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Abstract—Item representation learning (IRL) plays an es-
sential role in recommender systems, especially for sequential
recommendation. Traditional sequential recommendation models
usually utilize ID embeddings to represent items, which are
not shared across different domains and lack the transferable
ability. Recent studies use pre-trained language models (PLM)
for item text embeddings (text-based IRL) that are universally
applicable across domains. However, the existing text-based
IRL is unaware of the important collaborative filtering (CF)
information. In this paper, we propose CoWPiRec, an approach
of Collaborative Word-based Pre-trained item representation
for Recommendation. To effectively incorporate CF information
into text-based IRL, we convert the item-level interaction data
to a word graph containing word-level collaborations. Subse-
quently, we design a novel pre-training task to align the word-
level semantic- and CF-related item representation. Extensive
experimental results on multiple public datasets demonstrate
that compared to state-of-the-art transferable sequential recom-
menders, CoWPiRec achieves significantly better performances
in both fine-tuning and zero-shot settings for cross-scenario
recommendation and effectively alleviates the cold-start issue.
The code is available at: https://github.com/ysh-1998/CoWPiRec.

Index Terms—Recommender System, Item Representation
Learning, Transfer Learning

I. INTRODUCTION

Item representation learning (IRL) is a crucial technology

in recommender systems since items interacted by users

largely reflect their preferences. IRL is especially important

for sequential recommendation, where user representations

are typically obtained by aggregating the representations of

interacted items [1], [2]. Specifically, sequential recommender

comprises two main components: the IRL module used to

obtain item representations, and the sequence representation

learning (SRL) module used to aggregate the representations

of the chronologically-ordered items. Recent neural sequential

recommendation models typically use an ID-based IRL mod-

ule to map item IDs to hidden vectors and an SRL module with

advanced neural networks, e.g., transformer layers [3]. Then

the two modules are trained simultaneously with optimization

� Corresponding author.
This work is supported by the Natural Science Foundation of China

(Grant No. U21B2026, 62002191) and Quan Cheng Laboratory (Grant No.
QCLZD202301).

objective of the next-item prediction task [1], [3]. Although

promising results have been achieved, these methods heavily

rely on rich ID-based interactions. When new scenarios arise,

the models need to be trained from scratch since the ID

embeddings are not shared across scenarios and may suffer the

cold-start issue. Therefore, sequential recommendation models

with ID-based IRL lack the transferable ability.

Recently, many content-based sequential recommendation

models have been proposed to alleviate the above issue.

Especially, considering the generalization of the text and

the cross-scenario shared vocabulary, many works use the

representation of item text instead of the ID embedding,

i.e., text-based IRL. Due to the remarkable performance of

pre-trained language model (PLM) [4] in neural language

processing, existing works typically use PLM as the text-

based IRL module. Specifically, these works obtain text-

based item representations offline with PLM and feed the

item representations into the SRL module. Then the SRL

module is pre-trained on mixed-domain data to learn cross-

domain general sequential representation patterns and the

learned knowledge is transferred to a new domain, resulting

in transferable sequential recommender [5], [6].

However, Although text-based item representations have

effective semantic representation capabilities, they do not

contain collaborative filtering (CF) information. In fact, some

words that are not similar in semantics might be closely related

in the context of recommendation. For example, “health” and

“cycling” are two words that are not very close in terms of

semantic representation space. While in the recommendation

scenario, a user interested in healthy food may also prefer

to buy some cycling equipment for exercise. To alleviate

this issue, we argue that it is desired to incorporate CF-

related signals into the text-based IRL. While most existing

approaches focus on pre-training the SRL module and the

PLM is frozen in training and unaware of important CF

signals.

In this paper, we propose a Collaborative Word-based Pre-

trained item representation for Recommendation, CoWPiRec.

Specifically, we extract word-level CF signals, i.e. co-click

words, from user interaction history and construct a word

graph to integrate these co-click relationships. Subsequently,
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we design a novel word-level pre-training task to incorporate

CF signals into PLM. The word graph serves as a CF-related

knowledge source to instruct the pre-training procedure.

The merits of our proposed item representation learning ap-

proach are threefold. Firstly, since CoWPiRec is pre-trained in-

dependent of the SRL module, it is convenient to be integrated

into different sequence aggregation networks as the text-based

IRL module. Secondly, the item representation generated by

CoWPiRec provides both effective semantic matching and CF-

related signals, it can be used to perform recommendation

tasks without any training stage when transferring to a new

domain, i.e., zero-shot recommendation. Thirdly, CoWPiRec

further achieves outperforming recommendation results with

in-domain training utilizing the CF-related knowledge learned

in pre-training.

We evaluate the effectiveness of CoWPiRec in the cross-

scenario setting. We first use datasets from multiple domains

to construct the word graph and pre-train CoWPiRec. Then,

considering the efficiency in a new scenario, we utilize CoW-

PiRec as a feature extractor to offline generate item repre-

sentations. The item representations can be used to perform

downstream recommendations. The experiment results on the

public datasets demonstrate that CoWPiRec outperforms state-

of-the-art approaches in the zero-shot recommendation and

further improves in-domain training effectiveness.

The main contributions of our work are summarized as

follows:

• We propose a pre-trained item representation learning ap-

proach that aligns semantic and collaborative information

for the recommendation.

• We design a novel pre-training task to incorporate word-

level CF signals from the co-click word graph into the

text-based IRL.

• Comparative experimental results on multiple public

datasets demonstrate that our proposed approach achieves

significantly better performances and effectively allevi-

ates the cold-start issue.

II. RELATED WORK

A. Sequential Recommendation

Sequential recommendation is a widely researched topic

in the recommendation system community, with the ob-

jective of predicting the next item of a user’s interaction

history [2], [3]. Early studies are based on Markov chain

assumptions to estimate the transition relationships between

items [7], [8]. In recent years, with the development of deep

learning, neural sequential recommendation models based on

deep neural networks have emerged. These models usually

comprise item representation learning (IRL) and sequence

representation learning (SRL) modules to model the represen-

tation of item and user sequences. The SRL module utilizes

various network structures, including Recurrent Neural Net-

works (RNN) [1], [9], [10], Convolutional Neural Networks

(CNN) [11], Transformer [3], [12]–[15], and Graph Neural

Networks (GNN) [16]–[18], to modeling the user sequence

representation by aggregating the item representations. The

item representations are obtained with the IRL module. Most

IRL modules utilize item ID embedding to map item ID to a

hidden vector [1], [3]. Limited by unshareable item IDs, these

approaches with the ID-based IRL module lack transferable

ability across scenarios. Different from relying on explicit item

IDs, we represent items based on item text to enhance the

transferable ability of sequential recommender.

B. Recommendation with Pre-trained Language Model

Inspired by the rapid development of the pre-trained lan-

guage model (PLM), many recent works use PLM as the IRL

module of the recommendation model [5], [6], [19]–[25].

With semantically enhanced item representations, these ap-

proaches achieve significant performance improvement in the

recommendation and effectively alleviate the cold-start issue.

These works can be divided into two main lines. One line is to

perform joint training of PLM and the SRL module to adapt

to the recommendation tasks. PLM-NR [20] utilizes PLM and

an attention network to obtain item text representations. Then

perform joint training on the SRL module and the last two

layers of the PLM in the news recommendation. Due to the

high computation complexity of PLM, another line is to gener-

ate item text representations offline with PLM. IDA-SR [24]

utilizes PLM to obtain the item representations as input to

the SRL module. Subsequently, three pre-training tasks are

used to bridge the gap between text semantics and sequential

user behaviors. Works of this line only train the SRL module

and PLM is unaware of task-specific information, which leads

to a suboptimal performance. Considering performance and

efficiency tradeoffs, our approach trains PLMs in the pre-

train stage to learn CF-related knowledge. When transferring

to a new domain, we use the tuned PLMs to generate item

representations offline, thus improving efficiency.

C. Transferable Recommendation Systems

Improving the transferable ability of recommender systems

is a rapidly growing research area. It aimed at leverag-

ing knowledge learned from multiple domains to enhance

the performance of the recommendation model in new do-

mains [26], [27]. Early studies typically assume the presence

of commonalities across various domains, such as users with

similar preferences [28]–[31] and common items [32], [33],

to enable mapping between the source and target domains.

Recent works have attempted to achieve transferable sequential

recommender by learning cross-domain universal representa-

tions [5], [6], [22], [23], [34]. ZESRec [5] utilizes the universal

item text representations obtained by PLM and performs the

next item prediction task on the SRL module. The trained

SRL module could transfer to a new domain with the item

text representations as input. UniSRec [6] further adapt item

text representations with an MoE module and enables the

SRL module to learn a universal sequence pattern with the

sequence-item and sequence-sequence contrastive pre-training

tasks.

729

Authorized licensed use limited to: Shenghao Yang. Downloaded on March 17,2024 at 15:17:52 UTC from IEEE Xplore.  Restrictions apply. 



Most existing works focus on pre-training a transferable

SRL module and the PLM is frozen. The item representation

obtained by PLM can only provide semantics information and

lacks CF-related signals, which limits the overall performance.

To address this issue, we propose to incorporate recommen-

dation signals into PLM via CF-related tasks. MoRec [25]

is a recently proposed work with an idea close to ours. It

performs a joint training of the PLM and the SRL module

with a next-item-prediction task. However, since PLM is

typically pre-trained with the word-level task, e.g., masked

language modeling [4], the supervision signals of item-level

recommendation tasks don’t match PLM well. To align with

the modeling strategy of PLM, we incorporate word-level CF

signals into PLM through a word-level pre-training task.

III. METHODOLOGY

In this section, we present our proposed transferable item

representation learning approach, CoWPiRec. Utilizing the

word-level CF knowledge learned from the co-click word

graph, CoWPiRec generates item representation with both

semantic and CF-related information based on item text. When

transferring to a new domain, the enhanced item representa-

tion could directly perform recommendations without training

procedure and contribute to the in-domain training.

A. Framework Overview

The overall framework of our proposed text-based IRL

approach is shown in Figure 1. Text-based IRL approach

utilizes item text representation generated by PLM to replace

the ID-based item representation of traditional sequential rec-

ommendation models. It has achieved promising transferable

recommendation performance combined with a pre-training

scheme on the SRL module [5], [6]. We argue that these

transferable recommenders are suboptimal since the text-based

IRL modules are unaware of CF-related information and it is

desired to incorporate CF-related signals into PLM.

Considering PLM is typically trained with the word-level

task, the item-level next-item-prediction task is not applicable

to integrate CF signals into PLM. Therefore, we first extract

word pairs with co-click relationships from interaction data

and construct a word graph that contains these relationships.

The co-click relationships between these words can be seen as

word-level CF signals. Then we incorporate the word-level CF

signals from the word graph into PLM through a word-level

pre-training task. We will explain each key component of our

proposed approach in the following sections.

B. Word Graph Construction

In this section, we present the process of extracting co-

click words and constructing the word graph. A sub-graph of

our constructed word graph is shown in Figure 1 (a). The

co-click relationship is a common concept in recommender

systems while previous works mostly focus on item-level co-

click relationships. To align with the modeling format of PLM

and incorporate the recommendation signal more effectively,

we extract the word-level co-click relationships from the item

text.

In different recommendation scenarios, although items have

different presentation formats, they usually have basic textual

descriptions. Due to the universality of language, different

domains share a common vocabulary, making the text bridge

different recommendation scenarios. Additionally, item texts

often contain some word-level user preferences. If a user clicks

several items containing words like “health” or “fitness”, it

indicates that this user may be focused on a healthy lifestyle.

Therefore, the user may be also interested in nutritionally

balanced food or some fitness equipment. These items may

contain words such as “balance”, “exercise” and “cycling”.

We construct a word graph to organize the co-click relation-

ships based on user interaction. For each word, a candidate set

of words is generated based on co-click relationships and then

filtered to retain only the top N words as neighboring nodes.

Specifically, given a user’s interaction sequence s =
{i1, i2, it, ..., in}, where it represents the t-th item in the

sequence. A co-click word pair is defined as two words

from each item text respectively, denoted as wi and wj . We

count the occurrences of all co-click word pairs, denoted as

(wi, wj , cij , cji), where cij = cji. Since each word contains

a large number of co-click words, we follow [35] and filter

the candidate co-click words using the tf -idf algorithm. The

tf -idf value of a pair of co-click words is calculated by

Equation (1):

tfi,j =
ci,j∑V
k=1 ci,k

, idfj = lg
V

|{ck,j | ∀k, ck,j > 0}| ,

tf -idfi,j = tfi,j × idfj ,

(1)

where V is the vocabulary size, and the denominator of idf is

the number of words that have the co-click relationship with

wj . The higher the tf -idf value, the more times wj and wi are

co-clicked and the less wj is co-clicked with other words. For

each wi, only the top N words with the highest tf -idf values

will be selected as its neighbor nodes in the word graph.

By constructing edges between co-click word pairs, we

obtain a word graph fusion of word-level CF signals. We

construct the word graph based on the user interaction data of

multiple domains to improve the generality ability of extracted

word-level CF signals. The word pairs with edges in the

word graph may relate to different domains, e.g. “health”

and “balance” in the “Food” domain, “cycling”, “indoor” and

“exercise” in the “Home” domain, as shown in Figure 1 (a).

C. Word Graph-based Pre-training Task

With the remarkable semantic representation ability of

PLM, text-based IRL based on PLM provides an effective

semantic matching ability. While PLM cannot capture CF-

related information and this limits the representation ability

of text-based IRL. To incorporate the recommendation signal

into PLM, an intuitive idea is to train PLM and SRL simulta-

neously via the next item prediction task, thus introducing

task-specific information into PLM. However, since PLM’s

modeling method on large-scale corpora is word-level, the
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··· ······

indoor health

exercise

workout

User Sequence

(b) Word Graph-based Pre-training (WGP)

santa
christmas

retro

card

red

Word graph

balance

cycling

fitness
Pre-trained Language

Model (PLM)
Word Graph Neural

Network

(a) Word Graph Construction

Text1

(c) Downstream Recommendation

{w1, ..., wmask, ..., wn}

pull
push

···
g1 gm gn e1 em en

User interaction history

Text1   Text2   ···   Textn

Co-Click words

Multi-domain items

Item Text

User interaction history

Sequence Representation Learning
Module or Mean Pooling 

Textn+1

Dot

CoWPiRec (PLM after WGP)

push

Random mask word

Representation Alignment

Text Emb1 Text Emb2 Text Embn Text Embn+1

User Repres.

Text2 Textn

Leave one out

Clicked items

Fig. 1. The overall framework of our proposed collaborative word-based pre-trained item representation for recommendation (CoWPiRec). (a) The word-
level collaborative filtering (CF) signals are from the co-click relationships of word pairs in the word graph. (b) A word graph-based pre-training (WGP)
is performed to align the semantic- and the CF-related representation of the PLM and word graph with contrastive learning. wi denotes the word in item
text, gi and ei is the word representation after word graph modeling and semantic modeling (c) When transferring CoWPiRec to a new domain, the item
representations generated offline utilizing CoWPiRec are fed into a sequence representation learning (SRL) module or a simple mean-pooling to perform
downstream recommendations in the fine-tuning and zero-shot settings, respectively.

above item-level supervision signal cannot be well integrated

into PLM.

Considering many works have demonstrated that aligning

with PLM’s modeling format in downstream tasks can better

inspire its learned knowledge [36], we propose a word-level

pre-training task to incorporate the word-level CF information

contained in the word graph into the PLM, as shown in

Figure 1 (b). Specifically, we use item text as the input of

the PLM and add special symbols [CLS] and [SEP] before

and after the input in accordance with the input format of

the PLM. We randomly mask words in the item text using

the [MASK] special symbol. For an item text input i =
{cls, w1, ..., wm, ..., wn, sep}, where wm is the masked word,

the initialize word embedding of each word is obtained with

PLM’s word embedding, i.e., {vcls,v1, ...,vm, ...,vn,vsep},

where vi ∈ R
d and d is the dimension of word embedding.

Then two different modeling procedures are performed for

input word embedding, namely semantic modeling and word
graph modeling.

1) Semantic Modeling: In this modeling procedure, the

word embedding of each word in item text vi is firstly concate-

nated, i.e., x = [vcls;v1; ...;vm; ...;vn;vsep] ∈ R
n×d, where

n is the input length and we omit the special token at the head

and tail for convenience. [; ] is the concatenation operation.

Then x is fed into the L-layer Transformer encoder of the

PLM. Each Transformer encoder consists of a multi-head

self-attention layer and a position-wise feed-forward layer. A

residual connection and layer normalization are performed in

the above two parts. We set x0 ∈ R
n×d as the input, and the

output after l + 1-layer Transformer encoder is obtained by

Equation (2).

xl+1 = Trm(xl) = LN(sl + FFN(sl)),

sl = LN(xl +MHAttn(xl)),
(2)

where Trm(·) is the Transformer encoder layer, LN(·) is

the layer normalization function, FFN(·) is the position-

wise feed-forward layer, MHAttn(·) is the multi-head self-

attention layer, sl ∈ R
n×d is the output of the multi-head

self-attention layer. The output of the last layer is xL =
[ecls; e1; ...; em; ...; en; esep] ∈ R

n×d.

With the self-attention mechanism of the Transformer En-

coder, ei ∈ R
d integrates the contextual information of

other words in the item text, which demonstrates effective

semantic representation ability in many tasks. While in the

recommendation system, semantic similarity and recommen-

dation relevance are not related, so the PLM is expected

to capture additional recommendation signals to improve the

recommendation performance.
2) Word Graph Modeling: In this part, the representation of

each word in input x is obtained by aggregating the embedding

of its neighboring nodes through a graph neural network

(GNN). Specifically, we follow [35] and use the GraphSAGE

algorithm [37] to learn a function for aggregating neighbor

node representations.

ht
i = σ

(
Wg

(
ht−1
i ⊕AGG

({
ht−1
j , ∀wj ∈ N ∗

wi

})))
, (3)

where ht
i ∈ R

d is the representation of central word wi in the

t-th layer of GNN, which is aggregated with the representation

of itself ht−1
i and its neighbors ht−1

j in the t − 1 layer.

The initial representation of each word is the initialized word
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embedding, i.e., h0
i = vi. σ is a non-linear activation function.

Wg ∈ R
d×2d is the weight of a linear layer. N ∗

wi
is the sampled

neighbors. ⊕ is a concatenate operator. AGG is an aggregating

function based on the attention mechanism. It aggregates the

representation of neighbors with Equation 4.

qt
g = σ

⎛
⎝ ∑

wj∈N∗
wi

Qgh
t−1
j

⎞
⎠ , kt

j = σ
(
Kgh

t−1
j

)

atj =
exp

(
qtT
g kt

j

)
∑

wk∈N∗
wi

exp
(
qtT
g kt

k

) , ht
N∗

wi
=

∑
wj∈N∗

wi

atjh
t−1
j ,

(4)

where Qg,Kg ∈ R
d×d is the weight of the projection layer

and atj is the attention weight of each neighbor. The output

after T layers of GNN is

gi = hT
i = σ(Wg(h

T−1
i ⊕ hT−1

N∗
wi

)). (5)

The central word representation gi ∈ R
d aggregated with co-

click words is fused with the word-level CF signal of the word

graph.

3) Representation Alignment: In order to incorporate the

word-level CF signals extracted from the word graph into the

representation space of PLM, we adopt a widely used con-

trastive learning method to align the semantic representation

of PLM ei ∈ R
d with the CF-related representation of word

graph gi ∈ R
d. Specifically, for a masked word wm in the

input, we obtain its representations of PLM and word graph,

i.e., em ∈ R
d and gm ∈ R

d. We treat them as a positive

pair and treat gi of other words in the same input (i �= m)

as negatives. We aim to pull em and gm closer and push em
away from other gi by minimizing the following contrastive

learning loss:

L = − 1

M

M∑
m=1

log
exp (em · gm/τ)∑n
i=0 exp (em · gi/τ)

, i �= m, (6)

where M is the number of masked words of the input item

text.

It is worth noting that, during the training process, there

is a parameter sharing between the word embedding of the

PLM and the node embedding of the word graph. As a result,

the output of a word in the PLM gradually approaches its

aggregated representation of neighbor nodes in the word graph.

This process results in the PLM’s output containing both

semantic information and word-level CF information. We refer

to this recommendation-orient trained PLM as CoWPiRec.

D. Downstream Recommendation

Through constructing word graphs and pre-training on mul-

tiple domains, we obtain a text-based IRL module, CoWPiRec,

that captures word-level CF signals. When transferring to

a new domain, we consider two settings to evaluate the

effectiveness of CoWPiRec: fine-tuning setting and zero-shot
setting. The downstream recommendation pipeline is shown

in Figure 1 (c).

1) Fine-tuning Setting: In this setting, we train a sequential

recommendation model using all training data in the new

domain. Following the standard pipeline, given a user’s click

sequence s = {i1, i2, ..., in}, for each it = {w1, w2, ..., wn}, it

is fed into CoWPiRec after adding special symbols [CLS] and

[SEP]. The item representation is obtained by Equation (7).

it = CoWPiRec([cls;w1;w2; ...;wn; sep]), (7)

where CoWPiRec(·) takes the representation of the [cls] po-

sition as the item representations it ∈ R
d. Then we follow [6]

and used an MoE module consisting of multiple whitening

networks to adapt the item representations and reduce the

dimension, resulting ĩt ∈ R
dV .

We adopt a widely used transformer network to aggregate

the item representations. Specifically, we sum the item repre-

sentations and the absolute position embedding pt ∈ R
dV as

the input.

f0t = ĩt + pt. (8)

Then F0 = [f01 ; ...; f
0
n] ∈ R

n×dV is fed into L transformer

layers, the output after l + 1 layers is:

Fl+1 = FFN(MHAttn(F l)). (9)

We take the t-th position hidden state of the last layer, i.e.,

fLn ∈ R
dV as the user representation u ∈ R

dV .

Note that since CoWPiRec already has the ability to cap-

ture recommendation signals, we don’t need to update the

parameters of CoWPiRec during training. Therefore we offline

obtain all item representations, which significantly improves

efficiency. For user representation u, we calculate the score of

candidate next item it+1 using the dot product:

score(it+1|s) = Softmax(u · ĩt+1). (10)

We use the cross-entropy loss for the next item prediction task

during training. In the inference stage, we rank the items based

on the dot product score.

2) Zero-shot Setting: In contrast to the cold-start problem,

the objective of zero-shot recommendation is to determine

whether a model has basic recommendation capabilities with-

out any in-domain training. It can not be achieved with

traditional ID-based recommendation models. Since the item

representations generated by CoWPiRec have a remarkable

semantic matching ability and could capture recommenda-

tion signals. Therefore, we directly use the nearest neighbor

search with the dot product to perform the recommendation.

Specifically, given all item representations in a user sequence

{i1, i2, ..., in} obtained by CoWPiRec with Equation (7). We

use mean-pooling to aggregate the item representations to

obtain the user representation u.

u =
1

n

n∑
t=1

it. (11)

Then the score of the candidate item it+1 is calculated with

Equation (10) and we directly predict the next item according

to the scores.
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TABLE I
COMPARISON OF DIFFERENT SEQUENTIAL RECOMMENDERS.

Methods
Used information Pre-training on

Transferable

ID Text Item Sequence

SASRec � � � � �

BERT4Rec � � � � �

S3Rec � � � � �

ZESRec � � � � �

UniSRec � � � � �

MoRec � � � � �

CoWPiRec � � � � �

E. Discussion

In this section, we present the differences between our

proposed CoWPiRec compared with other sequential rec-

ommendation models. The comparison focuses on the two

components of sequential recommendation models, i.e., the

IRL and SRL modules, and the model’s transferable ability.

The comparison results are shown in Table I.

ID-based IRL approaches such as SASRec [3] and

BERT4Rec [14] obtain item representations with explicit item

IDs. SASRec utilizes transformer layers to aggregate item ID

representations and BERT4Rec performs a mask item predic-

tion task to pre-train the bidirectional transformer layer. Since

item IDs are not shared across scenarios, these approaches

need to be trained from scratch when applied to new scenarios

and lack transferable ability. CoWPiRec does not rely on the

item ID to perform recommendations and adopt a text-based

IRL module. With the shared vocabulary across scenarios,

CoWPiRec achieves transferable recommendations.

Text-based IRL approaches such as S3Rec [38] incor-

porate item text representation as an auxiliary feature and

perform self-supervised tasks to integrate the representation of

sequence, item, and feature. Since S3Rec also utilizes the item

id embedding, the pre-train task can only be performed in-

domain. Different from S3Rec, ZESRec [5] and UniSRec [6]

purely use item text representations and perform a cross-

domain pre-training on the SRL module. The pre-trained SRL

module can learn general sequence modeling patterns and

contribute to the cross-scenario recommendations. Instead of

focusing only on pre-training the SRL module, MoRec [25]

train the text-based IRL and SRL module jointly with the next-

item-prediction task. We don’t pre-train the SRL module in

our proposed approach and perform a word graph-based per-

training task to obtain a transferable text-based IRL module,

i.e., CoWPiRec.

IV. EXPERIMENTS

In this section, we first introduce how to evaluate the

transferable ability of CoWPiRec in cross-scenario settings

and then present experimental results and analysis.

TABLE II
STATISTICS OF THE DATASETS AFTER PREPROCESSING. “AVG. n”

DENOTES THE AVERAGE LENGTH OF ITEM SEQUENCES. “AVG. c” DENOTES

THE AVERAGE NUMBER OF TOKENS IN THE ITEM TEXT.

Datasets #Users #Items #Inters. Avg. n Avg. c

Pre-trained 1,361,408 446,975 14,029,229 13.51 139.34
- Food 115,349 39,670 1,027,413 8.91 153.40
- CDs 94,010 64,439 1,118,563 12.64 80.43
- Kindle 138,436 98,111 2,204,596 15.93 141.70
- Movies 281,700 59.203 3,226,731 11.45 97.54
- Home 731,913 185,552 6,451,926 8.82 168.89

Scientific 8,442 4,385 59,427 7.04 182.87
Pantry 13,101 4,898 126,962 9.69 83.17
Instruments 24,962 9,964 208,926 8.37 165.18
Arts 45,486 21,019 395,150 8.69 155.57
Office 87,436 25,986 684,837 7.84 193.22

Online Retail 16,520 3,469 519,906 26.90 27.80

A. Experiment Setup

1) Datasets: We use mixed-domain user interaction data

to pre-train CoWPiRec, and then use multiple downstream

datasets to evaluate the transferable performance of CoW-

PiRec. The statistics of the dataset used are shown in Table II.

• Pre-trained datasets: We select the datasets from five

domains in the Amazon dataset [39] to construct the

word graph and pre-train CoWPiRec, i.e., “Grocery and
Gourmet Food”, “Home and Kitchen”, “CDs and Vinyl”,

“Kindle Store” and “Movies and TV”.

• Downstream datasets: In the downstream recommenda-

tion task, we select another five datasets in the Amazon

dataset as cross-domain datasets, namely “Industrial and
Scientific”, “Prime Pantry”, “Musical Instruments”, “Arts,
Crafts and Sewing”, and “Office Products”. We also select

a cross-platform dataset, namely Online Retail1, a UK

online shopping dataset containing transaction records

between 01/12/2010 and 09/12/2011.

For all datasets, we remove users and items with fewer than

five interactions and arrange the items interacted by users

in chronological order following [6]. For item text, we use

title, categories, and brand in the Amazon dataset, and item

description in the Online Retail dataset.

2) Baselines: In this paper, we compare CoWPiRec with

several baseline methods, including:

• SASRec [3] uses the self-attention mechanism to aggre-

gate ID-based item representations in the user sequence.

• BERT4Rec [14] models user sequence representations

based on cloze objective task.

• SASRecT simply replaces the item ID embedding of

SASRec with the item text embedding generated by PLM

and maintains the same SRL module.

• S3Rec [38] pre-trains SRL modules with four self-

supervised tasks on in-domain data to integrate rep-

resentations at different levels of features, items, and

sequences.

1https://www.kaggle.com/carrie1/ecommerce-data
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TABLE III
DOWNSTREAM RECOMMENDATION PERFORMANCE OF DIFFERENT MODELS IN THE FINE-TUNING SETTING. THE BEST AND THE SECOND-BEST

PERFORMANCES ARE DENOTED IN BOLD AND UNDERLINED FONTS, RESPECTIVELY. “H@K” IS SHORT FOR “HR@K” AND “N@K” IS SHORT FOR

“NDCG@K”, RESPECTIVELY. THE SUBSCRIPT ‘T” DENOTES THAT ITEM TEXT IS USED IN THE IRL MODULE OF THE MODEL. THE SUPERSCRIPTS ∗ AND
∗∗ INDICATE p ≤ 0.05 AND p ≤ 0.01 FOR THE PAIRED T-TEST OF COWPIREC VS. THE BEST BASELINE.

Setting Baselines Ours

Dataset Metric SASRec BERT4Rec S3RecT SASRecT ZESRecT UniSRecT MoRecT CoWPiRecT Improv.

Scientific

H@10 0.1063 0.0488 0.0897 0.1163 0.1066 0.1124 0.1174 0.1264∗∗ +7.67%
H@50 0.2034 0.1185 0.1913 0.2259 0.2095 0.2284 0.2300 0.2388∗∗ +3.83%
N@10 0.0552 0.0243 0.0496 0.0631 0.0582 0.0595 0.0635 0.0664∗∗ +4.57%
N@50 0.0763 0.0393 0.0716 0.0870 0.0808 0.0847 0.0880 0.0909∗∗ +3.30%

Pantry

H@10 0.0493 0.0267 0.0393 0.0603 0.0629 0.0646 0.0639 0.0679∗∗ +5.11%
H@50 0.1333 0.0932 0.1275 0.1676 0.1658 0.1747 0.1682 0.1783∗ +2.06%
N@10 0.0219 0.0136 0.0177 0.0295 0.0308 0.0309 0.0310 0.0320∗∗ +3.23%
N@50 0.0399 0.0277 0.0366 0.0528 0.0531 0.0546 0.0535 0.0559∗ +2.38%

Instruments

H@10 0.1126 0.0788 0.0996 0.1175 0.109 0.1087 0.1229 0.1270∗∗ +3.34%
H@50 0.2087 0.1485 0.1886 0.2224 0.2044 0.2079 0.2278 0.2344∗∗ +2.90%
N@10 0.0618 0.0579 0.0623 0.0690 0.0649 0.0622 0.0717 0.0735∗∗ +2.51%
N@50 0.0826 0.0728 0.0815 0.0917 0.0855 0.0837 0.0944 0.0967∗∗ +2.44%

Arts

H@10 0.1074 0.0647 0.0952 0.1078 0.1010 0.1099 0.1101 0.1164∗∗ +5.72%
H@50 0.1986 0.1316 0.1815 0.2050 0.1934 0.2118 0.2127 0.2231∗∗ +4.89%
N@10 0.0571 0.0403 0.0567 0.0613 0.0568 0.0602 0.0637 0.0650∗∗ +2.04%
N@50 0.0769 0.0548 0.0754 0.0825 0.0769 0.0823 0.0860 0.0882∗∗ +2.56%

Office

H@10 0.1064 0.0794 0.1085 0.1043 0.0955 0.1046 0.1096 0.1141∗∗ +4.11%
H@50 0.1641 0.1232 0.1683 0.1709 0.1625 0.1751 0.1794 0.1867∗∗ +4.07%
N@10 0.0710 0.0573 0.0666 0.0640 0.0567 0.0627 0.0673 0.0703 -
N@50 0.0835 0.0668 0.0797 0.0785 0.0714 0.0780 0.0825 0.0861∗∗ +3.11%

Online Retail

H@10 0.1460 0.1343 0.1433 0.1366 0.1320 0.1444 0.1465 0.1515∗∗ +3.41%
H@50 0.3872 0.3582 0.3762 0.3479 0.3378 0.3653 0.3728 0.3928∗∗ +1.45%
N@10 0.0671 0.0645 0.0639 0.0666 0.0628 0.0675 0.0712 0.0723∗∗ +1.54%
N@50 0.1201 0.1133 0.1146 0.1129 0.1077 0.1158 0.1204 0.1247∗∗ +3.57%

• ZESRec [5] obtains item representations using PLM

firstly. Then pre-trains the SRL module on data from

multiple domains and transfers it to new domains.

• UniSRec [6] also obtains item representations using

PLM and uses an MoE module to adaptively adjust the

representations in different domains. Then the MoE and

SRL modules are pre-trained on multi-domain datasets

with sequence-item and sequence-sequence contrastive

learning tasks.

• MoRec [25] performs a joint training on PLM and SRL

module with next-item-prediction task. With the item-

level supervision signals, the tuned PLM could better

adapt to the recommendation task.

Among all the above methods, SASRec and BERT4Rec are

ID-based IRL methods. SASRecT, ZESRec, UniSRec, MoRec,

and our proposed CoWPiRec belong to the text-based IRL

methods. Different from most baselines, CoWPiRec only pre-

trains the IRL module by constructing a word graph containing

word-level CF signals and performing a word graph-based

pre-training task on datasets from multiple domains. Note

that we don’t compare CoWPiRec with the cross-domain

recommendation models since it has been proven that these

approaches usually underperform one of our baselines, i.e.,

UniSRec [6].

3) Evaluation Metric: We use two widely used evaluation

metrics, HR@K and nDCG@K, to evaluate the performance

of all models in the next item prediction task on downstream

datasets. K is set to 10 and 50. Following previous work [3],

we use the leave-one-out method to construct the dataset.

Specifically, given a user interaction sequence, the last item is

used for testing, the second to last item is used for validation,

and the rest of the items are used for training. When predicting

the next item, we sort all items in the dataset based on the dot-

product score. The reported evaluation metrics are the average

values of all test users.

4) Implementation Details: We implement CoWPiRec us-

ing RecBole [40] and transformers [41] library. For baseline

methods, most are implemented by RecBole and we run

MoRec with official code2. During the pre-training stage of

CoWPiRec, we construct the word graph by retaining the top

30 co-click words based on their tf-idf scores. Item text is

tokenized using the BERT tokenizer and we set the maximum

length of all item texts to 128. Following the BERT masking

strategy, we randomly select 15% of words in the input

sequence and replace them with the [MASK] token in 80%

of cases, a random token in 10% of cases, and leaving them

unchanged in 10% of cases. In the word graph modeling step,

the number of GNN layers T in the GraphSAGE algorithm is

set to 1. We use an official checkpoint of BERT in the hugging-

face hub, i.e., bert-base-uncased3 to initialize CoWPiRec’s

2https://github.com/westlake-repl/IDvs.MoRec
3https://huggingface.co/bert-base-uncased
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parameters. We pre-train CoWPiRec with a batch size of 100

and a learning rate of 5e-5 and use the AdamW optimizer

with a linear warm-up rate of 0.1 to update model parameters.

CoWPiRec is trained for 30 epochs on one Nvidia RTX 3090.

In the fine-tuning setting of the CoWPiRec, we followed [6]

and set the number of whitening networks of the MoE module

to 8. The number of transformer layers and the head of the

multi-head self-attention layer in the SRL module are both

set to 2. For all methods in the downstream recommenda-

tion, we use the Adam optimizer and carefully search for

hyperparameters, with a batch size of 2048 and early stopping

with the patience of 10, using nDCG@10 as the indicator. We

tune the learning rate in {0.0003, 0.001, 0.003, 0.01} and the

embedding dimension in {64, 128, 300}.

B. Overall Performance

1) Fine-tuning Setting: We compare the performance of

CoWPiRec with multiple baseline models on five cross-

domain datasets and a cross-platform dataset, and the experi-

mental results are shown in Table III.

From the results, several observations could be concluded.

Firstly, Among several baseline methods with ID-based IRL,

SASRec achieves better performance when interactions are

sufficient while performing poorly on datasets with relatively

fewer interactions, e.g., Scientific. It indicates that the sequen-

tial recommender with ID-based IRL heavily relies on ID-

based interactions. Secondly, The methods with the text-based

IRL module effectively improve the performance, especially

in datasets that the ID-based model does not specialize in.

Thirdly, with effective joint training on the PLM and the

SRL module, MoRec achieves overall better results than other

baselines. It indicates the significance to enable PLM aware

task-specific signals. While limited by the unsuitable item-

level task, the overall performance of MoRec is suboptimal

compared to our proposed CoWPiRec.

Compared to all baseline models, it is clear that CoW-

PiRec achieves the best performance in almost all cases. That

demonstrates the effectiveness of incorporating word-level CF

signals into the text-based IRL module. It is worth noting that

CoWPiRec trains the MoE module and SRL module from

scratch in fine-tuning stage, unlike UniSRec which pre-trains

these two modules with mix-domain datasets. It indicates that

the superior result of our model mainly comes from the pre-

trained text-based IRL module’s ability to capture CF-related

information.

2) Zero-shot Setting: For transferable sequential recom-

menders, the zero-shot performance after transferring to a

new domain intuitively reflects the knowledge learned in

pre-training. Following the zero-shot recommendation setting

in [5], we directly use the pre-trained checkpoint of transfer-

able sequential recommenders to perform recommendations

without any training stage. Note that in this setting, the

model can access all interactions of the user except the

last item in the user sequence, but no next-item prediction

task training is performed to update the model’s parameters.

The experiment results are shown in Table IV. From the

TABLE IV
ZERO-SHOT RECOMMENDATION PERFORMANCE OF DIFFERENT MODELS

ON THE DOWNSTREAM DATASETS. THE BEST AND THE SECOND-BEST

PERFORMANCES ARE DENOTED IN BOLD AND UNDERLINED FONTS,
RESPECTIVELY. S3REC IS PRE-TRAINED WITH THE SAME DATASETS AS

DOWNSTREAM AND OTHER MODELS ARE PRE-TRAINED WITH AMAZON

PRE-TRAINED DATA. THE SUPERSCRIPTS ∗ AND ∗∗ INDICATE p ≤ 0.05
AND p ≤ 0.01 FOR THE PAIRED T-TEST OF COWPIREC VS. THE BEST

BASELINE.

Dataset Metric ZESRec S3Rec UniSRec MoRec CoWPiRec

Scientific

H@10 0.0519 0.0025 0.0553 0.0481 0.0614∗∗
H@50 0.1063 0.0158 0.1149 0.0943 0.1228∗∗
N@10 0.0284 0.0011 0.0281 0.0222 0.0287∗
N@50 0.0403 0.0039 0.0411 0.0324 0.0422∗∗

Instruments

H@10 0.0356 0.0079 0.0299 0.0356 0.0429∗∗
H@50 0.0738 0.0213 0.0846 0.0649 0.0830
N@10 0.0187 0.0045 0.0148 0.0178 0.0198∗∗
N@50 0.0271 0.0072 0.0265 0.0241 0.0286∗∗

Online Retail

H@10 0.0375 0.0065 0.0369 0.0331 0.0440∗∗
H@50 0.0780 0.0421 0.0814 0.0792 0.1011∗∗
N@10 0.0180 0.0028 0.0177 0.0153 0.0191∗∗
N@50 0.0268 0.0102 0.0273 0.0253 0.0316∗∗

results, we can conclude several observations. Firstly, S3Rec

performs poorly in the zero-shot setting. We speculate the

reason is that the modeling procedure of S3Rec’s SRL module

is different in pre-training and downstream, i.e., bidirectional

and unidirectional. Secondly, ZESRec, UniSRec, and MoRec

perform better than S3Rec, which demonstrates that the pre-

training stage contributes to the zero-shot recommendation

performance. Thirdly, CoWPiRec gives clearly better results

than other baselines in most cases. Note that CoWPiRec

is not pre-trained with a recommendation-related task, e.g.

next-item-prediction task, It indicates the effectiveness of

word graph-based pre-training. We believe that the significant

improvement of CoWPiRec benefits from the word-level CF

knowledge learned from the word graph.

C. Cold Start Performance

Fig. 2. Performance comparison in cold user and cold item experiment on
“Scientific” dataset. The bar graph represents the number of users or items in
test data for each group. The line chart represents the improvement ratios for
HR@10 compared with SASRec.

One goal of the transferable sequential recommender is to

alleviate the cold start issue in new domains. We evaluate

CoWPiRec’s performance compared to baseline models on the

cold start setting from two perspectives: cold users and cold

items. Specifically, for cold user experiments, we group the
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Fig. 3. The interaction history of a user in the “Online Retail” dataset, a sub-graph of our constructed word graph, and the rank results of the target item of
models in the zero-shot setting. The word “card” and “santa” have co-click relationships with “retro” and “red” in the word graph. CoWPiRec utilizes the
word-level CF signal learned from the word graph and captures “red” and “retro” in the target item. Therefore, CoWPiRec ranks the target item at a high
position and achieves a clearly better performance than other models.

users in the test set based on the number of their interactions

in the training set. For cold item experiments, we split the

test set based on the target item’s popularity in the training

set. We present the relative improvement of CoWPiRec and

several baselines over SASRec in terms of HR@10, as shown

in Figure 2.

From the result, several observations can be concluded.

Firstly, CoWPiRec achieves the most improvement over SAS-

Rec in most user groups while other baseline models un-

derperform SASRec in some groups. Secondly, in the cold

item experiment, CoWPiRec significantly improves the per-

formance in most item groups, especially in the items group

that are less interacted with by users, i.e., group [0,5) and

[5,10). The experiment result demonstrates that CoWPiRec

can effectively alleviate the cold-start issue in cross-scenario

recommendations utilizing the item representations capturing

the word-level CF signals.

D. Case Study

From the experimental results in section IV-B, we can

see that CoWPiRec achieves significantly better performance

than other methods in most cases. Since we did not per-

form cross-domain pre-training for the SRL module, or even

don’t leverage it (i.e., zero-shot setting). We believe that

the performance improvement of CoWPiRec mainly comes

from the ability learned in the pre-training stage to capture

word-level CF signals. We will show a case to illustrate

how CoWPiRec leverages the knowledge learned from the

word graph-based pre-training to improve the performance of

downstream recommendation tasks.

In the case shown in Figure 3, CoWPiRec ranks the ground-

truth next item at the 3rd position without any in-domain

user interaction data training (i.e., zero-shot setting). It is

significantly better than two strong baselines, i.e., MoRec

and UniSRec. We believe CoWPiRec achieves significantly

better ranking performance by capturing the word-level user

preferences, i.e., the words “santa” and “card” in the recent

interaction and the words “red” and “retro” in the target item.

We can find co-click relationships with similar word-level

preferences in the word graph. It indicates that CoWPiRec

learns these word-level CF signals from word graph-based pre-

training and applies the learned knowledge to the recommen-

dation task in downstream datasets.

V. CONCLUSION

In this paper, we proposed a transferable item representa-

tion learning framework, named CoWPiRec. Different from

previous transferable sequential recommenders that typically

utilize the text-based IRL module as an offline feature extractor

and learn a universal SRL module, we focus on incorporating

recommendation knowledge into the text-based IRL module

allowing it to capture CF signals. Considering the item-level

CF signal is not suitable for the widely used text-based IRL

module, i.e., PLM. We first construct a word graph fused with

CF signals by collecting co-click word pairs and then integrat-

ing these signals into the PLM via a word-level pre-training

task. With the ability to capture word-level recommendation

information, CoWPiRec can even perform recommendations

with a simple SRL module without trainable parameters, i.e.,

mean pooling. Furthermore, combining CoWPiRec with the

SRL module and performing downstream training can achieve

significantly better performance compared with state-of-the-

art transferable sequential recommenders. Note that the SRL

module used in the experiment is not tailored for CoWPiRec

and just follows a previous architecture. It leaves us a future

work of exploring a sophisticated SRL to improve the perfor-

mance of CoWPiRec.
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