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Abstract

How to collect relevance judgment has long been an important problem in

Information Retrieval (IR). A popular method is to collect relevance judgment

in a point-wise manner, in which assessors examine and give an absolute rele-

vance score for each item independently of the others. As an alternative, pair-

wise relevance judgment, also named preference judgment, allows an assessor

to compare two items side-by-side and express their preference for one over

the other. Previous work has explored the differences between these two para-

digms of relevance judgments from many different aspects. Most of these

works are conducted through explicit/implicit feedback. However, few works

investigate the underlying neurological mechanisms of the two paradigms. In

this paper, we conduct a lab study to investigate and compare point-wise and

pair-wise relevance judgment in image search scenarios. We study the neuro-

logical mechanisms of the two paradigms through an event-related potential

(ERP) analysis of the users' brain signals while viewing images during a search

process. We have obtained several observations, such as search engine users

tend to pay more attention to preferred items in the point-wise paradigm but

unpreferred items in the pair-wise paradigm. Furthermore, we test the adop-

tion of brain signals as implicit feedback for predicting pair-wise relevance

judgment, highlighting the feasibility of leveraging brain signals to understand

users' relevance judgments.

1 | INTRODUCTION

Understanding the process of relevance judgment is an
important problem in the field of Information Retrieval
(IR). For a long time, offline evaluation of IR systems, fol-
lowing the Cranfield framework, has heavily relied on
point-wise relevance judgment (Jain & Varma, 2011;
Wu et al., 2020; Xie et al., 2018). Point-wise relevance
judgment, also known as graded relevance judgment,
is a method where assessors independently evaluate the
relevance of an item using a graded scale
(Cleverdon, 1967). However, point-wise relevance judg-
ment has several drawbacks. For example, to the best of

our knowledge, there is no universal grading scheme
(i.e., how many levels to use and what those levels mean)
in point-wise relevance judgment (Xie et al., 2020). Dif-
ferent numerical scales will significantly affect evaluation
performance in various scenarios (Chu et al., 2021), as
they determine the granularity of judgment and the inter-
pretation of each level, which hurts the reliability of
point-wise relevance judgment in practice.

As an alternative, pair-wise relevance judgment,
also known as preference judgment, has recently
drawn considerable attention in the research community.
This paradigm allows assessors to compare two items
simultaneously and express a preference for one over the
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other (Carterette et al., 2008). Meanwhile, comparing two
items side-by-side helps assessors make a faster and more
accurate judgment since items in pairs can be seen as
context to each other (Carterette et al., 2008; Clarke
et al., 2021). Compared to assigning a numerical grade to
items one by one, it is easier to recognize fine distinctions
and express them in relative terms by collecting prefer-
ences directly (Yan et al., 2022).

Numerous prior works have investigated the differ-
ences and relationships between the two paradigms.
Researches indicate that, despite the exponential increase
in the number of item pairs to be judged with the total
number of items, the pair-wise paradigm fosters greater
consensus among assessors and streamlines the evalua-
tion process by focusing on direct comparisons between
pairs of items, ultimately resulting in higher inter-
assessor agreement and reduced time consumption com-
pared to the point-wise paradigm (Bah et al., 2015;
Radinsky & Ailon, 2011). Also, when distinguishing the
meaningful differences between two or more highly rele-
vant items at a fine-grained level, preference judgment is
usually more accurate (Yan et al., 2022). However, to the
best of our knowledge, existing studies on this topic only
compare the consistency and efficiency of the two para-
digms through explicit feedback and behavior analysis.
The actual neurological mechanisms behind the scenes
are still unknown. The point-wise paradigm's lower con-
sistency than the pair-wise paradigm is always attributed
to the lack of a universally defined grading scheme.
Understanding the reasons behind this inconsistency can
aid in the design of improved grading schemes. Addition-
ally, investigating why users find it easier and more effi-
cient to make relevance judgments in the pair-wise
paradigm than in the point-wise paradigm is of interest.
With efforts being made to integrate pair-wise and point-
wise relevance judgments for improved annotation effi-
ciency (Chu et al., 2021; Yan et al., 2022), a neurological
understanding of these paradigms can inform the design
of more user-friendly annotation tasks.

In this paper, we aim to compare point-wise and pair-
wise relevance judgment from a neuroscience perspec-
tive, explore the differences and similarities between two
paradigms, and gain insights for IR tasks, thus raising the
following research questions:

RQ1. What are the differences and similarities
in the patterns of brain signals between pair-
wise and point-wise relevance judgment?1

RQ2. What are the neurological mechanisms
under these differences and similarities and
how can these differences guide modern
search techniques?

RQ3. To what extent can users' brain signals
be used to predict their relevance judgment?

To investigate the above research questions, we use
image search as an example application scenario. During
the inspection of Search Engine Result Page (SERP) in
web search, assessors typically examine multiple results
on a single page and compare their usefulness to deter-
mine subsequent interactions, especially in image search
scenarios where grid-based layouts present a larger num-
ber of results compared to sequential lists (Xie, Mao, Liu,
de Rijke, Shao, et al., 2019; Xie et al., 2020). This is the
reason we choose the image search scenario for our
study. We conduct a lab-based user study in which
human participants are required to accomplish a set of
image relevance annotation tasks in the two paradigms
separately (with a 7-day interval between them) and col-
lect their brain signals in the tasks. Recent developments
in neuroimaging technology (e.g., electroencephalogram
[EEG] and functional magnetic resonance imaging
[fMRI]) allow researchers to study brain activity patterns
in IR scenarios in a more interactive way, leading to sig-
nificant progress in understanding cognitive patterns that
are difficult to reveal through traditional methods
(Allegretti et al., 2015; Liu et al., 2021; Moshfeghi
et al., 2016; Pinkosova et al., 2020). Through the use of
EEG devices and event related potential (ERP) analysis
(Luck et al., 2000), we find that significant differences in
terms of brain activations and activities exist between
point-wise and pair-wise relevance judgment. This
implies that the process of the two paradigms involves
distinct neurological functions. We also notice that the
pair-wise paradigm leads to less cognitive load for asses-
sors, and people tend to allocate more attention to items
that align with their needs in the point-wise paradigm
but pay more attention to comparatively inferior items in
the pair-wise paradigm. Based on these findings, we pro-
vide suggestions for future IR tasks related to relevance
judgment. Furthermore, we conduct several prediction
experiments using frequency domain features of EEG sig-
nals. We verify the feasibility of employing EEG signals
for predicting pair-wise relevance judgment and show
that EEG signals can be utilized as implicit user feed-
back in IR.

2 | RELATED WORK

2.1 | Relevance judgment

Relevance judgment plays a vital role in IR system evalu-
ation and ranking model optimization. The Cranfield-like
framework (Cleverdon, 1967), in which assessors give a
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graded relevance to each result returned by the retrieval
system, has been widely used for search evaluation.
Based on this framework, existing works have designed
various grading schemes by assigning annotated graded
relevance for each result. For example, Sang et al. (2011)
employ binary judgment while Yang et al. (2015) and
Clarke et al. (2004) use 3-level grading. More fine-grained
schemes include 4-level grading by Luo et al. (2017) and
Xie, Mao, Liu, de Rijke, Ai, et al. (2019), 6-level grading
by Collins-Thompson et al. (2015), and even 100-level
grading (S100) by Shao et al. (2019) and Roitero et al.
(2018). They indicate that S100 is more consistent with
the satisfaction of users than coarse-grained grading
schemes. Traditional evaluation metrics based on point-
wise relevance judgment, such as NDCG and RBP, have
been widely used in IR.

In addition to the Cranfield-like approach and corre-
sponding point-wise paradigms, several researchers have
explored pair-wise relevance judgment and developing
evaluation measurements. For instance, Carterette et al.
(2008) investigate to evaluate search engines using prefer-
ence judgment and design an interface for conducting
such judgment. The study by Hui and Berberich (2017)
finds that incorporating weak preference judgment,
which includes a “tie” option, can help reduce evaluation
costs. Furthermore, Carterette et al. (2008) propose two
evaluation metrics, namely Ppref and Wpref, based on
pair-wise relevance judgment. In the context of image
search scenarios, Xie et al. (2020) introduce a novel
preference-based evaluation metric called preference-
winning-penalty (PWP).

Previous works have compared the consistency and
efficiency of the two paradigms and have gained several
insights. Research suggests that while the number of item
pairs to be judged increases exponentially with the total
number of items, the pair-wise paradigm achieves higher
inter-assessor agreement and consumes less time com-
pared to the point-wise paradigm (Bah et al., 2015;
Radinsky & Ailon, 2011). Preference judgment has been
recognized as a helpful approach to identifying meaning-
ful differences between highly relevant items (Yan
et al., 2022). Additionally, a comparison conducted by
Yang et al. (2018) reveals that preference judgment is
more reliable than other paradigms. Chu et al. (2021)
propose a combined evaluation metric named pairwise
discriminative power (PDP) to evaluate the quality of rel-
evance judgment collections with both pair-wise signals
and point-wise signals. A novel combined metric pro-
posed by Arabzadeh et al. (2023) is applicable for instant
search rather than offline search.

In addition, when inspecting SERP generated by a
web search engine, assessors are expected to look

through more than one result on a single page and may
compare their usefulness to decide the next interaction.
This phenomenon happens more frequently in image
search scenarios as more results are presented on the
SERP using a grid-based style other than a sequential list
(Xie et al., 2020; Xie, Mao, Liu, de Rijke, Shao,
et al., 2019). Image retrieval has consistently been a focal
point of research and holds significant importance in
real-world applications (Koh et al., 2024; Zhang
et al., 2022). As the attractiveness and quality of images
are becoming a more and more major factor for web
image search engines to satisfy users' search intentions,
assessors with different aesthetic standards probably give
less consistent ratings (Geng et al., 2011). The limited
demand for fresh results in web image search also
enhances the reusability of pair-wise relevance judgment,
which would have needed more amount of evaluation
than the point-wise paradigm (Lefortier et al., 2014; Xie
et al., 2020). For the reasons stated above, we choose
image search scenarios as examples to conduct our study.

2.2 | BMI for search

In most of the previous studies on the comparison of the
two paradigms, explicit/implicit feedback is used. Explicit
feedback involves users explicitly stating their relevance
judgments, which will increase the cognitive burden and
user effort (Moshfeghi & Jose, 2013; White et al., 2002).
Implicit feedback captures users' natural actions or physi-
ological responses during system interactions, including
measures like eye-tracking (Gwizdka et al., 2017) and
search log analysis (Wu et al., 2019). However, implicit
feedback often suffers from low signal-to-noise ratio
(SNR) issues (Allegretti et al., 2015). Brain signals provide
a direct reflection of psychological activities, making
them a superior approach for perceiving human rele-
vance judgments with greater immediacy and accuracy
compared to other methods.

With the rapid developments of neuroimaging tech-
nology (e.g., EEG and fMRI), recent works have begun to
study brain activity patterns in IR scenarios. For instance,
Moshfeghi et al. (2016) employ fMRI to detect the emer-
gence of Information Need (IN), while Allegretti et al.
(2015) use EEG to explore the relevance judgment pro-
cess. Furthermore, studies by Ye et al. (2022) utilize the
ERP method to investigate the process of reading com-
prehension. In the context of point-wise relevance judg-
ment, Pinkosova et al. (2020, 2022) conduct a user study
and observe significant differences in ERP of high-
relevance, low-relevance, and no-relevance answers. Pin-
kosova et al. (2023) suggest that self-perceived knowledge
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(SPK) play an important role in relevance assessment,
and Michalkova et al. (2024) explore the neurological
mechanisms behind feeling-of-knowing. These
researches on fundamental concepts make significant
progress in the process of understanding cognitive pat-
terns in IR scenarios, which is hard to reveal through pre-
vious technologies. However, the underlying differences
in psychological activities related to relevance judgments
of point-wise and pair-wise paradigms remain unknown.

Brain signals can also be utilized as a complement or
substitute for traditional implicit feedback signals. Eug-
ster et al. (2014) demonstrate the feasibility of detecting
term relevance using brain signals, enabling the collec-
tion of relevance judgments without any additional user
interactions. Moreover, Davis III et al. (2020) utilize the
brain responses of a collective of human participants to
improve the prediction of users' relevance judgments. Liu
et al. (2021) propose to integrate BMI into the search sys-
tem to understand users' information needs and collect
direct satisfaction feedback.

3 | USER STUDY

In our user study, participants engage in simulated image
search scenarios in point-wise and pair-wise paradigms
sequentially, with a 7-day interval between them. The
whole experimental process is carried out in the labora-
tory environment. This section describes the entire pro-
cess of user data collection. The open-source of our
experiment platform and dataset is available in the
github.2

3.1 | Participants

We recruit a total of 20 participants through social
media, including 15 males and 5 females. Participants
are all college students aged between 19 and 25 years
old and with a mean age of 21.7 and a standard devia-
tion (SD) of 1.25 years. Their majors cover computer sci-
ence, engineering, chemistry, law, and so on. Their
education levels cover undergraduate and postgraduate.
All participants are right-handed and claim to be profi-
cient in using the Internet and search engines in their
daily lives. It takes about 2 h to complete the pair-wise
paradigm and 1.5 h to complete the point-wise para-
digm, both including 30 min of equipment preparation
and task guidance. Before the experiment starts, the par-
ticipants are told to be paid US$11.8 per hour if they
complete the experiment to ensure the quality of the
collected user study data.

3.2 | Preparation

3.2.1 | Apparatus

The stimuli are presented on a desktop computer that has
a 27-inch monitor with a resolution of 2560 � 1440 pixels
and a refresh rate of 60 Hz. Participants are required to
use the keyboard to interact with the platform. EEG sig-
nals are captured and amplified using a Scan NuAmps
Express system (Compumedics Ltd., VIC, Australia) and a
64-channel Quik-Cap (Compumedical NeuroScan). A lap-
top computer functions as a server to record EEG signals
and triggers using Curry8 software. Throughout the exper-
iment, electrode-scalp impedance is maintained under
50 kΩ, and the sampling rate is set at 1000Hz.

3.2.2 | Task preparation

Our experiment is based on a user behavior dataset col-
lected from a one-month field study exploring the impact
of search intent on user behavior and satisfaction in
image search scenarios (Wu et al., 2019). The reason for
choosing this dataset is that it records the real search logs
of users and contains user search tasks in real environ-
ments, and thus it is more reliable and realistic than tra-
ditional lab study. Also, this dataset involves users'
search intents, providing an opportunity to investigate
factors that influence users' relevance judgments. This
dataset has been used in several previous works (Xie
et al., 2020; Xie, Mao, Liu, de Rijke, Shao, et al., 2019) on
web image search scenarios.

From 555 search tasks and 2040 search queries in this
dataset, 59 search tasks are carefully selected for the user
experiments in our experiment, covering topics including
science, sports, traveling, art, and so on. Pinkosova et al.
(2023) suggest that, when participants indicate having
SPK of the answer to a question, cognitive processing
becomes easier. To eliminate this bias, our selection cri-
teria include choosing unambiguous and easily under-
standable queries, while excluding ambiguous ones
(e.g., “Shining”) and relatively unknown ones (e.-
g., “SNH48”). Then, for the selected search task, a total of
724 images are crawled from Bing3 image search engine
as data to be labeled, with an average of 12.27 images per
task. Examples of query descriptions are provided in
Table 1.

In line with the approach adopted by Shao et al.
(2019), we provide comprehensive instructions for each
grade in the point-wise paradigm, as illustrated in
Table 2. This step aims to minimize the subjectivity of
assessors and enhance the consistency of scoring.

4 ZHU ET AL.
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3.3 | Procedure

To protect the privacy and physical health of the subjects,
our user study strictly adheres to the ethical procedures
for the protection of human participants in research and
is approved by the ethics committee of the School of Psy-
chology at Tsinghua University.

As shown in Figure 1, our main experiment consists
of two subtasks. Every participant is informed to partici-
pate in any number of subtasks voluntarily. It is impor-
tant to note that the same dataset is used for both
subtasks. For participants involved in both subtasks, we
randomize the order of the two paradigms and ensure
that the interval between their participation in the two
experiments is at least 7 days. The 7-day interval is meant
to prevent any potential bias caused by the memory effect
(Fisher & Radvansky, 2018) so that we can collect anno-
tations on the same query in different paradigms without
letting the two subtasks affect each other.

Before the user study, participants are asked to com-
plete an entry questionnaire to report demographic

information and sign a consent about privacy security
and personal information protection. They will be briefed
about the main tasks and operation methods. They are
also informed that they have the right to withdraw at any
time during the study. Before the main trials, participants
will undergo several training trials that resemble the
main task. These training trials aim to familiarize partici-
pants with the overall process of the formal experiments.
In the following sections, we detail descriptions of the
two subtasks.

3.3.1 | Pair-wise relevance judgment

The green box in Figure 1 describes the process of pair-
wise relevance judgment. Each participant needs to
choose a random seed before the experiment to shuffle
the order of the search tasks and the images. This ran-
domization helps minimize potential biases and ensure a
fair distribution of tasks and images across participants.
The experimental platform follows a sequential and
repetitive process, consisting of four steps: S1–S4, as illus-
trated in Figure 1 (S1). The experimental platform dis-
plays the current query description, that is, the query and
search intent. Participants can proceed to the next stage
by pressing the space key after understanding the task
goal. (S2) A fixation cross is presented on the screen cen-
ter to focus the field of vision so that attention can be
drawn when the images appear. This fixation period lasts
for 1000 ms. (S3) An image pair in the current task will
be displayed successively in random order, and the dis-
play time of each image is 1500 ms. (S4) A 3-level weak
pair-wise relevance judgment is to be made by partici-
pants through the keyboard. Figure 1 shows an example
of pair-wise relevance judgment of the query “The For-
bidden City.”

3.3.2 | Point-wise relevance judgment

The blue box in Figure 1 describes the process of point-
wise relevance judgment. The overall process follows a
similar pattern as described above. To ensure randomness,
a random seed is also selected at the beginning to shuffle
the order of tasks and images. Steps S1 and S2 resemble
that in the pair-wise relevance judgment process. (S3) A
single image in the current task will be displayed, and the
display time of each image is 1500 ms. (S4) A point-wise
relevance judgment is to be made by participants through
the keyboard. We use 5-level grading, and clear guidance
instructions for each grade are provided in Table 2.
Figure 1 shows an example of point-wise relevance judg-
ment of the query “The Forbidden City.”

TABLE 2 Guidance instructions assigned to each grade for the

experiment of point-wise paradigm (a higher score means higher

relevance).

Score Detailed guidance instructions

5 The objects and modifiers described in the
requirements are perfectly matched in the given image

4 The object described in the requirement is matched in
the image, but the modifiers do not fully match

3 The image partially meets the requirement (e.g., two or
more objects are mentioned in the requirement, but
only one appears in the image)

2 Only a small part of the image meets the requirements,
but the main object described in the requirements is
ambiguous in the image

1 The image does not meet the requirements at all

TABLE 1 Examples of query descriptions.

Query Search intent description

Trigonometric
functions

An image of trigonometric functions is
needed for making slides

The Forbidden
City

A friend is interested in knowing about the
landmarks within the Forbidden City

Pearl necklace I'm searching online for necklace styles
because it's my mother's birthday on
Saturday

Da Vinci I have an assignment to search for Leonardo
da Vinci's artworks

ZHU ET AL. 5
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Throughout the main experiment, the participant's
EEG signals will be captured and recorded during the
whole process, together with the pre-coded triggers to
locate time points of important events. In both para-
digms, the program will return to step S1 and display the
next task description, continuing this process until all
the images in the current session have been presented.
All images are divided equally into several sessions (9 in
pair-wise and 7 in point-wise, which is determined in the
pilot studies), and participants are allowed to take a rest
between sessions.

3.4 | Pilot study

A pilot study can ensure the correctness of the overall
experimental process and the reliability of the acquisition
equipment. We conduct a pilot study on three partici-
pants whose data are not included in the final analysis to
determine hyperparameters of the experimental presenta-
tion and design, such as the image presentation time,
font size, number of sessions, and so on.

4 | RESULT ANALYSIS

This section analyzes the similarities and differences
between the two paradigms through statistical methods
and ERP analysis. By doing so, we aim to provide insights

into the underlying neurological mechanisms associated
with these paradigms. Based on the findings from our
analysis, we discuss their implications to relevance judg-
ment in IR scenarios.

4.1 | Statistics analysis

Among all participants, 15 individuals take part in the
point-wise relevance judgment task, all of whom also par-
ticipate in the pair-wise subtask. Additionally, four
participants also take part in the pair-wise relevance
judgment task only. However, one participant withdrew
from the study prematurely, resulting in the absence of
recorded data for that individual.

To facilitate subsequent ERP analysis and significance
testing, we classified the EEG signals collected under both
paradigms into two categories: highRel and lowRel. In
the pair-wise paradigm, we focus on the second image in
each pair and classify based on whether participants
choose “the second image is better.” In contrast, in the
point-wise paradigm, we focus on each image and classify
based on participants' annotated relevance score.
Since our research objective is to compare the ordinal rela-
tionships of image relevance under two different para-
digms, we excluded the neutral options (i.e., “Tie” in the
pair-wise paradigm and the rating of 3 in the point-wise
paradigm) in the ERP analysis. We report the distribution
of different judgments per participant in Table 3.

FIGURE 1 Structure of the main part of the two-subtask experiment, that is, pair-wise relevance judgment and point-wise relevance

judgment. These subtasks are carried out in a randomized order and are spaced at least 7 days apart. (S1) Two subtasks begin with a query

description on the screen. (S2) When participants press the space key, a fixation cross will be presented for 1000 ms. (S3) Then images will

be displayed in the corresponding paradigm and every image will remain for a duration of 1500 ms. (S4) Finally, a relevance judgment will

be made by participants through the keyboard. The program will return to S1 and display the next task description until there are no

remaining tasks.

6 ZHU ET AL.
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In terms of time consumption, the average time spent
in the judgment step of pair-wise relevance judgment
(S4 in Figure 1) is 937 ms (SD = 102 ms), while the aver-
age time spent in the judgment step of point-wise rele-
vance judgment (S4 in Figure 1) is 1207 ms
(SD = 145 ms). This finding is in line with prior research
observations that assessors tend to make quicker judg-
ments in the pair-wise paradigm compared to the point-
wise paradigm (Carterette et al., 2008; Xie et al., 2020).

4.2 | ERP methods

ERP refers to the steady voltage in the brain that is pro-
duced in response to a specific event or stimulus
(Blackwood & Muir, 1990). Its advantage lies in its high
time resolution, and the sequence formed by ERP peaks
can accurately reflect the neural activity in the brain
(Luck, 2014). ERP components are evoked amplitudes in
different time windows, for example, N400 (negative
waves within 400 ms) and P100, P300, P600 (positive
waves within 100, 300, 600 ms). These commonly used
ERP components capture distinct stages of neural proces-
sing, such as early sensory processing (P100), semantic
processing (N400), attention allocation and decision-
making (P300), and language syntax and grammar pro-
cessing (P600). Previous studies have shown that ERP
components also exhibit some fixed patterns in the proce-
dure of relevance judgments (Pinkosova et al., 2020,
2022). We apply standard ERP analysis methods to the
recorded data, including preprocessing, dividing time
window, and identifying region of interest (ROI)
(Luck, 2014).

4.2.1 | Preprocessing

Similar to previous work (Pinkosova et al., 2020; Ye
et al., 2022), our preprocessing process includes: (1) Re-
referencing the collected EEG data using the offline

linked mastoids method (Yao et al., 2019). (2) Applying
notch, low-pass, and high-pass filters to remove environ-
mental noise, voltage drift, and high-frequency noise,
respectively. (3) Employing the FASTER toolkit (Nolan
et al., 2010) to eliminate bad channels and artificial com-
ponents. (4) Extracting epochs of interest from the EEG
signal sequences and calculating their average. The data
epoch refers to the specific time window in which we
expect to observe relevant brain responses. In our experi-
ment, the data epoch spans from 200 ms before the stim-
ulus (the presentation of images) to 1000 ms after the
stimulus.

4.2.2 | Time windows

In order to separate different components in ERP, we
split the extracted time interval into several time win-
dows following the method proposed by Lehmann and
Skrandies (1980). They recommend determining the com-
ponents of evoked scalp potentials in terms of times of
latency and topography. We calculate Global field power
(GFP) between 50 and 950 ms, and split time windows by
the peaks of GFP, which has been applied to existing
ERP analyses researches (Ye et al., 2022).

4.2.3 | ROIs

Meanwhile, modern brain science research shows that
different brain regions often have different functions. We
divide the electrodes into seven brain regions according
to their placement on the brain topography shown in
Figure 2. We apply some statistical methods including
ANOVA in a fixed time window for each brain region.

TABLE 3 Statistics of the averaged number of judgments.

Relevance judgment #Judgments

highRel (pair-wise) 170.8

lowRel (pair-wise) 175.5

highRel (point-wise) 285.3

lowRel (point-wise) 302.9

Note: In the pair-wise paradigm, “highRel”/“lowRel” means the second

image has higher/lower relevance compared to the first image, while in the
point-wise paradigm, they represent high-relevance score and low-relevance
score, respectively.

FIGURE 2 Seven brain regions according to their placement

on the brain topography, that is, prefrontal, frontal, central,

parietal, l-temporal, r-temporal, and occipital.
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Mauchly's test is applied to verify the sphericity assump-
tion and post hoc Bonferroni tests are employed to make
pairwise comparisons between groups (Ye et al., 2022).

4.3 | ERP results

The statistical analysis results of time windows and ROIs
are shown in Table 4. Based on the results, we exhibit the
grand average ERP waveforms for each ERP component
and corresponding ROIs in Figure 3. We will now pro-
vide explanations of the characteristics and potential
functions associated with each ERP component.

4.3.1 | P100

P100 (presented in Figure 3a) is an early component in
time window around 100 ms (50–200 ms for pair-wise
and 50–180 ms for point-wise). We employ ANOVA sta-
tistical method and discover significant differences

between the grand-averaged P100 component in
r-temporal (F 1,18½ � ¼ 7:23,p<0:05) of pair-wise para-
digm and in central (F 1,14½ � ¼ 20:96,p<0:001) of point-
wise paradigm. Post hoc Bonferroni tests afterward reveal
that P100 amplitude of “lowRel” (“highRel”) is signifi-
cantly higher than “highRel” (“lowRel”) in the pair-wise
(point-wise) paradigm with p-value <0.01 (0.001).

P100 component is considered to reflect the “cost of
attention” (Luck, 2014), specifically, the initial ability and
processing effort involved in recognizing relevant stimuli
(Rutman et al., 2010). Higher amplitude in “highRel” of
the point-wise paradigm suggests more early selective
attention is allocated to highly relevant images in the
process of initial visual field activation (Luck, 2014). On
the other hand, in the pair-wise paradigm, we find the
“lowRel” one evokes a greater amplitude of P100, which
indicates the differences in attention distribution
between the two paradigms.

4.3.2 | P300

P300 (presented in Figure 3b) waveform is the dominant
component in time window around 300 ms (180–380 ms
for pair-wise and 150–380 ms for point-wise). ANOVA
reveals the significant differences between grand-averaged
P300 component in frontal (F 1,18½ � ¼ 10:14,p<0:05), cen-
tral (F 1,18½ � ¼ 14:88,p<0:05) of pair-wise paradigm
and in frontal (F 1,14½ � ¼ 12:34,p<0:05), central
(F 1,14½ � ¼ 9:32,p<0:05), prefrontal (F 1,14½ � ¼ 10:86,
p<0:05) of point-wise paradigm. Post hoc tests using the
Bonferroni method also indicate that P300 amplitude of
“lowRel” (“highRel”) is significantly higher than “high-
Rel” (“lowRel”) in the pair-wise (point-wise) paradigm
with p-value <0.001 (0.001).

P300 component is considered as an endogenous
potential in the process of decision making. It has been
demonstrated that P300 is associated with brain activity
related to the engagement of attention and the processing
of novelty (Polich, 2007). In the point-wise paradigm, a
higher amplitude of P300 indicates that more attention is
allocated to highly relevant information, which also
causes less cognitive load and memory load for assessors
(Ahmed & de Fockert, 2012; Gray et al., 2004). But in the
pair-wise paradigm, the “lowRel” one is easier to process
and recognize since assessors will be primed on the first
image, thus getting more attention.

4.3.3 | N400

N400 (presented in Figure 3c) waveform mainly appears
in time window around 400 ms (320–500 ms for pair-wise

TABLE 4 Statistical significance differences of different time

windows and ROIs.

Time windows and ROIs in pair-wise paradigm

Time window ROI Post hoc test

50–200 ms R-temporal lowRel>highRel*

180–380 ms Frontal lowRel>highRel*

Central lowRel>highRel*

320–500 ms Frontal lowRel>highRel*

R-temporal lowRel>highRel**

550–650 ms Central lowRel>highRel*

L-temporal lowRel>highRel**

R-temporal lowRel>highRel*

Parietal lowRel>highRel*

Time windows and ROIs in point-wise paradigm

Time window ROI Post hoc test

50–180 ms Central highRel>lowRel**

150–380 ms Frontal highRel>lowRel*

Central highRel>lowRel*

Prefrontal highRel>lowRel*

350–500 ms L-temporal highRel>lowRel*

R-temporal highRel>lowRel*

500–700 ms L-temporal highRel>lowRel**

R-temporal highRel>lowRel**

Parietal highRel>lowRel*

Note: Statistical significance at a level of �p<0:05, � �p<0:001, respectively.
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and 350–500 ms for point-wise). Through ANOVA, we
find significant differences between grand-averaged N400
component in frontal (F 1,18½ � ¼ 8:09,p<0:05), central
(F 1,18½ � ¼ 10:04,p<0:05), r-temporal (F 1,18½ � ¼ 22:16,
p<0:001) of pair-wise paradigm and in l-temporal
(F 1,14½ � ¼ 13:77,p<0:05), r-temporal (F 1,14½ � ¼ 12:38,
p<0:05) of point-wise paradigm. Then we employ post
hoc Bonferroni tests and find that N400 amplitude of
“lowRel” (“highRel”) is significantly higher than “high-
Rel” (“lowRel”) in the pair-wise (point-wise) paradigm
with p-value <0.01 (0.001).

There have been some related studies on N400 show-
ing that it is associated with uncertainty and incongruity
of images and videos (Kim & Kim, 2019; Stuss
et al., 1986). In the point-wise paradigm, reduced N400 is
associated with lower relevant images which require
more effort to infer a conclusion (Debruille, 2007). In the
pair-wise paradigm, however, the “highRel” one has a
lower N400 amplitude under the influence of the first
image as a comparison.

4.3.4 | P600

P600 (presented in Figure 3d) component is evoked
around 600 ms after the stimulus (550–650 ms for
pair-wise and 500–700 ms for point-wise). Significant dif-
ferences are found through ANOVA between grand-
averaged P600 component in central (F 1,18½ � ¼ 11:40,
p<0:05), l-temporal (F 1,18½ � ¼ 17:68,p<0:001),
r-temporal (F 1,18½ � ¼ 9:07,p<0:05), parietal (F 1,18½ � ¼
10:75,p<0:05) of pair-wise paradigm and in l-temporal
(F 1,14½ � ¼ 20:91,p<0:001), r-temporal (F 1,14½ � ¼ 23:63,
p<0:001), parietal (F 1,14½ � ¼ 12:88,p<0:05) of point-
wise paradigm. Then we employ post hoc Bonferroni
tests and find that P600 amplitude of “lowRel” (“high-
Rel”) is significantly higher than “highRel” (“lowRel”) in
the pair-wise (point-wise) paradigm with p-value
<0.001 (0.001).

Previous researches find inferential processing
(Burkhardt, 2006) will evoke P600 waveform. In IR sce-
narios, the link between higher relevance and P600

FIGURE 3 The grand average ERP waveforms for electrode configurations associated with ERP components, with the time interval of

interest (highlighted in gray) and corresponding ROIs (highlighted in yellow). Refer to Figure 2 for detailed EEG channels information.
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amplitude is speculated to come from discourse memory
in the brain (Yang et al., 2019), which is consistent with
our experiment results. Pinkosova et al. (2020) indicate
that the ease of the categorization process and more
amount of information carried by the processed term
(Kangassalo et al., 2019) is the reason why highly rele-
vant images evoke higher P600 amplitude. The “highRel”
one in the pair-wise paradigm is also of a similar nature
for the same reasons, thus generating a greater P600
component.

4.4 | Discussion

The above analysis shows that the significant difference
in each component of ERP is consistent with the overall
trend difference between the two paradigms. All the EEG
signal patterns analyzed of point-wise relevance judg-
ment above are aligned with previous works on relevance
judgment (Moshfeghi et al., 2016; Pinkosova et al., 2020,
2022). However, when we shift our focus to the pair-wise
paradigm, we find that all conclusions are, in fact, the
opposite (addressing RQ1).

To explore these different observations in the two par-
adigms, we further analyze their difference waves
(Luck, 2014). Difference waves are calculated by subtract-
ing the ERP waveforms of the two stimulus types
(i.e., highRel and lowRel in our experiment) in the two
paradigms. Difference waves are a commonly used
approach to extract a purer ERP component with clearer
psychological meaning. The curve after the Savitzky–
Golay filter is shown in Figure 4. Difference waves tech-
nology can explain the process of mental activity more
clearly and find out components that cannot be observed
directly in the original waveform. Through the ANOVA
method, we found that in each time window of the differ-
ence wave, there are significant differences between the

two paradigms (all p<0:001). This also confirms
the interesting conclusion of ERP component analysis.

In other words, in the point-wise paradigm, people
tend to pay more attention to images that are more satis-
fying to their needs, but in the pair-wise paradigm, peo-
ple allocate more attention to relatively worse images
(addressing RQ2).

One possible explanation for this observation is that
in the point-wise relevance judgment, assessors may have
a “golden standard” image in mind based on the task
description and search intent. This ideal image meets all
the given requirements and aligns with the assessor's per-
sonal aesthetic preferences. Consequently, highly rele-
vant images that closely match this ideal standard will be
evaluated more effortlessly, as previously discussed
(Pinkosova et al., 2020, 2022). In contrast, during the
pair-wise relevance judgment, assessors are exposed to an
initial image before making their judgment. This initial
image replaces the role of the “golden standard” in their
mental representation. When encountering worse
images, assessors produce the same neurological response
as the point-wise paradigm, but better images instead get
less attention and create a less memory load.

Furthermore, we examine the overall relationship
between the two paradigms, and the grand average ERP
waveforms are plotted in Figure 5. It is obvious that the
amplitude of the ERP waveforms induced in the pair-
wise relevance judgment is greater than that of the point-
wise relevance judgment, which indicates that in the
pair-wise paradigm, the assessors have less cognitive load
and more focused attention allocation (Gray et al., 2004;
Rutman et al., 2010). This is why assessors tend to
respond faster in pair-wise paradigm (Carterette
et al., 2008; Clarke et al., 2021; Xie et al., 2020). Then we
consider the ERP of the first image in pair-wise relevance
judgment together and notice that its trend is similar to
the ERP curve of the point-wise paradigm (addressing

FIGURE 4 The difference

waves in the central brain region

of the pair-wise and point-wise

paradigms (“lowRel”-“highRel”).
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RQ1). This implies that the assessors' judgment of the
first item in the pair-wise relevance judgment has a simi-
larity to the point-wise paradigm (addressing RQ2).

In conclusion, we analyze and compare the two para-
digms from the underlying neurological mechanism, and
provide detailed discussions. Our findings provide a dee-
per understanding of relevance judgments across differ-
ent paradigms at the cognitive level, and illustrate
insights for modern search techniques.

• On search engine improvements: When designing
SERP, presenting search results in blocks or cards can
encourage more pair-wise relevance judgments to alle-
viate the cognitive load of users, thereby facilitating
easier decision-making. Users, unlike annotators, do
not need to perform all pair-wise comparisons when
browsing a grid-based SERPs, making it easier for
them to focus on superior items over those low-scoring
items that require more attention. Based on this, we
suggest arranging low-quality items around promi-
nently recommended items (such as sponsored prod-
ucts) to increase user attention and interest, thereby
achieving the effect of implicit recommendation. More-
over, modern search engines' retrieval heavily relies on
point-wise relevance assessment, where annotators
devote more attention to higher-scoring items. There-
fore, lower-scored items are not necessarily of low rele-
vance. We suggest conducting additional pair-wise
annotation tasks to make the annotation scores more
accurate.

• On annotation task design: We observe a lower
consistency in the point-wise relevance judgment in
comparison with pair-wise relevance judgment due to
variations in annotators' annotation standards. We
propose pre-annotating a highly relevant item as a

reference standard for annotators to establish a unified
annotation standard. This step can reduce the cogni-
tive load of annotators and improve the consistency of
annotation scores. Furthermore, in pair-wise para-
digms, annotators experience a higher cognitive load
when judging the first item. To streamline the annota-
tion process, fixing the reference point (first item) in
the pair-wise paradigm can help reduce the cognitive
burden and increase efficiency.

5 | PREDICTING RELEVANCE
FROM BRAIN SIGNALS

Inspired by the concept of “brainsourcing” (i.e., utilize
brain responses of a group of human contributors each
performing a recognition task to determine classes of
stimuli) (Davis III et al., 2020), we consider whether
brain signals can be used as implicit feedback to predict
annotators' judgments of preference.

5.1 | Experiments

Traditionally, two kinds of features are employed in the
EEG prediction model, that is, event-related-
potential-based features (ERPFs) and frequency-
band-based features (FBFs) (Ye et al., 2022). ERPFs are
time domain features in a specific short time window,
especially where the ERP component is significantly dif-
ferent. FBFs are frequency domain features. It has been
demonstrated that frequency information in different
bands is associated with attentiveness (delta and beta;
Harmony et al., 1996), cognitive performance (theta and
alpha; Klimesch, 1999), and semantic violation (gamma;

FIGURE 5 The grand average ERP waveforms in the central brain region of the two paradigms and the first image in pair-wise

relevance judgment (green line).
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Penolazzi et al., 2009). We choose the latter in our experi-
mental settings and calculate differential entropy from
the frequency bands of delta (0.5–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–31 Hz), and gamma
(31–81 Hz).

We focus on pair-wise relevance judgment in our
experimental settings. The reason is that previous works
have tried to use EEG signals as implicit feedback in the
point-wise paradigm of binary classification and achieved
decent results (Davis III et al., 2020, 2021; Gwizdka
et al., 2017). The pair-wise relevance judgment can help
the annotators to complete the judgment faster and more
easily, thus has a specific application prospect and has
not been studied as we know.

Considering that there are obviously individual differ-
ences in EEG signals, we first separately train and test a
prediction model on the pair-wise relevance judgment
data in different brain regions of each subject, namely
the within-subject design. Then, we try to train a model
on one subject and to predict the preference judgment of
the others, which is called the cross-subject design.

The predicting models include Logistic Regression
(LR), Support Vector Machine (SVM), Random Forest
(RF), and Gradient Boosting Decision Tree (GBDT). Ten-
fold cross-validation is employed to evaluate their
performance.

The results of pair-wise relevance judgment predic-
tion with brain signals in within-subject experiments are
shown in Table 5. Among the prediction results of all
models and brain region combinations, the best is the
random forest model trained on all-electrode signals.
When the frequency-domain features of all-electrode,
frontal, central, and parietal are selected as the model
input, the four models can all achieve decent perfor-
mance, which is consistent with the statistical analysis of
the ERP time windows and ROIs in the previous chapter.
We notice that the performance on occipital is relatively

poor. The occipital region is generally considered to
undertake functions related to visual feedback. For exam-
ple, make use of SSVEP for frequency prediction of visual
stimuli to users (Chen et al., 2022). We explain that low-
order vision-related functions are less associated with rel-
evance judgments in general.

5.2 | Results and discussions

The results verify the feasibility of using brain signals as
implicit feedback to predict relevance judgments. It also
shows that this process can be completed in a very short
time (within 950 ms in the pair-wise paradigm) using
only part of the electrodes. With the help of brain signals,
we can apply the previous methods combining pair-wise
and point-wise relevance judgment with more direct
feedback, thus ensuring the continuity of the annotators
when using the system (addressing RQ3).

The results of pair-wise relevance judgment predic-
tion with brain signals in the cross-subject scenarios are
shown in Table 6. It can be seen that models trained on
features of full-electrode still have the highest perfor-
mance. However, compared with the prediction within-
subject, the performance has dropped a lot even after
having a wider range of training data.

The average AUC drops to around 0.5, which means
models make a random classification. This is exactly the
performance of individual differences in EEG signals.
The problem of cross-subject prediction is always thorny
in the field of EEG research. It is often difficult to find a
general model to predict the performance of different
subjects. Therefore, in practical applications, we can
adopt algorithms that learn from transfer learning. The
model is initially trained on large-scale network data,
and before being applied to a specific subject, it is first
fine-tuned according to their specific EEG characteristics
to better adapt.

TABLE 5 AUC of pair-wise relevance judgment prediction

with brain signals of different brain regions in the within-subject

experiments.

Brain region LR SVM RF GBDT

All 0.678 0.653 0.710 0.702

Frontal 0.629* 0.612* 0.689* 0.697

Central 0.688 0.680 0.617* 0.654*

Parietal 0.589* 0.607* 0.653* 0.684*

Temporal 0.676 0.637* 0.659* 0.641*

Occipital 0.587* 0.559* 0.561* 0.568*

Note: The bold values correspond to a p-value of 5%.
*indicates that the difference compared to the best-performing model is
significant with p-value < 0.05.

TABLE 6 AUC of pair-wise relevance judgment prediction

with brain signals of different brain regions in the cross-subject

experiments.

Brain region LR SVM RF GBDT

All 0.535 0.537 0.553 0.551

Frontal 0.533 0.536 0.503* 0.521

Central 0.534 0.519 0.527 0.505*

Parietal 0.498* 0.511 0.513* 0.519

Temporal 0.510 0.490* 0.526 0.531

Occipital 0.501* 0.468* 0.494* 0.511*

*indicates that the difference compared to the best-performing model is
significant with p-value < 0.05.
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6 | CONCLUSION

In this paper, we conduct a well-designed lab-based user
study to compare point-wise and pair-wise relevance
judgment in image search scenarios from a neuroscience
perspective. Through ERP analysis, we mainly conclude
the following insightful findings: (1) Significant differ-
ences exist in N400 and P100, P300, P600 components
between the two paradigms. We suggest that people
tend to judge how good an item is in the point-wise par-
adigm while trying to figure out which is worse in the
pair-wise paradigm. (2) The users' brain activities during
relevance judgment of the first item in the pair-wise par-
adigm are similar to that in the point-wise paradigm.
(3) Less cognitive load is the reason helps assessors to
make judgments faster and more easily in the pair-wise
paradigm. Based on these findings, we explore the
potential implications for future IR tasks related to rele-
vance judgment. Furthermore, we verify the feasibility
of employing EEG signals for predicting relevance judg-
ment within subjects and show that EEG signals can
serve as implicit user feedback which would be help-
ful in IR.

The limitations of our work that may guide future
works include: (1) Our study is limited to a lab-based
environment under our experimental paradigm, that is,
3-level weak preference judgment and 5-level point-wise
relevance judgment. Although we classified the stimuli
into two categories to make our findings universal, the
impact of graded relevance judgment paradigms on
the results remains to be studied. (2) Our experiment was
conducted in the context of image search, however, our
findings align with previous research conclusions, sug-
gesting that the experimental paradigm we employed can
be extended to relevance assessment studies in multi-
modal scenarios. This direction of research represents a
potential avenue for future investigations. (3) We only
validate the feasibility of using brain signals as implicit
feedback to predict user relevance judgments and the
accuracy of prediction results still has room for improve-
ment. Future works can explore the extraction and selec-
tion of brain signal features and design more
sophisticated models that can achieve better
performance.
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