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Two general challenges faced by data analysis are the
existence of noise and the extraction of meaningful infor-
mation from collected data. In this study, we used a multi-
scale framework to reduce the effects caused by noise
and to extract explainable geometric properties to charac-
terize finite metric spaces. We conducted lab experiments
that integrated the use of eye-tracking, electrodermal
activity (EDA), and user logs to explore users’ infor-
mation-seeking behaviors on search engine result
pages (SERPs). Experimental results of 1,590 search
queries showed that the proposed strategies effectively
predicted query-level user satisfaction using EDA and
eye-tracking data. The bootstrap analysis showed that
combining EDA and eye-tracking data with user behavior
data extracted from user logs led to a significantly better
linear model fit than using user behavior data alone. Fur-
thermore, cross-user and cross-task validations showed
that our methods can be generalized to different search
engine users performing different preassigned tasks.

Introduction

Neurophysiological (NP) signals convey a wide range of
information, such as the level of cognitive effort, curiosity,
arousal, and emotional states (Mostafa & Gwizdka, 2016).

Compared with traditional user behavior signals adopted in
web search-related research, such as click-throughs, NP sig-
nals may capture evidence that is not directly expressed or
expressible (Arapakis, Bai, & Cambazoglu, 2014) and that

can be collected free of response bias (Barreda-�Angeles,
Arapakis, Bai, Cambazoglu, & Pereda-Baños, 2015). Plenty
of existing work has tried to correlate search behavior sig-
nals, including clicking, mouse movement, and query
reformulation, with search performance metrics such as satis-
faction and success (Arapakis & Leiva, 2016; Chen, Liu,
Zhang, & Ma, 2017). However, none of these efforts has
taken NP signals into consideration, probably due to the dif-
ficulties in preprocessing and interpreting low-level features.
Therefore, the need for adequate techniques to understand
the mechanisms of underlying physiological and behavioral
signals has been acknowledged (Prokasy, 2012).

User satisfaction measures users’ subjective feelings
about their interactions with modern search engines and can
be defined as the fulfillment of a specified information
requirement (Kelly, 2009). Since search satisfaction is impor-
tant user feedback for search system optimization, predicting
search satisfaction is one of the major concerns in search
evaluation studies (Liu et al., 2015). User satisfaction
assesses the overall impact of the cognitive and communica-
tive aspects of user-intermediary interactions (Wu & Liu,
2011); therefore, we believe that NP signals may provide
more precise predictions of search quality and deepen our
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understanding of users’ satisfaction perception mechanisms
in the search interaction process, which offers potential for
the advancement of new search tools.

In this study we considered a particular type of NP signal
named electrodermal activity (EDA), which has been widely
used since the turn of the century as a dependent variable in
research related to psychophysiology, psychopathology, the
detection of deception, and social psychopathology as an
aspect of behavior that can be measured and quantified
(Prokasy, 2012). Research on EDA dates back to 1849
(Veraguth, 1907). Since then, EDA has been used to measure
emotion (Sokolov, 1963) and attention (Maltzman & Raskin,
1965) and to differentiate between positive and negative
emotions (Boucsein, 2012). Flanagan (1967) found a posi-
tive correlation between the magnitude of EDA amplitude
and attention (+.64) and emotion (+.32). Forbes and Bolles
(1936) also reported a connection between EDA and emo-
tional reactions, which was confirmed by later investigators
(Uno & Grings, 1965; Wilcott, Darrow, & Siegel, 1957;
Yokota, Takahashi, Kondo, & Fujimori, 1959).

Both EDA and eye movements are associated with atten-
tion, which is important for predicting satisfaction (Chuklin &
de Rijke, 2016); therefore, the relationship between search
satisfaction and users’ eye movement behaviors is also investi-
gated in this work. The fact that eye movements provide evi-
dence of visual attention was discovered early (Von Helmholtz,
1867). According to the eye–mind link hypothesis (Just &
Carpenter, 1980), eye-tracking corresponds to the location of
attention. Therefore, eye-tracking can help researchers under-
stand search process complexity by effort indicators such as fix-
ation duration, the existence of regression fixations, the spacing
of fixations, and reading speed (Rayner, Pollatsek, Ashby, &
Clifton Jr, 2012). They may serve as effective predictors of user
perception in search satisfaction prediction studies.

Furthermore, user behaviors recorded in user logs have
been shown to be an effective predictor of search satisfaction
(Ageev, Guo, Lagun, & Agichtein, 2011; Feild, Allan, &
Jones, 2010; Guo, Lagun, & Agichtein, 2012; Guo, White,
Zhang, Anderson, & Dumais, 2011; Hassan, Jones, &
Klinkner, 2010; Liu et al., 2015; Su, He, Liu, Zhang, & Ma,
2018), and we adopted these behavior features as a baseline
to show that neurophysiological data achieve a similar effect.

Although existing works have already shown that some
extracted high-level EDA signals, such as increased EDA
levels, can reveal certain kinds of human emotions that other-

wise go unnoticed (Barreda-�Angeles et al., 2015), how to
extract effective search satisfaction predictors from fine-
grained EDA data remains underinvestigated. Researchers
have adopted a number of dependent variables obtained from
EDA recordings, such as the basal level, amplitude, and
latency of specific responses (Flanagan, 1967) and the fre-
quency of nonspecific responses (Forbes & Bolles, 1936).
However, the shape of the EDA signals and eye movements
has not been taken into consideration, and there is still a
limited understanding of the effect of individual differences
on eye gaze patterns in information searches (Wittek, Liu,
Darányi, Gedeon, & Lim, 2016).

To understand the relationship between users’ satisfac-
tion feedback and physiological and behavioral signals, we
conducted an empirical study with 40 search users with
diversified backgrounds. Each user performed 12 search
tasks with eye movements and EDA signals were recorded.
Each task contained multiple search queries to complete,
and users were asked to give self-reported satisfaction rat-
ings after each query and each task.

Since orthogonal invariants describe the change in EDA
levels and disregard the reference level, and slope and curva-
ture are invariant under rigid transition, we expected certain
invariant properties that describe EDA graph and eye move-
ments to remain unchanged under certain transformations.
Yau (2014) classified geometric invariants into orthogonal,
affine, conformal, projective, and homological geometries.
Applications of conformal invariants have been presented
using computer graphics (Gu & Yau, 2008; Huang, Gu,
Lin, & Yau, 2016; Huang et al., 2016; Wu, Su, Yueh,
Lin, & Yau, 2015; Wu, 2012; Yau, Gu, & Wang, 2002),
and research on homological invariants has suggested that
distributions of persistent homology barcodes provide robust
invariants of metric measure spaces (Blumberg, Gal, Man-
dell, & Pancia, 2014). Recent efforts have also shown the
effectiveness of predicting product search satisfaction on
mobile phones using geometric invariants of EDA data (Wu,
Liu, Su, Ma, & Ou, 2017). Since the EDA graph and eye
movements we investigated reside in Euclidean space, we
used geometric invariants to bridge the gap between low-
level EDA and eye movement data and high-level user per-
ceived satisfaction.

The EDA signals we collected in the time window of
interest were multiscale, so the data have important features
at multiple scales of time and/or space. Following the
methods of Engquist and Tsai (2005) for stiff ordinary dif-
ferential equations with oscillatory solutions, we used a mul-
tiscale approach to model and filter the data to recover the
properties that are intrinsic to the collected data. An exam-
ple of the process of smoothing out the collected EDA sig-
nals is presented in Figure 1. The enlarged raw EDA graphs
show that the data oscillate and contain spurious noise; in
contrast, the smoothed EDA data reflect the true variation in
a user’s EDA level more accurately, with sampling noise fil-
tered out. The multiscale model allows the computation of
geometric invariants in a discretized scenario with the pres-
ence of periodic sampling noise; as a result, the geometric
invariants extracted as machine learning features are robust
against individual differences and tasks performed.

The major contributions of this work are therefore
threefold:

• We introduced the multiscale framework, which facilitates the
approximation of geometric invariants in a finite metric space; we
proved the rate of convergence for the discretization schemes;
and we showed the equivalence of different discretizations.

• We found that geometric features from visual fixation sequences
and EDA signals effectively predict user satisfaction, and the
bootstrap analysis shows that the linear model fitted by the
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physiological features and behavioral features better explains
query-level user satisfaction than behavioral data alone.

• Empirical studies suggest that these geometric invariants are
robust across users (Table 7), tasks (Table 8), and various envi-
ronmental stimuli.

Related Work

Neurophysiological Signals for Information Retrieval (IR)

EDA refers to the conductivity of the skin, which varies
according to the activation of the sympathetic branch of the
autonomous nervous system (Boucsein, 2012). It can be very
helpful in unveiling attentional and emotional reactions.
Research on EDA by du Bois-Reymond dates back to 1849
(Veraguth, 1907). Since then, EDA has been used to measure
stress (Lazarus, 1966; Lazarus & Opton Jr, 1966; Nomikos,
Opton Jr, & Averill, 1968) and arousal (Duffy, 1972), espe-
cially for the lower arousal range, which reflects small varia-
tions (Boucsein, 2012). Researchers found that there is
decreased skin conductance during pleasure (Stemmler,
1989) and increased skin conductance during fear (Ax,
1953; Boucsein, 2012; Stemmler, 1984, 1989; Wagner,
1989) and anger (Stemmler, 1989). Furthermore, studies
incorporating EDA signals have observed that uncon-
sciously perceived small web search latency increases
could also affect the search experience (Barreda-�Angeles
et al., 2015), contradicting the noticeable threshold of
latency established by prior research (Arapakis et al.,
2014). Using high-level EDA signals, Edwards and Kelly
(2017) found that participants had the highest skin conduc-
tance when performing interesting tasks with normal sea-
rch engine result page (SERP) quality and the second
highest conductance level when performing uninteresting
tasks with poor SERP quality. However, how to extract
meaningful information to reveal the underlying

information carried by EDA graphs in the presence of
sampling noise and confounding factors remains under-
investigated. An EDA graph is effective for predicting
online shopping search satisfaction in mobile search sce-
narios (Wu et al., 2017), but whether utilizing EDA helps
with understanding user satisfaction during general web
searches remains unknown.

Because of the limited visual field that human eyes can
see with full acuity, we need to move our eyes constantly.
Therefore, the use of eye-tracking in information retrieval
research under the hypothesis that visual fixation indicates
attention was proposed over two decades ago. Researchers
have been dedicated to using eye-tracking methodologies
to explore the effects of changes in search result presenta-
tion (Cutrell & Guan, 2007; Granka, Joachims, & Gay,
2004), to study examination behavior (Tatler & Vincent,
2009; Xie et al., 2017), and to investigate the interaction
between eye movements and visual saliency (Buscher,
Cutrell, & Morris, 2009; Liu et al., 2016; Underwood &
Foulsham, 2006). Gwizdka (2014) found that eye-tracking
measures characterize relevance, which correlates with
search satisfaction (Gluck, 1996; Huffman & Hochster,
2007; Mao et al., 2016). NP signals as indicators of human
engagement and responses to search tasks come with the
great promise of “lifting the lid” of the black box and may
reveal what level of cognitive effort, anxiety, stress, curios-
ity, arousal, pleasure, and so forth, subjects experience while
engaging in search tasks (Mostafa & Gwizdka, 2016). Mos-
hfeghi, Triantafillou, and Pollick (2016) employed functional
magnetic resonance imaging (fMRI) to study the connection
between an information need and brain activity. These conn-
ections motivate us to extract geometric features that charac-
terize eye-fixation as predictors of search satisfaction;
however, combining eye-tracking information with EDA sig-
nals to understand the interactions between these signals
remains unexplored.

FIG. 1. Filtering out oscillation using a multiscale model. [Color figure can be viewed at wileyonlinelibrary.com]

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019
DOI: 10.1002/asi

3

http://wileyonlinelibrary.com


Relationship Between Emotion and the Autonomous
Nervous System

For over a century, psychologists have tried to under-
stand how the autonomic nervous system relates to emo-
tions (Bernstein, Penner, Clarke-Stewart, & Roy, 2003). In
the process, a number of theories have been developed. In
the late 1800s, William James offered one of the first formal
accounts of how physiological responses relate to emotional
experience, known as the peripheral theory of emotion,
which regards activity in the peripheral nervous system as
the cause of emotional experience (James, 1890). A similar
argument was given by Carl Lange; hence, James’s view is
also called the James–Lange theory of emotion. While
James believed that the experience of emotion depends on
feedback from physiological responses occurring outside
the brain, Walter Cannon believed that the experience of
emotion appears directly in the brain, with or without feed-
back from peripheral responses (Cannon, 1929). According
to Cannon’s central theory, also known as the Cannon–
Bard theory, when the thalamus receives sensory informa-
tion about emotional events, it sends signals to the
autonomic nervous system and the cerebral cortex, where
the emotion becomes conscious. Stanley Schachter sugg-
ested that emotions are shaped partly by how we interpret
the arousal we feel. Schachter argued that emotions emerge
from a combination of feedback from peripheral responses
and cognitive interpretation based on the nature and cause
of those responses, and interpretation occurs again when we
identify feedback from those responses as a particular emo-
tion (Schachter & Singer, 1962). His cognitive theory of
emotion is known as the Schachter–Singer theory. Research
on these theories suggests that both peripheral autonomic
responses and the cognitive interpretation of those responses
add to emotional experience, and the brain can also generate
emotional experiences on its own, independent of physiolog-
ical arousal.

Web Search User Satisfaction Analysis

Search satisfaction measures users’ subjective feelings in
regard to their interactions with the retrieval system and can
be defined as the fulfillment of specified information needs
(Kelly, 2009). Satisfaction as an evaluative criterion takes
explicit account of the user and involves most of the compo-
nents of IR interaction (Belkin & Vickery, 1985; Su, 2003;
Wu & Liu, 2011). It is strongly correlated with certain evalu-
ation metrics, such as cumulative gain (CG) and discounted
cumulative gain (DCG) (Al-Maskari, Sanderson, & Clough,
2007); therefore, user satisfaction is sometimes referred to as
the gold standard in search performance evaluation (Zhang
et al., 2018). Research has focused on selecting effective
mouse movement patterns (Guo et al., 2012; Liu et al., 2015)
and query logs (Feild et al., 2010) to predict satisfaction.
Lagun et al.’s study employed distance measures to improve
result relevance estimation and reranking tasks (Lagun,
Ageev, Guo, & Agichtein, 2014), and Liu et al.’s (2015)
study computed the distribution difference to predict search

satisfaction. However, satisfaction ratings are rather subjec-
tive: High satisfaction ratings are sometimes associated with
low precision scores (Hitchingham, 1979), and searches with
a large number of useful references are rated as less satisfy-
ing and vice versa (Tagliacozzo, 1977). Some studies have
collected users’ explicit feedback as the ground truth of satis-
faction (Feild et al., 2010), and others have employed exter-
nal assessors (Huffman & Hochster, 2007). However,
significant differences between user feedback and annotator
feedback have been found (Mao et al., 2016). Therefore, we
studied users’ search satisfaction and tried to find predictors
that truly reflect their satisfaction.

Controlled User Study

User satisfaction measures users’ subjective feelings and
is defined as the fulfillment of a specified information
requirement (Kelly, 2009). It is a positive emotional feeling
related to the experience that one’s goal has been fulfilled or
is certain to be fulfilled in the future (Price, Barrell, &
Barrell, 1985). Therefore, we believe that the perception of
satisfaction may be closely related to certain neurophysiolog-
ical signals. Specifically, we attempt to predict users’ web
search satisfaction with EDA signals and eye-tracking by
using a controlled experiment in which we examine users’
interactions during a web search experience. To this end, we
collected the visual fixation sequence, EDA signals, and
search logs to predict users’ search satisfaction.

Experimental Design

The experiment used a repeated-measure design with
user and search task as control variables. The independent
variables were user behavior features extracted from search
logs, descriptive features of the EDA signals, and eye-track-
ing—which are the minimum, maximum, average, median,
variance, and standard deviation (SD) of EDA levels and
eye movements—and geometric characterizations of eye-
tracking and EDA signals proposed in this study. Each user
performed 12 search tasks on the topics of TREC Session
Track 2010–2014,1 which were randomized by the Graeco-
Latin square so that each task had the same opportunity to
be shown to the users. We made minor modifications to the
original TREC task descriptions based on the results from
the pilot experiment to ensure that these tasks had appropri-
ate complexity with no obvious different interpretations, as
shown in Table 1. We also provided an initial query to
reduce potential topic drifts.

Apparatus and platform. To obtain more natural and real-
istic interaction between the user and the experimental plat-
form, we used a Tobii X2-30 (Stockholm, Sweden) remote
eye-tracker to capture participants’ eye movements. Eye fixa-
tions typically last ~200 to 250 ms, where 150 ms (Gwizdka,
2014) and 200 ms (Gerjets, Kammerer, & Werner, 2011) are

1 https://trec.nist.gov/data/session.html
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typical thresholds of fixation duration; saccades indicate
periods when eyes are moving, and they typically last 20
to 40 ms (Rayner, Juhasz, & Pollatsek, 2008). Tobii X2-30
has a sampling rate of 30 Hz, which implies an intermediary
window of no sampling at 33.3 ms long. We detected fixa-
tions using built-in algorithms and all default parameters
from Tobii Studio. A search system was deployed on a
17-inch LCD monitor with a resolution of 1366 × 768
pixels.

To analyze the emotional reactions of participants, we used
a Biopac (Goleta, CA) MP-150 Data Acquisition System with
a sampling rate of 200 Hz. Data collection devices with NP
approaches may be intrusive; to minimize this concern, we
collected EDA signals from participants’ fingertips of the left
index and middle fingers. AcqKnowledge 4.4 (Biopac) soft-
ware was used for processing the data. In the background, an
in-house application written in JavaScript was used to syn-
chronize the physiological data with Unix timestamps.2 We
built an experiment platform so that when the user issues a
query or clicks a pagination link, the system forwards the
request to a commercial search engine and retrieves the
corresponding SERP reformatted into a controlled experiment
platform. A customized Google Chrome extension was injected
to capture browser events including query reformulation, click,
scrolling, and tab switching with Unix timestamps.

Participants. We recruited 40 participants of mixed eth-
nicities via online social networks; the first participant
was recruited to examine the clarity of task statements
and to test the system. All participants were familiar with
the usage of web search engines. The age of the partici-
pants ranged from 18 to 33 years. Sixteen participants
were female (40%). With regard to educational back-
grounds, the participants ranged from current bachelor’s
degree students to postdoctoral researchers, and some
had industrial work experience. Twenty-one of them
wore corrective glasses during the experiment (52.5%).
The native languages of the participants varied, but all
participants had attained at least intermediate levels in
English.

Procedure. The experiment was conducted in a separate
room in a research lab. As illustrated in Figure 2, at the
beginning of the experiment, each participant was asked to
rest in the lab for 15 minutes to reduce the effects intro-
duced to EDA levels due to prior activities. Then the fin-
gertips of their left index and middle fingers were cleaned
with 75% alcohol, and the residue was removed with saline
wipes. Afterward, two electrodes were attached to each
participant, and another 15 minutes were used to allow the
electrodes to be completely settled on the fingertips. A total
of 30 minutes in the lab allowed the physiological metrics
to drop to a stable state, and then each participant was
advised about the details of the experimental procedure.
The baseline EDA level is generally considered to be the
average level of an individual during resting conditions
and in the absence of external stimuli. We collected the
EDA baseline for each individual for 15 minutes in a rest-
ing state prior to performing search tasks, which is typical
for baseline collection (Doberenz, Roth, Wollburg, Mas-
lowski, & Kim, 2011).

After the eye-tracker was calibrated by a built-in program
pre-established in Tobii Studio, the search tasks started. Each
participant was asked to complete all 12 search tasks. For
every search task, each participant first read the task descrip-
tion and clicked the start button. Then each participant was
asked to briefly summarize the session task. Next, the initial
SERP was presented, and each participant could click on the
results to browse the landing pages or reformulate the query
until she/he clicked the complete button at the bottom. In the
post-session feedback stage, satisfaction for each search
query submitted (including the initial query) was collected
on a 4-point Likert scale (1: very unsatisfied, 2: somewhat
satisfied, 3: fairly satisfied, 4: very satisfied) following
Mao et al.’s treatment (2016). Similarly, overall satisfaction
for each search task was collected. At the end of every search
task, each participant was asked to answer a question related
to the search task for quality control purposes. The average
time each participant spent during the experiment was
178 minutes (σ = 37.84), out of which an average of
113.05 minutes (σ = 30.24) were spent on performing search
tasks.

TABLE 1. Task description.

Task Description

1 The department recruited 10 new employees; please find
a suitable icebreaker game for the new staff training.

2 Please choose a suitable travel destination for a week,
considering the cost, value, and accessibility.

3 Please find fixed-gear bike price ranges, tips for purchasing,
and available merchants.

4 Please find restrictions on the size of carry-on baggage
for international flights.

5 Please find the premium and claim amounts of long-term
care insurance and companies that provide such insurance.

6 Please find information about lupus erythematosus, such
as treatment and precautions.

7 Please find the benefits of smoking cessation, side effects
of smoking cessation, and effective ways to quit smoking.

8 Please find product features of Google Glass, the usage thereof,
and prices.

9 Please find out whether Red Bull induces health concerns, which
ingredients may lead to health problems, and which countries
prohibit sales of Red Bull.

10 Please find iPhone prices and taxes in Hong Kong and whether
duty-free iPhones are supported by domestic carriers.

11 Please find the location of Tsinghua University’s swimming
pool, hours, and student pricing.

12 Please find information about an aircraft carrier, including
the water displacement, length, beam, number of crew,
speed, weapons, and equipment.

2 A Unix timestamp is the number of seconds that have elapsed from
01-Jan-1970 0000 hrs to the second that the event has occurred (Sheikh,
Wegdam, & Van Sinderen, 2007).
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Data

Figure 3 shows the ordinal satisfaction for queries and
tasks collected in the experiment process. Out of 1,590
queries collected, a total of 439 queries were annotated with
a satisfaction rating of 1 (28%); 254 queries were annotated
with a satisfaction rating of 2 (16%); 466 queries were anno-
tated with a satisfaction rating of 3 (30%); and 386 queries
were annotated with a satisfaction rating of 4 (25%). The
remaining 45 queries were not annotated. A total of 463 tasks
were performed and annotated; there were 18 tasks annotated
with a satisfaction rating of 1 (4%), 62 tasks annotated with a

satisfaction rating of 2 (13%), 210 tasks annotated with a sat-
isfaction rating of 3 (45%), and 173 tasks annotated with a
satisfaction rating of 4 (37%). Five tasks performed by users
were not rated.

The task satisfaction had higher ratings than the query
satisfaction. We attribute this finding to the effectiveness
of the commercial search engine, which is likely to return
a query that addresses users’ information needs precisely
through query reformulations, therefore yielding higher
session satisfaction. We also observe that simpler search
tasks tend to receive better satisfaction ratings; for example,

FIG. 2. Experimental procedure of predicting satisfaction using eye movements and physiological signals for general web searches. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 3. Distribution of query satisfaction and task satisfaction. [Color figure can be viewed at wileyonlinelibrary.com]
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the average number of queries issued for each task was
3.30, and an average of only 1.43 queries were submitted
for Task 1, “find an icebreaker game.” Therefore, we con-
sider this to have been an easy task. Although 50% of
queries performed for Task 1 were rated as “very satisfied,”
only 25% of queries among all tasks were rated as “very
satisfied.” A similar situation occurred for Task 1 satisfac-
tion, with 74% of Task 1 sessions rated as “very satisfied”
by different users, while only 37% of sessions were rated as
“very satisfied” for all sessions in different tasks. Con-
versely, for a difficult task such as Task 3, which asked a
specific question on a comparatively obscure topic, “tips for
purchasing fixed-gear bikes,” the average number of queries
submitted was 4.79, with 12% of queries for this task rated
as “very satisfied” and 5% of sessions for this task rated as
“very satisfied.”

The Multiscale Framework

Two general challenges faced by data analysis are the
existence of noise and the extraction of meaningful infor-
mation from collected data. To address the first issue, we
employed discretization schemes and the multiscale frame-
work to filter out the sampling noise of EDA signals, and
we proved their convergence to the true EDA graph, shown
as Theorem 4.3.

To address the second issue, we constructed the feature
space to predict satisfaction by eye-tracking sequences and
EDA graphs using the geometric analogy of invariants in
the finite metric spaces. Geometric invariants are natural
characterizations of geometric objects in Euclidean space.
The slope or gradient describes the direction and the steep-
ness of a line, and the curvature is the amount by which a
geometric object deviates from being flat. Figure 4 shows
two examples of EDA graphs of our participants during
the experiment.

However, because geometric invariants are defined for
first- and second-order differentiable curves, we need to
show that the discretized geometric properties converge
to their smooth counterparts, presented as Theorem 4.11,
which is the analytical equivalence of discretized curva-
tures. In the following sections, we will present four
ways to discretize curvature. In particular, we introduce
the method of moving frames that provides two ways to
compute curvature via the Frenet frame and the Bishop
frame.

Multiscale Modeling

In the time scale of interest, the EDA signals we col-
lected were highly oscillatory in time. Since the EDA sig-
nals in the time window of interest are multiscale, such that
the data have important features at multiple scales of time,
we follow Enquist and Tsai’s (2005) multiscale modeling
approach and filter out the noise by smoothing out the data,
as shown in Figure 1.

The way we transform the experimental data to a smoother

curve for analysis is as follows: let tj, f
ϵ
j

� �n oN

j= 1
be the col-

lection of data points, and assume that fj
ϵ are sampled from

a function denoted by f ϵ(t). More precisely, fj
ϵ = f ϵ(tj). The

function f ϵ(t) is highly oscillatory, but the amplitude of the
fast oscillations is small. Hence, we use a small parameter
epsilon to describe the period of the fast oscillations and
write:

f ϵ tð Þ = �f tð Þ+ gϵ tð Þ, ð1Þ

where �f is smooth, its derivative is not large compared to
1/ϵ, and gϵ is our model for the spurious fast oscillations
with small amplitudes in the observed data. The function f ϵ(t)
and error gϵ(t) can be expressed as the periodic functions:

FIG. 4. Typical EDA graphs in a satisfied and dissatisfied query. [Color figure can be viewed at wileyonlinelibrary.com]
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f ϵ t− tj
� �

=
X
l

al cos
2πk1jlt

T
+ bl sin

2πk2jlt

T

 !
,

gϵ t− tj
� �

= δ
X
l

cl cos
2πk3jlt

ϵT
+ dl sin

2πk4jlt

ϵT

 !
,

where k1jl,k
2
jl,k

3
jl and k4jl are integers, with k1jl,k

2
jl � 1

ϵ, and k3jl
and k4jl are not both equal to zero. By assumption, the
amplitude of the oscillations represented by gϵ(t) is small;
we define:

I t,p,ϵð Þ= 1
p

ðtj + p
tj

gϵ tð Þdt: ð2Þ

According to the definition of gϵ(t), for any fixed t and
p and sufficiently small ϵ, the size of I(t, p, ϵ) is bounded
above by some constant multiple of epsilon; that is,

I t,p,ϵð Þj j ≤Cϵ, for some constantC:

We estimate the curvature of the graph of �f by filtering
out gϵ(t). We downsize the sampled data by averaging
p = 100 data points of f ϵ(t) and obtain a function ~f (t) with
data points {(tk, ~f k)}k= 1

Ñ , where Ñ � 100 =N. Following
Equation 2 and the Riemann sum approximation of I(t, p,
ϵ) for t= tj and p= 100 �Δ t, the downsized error is:

Φ100 gϵ, tj
� �

=
1

100Δt

X100
l= 1

gϵ tj + l�Δt
� �

Δt

= I tj,100Δt,ϵ
� �

+O Δtð Þ =O δ�ϵð Þ +O Δtð Þ:
ð3Þ

We assume that �f varies slowly such that:

d

dt
�f tð Þ

����
����
∞
≤C2

for some constant C2 independent of ϵ. The downsized �f
can be represented by:

Φ100
�
f tð Þ� = 1

100Δt

X100
l= 1

f tj + l�Δt
� �

Δt = f tj
� �

+O Δtð Þ ð4Þ

according to Taylor expansion. Combining Equations 1, 3,
and 4, we have:

Φ100 f ϵ tj
� �� �

=Φ100
�
f tj
� ��

+Φ100 gϵ tj
� �� �

= f tj
� �

+O δ�ϵð Þ +O Δtð Þ:
ð5Þ

Finite Difference Method

In this section, we employ finite difference methods to
compute the slope and curvature as part of the feature
space. A natural way to approximate the derivative of a

function f(x) on a given interval [a, b] is to introduce n + 1
nodes {x0, …, xn} with x0 = a, xn = b and xk + 1 = xk + h
for k = 0, …, n – 1, where h = b−a

n . The discretized slope
by centered finite difference is computed by the straight line
passing through the points (xi–1, f(xi–1)) and (xi+ 1, f(xi+ 1)).
The error induced by centered finite difference is second-
order (Quarteroni, Sacco, & Saleri, 2007); that is, the error
induced by the discretization is proportional to O h2ð Þ.
Rewriting the limit with the incremental ratio with h finite, the
approximation ui to f

0 xið Þ by centered finite difference is:

uCDi =
f xi+ 1ð Þ− f xi−1ð Þ

2h
= f 0 xið Þ+O h2

� �
,0 ≤ i ≤ n−1: ð6Þ

To estimate the curvature of the true curve with the down-
sized data points, we first consider the first-order derivative.
Denote ΔT as the step size of downsized data, and then:

Φ0
100 f ϵ tj

� �� �
=
Φ100 f ϵ tj+ 1

� �� �
−Φ100 f ϵ tj−1

� �� �
2ΔT

=
f tj+ 1
� �

− f tj−1
� �

2ΔT
+
O Δtð Þ+O δ�ϵð Þ

2ΔT

= f 0 tj
� �

+O ΔT2
� �

+O Δt
ΔT

	 

+O δ�ϵ

ΔT

	 

:

Finite difference approximations of higher-order deriva-
tives of f can be constructed by a Taylor series. This gives
the following centered finite difference scheme, which is a
second-order approximation to f

00
(xi) with respect to h:

u
0 0
i =

f xi+ 1ð Þ−2f xið Þ+ f xi−1ð Þ
h2

= f
0 0
xið Þ +O h2

� �
, 0 ≤ i ≤ n−1:

Following Equation 5, the second-order derivative of
the downsized data points is:

Φ
0 0
100 f ϵ tj

� �� �
=
Φ100 f ϵ tj + 1

� �� �
−2Φ100 f ϵ tj

� �� �
+Φ100 f ϵ tj−1

� �� �
ΔT2

=
f tj+ 1
� �

−2f tj
� �

+ f tj−1
� �

ΔT2
+
O Δtð Þ+O δ�ϵð Þ

ΔT2

= f 00 tj
� �

+O ΔT2
� �

+O Δt
ΔT2

	 

+O δ�ϵ

ΔT2

	 

:

Definition 4.1. (Graph curvature). Consider a twice-
differentiable graph y = f(x), and denote the first- and second-
order derivatives as f 0(x) and f 00(x). The graph curvature is:

κ xð Þ= f 00 xð Þ
1 + f 0 xð Þ2
� �3=2 :

Definition 4.2. (Discrete graph curvature). Let F(xi) = yi
be the discretization of a twice-differentiable function f . The
discrete graph curvature by second-order centered finite differ-
ence is defined by:
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K xið Þ= u
0 0
i

1 + uCDið Þ2
� �3=2 : ð7Þ

Theorem 4.3. Consider a smooth curve in the Sobolev
space W2,∞(Ω) of two derivatives: W2,∞ Ωð Þ = ff 2 L∞ Ωð Þ :
Dαf 2 L∞ Ωð Þ for all multi-indicesα such that jαj ≤ 2g, where
the Lebesgue space L∞(Ω) is defined as the class of all
measurable functions f such that:

f xð Þk k∞ <∞, Ω�R2:

Then the discretized curvature of the sampled curve down-
sized by the multiscale framework by centered finite differ-
ence approximates the curvature of the smooth curve with an
error in the order of O ΔT2ð Þ+O Δt

ΔT

� �
+O δ�ϵ

ΔT

� �
+O Δt

ΔT2

� �
+

O δ�ϵ
ΔT2

� �
:

Proof. By definition,

KΦ100 tið Þ¼ Φ0 0
100 f ϵ tj

� �� �
1þ Φ0

100 f ϵ tj
� �� �� �2� �3=2

¼
f 00 tj
� �þO ΔT2ð ÞþO Δt

ΔT2

	 

þO δ�ϵ

ΔT2

	 

�
1þ� f 0 tj� �þO ΔT2ð ÞþO Δt

ΔT

� �þO δ�ϵ
ΔT

� ��2�3=2 :

We denote the error term of Φ00
100(f

ϵ(tj)) by:

e2 =O ΔT2
� �

+O Δt
ΔT2

	 

+O δ�ϵ

ΔT2

	 

,

and the error term of Φ0
100(f

ϵ(tj)) by:

e1 =O ΔT2
� �

+O Δt
ΔT

	 

+O δ�ϵ

ΔT

	 

:

Because �f 0 is bounded, �f 0 tið Þ+ e1ð Þ2 = �f 0 tið Þ2 + e1; since
f 2 W2,∞(Ω), f 0 and f 00 are bounded. Therefore, Taylor

expanding 1 + �f 0 tið Þ2 + e1
� �3=2

around 1 + �f 0 tið Þ2 gives:
1 + �f 0 tið Þ2 + e1
� �−3=2

= 1 + �f 0 tið Þ2
� �−3=2

+ e1:

Therefore,

KΦ100 tið Þ=
�
f 00 tið Þ+ e2

�
1 + f 0 tið Þ2
� �−3=2

+ e1

	 


= κ tið Þ + e1 + e2

= κ tið Þ +O ΔT2
� �

+O Δt
ΔT

	 

+O δ�ϵ

ΔT

	 


+O Δt
ΔT2

	 

+O δ�ϵ

ΔT2

	 

:

□

Now, we consider the upper bound of the actual errors.
In our experiment, Δt = 0.005, ΔT = 0.5, ϵ = 0.02, and
δ = 0.001, so Δt � Δ T < 1. Then:

e1 ≤C1ΔT2 +C2
Δt
ΔT

	 

+C3

δ�ϵ
ΔT

	 

= 0:25C1 + 0:01C2 + 0:00004C3,

e2 ≤C4ΔT2 +C5
Δt
ΔT2

	 

+C6

δ�ϵ
ΔT2

	 

= 0:25C4 + 0:02C5 + 0:00008C6:

As a result, e1 and e2 are small; hence, KΦ100 tið Þ approx-
imates the true curvature κ(ti).

The Method of Moving Frames

In this section, we derive formulae for geometric
invariants of a discretized curve based on the methods of
moving frames. All parallel vectors of the same length
and orientation are identified in a vector space; however,
in Euclidean space, the basic geometric object is a vector
and its starting point. The notion of frame allows us to
compute the vector plane phenomena of the Euclidean
plane.

Definition 4.4. (Frame [Guggenheimer, 1963]). A frame
is a vector {e1, e2} of mutually orthogonal unit vectors so
that e2 is obtained from e1 by a rotation of π/2.

Definition 4.5. (Moving Frame [Guggenheimer, 1963]).
Given a C2 curve in terms of its arc length, its tangent t sð Þ =
x01e1 + x

0
2e2 is a unit vector. The normal n sð Þ= −x02e1 + x

0
1e2

is a unit vector obtained from t(s) by a rotation of π/2. {t(s),
n(s)} is the moving frame of the curve.

Definition 4.6. (Nondegenerate [Clelland, 2017]). A
smooth, parametrized curve x: I ! E2 that maps some open
interval I � R into Euclidean space is regular if x0(s) 6¼ 0 for
every s 2 I. x is nondegenerate if it is regular and e10(s) 6¼ 0
for all s 2 I.

Frenet frame. The Frenet frame of a nondegenerate C3
curve in Euclidean space may be the earliest example of a
moving frame analyzing properties of the curve that are
invariant under Euclidean motion. It consists of a triple of
orthonormal vectors (t, n, b) based at each point of the
curve described (Frenet, 1852). In the Euclidean plane, a
moving frame defines a Cartesian system of coordinates
for any point on the curve such that x(s) becomes the ori-
gin, and the x1 axis is tangent to the curve in the direction
of increasing arc length. A moving frame is obtained from
the fixed one by a rotation about θ between the direction
of e1 and t:

t,nf g =A sð Þ e1,e2f g,where A sð Þ = cosθ − sinθ

sinθ cosθ

	 

:

The variation of the moving frame along the curve is:
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d

ds
t,nf g=A0 e1,e2f g=A0A−1 t,nf g =

0 −
dθ

ds
dθ

ds
0

0
B@

1
CA t,nf g:

Definition. 4.7. (Frenet frame curvature). κF sð Þ= dθ
ds is

the Frenet frame curvature of a nondegenerate parame-
trized curve x sð Þ 2 C3 in Euclidean space.

This gives the Frenet equation of plane differential
geometry:

dt
ds

= κF sð Þn
dn
ds

= −κF sð Þt

Since κ sð Þ� dθ
ds, the changing of angle from a point s0 to

a point s1 on the curve x is

Δθ =
ðs1
s0

κ sð Þds:

Therefore, the change in angle θ from a point s0 to a
point s1 on the curve x is the integrated curvature to a
domain D = s0,s1½ � of the curve corresponding to the inte-
gral of curvature over that domain. Dividing by the length
jD j of the domain of the integration recovers an inte-
grated curvature to the pointwise curvature.

Definition. 4.8. (Discretized curvature from Frenet
frame). Discretize a nondegenerate parametrized curve γ sð Þ 2
C3 by piecewise linear segments x(s) with vertices xi. The
discretized curvature from the Frenet frame at xi is:

κF sð Þ= Δθ
ll + lr

, ð8Þ

for some point xli,x
r
i 2 x sð Þ on different sides of xi, and ll,

lr are the distance from xli,x
r
i to xi on x(s).

Bishop frame. The Bishop frame {t(s), y(s), v(s)} is
another way to frame a curve. The evolution of the Bishop
frame can be described in terms of the Darboux vector Ω(s):

ti+ 1 sð Þ=Ω× ti sð Þ,ui+ 1 sð Þ =Ω× ui sð Þ,vi+ 1 sð Þ=Ω× vi sð Þ:

The Darboux vector defines parallel transport. Parallel
transporting a vector x corresponds to a rotation about the
binormal that keeps the tangential component of x tangential.
We denote by xi the vertices of a discretized curve x and the
piecewise linear segments between xi and xi + 1 as ei with
ti = ei/ |ei| being the unit tangent vector for edge ei, depicted
in Figure 5.

The discrete parallel transport Pi is defined as:

Pi ti−1
� �

= ti,Pi ti−1 × ti
� �

= ti−1 × ti,

where Pi is the identity if ti–1 = ti, and Pi is undefined if
ti–1 = − ti. Consider the variation of two consecutive tan-
gents ti–1 and ti with variation parameter ϵ. Define the par-
allel transport from ti(0) to the variation of a tangent vector
ti(ϵ) by Pi(ϵ), where Pi(0) is the identity and

Pi ϵð Þ ti 0ð Þ� �
= ti ϵð Þ, Pi ϵð Þ ti−1 0ð Þ× ti ϵð Þ� �

= ti 0ð Þ× ti ϵð Þ:

Define the concatenation of parallel transports by:

Ri−1 ϵð Þ =Pi−1 ϵð Þ−1 �Pi ϵð Þ−1 �Pi ϵð Þ �Pi 0ð Þ:

The holonomy of the connection induced by parallel trans-
port Ri–1 is the change in angle ψ i(ϵ). By the Ambrose–Singer
theorem, the curvature gives the infinitesimal holonomy over
the infinitesimal parallelogram. Therefore, according to the
writhe of polygonal curves (de Vries, 2005), the variation of
holonomy ψ i is:

δψ i =
−2ti−1 × ti
1 + ti−1�ti �

1
2
xi−xi−1
j ei−1 j +

1
2
xi+ 1−xi
j ei j

	 

,

where 2ti−1 × ti
1 + ti−1�ti is the curvature binormal (κb)i, and the sec-

ond factor is the forward difference approximation of xi
(Bergou, Wardetzky, Robinson, Audoly, & Grinspun, 2008).
Since ti is a unit vector,

κi =
2ti−1 × ti
1 + ti−1�ti

����
���� = 2sinθi

1 + cosθi
= 2tan

θi
2
, ð9Þ

according to the half-angle formula. Since this curvature dis-
cretization is induced by the Bishop frame, we denote by κB.

Curvature Normal

A physical interpretation of curvature is to view it as the
magnitude of the rate of change in unit tangent vector T.

Theorem 4.9. Denote the unit tangent vector of a curve
γ(s) parametrized by arc-length s as t(s). Denote by Δθ the
angle between t(s + Δ s) and t(s); then,

κ = lim
Δs!0

Δθ
Δs

����
���� = j t: sð Þ j :

Proof. As Figure 6 shows, since t(s) is a unit vector,

FIG. 5. Interpreting curvature in terms of a normal vector. [Color figure
can be viewed at wileyonlinelibrary.com]
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j t s+Δsð Þ− t sð Þ j = 2 sin
Δθ
2

����
���� = κN : ð10Þ

Therefore,

j t: sð Þ j = lim
Δs!0

j t s +Δsð Þ− t sð Þ j
jΔs j = lim

Δs!0

jΔθ j
jΔs j = κ: □

Curvature also corresponds to the steepest descent of
the length of a discretized curve x at xi.

Corollary 4.10. The arc-length function L: R2 ! R
with the displacement of xi 2 R2 varies but xk fixed for
k 6¼ i is defined as:

xi↦
Xn−1
k = 0

ek
�� ��,

where ei–1 and ei depend on xi. Then rL = κn.

Proof. As shown in Figure 5,

rL=
ei−1

kei−1k −
ei

keik = 2cos
π−Δθ

2
n= 2sin

Δθ
2
n= κn: □

Theorem 4.11. (Analytical Equivalence of Discretized
Curvatures). Assuming the point cloud of eye-fixation
sequences and EDA graphs is an approximation of smooth
curves, we have the analytical equivalence of discretized
curvatures:

κF = κB = κN.

Proof. According to Equations 8, 9, and 10,

κF sð Þ = Δθ
ll + lr

, κB = 2tan
θi
2
, κN = 2 sin

Δθ
2

����
����:

By the convergence of trigonometry identities, we have:

κ = lim
ll + lr!0

Δθ
ll + lr

= lim
Δs!0

2tanΔθ=2
Δs

= lim
Δs!0

2sinΔθ=2
Δs

;

hence the analytical equivalence of discretized curvatures
in Equations 8–10. □

Finite Metric Space Characterization

EDA signals can be regarded as a function of time; both
EDA graphs and eye movement trajectories can be viewed
as space curves. Since slope captures the direction and the
steepness of the line and curvature is the amount by which a
curve deviates away from being straight, they are natural
characterizations of the EDA graphs and trajectories of eye
movement as finite metric spaces. We first considered the
descriptive features for the EDA graph and eye-tracking data
and then combined their geometric characterizations to form
a feature space. The multiscale model was utilized to com-
pute the discretized geometric invariants in the presence of
periodic sampling noise. The satisfaction was dichotomized
with dimensions grouped as 1 and 2 totaling 693 instances of
being not satisfied, and 3 and 4 totaling 852 instances of
being satisfied. In this section, we report the p-values and
odds ratios of features proposed previously predicting dichot-
omized satisfaction using the generalized linear mixed model
with the binomial family.

Features Extracted From EDA Levels

In our experiment, a sequence of EDA levels as a dis-
cretization of the smooth EDA graph was collected for
each query. The data were collected every 0.005 seconds,
and we downsized the data by averaging every 100 data
points. For each query, we first computed the descriptive
features, including the minimum, maximum, average,
median, variance, and SD of the EDA levels of each query.
Then we took the height of the downsized EDA graph and
computed the slope according to Equation 6 based on the
centered finite difference method. Then we computed the
slope at each vertex and formed a list with the absolute
values of the slope, a second list with the positive slopes, and
a third list with the negative slopes. We computed the curva-
ture at each vertex and similarly created three lists that con-
tained the absolute values of curvatures, positive curvatures,
and negative curvatures using Equation 7 based on the cen-
tered finite difference method. We then computed the curva-
tures induced by the Frenet frame, Bishop frame, and
curvature normal using Equations 8–10. For each characteri-
zation of EDA levels, we computed the minimum, maxi-
mum, mean, median, variance, and SD to be features of the
EDA graph corresponding to each query. The classifiers
were trained by all of the aforementioned features to predict
user satisfaction, and here, we report a sample selection of
features in Table 2 with p-values less than 0.001.

The odds ratio reflects the factor by which the odds of
being satisfied versus unsatisfied change given a 1-unit
increase in the given predictor. We find that the minimum
EDA level, the minimum negative slope using the finite dif-
ference method, the minimum pointwise curvature using the
Frenet frame, and the minimum integrated curvature using
curvature normal are negatively associated with satisfaction.
If their value increases by 1 unit, the odds of being satisfied
will decrease by 19.7%, 30.3%, 19.1%, and 20.3%, respec-
tively. Typical EDA graphs for search queries about which

FIG. 6. The physical interpretation of the curvature. [Color figure can be
viewed at wileyonlinelibrary.com]
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users reported feeling satisfied and dissatisfied are illus-
trated in Figure 4.

The EDA graph of a query about which users reported
being dissatisfied displays this tendency accordingly. For
example, the mixed model indicates that the minimum nega-
tive slope negatively correlates with satisfaction. The
increase in minimum EDA levels indicates an increase in
EDA levels for a given period of time. Since lower EDA
levels imply pleasure and increased EDA levels imply dis-
pleasure (Stemmler, 1989), this explains that the increase in
minimum EDA levels is associated with a lower chance of
being satisfied in our experiment. Similarly, the increase in
the minimum negative slope means that the EDA graph drops
more slowly, implying that it enters the lower EDA range
more slowly. Hence, the change reflects a negative associa-
tion with satisfaction.

The curvature is the magnitude of the rate of change in
the unit tangent vector of a curve. If the minimum curvature
increases, it implies that the EDA graph is becoming “less
flat”; that is, the graph increases or decreases more rapidly.
Since the EDA increases during anger (Stemmler, 1989), if
a curvature increases when the graph increases, it may
reflect that a user is becoming “impatient” in the context of
a search experience. A larger curvature can also imply that
the graph decreases more rapidly. Since a low EDA level
signifies “pleasure,” an event that triggers a “sudden plea-
sure” is less likely. The interpretation for features with odds
ratios greater than 1 is similar; for example, the maximum
pointwise curvature by Bishop frame has an odds ratio of
1.208, implying that if the value increases by one unit, the
odds of being satisfied will increase by 20.8%.

Features Extracted From Eye-Tracking

We extracted the eye movement recordings when a user
was viewing SERPs to form ordered fixation points on the
2D Euclidean space. We collected the fixation duration and
location, and then we computed the geometric properties
similar to those of EDA levels, including the saccadic direc-
tion, the slope between two fixations (which is the tangent
of the saccadic direction), and the saccadic curvature. The
detected fixation data are a sequence of fixation transitions
detected at the sampling rate of 30 Hz. From each fixation

point to the next, we computed the travel time, which is the
time difference between these two detected fixations, and
the perceptual span, which is the spacing of fixations in the
reading sequence from one fixation point to another. For the
fixation sequence associated with each search query, we
computed the maximum, minimum, average, median, vari-
ance, and SD of the travel time and perception span
between adjacent fixations. We also extracted features from
the graph of perceptual span over time using the same
method as we adopted for analyzing EDA graphs in the pre-
vious section.

We report some of the significant features in Table 3. The
SD of the x coordinate has an odds ratio of 1.207, implying
that if the SD of the x coordinate increases by 1 unit, the odds
of being satisfied versus unsatisfied will increase by 20.7%.
This implies that if the fixation sequence is more stretched
along the horizontal direction, the user tends to be more satis-
fied with the content being viewed. Gwizdka (2014) exam-
ined the effects of relevance on reading versus perceptual
span and found that the length of reading fixations was lon-
ger on relevant documents. Since document relevance is
associated with users’ search satisfaction (Gluck, 1996;
Huffman & Hochster, 2007), the significance between per-
ceptual span and satisfaction reported in Table 3 agrees with
Gwizdka’s result.

In our study, we found that a 1-unit increase in average
travel time increases the odds of being satisfied by 353.1%,
which agrees with prior work that a longer duration of read-
ing implies that a document is topical or relevant (Gwizdka,
2014). A case study from one of our participants is presented
in Figure 7. The graphs suggest that a satisfied query tends to
have a larger perceptual span, agreeing with its coefficients
in the mixed model (odds ratio = 1.197, p < .001); similarly,
the satisfied query has more spanning eye movements and
hence corresponds to larger saccadic curvature.

Features Extracted From Search Interactions

We consider coarse-grained features (Ageev et al., 2011;
Feild et al., 2010; Guo et al., 2011; Hassan et al., 2010) and
fine-grained features (Guo et al., 2012), and we report some of
the significant features in Table 4. We find that the average

TABLE 2. Sample feature significance and odds ratio for EDA graph.

EDA Feature Odds ratio

Min EDA level 0.803***

EDA level SD 1.376***

Max absolute slope by finite difference 1.392***

Max positive slope by finite difference 1.338***

Min negative slope by finite difference 0.697***

Slope SD by finite difference 1.264***

Max absolute curvature by finite difference 1.425***

Min pointwise curvature by Frenet frame 0.809***

Max pointwise curvature by Bishop frame 1.208***

Max integrated curvature by Frenet frame 1.218***

Min integrated curvature by curvature normal 0.797***

***p < .001.

TABLE 3. Sample feature significance and odds ratio from fixation.

Eye-fixation feature Odds ratio

Maximum perceptual span 1.197***

x coordinate SD 1.207***

Median of y coordinate 1.149**

(x, time) minimum curvature by finite difference 0.899*

Median of slope by finite difference 1.206**

Average travel time 4.531***

Max integrated curvature by Frenet frame 1.179**

Integrated curvature SD by Frenet frame 1.174**

Max integrated abs(curvature) by Frenet frame 1.201**

Max integrated curvature by Bishop frame 1.176**

Integrated curvature SD by Bishop frame 1.189**

*p < .05; **p < .01; ***p < .001.
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number of clicks in the session and the average clicks over the
number of queries was positively associated with search satis-
faction, agreeing with Ageev’s results on search success
(Ageev et al., 2011). In our study, the ratio of clicks with a
dwell time ≥ 30 and the median of the max y coordinates were
positively associated with success ratings, agreeing with Guo’s
findings (Guo et al., 2012). However, Guo found that the aver-
age max y coordinates, the number of max y
coordinates < 400, and the number of max y
coordinates < 800 pixels on SERPs were negatively related to
search satisfaction, while we found that they were positively
associated with search satisfaction. Guo and Feild also reported
that the number of clicks was negatively associated with search
success (Feild et al., 2010; Guo et al., 2012), but we found that
the relation of number of clicks to search satisfaction was posi-
tive. We suspect that these differences might be due to the cur-
rent users’ tendency to abandon an unsuccessful retrieval;
therefore, clicks and deep SERP y-coordinates reflect a satis-
factory SERP, according to our study.

Experimental Results

With the above features, we use the gradient boosting
decision tree (GBDT), random forest (RF), and support

vector machine (SVM) with 5-fold cross-validation to predict
user satisfaction using features extracted from eye-fixation
sequences, EDA graphs, and behavioral information col-
lected from user logs. We used classifiers from the scikit-
learn package (Pedregosa et al., 2011). The experimental
results on dichotomized query satisfaction are reported in
Table 5, and Table 6 reports the mean squared error (MSE)
predicting query satisfaction over a 4-point scale. We discuss
the prediction results in terms of the area under the ROC
curve (AUC), but the results of other evaluation metrics are
consistent with those of AUC. In our extensive cross-
validation experiments, we exhibited the robustness of our
method: according to Tables 5 and 6, geometric invariants
successfully predict user satisfaction regardless of gender,
age, ethnicity, educational background, and work experience.
Tables 7 and 8 show the cross-user and cross-task prediction
results, suggesting that the proposed geometric methods are
effective in the presence of confounding factors such as user
and task. The cross-user validation has an average AUC of
0.707, and the cross-task validation achieves an average
AUC of 0.712. In comparison, an average AUC of 0.756 is
reported for standard cross-validation in Table 5.

Comparison With Traditional Methods

We summarized coarse-grained features from several
works (Ageev et al., 2011; Feild et al., 2010; Guo et al.,
2011; Hassan et al., 2010), fine-grained features (Guo
et al., 2012), and EDA features (Wu et al., 2017) as base-
line methods. For NP signals, we first used descriptive fea-
tures of EDA, which are the minimum, maximum, average,
median, variance, and SD of the EDA levels of each query.
Then we used descriptive features of eye movements, which
are the minimum, maximum, average, median, variance, and
SD of the x-axis, y-axis, and fixation time of each query; we
then used the descriptive features of EDA and those of eye-
tracking combined.

TABLE 4. Sample feature significance and odds ratio from behavior.

Coarse-grained features Odds ratio

Number of clicks in the session 2.509***

Number of clicks over number of queries 2.869***

Average dwell time on clicked landing pages 2.586***

Ratio of clicks with dwell time ≥30 sec 2.155***

Fine-grained features

Average max y coordinates on SERP pages 1.236***

Median of max y coordinates on SERP pages 1.142**

Number of max y coordinates <400 pixels 1.120*

Number of max y coordinates <800 pixels 1.119*

*p < .05; **p < .01; ***p < .001.

FIG. 7. Typical eye movements in satisfied and dissatisfied queries. [Color figure can be viewed at wileyonlinelibrary.com]
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The forward difference method was employed to extract
geometric features including slope and curvature from the
EDA graphs and achieved an AUC of 0.62 predicting sea-
rch satisfaction for mobile shopping (Wu et al., 2017). In
our study, we first downsized the sampled data using the
multiscale framework and then used the centered difference
to compute the slope and curvature of the EDA graph,
along with three other formulae derived from the method
of moving frames to compute the discrete curvature.
According to the results reported in Table 5, with the
GBDT classifier, we obtained an AUC of 0.656 predicting
search satisfaction using descriptive features of EDA data;
we obtained an AUC of 0.600 using the descriptive fea-
tures of eye-tracking data; we received an AUC of 0.665
using these two combined; we obtained an AUC of 0.693
using Wu’s method (Wu et al., 2017); we obtained an
AUC of 0.806 using coarse-grained features collected from

several works (Ageev et al., 2011; Feild et al., 2010; Guo
et al., 2011; Hassan et al., 2010); and we obtained an AUC
of 0.561 in our experiment, using fine-grained features
(Guo et al., 2012).

Predicting Satisfaction With EDA Signals

We first investigated the effectiveness of features
extracted from physiological signals. With a GBDT classi-
fier, we first noticed that the feature space that includes the
geometric invariants achieves an AUC score of 0.697, which
is higher than that using descriptive features alone (AUC
= 0.656). This suggests the effectiveness of geometric
techniques. We also found that combining EDA and eye-
tracking features obtained a higher AUC value at 0.756,
showing that eye movement data complement EDA sig-
nals. Combining the descriptive features of EDA and

TABLE 5. The AUC, precision (P), recall (R), F1-measure (F), and accuracy score (A) predicting dichotomized satisfaction in query level. Five-fold
cross-validation average (macro: unweighted mean for each label; weighted: weighted mean for each label).

Features CLF AUC Pmacro Pweight Rmacro Rweight Fmacro Fweight A

E1 GBDT 0.693 0.678 0.652 0.674 0.652 0.622 0.630 0.652
RF 0.663 0.623 0.625 0.622 0.623 0.620 0.622 0.623
SVM 0.679 0.659 0.658 0.640 0.651 0.636 0.641 0.651

Edes GBDT 0.656 0.651 0.648 0.610 0.627 0.587 0.596 0.627
RF 0.629 0.584 0.587 0.583 0.582 0.581 0.581 0.582
SVM 0.640 0.645 0.642 0.602 0.620 0.575 0.584 0.620

Ides GBDT 0.600 0.555 0.555 0.538 0.559 0.495 0.507 0.559
RF 0.523 0.525 0.527 0.525 0.525 0.523 0.525 0.525
SVM 0.556 0.539 0.540 0.532 0.547 0.517 0.525 0.547

Edes+Ides GBDT 0.665 0.664 0.661 0.616 0.635 0.592 0.601 0.635
RF 0.603 0.573 0.575 0.571 0.570 0.568 0.569 0.570
SVM 0.602 0.575 0.577 0.571 0.577 0.568 0.572 0.577

Coarse2 GBDT 0.806 0.791 0.784 0.723 0.740 0.716 0.722 0.740
RF 0.759 0.688 0.690 0.686 0.687 0.685 0.686 0.687
SVM 0.793 0.758 0.754 0.727 0.738 0.725 0.729 0.738

Fine3 GBDT 0.561 0.627 0.622 0.538 0.569 0.448 0.467 0.569
RF 0.545 0.537 0.540 0.537 0.537 0.535 0.537 0.537
SVM 0.567 0.568 0.568 0.550 0.569 0.524 0.534 0.569

Majority 0.500 0.268 0.290 0.500 0.536 0.348 0.375 0.536

E GBDT 0.697 0.685 0.681 0.641 0.657 0.627 0.634 0.657
RF 0.672 0.626 0.629 0.624 0.625 0.622 0.623 0.625
SVM 0.696 0.659 0.658 0.641 0.650 0.636 0.641 0.650

I GBDT 0.747 0.713 0.714 0.709 0.713 0.709 0.711 0.713
RF 0.688 0.647 0.650 0.646 0.645 0.644 0.645 0.645
SVM 0.671 0.628 0.628 0.617 0.625 0.615 0.619 0.625

E + I GBDT 0.756 0.708 0.708 0.701 0.707 0.702 0.705 0.707
RF 0.692 0.649 0.651 0.649 0.649 0.648 0.649 0.649
SVM 0.695 0.636 0.636 0.624 0.633 0.621 0.626 0.633

E + B GBDT 0.808 0.791 0.783 0.724 0.740 0.716 0.722 0.740
RF 0.765 0.688 0.690 0.686 0.688 0.685 0.687 0.688
SVM 0.764 0.708 0.708 0.700 0.705 0.699 0.702 0.705

I + B GBDT 0.810 0.789 0.782 0.723 0.739 0.716 0.721 0.739
RF 0.763 0.695 0.697 0.693 0.694 0.692 0.693 0.694
SVM 0.741 0.674 0.676 0.673 0.676 0.673 0.676 0.676

E + B + I GBDT 0.810 0.789 0.782 0.723 0.739 0.716 0.721 0.739
RF 0.749 0.688 0.690 0.687 0.688 0.686 0.687 0.688
SVM 0.739 0.685 0.685 0.679 0.684 0.678 0.681 0.684

Note. 1(Wu et al., 2017), 2(Ageev et al., 2011; Feild et al., 2010; Guo et al., 2011; Hassan et al., 2010), 3(Guo et al., 2012). E = EDA,
I = eye-tracking, B = behavior (Coarse2 + Fine3), Edes = descriptive features for EDA, Ides = descriptive features for eye-tracking; GBDT = gradient boo-
sting classifier, RF = random forest classifier, SVM = support vector machine.
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descriptive features of the eye-tracking data yielded an
AUC value of 0.665. This observation showed that com-
prehensive eye movement features boost comprehensive
EDA features more effectively (from 0.697 to 0.756) than
descriptive eye movement features boost descriptive EDA
features (from 0.656 to 0.665).

Predicting Satisfaction With Eye Movement

We found that features extracted based on geometric
invariants improve the performance of classifiers. With eye
movement data, predicting user satisfaction using a feature
space that includes the geometric invariants has a much
higher score (AUC = 0.747) than using the descriptive fea-
tures alone (AUC = 0.600). According to our study, eye-
tracking data predicted user satisfaction better than EDA data
(AUC = 0.697), combining eye-tracking data with behav-
ioral data resulted in an AUC of 0.810, and combining EDA
data with behavioral data obtained an AUC of 0.808. Both
values are greater than those obtained using behavioral data
alone, since the AUC is 0.561 for the fine-grained feature
group and 0.806 for the coarse-grained feature group. This
phenomenon implies that EDA data and eye movements can
boost user behavior data.

Cross-User Validation

Tables 5 and 6 report the results obtained by the GBDT
classifier that is trained without user or task information in
the feature space, suggesting the robustness of the features
against user and task. To further validate the robustness of
geometric invariants, we performed a cross-user validation
predicting query-level satisfaction. The classifier was trained
with the EDA and eye movement data of 37 participants
and was tested with the remaining two participants disjoint
from the 37 participants previously chosen to be tested.
Since there were 39 participants, this procedure allowed
19 cross-user validations; the results are shown in Table 7.
The performances of the prediction slightly decreased, with
an average AUC of 0.707 (σ = 0.057), showing the robust-
ness of the proposed method based on geometric analysis
against individual differences.

Cross-Task Validation

This section presents the cross-task results predicting
query satisfaction. The classifier was trained with EDA
and eye-tracking data from 11 tasks and was tested on
the remaining task, as shown in Table 8. The perfor-
mances appeared to be effective, with an average AUC

TABLE 6. The MSE predicting four-scale satisfaction in query level. Five-fold cross-validation.

Classifiers E1 Coarse2 Fine3 E I E + I E + B I + B E + B + I

GBDT 1.273 1.003 1.473 1.263 1.246 1.157 0.988 1.027 1.001
RF 1.372 1.148 1.753 1.355 1.308 1.253 1.052 1.110 1.048
SVM 1.309 1.035 1.504 1.272 1.414 1.342 1.141 1.252 1.250

Note. 1(Wu et al., 2017), 2(Ageev et al., 2011; Feild et al., 2010; Guo et al., 2011; Hassan et al., 2010), 3(Guo et al., 2012). E = EDA,
I = eye-tracking, B = behavior (Coarse2 + Fine3), GBDT = gradient boosting classifier, RF = random forest classifier, SVM = support vector machine.

TABLE 7. The AUC, precision, recall, F1-measure, and accuracy score predicting dichotomized satisfaction in query level. Cross-validation over users
(macro: unweighted mean for each label; weighted: weighted mean for each label).

User group AUC Pmacro Pweight Rmacro Rweight Fmacro Fweight Accuracy

1 0.676 0.838 0.814 0.676 0.725 0.664 0.686 0.725
2 0.746 0.749 0.758 0.746 0.736 0.735 0.735 0.736
3 0.651 0.722 0.730 0.651 0.635 0.609 0.604 0.635
4 0.646 0.830 0.803 0.646 0.702 0.623 0.651 0.702
5 0.675 0.760 0.752 0.675 0.693 0.658 0.666 0.693
6 0.663 0.731 0.803 0.663 0.574 0.562 0.543 0.574
7 0.671 0.753 0.745 0.671 0.689 0.654 0.661 0.689
8 0.757 0.833 0.836 0.757 0.754 0.740 0.739 0.754
9 0.793 0.863 0.857 0.793 0.802 0.790 0.792 0.802
10 0.671 0.789 0.800 0.671 0.654 0.621 0.615 0.654
11 0.622 0.794 0.786 0.622 0.636 0.566 0.573 0.636
12 0.717 0.822 0.804 0.717 0.762 0.721 0.740 0.762
13 0.703 0.770 0.760 0.703 0.737 0.705 0.719 0.737
14 0.746 0.801 0.792 0.746 0.771 0.750 0.760 0.771
15 0.801 0.813 0.836 0.801 0.775 0.774 0.773 0.775
16 0.629 0.700 0.716 0.629 0.600 0.573 0.562 0.600
17 0.725 0.864 0.838 0.725 0.778 0.732 0.753 0.778
18 0.752 0.752 0.768 0.752 0.735 0.735 0.735 0.735
19 0.794 0.839 0.830 0.794 0.815 0.802 0.809 0.815
Mean 0.707 0.791 0.791 0.707 0.714 0.685 0.690 0.714
SD 0.057 0.049 0.040 0.057 0.068 0.077 0.081 0.068
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of 0.712 (σ = 0.107). We notice that the variation of
AUCs from the cross-task validation is slightly larger
than that of cross-user validation (σ = 0.057). We attri-
bute this to the inhomogeneity of task difficulties, which
can be inferred from Figure 3. Nevertheless, the evalua-
tion metrics for the prediction performances are suffi-
ciently promising, showing the robustness of the
proposed method against task differences.

Bootstrapping Linear Models

Bootstrap samples (B = 1, 000), in accordance with
Efron (1987), were additionally drawn to compare linear
models fitted by different feature groups. For each replicate,
we sampled 1,590 data points with replacement from our
data set. Adjusted R-squared was observed to be signifi-
cantly different among different feature groups in the analy-
sis. First, the analysis indicated a significant difference in
adjusted R-squared between the linear model fitted by
behavioral features and the full feature group extracted from
behavioral data, eye movement data, and EDA signals (95%
bootstrap confidence interval [CI]: [−0.1919, −0.1186]).
This provides important insight into our study in that the
NP data and eye-tracking data provide information not con-
veyed in user behavior features. Second, the analysis indi-
cated a significant difference in adjusted R-squared between
the linear model fitted by the feature group extracted from
EDA signals and the full feature group (95% bootstrap CI:
[−0.2155, −0.1372]). Third, the analysis indicated a signifi-
cant difference between the linear model fitted by the fea-
ture group extracted from eye movements and the full
feature group (95% bootstrap CI: [−0.1717, −0.1002]). Fur-
thermore, the analysis indicated a significant difference
between the eye movements feature group and the feature
group combining EDA and eye movements (95% bootstrap
CI: [−0.1141, −0.0579]) as well as a significant difference
between the EDA feature group and the feature group com-
bining EDA and eye movements (95% bootstrap CI:
[−0.1569, −0.0896]).

Conclusion, Limitations, and Future Work

In this article, we adopted the multiscale framework to fil-
ter out sampling noise for EDA data, and we proposed dis-
cretization schemes to compute geometric invariants for
finite metric spaces. We proved that the discretized curvature
of a sampled curve downsized by the multiscale framework
under the centered finite difference scheme approximates the
curvature of the smooth curve, and we computed the order of
the error. We proved the analytical equivalence of the pro-
posed discretization schemes. Empirical studies suggest that
both eye-tracking data and EDA signals extracted by these
invariants are robust regardless of deviations in individual
differences, the specific task performed, and environmental
stimuli. According to bootstrap analysis comparing linear
models fitted by different feature groups, we found that using
both eye-tracking and EDA data explains the variability of
the query-level search satisfaction significantly better than
using either of them alone, and using NP data and eye-
tracking data combined with behavioral data explained the
variability of the response data significantly better than using
the behavioral feature group alone. This implies that the
physiological signals and eye movement data complement
behavior-based signals in predicting search satisfaction.

This study has several limitations: we believe that the use of
NP data can be further utilized; a higher eye-tracker sampling
rate could be employed to measure saccades more accurately,
such that the effectiveness of predictions could be further
improved; and questions related to predicting search satisfac-
tion with other physiological measurements, such as EGG and
fMRI, also remain uninvestigated. From the analysis perspec-
tive, there are also classical measurements from the literature
that can be added as features, such as pupil dilation, curve
direction, visual angle, and area of interest analysis. Although
we used a remote eye-tracker and collected EDA signals
attached to two fingertips to minimize influences induced by
data collection, ecological validity issues remain unresolved.

For future work, we will study the effectiveness of
physiological methods in deep neural networks to predict

TABLE 8. The AUC, precision, recall, F1-measure, and accuracy score predicting dichotomized satisfaction in query level. Cross-validation over tasks
(macro: unweighted mean for each label; weighted: weighted mean for each label).

Task id AUC Pmacro Pweight Rmacro Rweight Fmacro Fweight Accuracy

1 0.792 0.793 0.793 0.792 0.792 0.792 0.792 0.792
2 0.714 0.760 0.816 0.714 0.647 0.642 0.632 0.647
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.593 0.660 0.655 0.593 0.625 0.564 0.580 0.625
5 0.679 0.775 0.802 0.679 0.640 0.618 0.607 0.640
6 0.630 0.815 0.794 0.630 0.673 0.594 0.614 0.673
7 0.700 0.812 0.812 0.700 0.700 0.670 0.670 0.700
8 0.765 0.846 0.842 0.765 0.771 0.755 0.757 0.771
9 0.630 0.744 0.788 0.630 0.565 0.533 0.512 0.565
10 0.655 0.706 0.808 0.655 0.535 0.529 0.509 0.535
11 0.683 0.782 0.769 0.683 0.750 0.691 0.725 0.750
12 0.702 0.735 0.733 0.702 0.706 0.694 0.695 0.706
Mean 0.712 0.786 0.801 0.712 0.700 0.674 0.674 0.700
SD 0.107 0.084 0.079 0.107 0.122 0.132 0.136 0.122
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search satisfaction. We will consider other evaluation met-
rics, such as document relevance and search effort, to
understand the interplay between these metrics and the pro-
posed method. We will also investigate other convolution
kernels of the multiscale framework, such as the exponen-
tial kernel and the cosine kernel, and we will consider fea-
tures extracted based on topological invariants.
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