some hidden variables such as

user examination, result relevance, and user satisfaction af-

ter the result is viewed. Different click models make different

user behavior assumptions (e.g., cascade assumption [2]) to

construct a network structure for variables. Once constructed,

these click models can be trained on a large set of user click-
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through logs and can then be used to predict click probabili-

ties for results or to rerank the search result list according to

the inferred relevance.

Although these click models have achieved much success

in click/relevance prediction for Web and sponsored searches,

many limitations exist with the framework of probabilistic

graphic model. The main limitation is that simple assump-

tions (e.g., cascade assumption) used to structure graphic

models cannot account for complex user behaviors in a mod-

ern Web search, which are influenced by many other factors.

Liu et al. [8] showed that behavior patterns are very differ-

ent when users encounter different result presentation styles.

Wang et al. [9] showed that in a majority of practical search

sessions, users do not follow the top-down examination se-

quence as assumed in most existing models. If a probabilistic

graphic model tries to consider all of these observed behav-

ior patterns, it must add many new variables and edges. How-

ever, all such edges must be linked with explicit user behav-

ior assumptions, even though designing realistic relationship

with less obvious influence factors is difficult. For this reason,

most existing click models only consider certain “important”

user behavior assumptions and ignore others.

Among the factors ignored are result content and context

features, which strongly influence user behaviors. The con-

tent information is usually referred to as caption informa-

tion. Previous studies [10,11] showed that search users rely

on this type of information to determine whether they should

click on a result. They also found that the content of snip-

pets affects user judgments on clicks. Regarding context in-

formation, it has been well documented [12,13] that search

results are not independent; they can be similar or redundant.

This factor considerably affects user click decisions. Despite

the importance of these factors, few previous studies have

attempted to incorporate them. Wang et al. [14] are among

the first to consider content information for click modeling

and have shown the effectiveness of combining both content

and behavior information. Unfortunately, their work does not

consider the relationships between different search results on

the same SERP (result context information), and further ex-

tending their model is difficult.

The limitations of graphic models have clearly prevented

us from incorporating more useful factors into click models.

Therefore, we must use an alternative framework that is more

flexible. In this work, we turn to the framework of deep neural

networks (DNNs) [15]. A DNN effectively maps the meaning

of one object (e.g., a search result) to a continuous represen-

tation space. In particular, it has been recently shown that

convolutional neural networks (CNNs) can efficiently achieve

promising results in many NLP tasks based on learning from

large input signals [16,17]. However, a deep learning frame-

work is sufficiently flexible to incorporate various types of

input signals without their relationships being manually de-

fined. In fact, DNNs can be trained in an end-to-end manner.

Thus, we can simply combine all possible influential features

without expending considerable effort in feature engineering.

Some recent studies have successfully used CNN to model

click behaviors during question-answering and sponsored-

search tasks [18,20]. These CNN-based models predict rel-

evance based on content. They use words in queries and re-

sults to generate a feature vector representation and then use

a CNN framework to learn the relevance scores. These works

demonstrated that a hierarchical semantic structure embed-

ded in a query and document can be extracted using DNNs,

and based on this, a good relevance/click prediction can also

be learned.

Inspired by these studies, we propose a novel click model

framework for general Web search based on a CNN archi-

tecture. The proposed model tries to combine information

sources of result content, context information, and user be-

havior patterns to better predict click behaviors. We use dis-

tributional sentence models generated from content and con-

text information as the basic input of CNN. These underlying

sentence models work in parallel by mapping one query and

ten corresponding results to their distributional vectors. The

vectors are then used to learn the semantic similarity between

them. User behavior patterns are then adopted as additional

features and incorporated into a click model layer under cer-

tain regularization constraints to output click probabilities.

Our contributions in this study are:

• We review recent efforts both in modeling user click

behaviors based on probabilistic graphic model frame-

works and in improving search result ranking based on

DNNs.

• Different from traditional probabilistic graphic model

structures, a novel click model construction framework

based on CNN is proposed. The proposed model incor-

porates result content, context, and user behavior infor-

mation to model complex Web-search user behaviors.

• The proposed framework can be used to reconstruct

most existing click models by introducing behavior as-

sumptions into the hidden layer as regularization con-

straints, which leads to improved performance over the

original models.

The remainder of the paper is organized as follows. Recent
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efforts in constructing click models and adopting DNNs for

behavior modeling are reviewed in Section 2. In Section 3,

we formally introduce our new behavior model framework. In

Section 4, we report our experiments on the proposed model

and compare it with existing click models. Finally, we present

the conclusion of our study and discuss future work in Sec-

tion 5.

2 Recent efforts in click model constructions

2.1 Position-based click models

Most click models adhere to the following examination hy-

pothesis [2]: a document that is clicked on (Ci = 1) should

satisfy (→) two conditions: it has been examined (Ei = 1)

and it is relevant (Ri = 1) (most click models assume P(Ri =

1) = ru, which is the probability of the perceived relevance).

These two conditions are independent of each other.

Ci = 1→ Ei = 1,Ri = 1. (1)

Ei = 0→ Ci = 0. (2)

Ri = 0→ Ci = 0. (3)

Following this assumption, the probability that a document

will be clicked on is determined as follows:

P(Ci = 1) = P(Ei = 1)P(Ri = 1). (4)

As position-based click models do not consider click se-

quence, the click action is simply mapped to each search re-

sult’s ranking position. Based on the assumption that a user’s

examination proceeds from a top to a bottom position, this

type of click model naturally takes position bias into account.

Craswell et al. [2] proposed the cascade model, which as-

sumes that as a user examines results from top to bottom se-

quentially, he or she immediately determines whether to click

on a result:
P(E1) = 1. (5)

P(Ei+1 = 1|Ei = 1,Ci) = 1 −Ci. (6)

Here, the examination of the (i + 1)th result indicates the ith

result has been examined but not clicked. Although the cas-

cade model performs well in predicting click-through rates,

this model is applicable only to a single-click scenario.

Extending the cascade hypothesis, the dependency click

model (DCM) [5] tries to model user interactions within

multi-click sessions. DCM assumes that a certain probabil-

ity exists that a user will examine the next document after

clicking on the current document, and this probability is influ-

enced by the ranking position of the result. The DCM model

is characterized as follows:

P(Ei+1 = 1|Ei = 1,Ci = 0) = 1, (7)

P(Ei+1 = 1|Ei = 1,Ci = 1) = λi, (8)

where λi represents the preservation probability of the posi-

tion i.

The user browsing model (UBM) [6] further refines the

examination hypothesis by assuming that the event of a doc-

ument being examined depends on both the preceding click

position and the distance between the preceding and current

click positions:

P(Ei = 1|C1···i−1) = λri,di (9)

where ri represents the preceding click position and di is the

distance between the current rank and ri.

The dynamic Bayesian network model (DBN) [7] is the

first to consider presentation bias due to snippet (rather than

ranking position). This model distinguishes the actual from

the perceived relevance, in which the perceived relevance

indicates the relevance represented by titles or snippets in

SERPs, and the actual relevance is the relevance of the land-

ing page. DBN is characterized by:

P(Ri = 1) = ru, (10)

P(Si = 1|Ci = 1) = su, (11)

P(Ei+1|Ei = 1, Si = 0) = λ, (12)

where Si indicates whether the user is satisfied with the ith

document, su is the probability of the event, ru is the proba-

bility of the perceived relevance, and λ represents the proba-

bility that the examination process will continue.

The click chain model (CCM) [21] uses Bayesian infer-

ence to obtain the posterior distribution of the relevance. In

contrast to other existing models, this model introduces skip-

ping behavior. CCM is scalable for large-scale click-through

data, and experimental results show that it is effective for low-

frequency (also known as long-tail) queries.

Wang et al. [14] proposed the first click model that con-

siders content information, and showed that such information

is useful. They proposed a number of patterns to combine

content with user behavior information. However, further ex-

tending their model beyond cascade browsing assumption is

difficult.

In addition to these models based on result positions, the

partially sequential click model (PSCM) [9] considers click

sequence information. The PSCM model proposes two addi-

tional user behavior assumptions based on eye-tracking ex-

periments. The first assumes that although the examination

behavior between adjacent clicks can be regarded as locally
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unidirectional, users may skip some results while examining

a single result at some distance from the current one follow-

ing a certain direction. The second assumes that between ad-

jacent clicks, users tend to examine search results without di-

rection changes, and this direction is usually consistent with

that of clicks.

P(Ct |Ct−1, . . . ,C1) = P(Ct|Ct−1). (13)

P(Ct = n|Ct−1 = m) =

P(C̄m = 1, . . . , C̄i = 0, . . . , C̄n = 1). (14)

P(Ēi = 1|Ct−1 = m,Ct = n) =
⎧
⎪⎪⎨
⎪⎪⎩

γimn,m � i � n or n � i � m;

0, otherwise.
(15)

C̄i = 1⇔ Ēi = 1,Ri = 1. (16)

P(Ri = 1) = αuq. (17)

The first equation encodes the first-order click hypothesis,

whereas the second encodes the locally unidirectional exam-

ination assumption by restricting the examination to a one-

way process from m to n.

This model distinguishes the result position from the ex-

amination order and achieves a better click prediction perfor-

mance than do position-based click models.

2.2 Temporal click models

In addition to click behaviors, the duration of click dwell

time (the time the user spends on a clicked result) has also

been regarded as an important feedback feature for relevance

estimation because it clearly correlates with result-level sat-

isfaction or document relevance [22–24]. Longer dwell time

on a clicked page has traditionally been used to identify satis-

fied (SAT) clicks. Although click-through statistics can some-

times be misleading due to order and caption biases, click

dwell time is a more robust measure.

Click dwell time has been successfully used in a number of

retrieval applications (e.g., implicit relevance feedback [25]

and re-ranking [26]). In those applications, SAT clicks are

simply identified by some predefined time threshold (i.e., a

click is SAT if its dwell time equals or exceeds that thresh-

old). A dwell time equal to or exceeding 30s, as proposed in

[24], has typically been used to identify clicks with which

searchers are satisfied.

Because click dwell time is a critical feedback signal, some

recent efforts have also tried to incorporate temporal informa-

tion into constructing click models.

Xu et al. [27] first proposed a temporal click model (TCM)

to model user click behavior for sponsored searches. They

enumerated all possible permutations of click sequences for

search results. This model can only handle two results/ads in

a SERP. This means coping with an entire ranked result list

as in other click models is impossible.

Wang et al. [28] introduced a partially observable Markov

model (POM) to model arbitrary click orders. The POM

model treats user examination events as a partially observable

stochastic process. Although POM can model non-sequential

behaviors, it only considers the examination transition at each

position (i.e., different users and queries share the same ex-

amination sequence parameters). Therefore, this model can-

not predict the click probability or relevance for a specific

query, and thus cannot be used in a practical search envi-

ronment. Because of this limitation, POM cannot be com-

pared with other state-of-the-art click models such as UBM

and DBN, which must predict click probability and relevance

for a specific query-URL pair. It also makes the first-order ex-

amination assumption that the current examination behavior

depends only on its previous examination step, which might

not align with the real user behavior.

Xu et al. [29] proposed a temporal hidden click model

(THCM) to cope with non-sequential click actions. They fo-

cused on revisiting behavior and assumed that, after a user

clicks on a search result, a probability exists that he or she

will examine previous results (bottom-up). However, their

model was also based on a one-order Markov examination

assumption and thus supposes that users examine results one

by one during the examination process, which does not nec-

essarily correspond to the practical user behavior.

In [30], Liu et al. proposed a time-aware click

model (TACM) to extend the PSCM model. They in-

troduced a new hidden state (satisfaction state): S =

〈S0, S1, S2, . . . , St, . . . , ST 〉, where each St = 1 means that, af-

ter a user’s tth click, he or she has already obtained sufficient

information and plans to finish the search process.

P(Ct|Ct−1, . . . ,C1, S t − 1, . . . , S1) = P(Ct |Ct−1, St−1). (18)

St−1 = 1→ Ct = 0. (19)

P(Ct = n|Ct−1 = m) =

P(C̄m = 1, . . . , C̄i = 0, . . . , C̄n = 1). (20)

P(Ēi = 1|Ct−1 = m,Ct = n) =
⎧
⎪⎪⎨
⎪⎪⎩

γimn,m � i � n or n � i � m;

0, otherwise.
(21)

C̄i = 1⇔ Ēi = 1,Ri = 1. (22)

P(Ri = 1) = αuq. (23)
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P(St = 1) = P(Rt = 1) × F(DwellT imet). (24)

We can see that the first and third equations still follow the

first-order click hypothesis and locally unidirectional exami-

nation assumption as in the PSCM model. The second equa-

tion shows that the user may stop the browsing process if he

or she feels satisfied. TACM also follows the examination hy-

pothesis as described in most existing click models. αuq cor-

responds to the relevance of the document URL u at position

i for the specific query q. We can see that click dwell time

information is used to describe user information gains. Four

kinds of mapping functions are typically adopted to measure

information gain after a certain dwell time: linear, quadratic,

exponential, and Rayleigh. Experimental results show that, of

the four options, the exponential mapping function works the

best.

2.3 Click modeling with neural networks

Unlike click models that utilize user behavior information to

predict future clicks or result relevance, the application of

DNNs in Web search mainly depends on result content in-

formation as the model input, in which the aim is to improve

search ranking performance.

Recently, deep learning methods have been successfully

applied to a variety of natural language processing (NLP) and

information retrieval (IR) tasks [31–33]. By exploiting deep

architectures, these techniques can discover the hidden struc-

tures in training data. In addition, features at different levels

of abstraction can also be discovered for certain tasks. In [31],

Salakhutdinov and Hinton extended the LSA model using a

deep network (auto-encoder) to discover the hierarchical se-

mantic structure embedded in queries and documents. They

proposed a semantic hashing (SH) method that uses bottle-

neck features learned from the deep auto-encoder for infor-

mation retrieval. Based on this work, Huang and Shen et al.

[18,34] proposed a framework to develop a series of new la-

tent semantic models with deep structures that project queries

and results into a common low-dimensional space, where the

relevance of a document given a query is regarded as the dis-

tance between the document and the query. Their deep struc-

tured semantic models are discriminatively trained by max-

imizing the conditional likelihood of the clicked documents

given a query derived from click logs.

Although this model has performed well in relevance pre-

diction, extending it to search environments that use non-

Latin characters (e.g., Chinese, Japanese, or Korean (CJK))

is difficult. This is because the word hashing process is

based on letter n-grams that cannot be implemented for non-

Latin characters. Therefore, Liu et al. [20] proposed a new

convolutional click prediction model (CCPM) for sponsored

searches. This model can extract key local-global features

from an input instance having varied elements and can be im-

plemented for not only single but also sequential advertise-

ment impressions. To the best of our knowledge, this is the

first approach that attempts to leverage a CNN to determine

click probability. However, this work still fails to consider

the context information of results, which, according to many

existing studies such as [12,13], is critical for user decision-

making processes in search interactions. Moreover, unlike

most models, this approach cannot predict result relevance

and user examination information.

Zhang et al. [35] proposed a click prediction framework

based on recurrent neural networks (RNN). This framework

is designed for sponsored search and directly models the de-

pendency on user sequential behaviors into the click predic-

tion process through the recurrent structure in RNN. Borisov

et al. [36] also proposed an RNN-based click model to model

user sequential click behaviors. These models only consider

click sequence information and ignore the effect of different

click dwell times among click actions.

Severyn and Moschitti [19] proposed a deep learning ar-

chitecture for reranking short texts. This model uses existing

word embedding results to build a feature matrix for each

query and answer. The authors then use the approach from

[16] to compute the similarity of the query-answer pairs. The

advantage of this model is that its architecture easily en-

ables including additional features to improve learning per-

formance. However, this framework cannot consider user be-

havior patterns or assumptions to improve learning perfor-

mance.

Unlike these existing efforts in click model construction

and IR-oriented deep learning studies, we choose the CNN

as the framework for the new click model and use it to com-

bine information sources from result content, context, and

user behavior. The distinctive properties of our model are:

(i) unlike existing works that can predict only single units of

information (either click probability or result relevance), our

framework can predict click probability, result relevance, and

user examination information as efficiently as in traditional

click models; (ii) we include the parameters learned from tra-

ditional click models as additional features and constraints

in order to combine content information and user behavior

patterns; (iii) unlike with existing solutions based on CNNs

[19,20] that use point-wise learning strategies, we learn 10

results from a single SERP using a pair-wise strategy. This

approach proves to be more effective than previous learning-
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to-rank studies.

3 DNN-based click model

This section describes our DNN-based click model. Its main

building blocks are T + 1 distributional sentence models

based on CNNs (1 for query, and T for corresponding results,

where, in this study, T equals 10, representing the number of

results on a SERP). These underlying sentence models work

in parallel to map queries and documents to vectors, which

are then used to learn the semantic similarity between each

query-result and result-result pair. In this work, we use the

titles of search results to represent their content, as incorpo-

rating the entire content is inefficient and may introduce too

many noises.

The architecture of the proposed CNN architecture for

mapping sentences to feature vectors is mainly inspired by

the architectures used in [17,19,37] for performing various

sentence classification tasks. The network (see Fig. 1) is com-

posed of a single wide convolutional layer followed by non-

linearity and simple max pooling. Following the pooling pro-

cess, the generated query-feature and result-feature vectors

are used to compute content and context similarities. All fea-

tures are combined with their behavior information and then

grouped and mapped by the joint and hidden layers. Finally,

the click model layer uses these features to generate the ex-

amination probability and relevance estimation for each re-

sult and then predict click probabilities. The network input

are raw words that must be translated into real-valued fea-

ture vectors to be processed by subsequent layers of the net-

work. This process is implemented using word embedding

techniques. The framework of our model is shown in Fig. 1.

We provide a detailed explanation of the main components of

the proposed model as follows.

Unlike the models constructed in [35,36], that described

in Fig. 1 adopts a CNN instead of an RNN structure. This

is because focusing on the inter-relationship between results

and queries is desirable, as this information is not considered

by previous click models. RNN models capture the behavior

sequential information in user sessions, but that model may

have problems modeling sessions in which only one or a few

clicks occur.

Fig. 1 Architecture for the proposed DNN-based click model
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3.1 Sentence matrix construction

Several methods are used to generate content-based features

for a given query or result. Huang et al. [18] proposed a word-

hashing method that is based on the letter n-grams of a given

text. Liu et al. [20] proposed a word-embedding method that

uses embedding vectors to represent each word of a given

textual document. As we mentioned in Section 2, the letter

n-gram method is not well adapted to non-Latin language en-

vironments. Considering the fact that nearly all major com-

mercial search engines provide services in CJK languages,

choosing a word-embedding method to generate a sentence

matrix is applicable.

In the proposed framework, one sentence s is treated as a

sequence of words: [w1,w2, . . . ,w|s|], where each word w is

drawn from a vocabulary V . Words are represented by dis-

tributional vectors W looked up in a word-embedding matrix

W → |V | that is formed by concatenating the embeddings of

all words in V . In our study, the word-embedding dataset is

trained by a commercial search engine company that utilizes

more than 10 million Web pages with open-source tools de-

veloped by Mikolov et al. [38]. The dimension of each word

vector was n = 100 in our experiments.

For convenience in lookup operations in W, words are

mapped to integer indices 1, 2, . . . , |V |. For each input sen-

tence s, we build a sentence matrix S , where each value vi j

in column j and row i represents the ith element of a word-

embedding vector wj at the corresponding position j in a sen-

tence:

S =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v00 · · · vs0

...
...

v0n · · · vsn

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (25)

The aim of the convolutional layer is to extract patterns

(i.e., discriminative word sequences found within input sen-

tences) that are common throughout the training instances.

We use the wide type to compute the boundary in the sentence

matrix as done in Kalchbrenner et al. [37]. The benefits of the

wide type is that wide convolution can better handle words

at boundaries, thereby giving equal attention to all words in

the sentence. This is in contrast to narrow convolution, where

words that are near boundaries are seen fewer times. More

importantly, wide convolution also guarantees that valid val-

ues are always generated even when s is shorter than the filter

size m.

To enable the network to learn non-linear decision bound-

aries, each convolutional layer is typically followed by a non-

linear activation function α() applied element-wise to the out-

put of the preceding layer. Nair and Hinton [39] showed that

a rectified linear unit has considerable benefits over sigmoid

and tanh by overcoming some of their shortcomings. There-

fore, we choose to use a rectified linear unit max(0, x) in our

proposed framework.

3.2 Pooling

For most DNN implementations, two common choices are

usually employed in the pooling operation: average and max.

Both operations are applied to columns of the feature map-

ping matrix by mapping them to a single value. The max

pooling method is used more widely and does not suffer from

the drawbacks of weakening strong activation values [40].

Because the purpose of our model is to test the effective-

ness of combining CNN with click models, we test only the

max pooling strategy in our model. Future work will include

the testing of other pooling methods such as k-max pooling

[37].

3.3 Content and context similarity calculation

In the previous process, our model learns to map input sen-

tences to vectors, which can then be used to compute the

similarities between the query and results. Therefore, we

use the vectors generated from the pooling step to compute

the query-result similarity and result-result context influence.

Supposing that each SERP contains T results (T = 10 in gen-

eral), we can calculate T query-result similarity scores and

T × (T − 1)/2 result-result influence scores.

Given the vectors of our model after processing queries and

results in the pooling step, the resulting vector representations

xq and xdi for the ith result in SERP can be used to compute a

similarity/influence score. We follow the approach of Bordes

et al. [41] that defines the similarity between xq and xdi as

follows:
Sim(xq, xdi ) = xT

q Mqr xdi ,

Sim(xdi xdj ) = xT
di

Mrr xdj ,
(26)

where Mqr and Mrr are hidden matrices to be trained during

the training process. These two equations can be viewed as a

model of the noisy channel approach from machine transla-

tion, which has been widely used as a scoring model in infor-

mation retrieval and question answering [42]. In this model,

we seek a transformation of the candidate result that is closest

to the input query.

3.4 Joint layer

The joint layer is used to incorporate user behavior informa-

tion into our model framework. For each query and T results

in a session, most existing click models can provide the ex-
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amination probability and relevance for each result after the

training processes. Therefore, we use the examination proba-

bility and relevance score as additional features to enrich our

model.

The joint layer concatenates all intermediate vectors, the

similarity score, and additional features into a single vector:

x joint = [xc; xm],

xc = [xcontent; xcontext],

xcontent = [xq; xdi ; i, j = 1, 2, . . . , T ],

xcontext = [Sim(xq, xdi ); Sim(xdi xdj ); i, j = 1, 2, . . . , T ],

xm = [Ei; Ri, i = 1, 2, . . . , T ], (27)

where xc represents the feature from content and context in-

formation, and xm represents the feature from the traditional

click model.

This vector is then passed through a fully connected hid-

den layer, which allows us to model interactions between the

components of the joined representation vector. The hidden

layer computes the following transformation:

α(wh × x joint + b) (28)

where wh is the weight vector of the hidden layer and α()

is the non-linearity. Our model includes an additional hidden

layer immediately preceding the click model layer to enable

interactions between the components of the intermediate rep-

resentation to be modeled. Finally, the output of the hidden

layer is fed to the click model layer, which generates the final

click probabilities.

3.5 Click model layer

The nodes in the click model layer are divided into two differ-

ent groups. One group represents examination and the other

represents relevance. The final click probability is generated

by the examination hypothesis [2] that most click models use:

P(Click = 1) = P(E = 1) × P(R = 1). (29)

The examination probability and relevance is mapped by a

sigmod function from the input feature:

P(E = 1) =
1

1 + e−1×[λ×(xT
c θc)+(1−λ)×(xT

mθm)]
, (30)

P(R = 1) =
1

1 + e−1×[λ′×(xT
c θ
′
c)+(1−λ′)×(xT

mθ
′
m)]
, (31)

where θc, θ′c, θm, θ′m are weight parameters used to combine all

feature values, and λ, λ′ are weight parameters for balancing

the influence of content and click model features.

Although neural networks have a strong capacity for learn-

ing complex decision functions, they tend to overfit, espe-

cially on small datasets. To mitigate the overfitting problem,

we augment the cost function using l2-norm regularization

terms for the parameters of the network.

We also adopt another regularization strategy to restrict the

meaning of both examination and relevance nodes. We use

the input click model features to restrict the output of each

node:

cost = Ce ×
∑

[||P(Ei = 1) − xEi ||2]

+Cr ×
∑

[||P(Ri = 1) − xRi ||2], (32)

where xexamination, xrelevance are examination and relevance fea-

tures from xm, and Ce,Cr are hyperparameters to balance

the importance of restrictions. In our experiments, we set

Ce = Cr = 0.5.

The model is trained to minimize the cross-entropy cost

function:

Loss = cost +C||θ||2 −
∑

[yi log P(Clicki = 1)

+(1 − yi) log(1 − P(Clicki = 1))], (33)

where yi = 0, 1 is the real click information and θ contains all

the parameters optimized by the network.

4 Experiments

The previously described model can be built on most

probabilistic-graphic-model-based click models. Therefore,

we choose two of them to show the effectiveness of our pro-

posed framework. The first is the UBM model, which is a

popular click model and shows good performance across dif-

ferent application scenarios [6,7,43]. The second is the PSCM

model [9], which considers non-sequential user behaviors

and produces good results.

Two groups of experiments were performed to test the ef-

fectiveness of our model. First, we evaluated the click model

in terms of predicting click probabilities (click perplexity)

from search logs, which is a widely adopted metric to evalu-

ate click model performances [6,7,29]. Then, we used the pre-

dicted relevance as a signal for document ranking and evalu-

ated each click model’s ranking performance using traditional

IR metrics (in this study, NDCG [44]).

4.1 Experimental setups

Zhang et al. [35] were among the first to use DNN in click

prediction with search engine logs. We implemented this so-
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called RNN model as a baseline to which our model is com-

pared. In addition to the features used in the original model

[35], we also added features mentioned in Section 3.4 to this

RNN-MODEL for a fair comparison. We found that these

features can improve the model’s performance.

For other baseline models (UBM and PSCM), we used

the open source implementations from Wang et al. [9].

Two new click models, DEEP-UBM-ALL and DEEP-PSCM-

ALL, were built from UBM and PSCM using our frame-

work as described in Section 3. For the purpose of testing

the effectiveness of our feature grouping strategy (using con-

tent, context, and user behavior information in different lay-

ers), we removed some feature groups to show their impact

on the features. The first group used only the content fea-

tures (i.e., without xm and xcontext, and referred to as DEEP-

UBM-T and DEEP-PSCM-T). The second group used the

content and context features (i.e., without xm and referred to

as DEEP-UBM-TC and DEEP-PSCM-TC). Although these

models did not employ traditional click model outputs as

features (xm), they still used them as constraints (Section

3.5). Therefore, DEEP-UBM-T and DEEP-PSCM-T (DEEP-

UBM-TC and DEEP-PSCM-TC) still managed to predict dif-

ferent click probabilities.

To evaluate the click models, we utilized sample commer-

cial search logs from a popular commercial search engine.

We collected eight days worth of logs between April and May

2015, and filtered out the queries with too many or too few

sessions, as commonly done in most click modeling studies.

Detailed statistics about the dataset can be found in Table 1.

Table 1 Statistics on the query log dataset

#Distinct queries #Distinct URLs #Sessions

227,651 1,259,272 6,525,520

4.2 Evaluation of click prediction

We split all query sessions into training, developing, and test-

ing sets at a ratio of 50% : 20% : 30% as done in previous

studies [19].

Click perplexity [4] measures the probability of the actual

click events occurring during each session and at each posi-

tion.

Perplexityi = 2−
1
N

∑N
j (Ci log pi+(1−Ci) log(1−pi)), (34)

where Perplexityi is the perplexity score in the ith result posi-

tion, N is the total session count, Ci is the actual user click in-

formation, and pi is the predicted click probability. The over-

all click perplexity score is the average of all positions (10 in

our dataset).

Click perplexity indicates how well a model can predict

clicks. A smaller perplexity value indicates a better model-

ing performance, where the value reaches 1 in the ideal case.

The improvement of click perplexity CP1 over CP2 is usually

calculated as CP2−CP1
CP2−1 × 100% [4,43].

Table 2 presents the overall click perplexity of each model.

Note that all differences are statistically significant based

on a t-test with p-value < 10−5. We can see that DEEP-

PSCM-ALL achieved the best overall results among all click

models and that both deep structured click models (DEEP-

PSCM-ALL and DEEP-UBM-ALL) achieved better perfor-

mance than did the respective baseline models (PSCM and

UBM). We also observed that the RNN-MODEL [35] did

not achieve a better performance than in the other models.

The main reason may be that for most users in our dataset,

a login was not required. In addition, forming very long ac-

tion sequences as in [35] was not possible. Considering that

DEEP-RNN used the same dataset and behavior/content fea-

tures as in our model, we believe that it was a fair comparison

and that RNN-MODEL may not work for datasets that do not

have long behavior sequences.

Table 2 Overall click perplexity of each model

Model Perplexity Improvement/%

RNN-MODEL 1.588 -

PSCM 1.413 -

DEEP-PSCM-T 1.401 +2.8 (VS. PSCM)

DEEP-PSCM-TC 1.399 +3.2 (VS. PSCM)

DEEP-PSCM-ALL 1.013 +96.9 (VS. PSCM)

UBM 1.289 -

DEEP-UBM-T 1.401 –38.8 (VS. UBM)

DEEP-UBM-TC 1.400 –38.3 (VS. UBM)

DEEP-UBM-ALL 1.145 +49.9 (VS. UBM)

We noticed that the PSCM’s overall performance was

worse than that of UBM, whereas our DEEP-PSCM-ALL

model achieved better performance than the DEEP-UBM-

ALL model. We conducted further analysis on different re-

sult positions. Table 3 shows perplexities in different posi-

tions. We noticed that the PSCM model achieved better per-

formance than did the UBM model on top positions (1 and 2).

These results were consistent with those shown in [9]. When

we examined closely the UBM model’s output, we found that

the UBM model tended to predict very small click probability

for all sessions in bottom positions. Because users rarely click

on bottom positions, the perplexity scores for these bottom

positions were small. By contrast, PSCM tended to predict

different click probabilities for different sessions in bottom

positions. Although the PSCM model received a larger per-

plexity score penalty for those non-click sessions in bottom
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positions, it received a much smaller perplexity score penalty

for sessions with clicks in bottom positions. Therefore, the

PSCM model provided stronger features than did the UBM

model, as the features from the UBM model in bottom po-

sitions were nearly the same for all sessions. According to

Table 3, DEEP-PSCM-ALL achieved the best performance

among all positions compared to other click models. We also

observed that our proposed framework improved click pre-

diction performance in most positions compared with the

baseline click models, especially for top positions.

We also discovered that our model continually performed

better as it properly incorporated content, context, and user

behavior information (DEEP-X-T, DEEP-X-TC and DEEP-

X-ALL). For the UBM model, if we considered only con-

tent and context information (DEEP-UBM-T and DEEP-

UBM-TC), the performances were worse than in the baseline

model (UBM). For the PSCM model, if we considered only

content and context information (DEEP-PSCM-T, DEEP-

PSCM-TC), the performances were slightly better than in the

baseline model (PSCM). As the improvement was minimal,

we could conclude that user behavior information was criti-

cal and, thus, our model cannot perform competitively with

traditional click models when using a simple application of

content-based DNN methods. Our model was built to com-

bine content and user behavior information in different lay-

ers. Our experimental results revealed that this strategy can

achieve a better performance than can existing methods.

To analyze further the influence of incorporating content

and context information into click models, we show a case

study in Fig. 2 from our experimental dataset. In this case,

a user searched for “the official website of China’s railway

ticketing service” and clicked the top three results in the

corresponding SERP. In Fig. 2, we display the top five re-

sults and show the examination probabilities estimated by

each click model (UBM, DEEP-UBM, PSCM, and DEEP-

PSCM). A warmer font color means a higher examination

probability. We can see that our proposed models (DEEP-

UBM and DEEP-PSCM) predicted much lower examination

Table 3 Click perplexity of different models in different result ranking positions

1 2 3 4 5 6 7 8 9 10

RNN-MODEL 3.8786 1.8685 1.5566 1.4152 1.3191 1.2356 1.1848 1.1538 1.1360 1.1302

PSCM 1.2720 1.4798 1.4932 1.4780 1.4542 1.4253 1.4012 1.3839 1.3722 1.3657

DEEP-PSCM-ALL 1.0005 1.0009 1.0011 1.0012 1.0014 1.0017 1.0051 1.0203 1.0462 1.0489

Impr. (VS. PSCM)/% +99.8 +99.8 +99.8 +99.7 +99.7 +99.6 +98.7 +94.7 +87.6 +86.6

UBM 1.7562 1.6006 1.4144 1.3154 1.2362 1.1707 1.1294 1.1024 1.0861 1.0774

DEEP-UBM-ALL 1.0104 1.1647 1.1902 1.2174 1.2341 1.1807 1.1425 1.1143 1.0975 1.0949

Impr. (VS. UBM)/% +98.6 +72.6 +54.1 +31.1 +0.9 –5.9 –10.1 –11.6 –13.3 –22.6

Fig. 2 Example showing the influence of incorporating content and context information into click models (The third and fourth results are
from the same website and have similar titles)
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Table 4 Relevance estimation performance for different models

Model NDCG@3 Improvement/% NDCG@5 Improvement/%

UBM 0.735 - 0.770 -

DEEP-UBM-ALL 0.747 +1.5(*) 0.797 +1.5(**)

PSCM 0.717 - 0.767 -

DEEP-PSCM-ALL 0.765 +6.7(*) 0.799 +4.1(*)

Note: Paired t-test with p < 0.05 is labeled by ∗ and p < 0.01 is labeled by ∗∗

probabilities for the fourth result compared to those from

UBM and PSCM. The reason is that the third and fourth

results were actually derived from the same website,

www.tieyou.com, and used very similar title descriptions

(“12306 Train Tickets Online - Train Tickets Online [Of-

ficial Website of tieyou.com]” VS. “12306 Train Tickets -

12306 Railway Tickets - Train Tickets [Official Website of

tieyou.com]”). When our model considered this fact, it gener-

ated a much lower examination probability than did the base-

line models for the fourth result. The lower examination prob-

ability in turn led to a lower click probability, and according

to the user’s actual click actions, our model actually gener-

ated a better click prediction than did the baseline model.

4.3 Evaluation of relevance estimation

The normalized discounted cumulative gain (NDCG, [44]) is

a common metric for measuring the performance of ranking

algorithms. Because each click model can provide its query-

result relevance prediction after training is completed, once

we obtained the relevance label for each query-result pair, we

could test the ranking performances using NDCG.

Because the click model layer in our model framework

restricts the meaning of different nodes and because some

nodes are restricted according to the estimated relevance, we

used the output from these nodes as the relevance estima-

tion of our model. Because the other baseline model RNN-

MODEL does not have such relevance estimation nodes, we

only tested the performance of four models in this experiment

(UBM, PSCM, DEEP-UBM-ALL, and DEEP-PSCM-ALL).

We randomly sampled 600 queries in our dataset and re-

cruited 11 professional assessors (who did not know the pur-

pose of the work) to annotate the relevance scores of top re-

sults for each query. The annotation was performed with five

grades (“Perfect,” “Excellent,” “Good,” “Fair” and “Bad”) as

in most existing studies such as [45]. A pooling strategy was

used to ensure that the top five results of each model were

all labeled and that median voting was adopted to determine

the relevance score if conflicts existed (at least three asses-

sors were involved in each query-result pair annotation and

we retained an odd number of assessors for each pair). After

removing pornographic queries, we collected the relevance

information of 333 distinct queries. Because multiple asses-

sors participated in the labeling process, we used the Fleiss’

kappa [46] to measure the agreement among the assessors.

The kappa coefficient was 0.270, which means a fair level

of agreement. Obtaining a lower agreement when more cate-

gories exist is natural. In our case, we had five categories (five

grades). Therefore, we believe that this agreement was ac-

ceptable. Both the queries and annotated URLs will be avail-

able to the public after the double-blind review process.

Using the annotation results, we calculated the NDCG@N

(N=3,5) scores for different models, and the results are shown

in Table 4. We observed that our proposed models achieved

statistically significant improvement in NDCG over the corre-

sponding models. This means that by properly incorporating

content and context information into click models, we could

not only predict more accurate click probability but also gen-

erate a better relevance estimation.

5 Conclusion

In this paper, we focused on improving search ranking per-

formance based on user click-through behaviors. We began

by reviewing existing efforts to construct different kinds of

click models: position-based models, temporal models, and

DNNs. We then proposed a novel framework for click models

for general Web search based on CNN architecture. Unlike

traditional probabilistic graphic model structures, our model

was based on CNN, in which we properly incorporated con-

tent, context, and user behavior information in different lay-

ers to ensure that high-level user behavior features would not

be “buried” by extensive content/context features. Our frame-

work is sufficiently general to be adopted with most existing

click models. In this study, we considered two common click

models: UBM and PSCM. The experimental results on click-

through data showed that our models outperform the existing

models in terms of click prediction. We also conducted tests

on query-result relevance estimation, and the experimental

results showed that our models outperform existing models

in terms of relevance estimation (NDCG).

This study proposed a general and flexible means of im-



12 Front. Comput. Sci.

proving click models to fit the ever-changing and increasingly

complex search application scenarios. The proposed method

can be further improved with respect to several aspects. For

example, investigating how it can be adapted to a heteroge-

neous search environment (modeling the effects of vertical

results in the ranking list, considering visual content infor-

mation, etc.) would be interesting.
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