
Probabilistic Attention for Sequential Recommendation
Yuli Liu

Qinghai University

Qinghai Provincial Key Laboratory of Media

Integration Technology and Communication

Xining 810016, China

liuyuli012@gmail.com

Christian Walder

Google Research, Brain Team

Montreal, Canada

cwalder@google.com

Lexing Xie

Australian National University

Data61 CSIRO,

Canberra, Australia

lexing.xie@anu.edu.au

Yiqun Liu

Department of Computer Science

and Technology, Tsinghua University

Zhongguancun Laboratory

Beijing 100084, China

yiqunliu@tsinghua.edu.cn

Abstract
Sequential Recommendation (SR) navigates users’ dynamic pref-

erences through modeling their historical interactions. The incor-

poration of the popular Transformer framework, which captures

long relationships through pairwise dot products, has notably ben-

efited SR. However, prevailing research in this domain faces three

significant challenges: (i) Existing studies directly adopt the pri-

mary component of Transformer (i.e., the self-attentionmechanism),

without a clear explanation or tailored definition for its specific

role in SR; (ii) The predominant focus on pairwise computations

overlooks the global context or relative prevalence of item pairs

within the overall sequence; (iii) Transformer primarily pursues

relevance-dominated relationships, neglecting another essential

objective in recommendation, i.e., diversity. In response, this work

introduces a fresh perspective to elucidate the attention mecha-

nism in SR. Here, attention is defined as dependency interactions

among items, quantitatively determined under a global probabilistic

model by observing the probabilities of corresponding item subsets.

This viewpoint offers a precise and context-specific definition of

attention, leading to the design of a distinctive attention mecha-

nism tailored for SR. Specifically, we transmute the well-formulated

global, repulsive interactions in Determinantal Point Processes

(DPPs) to effectively model dependency interactions. Guided by the

repulsive interactions, a theoretically and practically feasible DPP

kernel is designed, enabling our attention mechanism to directly

consider category/topic distribution for enhancing diversity. Conse-

quently, the Probabilistic Attentionmechanism (PAtt) for sequential

recommendation is developed. Experimental results demonstrate

the excellent scalability and adaptability of our attention mecha-

nism, which significantly improves recommendation performance

in terms of both relevance and diversity.
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1 Introduction
Sequential recommendation (SR) has garnered considerable atten-

tion due to its alignment with real-world recommendation scenar-

ios, where its primary objective is to provide users with content that

caters to their interests through modeling their historical behavior.

This heightened emphasis on SR has been substantially propelled by

the success of the Transformer framework, which aims to capture

long-range relationships utilizing pairwise dot products.

However, challenges still persist in this domain: (Cl1) While

prior studies have explored various interpretations of attention con-

cept in SR, including notions like influence [18, 23, 30], dependency

[54, 62, 66], correlations [24, 67], and context [26, 50]. While these

ambiguous interpretations are believed to significantly advance

sequential recommendation (SR), there remains a lack of specific

SR-tailored definitions and formalization. This lack of clarity im-

pedes a profound understanding and potential improvements; (Cl2)
Figure 1 reveals that the self-attention mechanism relies on pair-

wise dot products between a single item and all other items within

the sequence to connect the entire sequence. This approach, in

practice, fails to consider the relationships across different item

pairs and how they are distributed in a specific manner within the

sequence, i.e., the pairwise context; (Cl3) In the field of recom-

mender systems, it is common for data to exhibit sparsity [20, 31],

often leading to short sequences. Traditional self-attention excels

in modeling long-range relationships, which may not have a com-

petitive advantage in addressing this inherent sparsity issue [65];

(Cl4) Existing research often allocates attention within a sequence

based on item similarity, where higher similarity implies greater
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Figure 1: Comparative visualization of self-attention and
probabilistic attention for sequential recommendation.

values of mutual attention weight. However, this approach could

result in a system that tends to suggest monotonous items, thereby

compromising diversity performance.

The recognition of challenges (Cl1-Cl3) has led us to explore a

novel perspective, namely, the use of global probabilistic models to

assign attention distribution within a sequence. This perspective

offers several advantages: (i) It enables a formal definition of at-

tention as a probability distribution, providing a robust foundation

for the formulization and interpretation of attention concept; (ii)

Global probabilistic models that derive probabilities (attentions)

from a holistic viewpoint, extending beyond individual item pairs

(global context); (iii) Probability modeling accommodates distri-

butions over subsets of varying sizes. This enhances the ability

of attention-based SR to effectively leverage limited information,

which is crucial in addressing the frequently encountered challenge

of sparse data in recommendation systems.

To explore this perspective, we consider the potential utility

of Determinantal Point Processes (DPPs), which offer promising

techniques for modeling global, repulsive interactions. By transmut-

ing the well-established repulsive interactions, the dependency
interactions among items can be readily derived, thus contribut-

ing to the explicit definition of attention in SR. In this definition,

item attentions represent dependency interactions among items,

where higher attention weights correspond to stronger dependen-

cies across items. The degree of these interactions is qualified by

the probability of the corresponding item subset being distributed

as a DPP. Furthermore, in line with the critical characteristic of

DPPs in measuring diversity, we can bring about the fourth advan-

tage by introducing the concept of category/topic scope-related

diversity into the attention distribution, thus mitigating the risk of

monotonous recommendations (Cl4).
Based on this perspective, we develop Probabilistic Attention

(PAtt) tailored for sequential recommendation. As Figure 1 depicts,

themutual attention between two items within a sequence 𝑆 is

formulated as the probability of drawing both of them from ground

set Y (𝑆 )
. This work aims to explore four research questions based

on the novel perspective: (RQ1) Given that the attention degree is

quantified based on the probability of a subset, and there are no

restrictions on the number of items within a subset, can we infer

that as the number of items involved in subsets increases, which

implies more intricate dependency patterns are considered, the final

recommendation performance improves? (RQ2) Considering our
proposal of a substantially different attention definition from the

original one, is it necessary for us to adhere to the complex setting of

Query-Key-Value structures? (RQ3) What impact does existing self-

attention of pairwise context have on diversity, and can we enhance

recommendation diversity through the design of global probabilistic

attention distribution? (RQ4) Can our PAtt be considered a more

suitable attention mechanism for sparse environments?

The main contributions of this work are:

• We introduce a novel perspective of employing global prob-

abilistic models to allocate attention distribution within a

sequence. This approach allows us to mathematically and

empirically define and elucidate the attention mechanism

within the specific domain of sequential recommendation.

• Unlike conventional self-attention that requires the Query-

Key-Value setting, our probabilistic attention mechanism

relies solely on a Sampler. Remarkably, it achieves superior

performance with significantly fewer parameters.

• Two crucial properties of our dependency-defined attention

mechanism are validated: (i) Dependencies are mutual, with-

out inherent ordering; (ii) As the number of items involved

in dependency interactions increases, the recommendation

performance improves.

• We incorporate the standard and category scope-related DPP

kernels to formulate a novel kernel whose capability to pro-

mote recommendation diversity has been empirically and

mathematically demonstrated.

2 Related Work
Self-attention Mechanism. The rational allocation of attention

flow plays a crucial role in modeling long-range relationships for

self-attention. Efforts in existing literature have primarily focused

on four key approaches to achieve such rational allocation: (i) Some

studies compute Wasserstein distances [11] or relative distances

[16] between elements within a sequence, and utilize these distances

as attention weights; (ii) Some approaches treat the attention graph

as a flow network, allowing for the derivation of attention flow

[1, 63]; (iii) In certain methods, softmax is considered a kernel and

connected with other kernels, such as the Gaussian kernel, as a

means to calculate attention weight matrices; (iv) Hybrid attention

[42, 57] and sharing attention mechanisms [52] are employed to

more efficiently compute the attention flow. Furthermore, given

that self-attention inherently lacks explicit modeling of relative

or absolute position information, the introduction of additional

information during attention weight computation is a common

practice. This additional information includes factors such as edge

information [41], time intervals [30], and contextual signals [37, 59].

It is worth noting that the current approaches for calculating

attention weights predominantly operate in a pairwise context. To

date, there is a lack of research employing global probabilistic mod-

els to allocate attention flow in a more holistic manner.

Sequential Recommendation Models. The implementation of

SR primarily relies on sequential models to predict the relevance be-

tween the previous sequence and the target items. An early method

used for SR is the Markov Chain (MC) [8, 20], which operates under
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the assumption that a user’s next action can be predicted based on

their recent actions. SR models that employ Convolutional neural

network (CNN) treat the sequence embedding matrix as an image

and apply convolutional operators to it [44, 58]. On the other hand,

Recurrent neural network (RNN)-based methods enable the capture

of longer-term semantics and take the order of the sequence into ac-

count, leading to performance improvements [3, 40, 56]. Currently,

self-attention based models have taken a dominant role in the field

of SR. The pioneering work that introduces self-attention into se-

quential recommendation is [26]. Subsequently, numerous efforts

have been made to incorporate sequence order information [30, 33]

and context [23, 48] into the attention mechanism to enhance per-

formance. Furthermore, the integration of self-attention with other

sequential models, including contrastive learning [39, 53, 60], graph

neural networks [22, 55, 61], CNN [6, 25], and RNN [32, 51], has

been frequently adopted to utilize each other’s strengths in the

pursuit of improved SR performance.

DPP for Recommendation. DPPs are elegant probabilistic mod-

els known for efficiently capturing global negative correlations

through algorithms for tasks like sampling and marginalization.

Leveraging DPPs to diversify recommendations often involves de-

signing efficient maximum a posteriori (MAP) methods. Subsets

of items, with the potential to spark user interest, are generated

based on the quality vs. diversity decomposition of the DPP kernel

through these methods [17, 49]. Learning DPP kernel parameters

from historical interactions and using them as item representations

is also a common approach [13, 47]. Furthermore, DPPs are fre-

quently combined with other popular models, such as Generative

Adversarial Networks (GANs) [49], bilateral branch networks [34],

reinforcement learning [35], and CNN [2], among others. These

collaborations aim to enhance the quality of recommendations by

incorporating diverse perspectives and methodologies.

Currently, there has been no attempt in the literature to interpret

and apply the DPP probability distribution as attention flow.

3 Methodology
In this section, we first provide relevant preliminaries and then

introduce our probabilistic attention.

3.1 Preliminaries
The relevant preliminaries include: SR problem formulation, SR-

tailored self-attention mechanism, and the standard DPP model.

3.1.1 Problem Formulation. Let sets of users and items be denoted

by U and V , with |U| and |V| indicating their respective sizes.

In sequential recommendation, user 𝑢’s chronologically ordered

interaction sequence is denoted S𝑢 = [𝑣𝑢
1
, 𝑣𝑢

2
, . . . , 𝑣𝑢|S𝑢 | ], where 𝑣

𝑢
𝑡

specifies the item interacted with at time step 𝑡 and |S𝑢 | indicates
the sequence length. The objective of SR is to match the next item

in a sequence, formally, 𝑝 (𝑣𝑢|S𝑢 |+1 = 𝑣 |S𝑢 ), by recommending a

top-N list of items.

3.1.2 Self-attention Mechanism. Since a new attention mechanism

is proposed as our sequence encoder, we introduce traditional self-

attention before presenting ours. The self-attention mechanism

inherently presumes that while items in sequences are correlated,

they bear varied significance to items at different sequence positions.

For a user’s action sequence S𝑢
and a maximal sequence length

𝑇 , the sequence is either truncated by eliminating initial items if

|S𝑢 | > 𝑛 or padded with zeros, resulting in 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑇 ). We

define an item embedding matrix E ∈ R |V |×𝑑
, where 𝑑 indicates

the latent dimensions number. A trainable positional embedding

P ∈ R𝑇×𝑑
is appended to the sequence embedding matrix as:

MS𝑢 = [e𝑠1 + p𝑠1 , e𝑠2 + p𝑠2 , . . . , e𝑠𝑛 + p𝑠𝑛 ] . (1)

Utilizing dot-product calculations, self-attention discerns correla-

tions between sequence items as follows:

SA(Q,K,V) = softmax

(
QK⊤
√
𝑑

)
V, (2)

with Q = MS𝑢WQ,K = MS𝑢WK
, and V = MS𝑢WV

. In this Query-

Key-Value attention mechanism, Q, K, and V are derived from the

input, through learnable weight matrices. They serve to establish

attention scores by comparing the query with all keys, and then

determine the weighting and subsequent aggregation of values,

to form a contextually enriched output. Other Transformer com-

ponents, such as the point-wise feed-forward network, residual

connection, and layer normalization, are also usually leveraged in

self-attention-based SR models [11, 26].

3.1.3 Standard DPP. DPP measures set diversity by describing the

probability for all subsets of the ground set [28]. Given a discrete

set Y = {1, 2, . . . , 𝑀} (i.e., item set V in this work), a DPP P is a

probability measure on 2
Y
, the set of all subsets of Y. When P

gives nonzero probability to the empty set, there exists a kernel

L ∈ R𝑀×𝑀
such that for every subset 𝑌 ⊆ Y, the probability of 𝑌

is given by

P(𝑌 ) = det (L𝑌 )
det(L + I) , (3)

where L is a real, positive semi-definite matrix indexed by elements

of 𝑌 , and I is an𝑀 ×𝑀 identity matrix.

3.2 Probabilistic Attention
In a standard DPP (Equation 3), every subset of Y is assigned a

probability, even empty set and the entire Y. This standard DPP

is not desirable in practical scenarios that need fixed-size result

arrays [28]. Given this situation, an extension of DPP, i.e., 𝑘-DPP
[27], has been proposed, which conditions a DPP on the cardinality

𝑘 of the random set.

3.2.1 Sequence-specified 𝑘-DPP. Compared to a standard DPP,

where every 𝑘-set 𝑌 competes with all other subsets of Y, in a

𝑘-DPP it competes only with sets of the same cardinality. In this

work, 𝑘-DPP is explored to shape attention distribution, primarily

for the following reasons: (i) As depicted in Figure 1, we interpret

attention as the intensity of dependency among items. Therefore,

considering the probability of a single item or an empty set is not

meaningful and, conversely, would distract the global allocation of

probabilities; (ii) Measuring the dependency among items within

subsets of the same size and utilizing this to allocate attention is a

rational and equitable approach.

If we directly model a 𝑘-DPP model over the ground set of the

entire item set (i.e.,V ), and then learn to distribute probabilistic

attention, two issues will arise: (i) The computational burden is

pronounced due to the necessity of a DPP kernel L ∈ R |V |× |V |
;

(ii) The attention flow is incapable of reflecting the uniqueness

embedded in varied user behavior sequences. Considering that the
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Figure 2: Illustration of the proposed attention mechanism.

global context of attention involves allocating attention in align-

ment with the pattern throughout the entire sequence, we therefore

build a 𝑘-DPP for each sequence on the sequence-specified kernel,

denoted as L(𝑆 ) , which is defined over ground set Y (𝑆 )
composed

of sequence items. It means that our global probabilistic 𝑘-DPP

model selectively learns the unique attention distribution for each

sequence. Formally, the 𝑘-DPP P𝑘

L(𝑆 ) on L(𝑆 ) gives probabilities

P𝑘

L(𝑆 ) (𝑌 ) =
det

(
L(𝑆 )
𝑌

)
∑

|𝑌 ′ |=𝑘 det
(
L(𝑆 )
𝑌 ′

) , (4)

where |𝑌 | = 𝑘 . The normalization constant in the denominator

indicates the summation over all subsets of size 𝑘 , presenting a

distinct contrast to the standard DPP where the denominator (of

Equation 3) sums over all possible subsets, regardless of their size.

This normalization constant enables us to associate the subset 𝑌

and all other 𝑘-subsets within a 𝑘-DPP distribution (global context),

which is formulated as

𝑍𝑘 =
∑︁

|𝑌 ′ |=𝑘
det

(
L(𝑆 )
𝑌 ′

)
= 𝑒𝑘

(
𝜆1, 𝜆2, . . . , 𝜆 |S𝑢 |

)
. (5)

Here 𝜆1, 𝜆2, . . . , 𝜆 |S𝑢 | are the eigenvalues of L
(𝑆 )

with |S𝑢 | items.

The recursive algorithm given in [14, 28] can be used directly to cal-

culate the𝑘th elementary symmetric polynomial 𝑒𝑘 on 𝜆1, 𝜆2 . . . , 𝜆 |S𝑢 | ,
which runs in 𝑂 ( |S𝑢 |𝑘) time. Thus, we can efficiently normalize

a tailored 𝑘-DPP with a sequence ground set in 𝑂 ( |𝑠𝑢 |𝑘) time to

model global repulsion interactions.

3.2.2 Dependency Interactions. This 𝑘-DPP probability serves as a

quantitative measure of repulsion interactions (diversity) among

items in subset 𝑌 [15, 27, 28]. In a novel approach, transmuting

this repulsion measure by taking its negative can mathematically

symbolize a converse concept; that is, it suggests a degree of depen-

dency among items within a set. For instance, given two subsets,

𝐴 and 𝐵, each containing 𝑘 items, we examine their respective 𝑘-

DPP probabilities, P𝑘

L(𝑆 ) (𝐴) and P𝑘

L(𝑆 ) (𝐵). A condition P𝑘

L(𝑆 ) (𝐴) >
P𝑘

L(𝑆 ) (𝐵) suggests that subset 𝐴 demonstrates stronger repulsion

interactions among its items compared to subset 𝐵. In contrast,

considering the negation of probabilities, −P𝑘

L(𝑆 ) (𝐵) > −P𝑘

L(𝑆 ) (𝐴),

we infer that items in subset 𝐵 exhibit stronger dependency in-
teractions than those in subset 𝐴. To articulate the distinction

between repulsion and dependency, we introduce D (𝑆 )
𝐴

, signifying

the dependency degree among items in subset 𝐴 under sequence

context 𝑆 , defined as D (𝑆 )
𝐴

= −P𝑘

L(𝑆 ) (𝐴). When 𝑘 is set to 2, the rel-

ative strength of repulsion between any two items under the global

measure L(𝑆 ) can be determined, which corresponds to the proba-

bility of being sampled by the 2-DPP model. Thus, the necessity to

quantify the dependency interactions between any paired items in

a sequence becomes a matter of the sampling process. Specifically,

the transmuted probability of sampling any two items is quantified

as dependency interactions between them, as illustrated in the dual

sampling of Figure 2. In such a scenario, we obtain a dual depen-
dency defined within a global probability context. Similarly, we

can obtain triple, or even quadruple, dependency.

3.2.3 Probabilistic Attention Mechanism. Reflecting upon Equa-

tion 2 within the self-attention mechanism, the attention weight

matrix is obtained by performing a softmax transformation on the

attention weight vector of an item with respect to all other items in

the sequence. Fundamentally, this transformation is still in pairwise

context, as it allocates attentions of one item onto all others, rather

than deriving the relative relationships of all pairs of items from a

global measure. According to Equation 2, the attention weight of

traditional self-attention is calculated as:

A𝑟𝑡 = Q𝑟K⊤
𝑡 /

√
𝑑, (6)

where A𝑟𝑡 is typically interpreted as the influence (weight) of posi-

tion 𝑟 on position 𝑡 in the sequence [46] or the relationship (similar-

ity) between positions 𝑟 and 𝑡 [41]. However, this pairwise context

approach is not optimized for sequential recommendation tasks.

In the previous discussion, we drew upon the motivations and al-

gorithms of DPP to define the dependency interactions. Here, we

formulate the dependency attention weight based on the degree

of dual dependency interactions using a simple log-linear model,

D𝑟𝑡 = exp

(
−𝜆P2

L(𝑆 ) ({𝑣𝑟 , 𝑣𝑡 })
)
, (7)

where 𝜆 governs the range of the dependency degree. P2

L(𝑆 ) denotes

a 𝑘-DPP distribution (𝑘 = 2) with kernel L(𝑆 ) over 2-sized subsets

of a sequence. P2

L(𝑆 ) ({𝑣𝑟 , 𝑣𝑡 }) signifies the probability of items 𝑣𝑟

and 𝑣𝑡 (𝑟 ≠ 𝑡 ) being selected from Y (𝑆 )
as a 2-DPP under global

measure (global context). This dependency attention approach we

proposed differs notably from the self-attention weight, which em-

bodies the mutual dependency between any two items. This is

driven by the desire to model dependency interactions from train-

ing sequences, hence capturing dependency relationships between

previous actions and the next item, which is paramount to the

realization of sequential recommendation [4, 7, 56].

While we have defined this dependency attention measurement,

an important remaining question is how to devise our DPP kernel

L(𝑆 ) ∈ R𝑇×𝑇
, where 𝑇 is the maximum sequence length. To bridge

the input from the input layer with the learnable kernel parameters,

we employ a low-rank factorization of the 𝑇 ×𝑇 L(𝑆 ) matrix:

L(𝑆 ) = SS⊤ . (8)

Here, S ∈ R𝑇×𝑑
is transformed by S = MS𝑢WS

.WS
is a trainable

projection matrix, serving essentially as the learnable parameters
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in kernel L(𝑆 ) . Because our attention intuitively measures the de-

pendency interactions between items, we seek to preserve these

relationships as much as possible. Consequently, we discard the

transformed Value matrix from the self-attention mechanism, di-

rectly applying the attention to the item’s input representation

MS𝑢 . In this setting, only a transformed representation matrix S is
required to capture contextual information in a sequence. In view

of the DPP sampling operations, we denote S as Sampler. Thus,
our probabilistic attention based on the dependency measurement

is formulated as

Z = PAtt(S) = DMS𝑢 . (9)

D denotes the attention weight matrix of our proposed PAtt for

sequence S𝑢
, derived by (i) computing the exponential values of

the dependency interaction degree across entire 2-sized subsets,

and (ii) allocating all these values to corresponding matrix entries,

based on the positions of paired items in S𝑢
. Z is the output of our

attention. It is worth noting that within the DPP subset, there is

inherently no ordering, implying that the dependency interactions

are mutual. That is, corresponding dependency attention weight

matrix exhibits a symmetrical relationship as illustrated in Figure 2.

However, due to the causality nature of sequences and to avoid con-

sidering future information [26, 46] in prediction, we only consider

the lower triangular part of D matrix in practice. For the depen-

dency of an item with itself, we consider it absolute and hence

set the diagonal elements of the attention weight matrix to 1. We

can find that PAtt breaks away from the intricate Query-Key-Value

mechanism of self-attention, necessitating only a Sampler.

3.2.4 Diversity-aware Attention. In recommendation systems, the

diversity metric is utilized to assess the scope of categories or topics

within a recommended sequence; a broader scope indicates more

diverse recommendations [49, 64]. However, PAtt introduced above

and existing self-attention based models [11, 26, 53] do not account

for diversity, which might affect the exhibition of diversified re-

sults under the guidance of relevance sequences. Therefore, in this

section, we endeavor to directly integrate the concept of diver-

sity into the attention mechanism, developing a diversity-aware

probabilistic attention model, termed DPAtt.

To achieve this, a new DPP kernel form, denoted as T(𝑆 )
, inte-

grates the standard DPP kernel L(𝑆 ) and a category scope-related

kernel C. As previously discussed, L(𝑆 ) is given over the sequence-

specified ground set because we aim to model the dependency inter-

actions of user sequences, thus inheriting relevance. The concept of

category scope-related diversity does not bear relevance or person-

alization; therefore, it is necessary to derive C ∈ R |V |× |V |
over the

entire ground set V . To reduce the computational complexity of

calculating a |V| × |V| matrix, the C kernel is represented using a

low-rank factorization C = V⊤V following [13]. We use diversified

item sets (subsets that have a broad coverage) from users’ historical

interactions as ground truth sets for learning C [36, 49]. In this way,

C is associated with the item category scope, as a subset with more

categories has a higher possibility of being selected under a DPP

compared to the less diverse ones. Formally, C is learned following

the objective function,

J =
∑︁

(𝐴+,𝐴− ) ∈A
log det (C𝐴+ ) − log det (C𝐴− ) . (10)

Here, 𝐴(+)
is an observed diverse set and 𝐴(−)

represents the set

that contains negative items, and A denotes the set of paired sets

used for training. C is not related to sequence, as it is only the

category scope-related kernel.

T(𝑆 )
is then given making use of the following relationship:

T(𝑆 ) = L(𝑆 )C−1
S𝑢

. (11)

C−1
S𝑢

denotes the reverse of matrix CS𝑢
that is a sub-matrix of C

indexed by items in sequence S𝑢 . Given a DPP distribution formu-

lated with kernel T(𝑆 )
, a crucial property is introduced: an increase

in category scope reduces the probabilities of related subsets, and

subsequently enhances attention weights derived from the negation

of these probabilities Equation 7. This implies that the composite

kernel T(𝑆 )
, by influencing the DPP probability distribution, can

strike a balance between dependency interactions and diversity,

ensuring subsets with strong dependency relationships and ample

diversity receive notable attention weights. The proof of this pro-

posed proposition is provided in Appendix A.1, and its validation

is discussed in Section 4.2.

3.2.5 Triple Dependency. Given that we define the attentionweight
as the dependency interactions within a subset, an intuitive concept

emerges: the dependency interactions, when formulated to involve

more items, should enable our attention mechanism to harness bet-

ter modeling capability, thereby enhancing SR performance. This

is because, in the field of SR, a model enhances its performance

precisely by augmenting its capacity to capture and model complex

dependency relationships among items. [10, 36]. This perspective

also reveals a limitation of self-attention, in that the calculation of

attention weight only involves two items, neglecting the considera-

tion of combinations involving three or more items. The previously

introduced PAtt only considers dependency between two items,

which may not be sufficient. In this section, we analyze from a prob-

abilistic perspective and design a method that introduces richer

dependencies into the attention distribution.

Initially, we consider the situation of triple items. By setting𝑘 = 3,

we can easily obtain the DPP probabilities of subsets with three

items, denoted as P3

L(𝑆 ) . Subsequently, the core challenge lies in

how to apply these probabilities to the computation of dependency

attention weight matrix. By perceiving the marginal probability

of dual items as a marginalization over a joint probability, we can

derive a richer dependency mapping, formally,

P2

L(𝑆 ) ({𝑣𝑟 , 𝑣𝑡 }) =
∑︁
𝑥

P3

L(𝑆 ) ({𝑣𝑟 , 𝑣𝑡 , 𝑣𝑥 }) . (12)

Here, ({𝑣𝑟 , 𝑣𝑡 , 𝑣𝑥 }) represents any 3-subset in a sequence, which

includes 𝑣𝑟 and 𝑣𝑡 . As demonstrated in Figure 2, since this approach

formulates DPP of 3-sized item subsets and ultimatelymodels triple
dependency interactions, we refer to it as triple PAtt, abbreviated

as PAtt
3
. For consistency in representation, the previously discussed

dual PAtt is denoted as PAtt
2
. We can also derive the diversity-aware

attention corresponding to triple PAtt, represented as DPAtt
3
. With

this explicit formulation of triple dependency, we can introduce

more dependency learning to capture more complex behavior pat-

terns. Moreover, referring to this method, we can also introduce

dependency interactions among even more items, illustrating the

extensibility of our attention method.
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It is noteworthy that, analogous to the self-attention mechanism,

our probabilistic attention can also be configured with multiple

heads and attention blocks.

3.3 PAtt Calculation
3.3.1 Matrix Form Calculation. We can directly enumerate all com-

binations of 𝑇 items of a sequence taken 𝑘 at a time, resulting in

a total of 𝐶 (𝑇, 𝑘) combinations. These combinations, which store

positions of items within a sequence and thus remain invariant

throughout all training sequences, signify complete subsets with

cardinality 𝑘 . Every combination comprising 𝑘 sequence positions

forms a 𝑘-subset. Given a batch of training sequence inputs, we

can acquire a batch of DPP kernels with shape (batch_size,𝑇 ,𝑇 )
referring to Equation 8. The subsequent step involves slicing cor-

responding sub-matrices from each kernel according to 𝑘 posi-

tions in the combinations, i.e., obtaining each L(𝑆 )
𝑌

associated with

all subsets within every sequence ground set Y (𝑆 )
, with shape

(batch_size,𝐶 (𝑇, 𝑘), 𝑘, 𝑘). Calculating the determinant of each sub-

matrix in the batch-sized square matrices yields the correspond-

ing det(L𝑌 ) values for all subsets, with the resultant shape being

(batch_size,𝐶 (𝑇, 𝑘)). As we have selected all 𝑘-subsets from each

sequence ground set, directly summing the det(·) results for the
𝐶 (𝑇, 𝑘) subsets provides the normalization constant. Consequently,

it is not required to employ recursive algorithms from Equation 5 to

ascertain the normalization constant. Upon obtaining the normal-

ized DPP probabilities, we can arrange the batch-sized𝐶 (𝑇, 𝑘) prob-
abilities into a batch of identity matrices whose diagonal entries are

1 and the other entries are 0. Firstly, we secure the lower triangular

matrix indices of the identity matrix, and subsequently populate the

relevant entries with corresponding probabilities. Specifically, the

positions of paired items (within each subset) in a sequence directly

correspond to the entry indices in the identity matrix. Through the

aforementioned methodology, we can accomplish the derivation of

the probabilistic attention matrix D at the batch level.

3.3.2 Complexity Analysis. Our PAtt, analogous to existing self-

attention based SR models like SASRec [26] and STOSA [11], also

employs transformer structures, including the embedding layer,

point-wise feed-forward network, residual connection, and layer

normalization. This means that PAtt overall requires fewer param-

eters (reducing the parameter count by 2 × 𝑑2) compared to other

related models, due to our exclusive need for a single transformed

Sampler instead of using all Query, Key, and Value. In regards to

time complexity, while the dominant term in SASRec and STOSA

resides in the softmax computation, i.e., 𝑂 (𝑇 2𝑑), our method is

predominantly influenced by the complexity associated with the

calculation of DPP probabilities for subsets. The complexity for a 𝑘-

sized subset equates to𝑂 (𝑘3). Considering that we typically require
a minor 𝑘 value, such as 2 or 3, the computational complexity is not

high. However, variations in sequence length can have a significant

impact. If the maximum length,𝑇 , is set relatively large, the number

of 𝑘-subsets could potentially prevail the dominant position in com-

plexity calculation. Considering the state-of-the-art SR work and

accounting for the sparsity of SR, the maximum length is usually

set to 20, 30, or 50 [30, 31, 53]. Thus, globally, our method exhibits

complexity comparable to traditional self-attention mechanisms.

Furthermore, when 𝑘 = 3 and presuming 𝑇 = 30, we identify

𝐶 (30, 3) (4060) 3-subsets. Each attention weight D𝑟𝑡 is defined by

Table 1: Statistics of the datasets.
Dataset #Users #Items #Interactions #Categories Density

Beauty 8,159 5,862 0.1M 213 0.02%

CDs 17,052 35,118 0.5M 340 0.08%

Anime 73,516 12,294 1.0M 43 0.1%

ML-1M 6,040 3,416 1.0M 18 4.8%

the summation of joint probabilities across 28 3-sized subsets that

contain items 𝑣𝑟 and 𝑣𝑡 , thus presenting a steep complexity of

𝐶 (30, 3) × 3
3
, surpassing 30

2 × 32 (with 𝑑 = 32). To mitigate this

issue in practical computation, we do not compute all the 3-subsets

corresponding to an attention weight D𝑟𝑡 . Rather, we randomly

select 4 of the 28 combinations, meaning that the marginalization

of an attention weight transpires over the joint probabilities of 4

arbitrary subsets containing 𝑣𝑟 and 𝑣𝑡 . This culminates in a compu-

tational complexity of: 𝐶 (30, 2) × 4 × 3
3
, implies that, among the

total 𝐶 (30, 2) 2-subsets, each one is composed of the probabilities

of four 3-subsets. This approach yields a time complexity compara-

ble to the dominant term of the traditional self-attention-based SR

model SASRec.

4 Experiments
In this section, comprehensive experimental comparisons and anal-

yses are conducted to address the four research questions (RQ1-4)
posed in Section 1. The code and datasets relevant to this study are

available at https://github.com/l-lyl/PAtt.

4.1 Experimental Settings
4.1.1 Datasets. We select four widely-utilized real-world datasets

to evaluate the proposed probabilistic attention, which is offered

in two forms: one relevance-focused version (PAtt
2
and PAtt

3
) and

the other being diversity-aware (DPAtt
2
and DPAtt

3
). Each dataset

presents notably different category numbers and matrix densities

concerning implicit interactions. The Amazon-review1
dataset

[21], encompasses a vast corpus of product ratings, from which we

specifically selectBeauty andCDs products. BothAnime2 andML-
1M3

[19] datasets offer ratings on anime and movies, containing

43 and 18 categories, respectively. In alignment with conventional

practices as seen in [26, 53, 67], all numeric ratings are transmuted

into implicit feedback marked as 1. To refine the data, we exclude

users and items that have fewer than 10 interactions. Statistics for

all datasets are provided in Table 1.

4.1.2 EvaluationMetrics. We employ thewidely-utilized leave-one-

out evaluation strategy [26, 53]. For every user, the last item with

which they interacted is held out for testing, and the penultimate

item is utilized for validation, with the remainder used for train-

ing. Our evaluation of PAtt and baselines hinges on three strands

of metrics: (i) two accuracy-oriented metrics, namely, Normalized

Discounted Cumulative Gain, i.e., NDCG (ND) and Recall (Re), (ii)
two prevalent and intuitive diversity metrics, Category Coverage

(CC) [38, 49] and intra-list distance (ILD) [38, 64], and (iii) a har-
monic F-score metric (F1) which harmonizes quality (accuracy)

and diversity [9, 34]. We select 𝑁 ∈ {5, 20} for evaluation, allowing
us to assess the model’s robustness through both small and large

retrieval sizes, covering varied retrieval contexts.

1
http://jmcauley.ucsd.edu/data/amazon/

2
https://www.kaggle.com/CooperUnion/anime-recommendations-database

3
https://grouplens.org/datasets/movielens/1m/
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4.1.3 Baselines. Nine prevalent state-of-the-art baselines in the SR

field are selected for comparison with four PAtt based models. They

fall into four groups: (i) CNN based model, Caser [2]; (ii) GNN
based model, GC-SAN [55]; (iii) models that utilize contrastive

learning (CL), CL4SRec [53] and DuoRec [39]; (iv) self-attention
based SR models, SASRec [26], BERT4Rec (BERT) [43], STOSA
[11], MOJITO (MOJ) [45], and STRec [29]; Further information on

baselines and implementation details is given in Appendix A.2.

4.2 Comparisons
The overall performance comparison between four PAtt based mod-

els and nine baselines w.r.t. three types of metrics on four datasets

is presented in Table 2, in which the best performance among all

methods is highlighted in bold, while the highest-performing base-

line is distinguished with an underline. Additionally, the percentage

(denoted by %) in parentheses () represents the improvement of

our specific model over the top-performing baseline. Based on the

comparison, we can make the following main observations:

• The recently proposed methods based on self-attention (STRec

and MOJ), as well as DuoRec based on CL, dominate the accuracy-

related metrics among all baselines. Four methods based on PAtt

we proposed show significant advantages compared to these

three competitive baselines, with improvements exceeding 5% in

most cases. This demonstrates the uniqueness and effectiveness

of our probabilistic attention.

• The PAtt
3
method, which introduces triple dependency inter-

actions into attention, performs better than PAtt
2
, which di-

rectly considers the paired items’ dependency degree as attention

weight. This result can answer two research questions (RQ1 and

RQ2), because: (i) We define attention as dependency interac-

tions, making the attention weight not limited to calculations

involving only two items, but can introduce more items into the

dependency attention measurement. Combined with correspond-

ing results, it can be concluded that the more comprehensive

the dependency interactions considered during the learning of

attention distribution, the stronger the predictive capacity of the

model (RQ1); (ii) Both PAtt3 and PAtt2 utilize the Sampler setting

and yield favorable outcomes, signifying that our probabilistic at-

tention can deviate from the Query-Key-Value mechanism (RQ2).
In addition, the improvement brought about by triple dependency

also demonstrates the rationality of our definition of attention

as dependency interactions, as in extensive SR studies [10, 36],

capturing more dependencies means better performance.

• Compared to SASRec and STRec baselines, which apply the tra-

ditional self-attention mechanism, our basic PAtt
3
and PAtt

2

approaches have shown obvious advantages in terms of both

diversity and accuracy. This can answer RQ3 and RQ2 to some

extent. The deficiency of SASRec and STRec in diversity metrics

suggests that employing a similarity metric within a relevance-

guided pairwise context prompts the learned attention distri-

bution to allocate higher attention to analogous future items.

Consequently, this amplifies the prevalence of similar items in

predictions, thereby diminishing diversity (RQ3). Although the

diversity concept is not considered in PAtt
3
and PAtt

2
, they ex-

hibit notable performance in diversity metrics. This can be at-

tributed to our probabilistic attention, which is formulated by

articulating mutual dependency and coordinating the probability

distribution across all sequence subsets. This approach facilitates

a more thoughtful allocation of mutual attention at the global

context level. In addition, this intuitive comparison also validates

the effectiveness of our unique Sampler setting (RQ2).
• After incorporating the diversity-aware kernel, DPAtt

2
andDPAtt

3

display a substantial improvement in diversity metrics while also

delivering strong performance in relevance. This outcome pro-

vides a comprehensive answer to RQ3, demonstrating that our

proposed model is capable of embedding the concept of cate-

gory scope-related diversity into the attention distribution, thus

effectively augmenting diversity. This also demonstrates the effi-

cacy of our proposed method of constructing a new type of DPP

kernel, T(𝑆 )
, by integrating standard and category scope-related

kernels, further validating the proof of the crucial property of

the integrated kernel.

• When comparing the improvements achieved by PAtt methods

across various datasets, the improvements are notably more pro-

nounced on datasets with higher sparsity (e.g., Beauty and CDs).

This indicates that PAtt, through the incorporation of dependency

interactions in global context, is capable of thoroughly model-

ing previous information in the presence of data sparsity. By

extracting dependency interactions that fundamentally impact

SR, PAtt demonstrates its adaptability to situations characterized

by sparse data (RQ4).
As we focus on proposing a new attentive mechanism for SR

from a probabilistic perspective, instead of balancing the diversity

and accuracy of recommendations employing the quality vs. diver-
sity decomposition of DPP kernel. We therefore omit the DPP-based

diversity-promoting recommendation models in Table 2. To further

demonstrate our proposed model’s performance in balancing di-

versity and quality, three DPP-based SR models are employed for

comparison. Due to space constraints, the details of the implemen-

tations and results comparison are provided in Appendix Table 3,

where the advantages of our newly proposed kernel T(𝑆 )
, which,

at the model level, comprehensively considers diversity and quality

(proved in Appendix A.1), are further examined.

4.3 Property Analysis
In this section, we delve further into research questions intimately

related to the characteristics of our probabilistic attention, particu-

larly w.r.t. attention setting (RQ2) and sparse data problem (RQ4).
Figure 3 is utilized to further respond to RQ2. Three basic vari-

ants of PAtt (dual dependency) are designed in reference to the

traditional Query-Key-Value attention mechanism, where the sym-

bols “+K”, “+V” and “+VK”, respectively denote the addition of

transformed key, value and both. Within these variants, we regard

Sampler as Query. The newly introduced Key is intended to enrich

the learning of the DPP kernel by considering the Key as a new low-

rank representation of the DPP kernel. Subsequently, the Key-based

and Sampler-based kernels are averaged. “+Value” implies that the

probabilistic attention is not directly applied to the sequential items’

input but to their transformed representations. Comparative results

of recall and NDCG w.r.t. different Top-N on two datasets reveal

that our succinct Sampler setting, well aligned with the DPP sam-

pling process, is the most prominent. This provides a more intuitive

answer to RQ2: utilizing Sampler to the implementation of PAtt

instead of pursuing a complex Query-Key-Value mechanism. From
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Table 2: Overall performance comparison.

Dataset Metric Caser SASRec BERT STOSA GC-SAN CL4SRec DuoRec MOJ STRec PAtt2 (%) DPAtt2 (%) PAtt3 (%) DPAtt3 (%)

Beauty

Re@5 0.1096 0.1293 0.1148 0.1302 0.1204 0.1312 0.1329 0.1296 0.1334 0.1415 (6.1) 0.1427 (7.0) 0.1463 (9.7) 0.1459 (9.4)

Re@20 0.2631 0.2789 0.2646 0.2817 0.2711 0.2834 0.2849 0.2835 0.2800 0.2965 (4.1) 0.2968 (4.2) 0.2978 (4.5) 0.2973 (4.4)

ND@5 0.0776 0.0803 0.0762 0.0839 0.0795 0.0830 0.0843 0.0813 0.0857 0.0960 (12.0) 0.0954 (11.3) 0.0967 (12.8) 0.0962 (12.3)

ND@20 0.1158 0.1228 0.1179 0.1219 0.1215 0.1261 0.1305 0.1280 0.1268 0.1386 (6.2) 0.1380 (5.7) 0.1392 (6.7) 0.1395 (6.9)

CC@5 0.0530 0.0510 0.0523 0.0512 0.0504 0.0517 0.0530 0.0522 0.0512 0.0538 (1.5) 0.0550 (3.8) 0.0535 (0.9) 0.0554 (4.5)

CC@20 0.1176 0.1170 0.1183 0.1095 0.1054 0.1157 0.1150 0.1104 0.1148 0.1180 (-0.3) 0.1209 (2.2) 0.1196 (1.1) 0.1213 (2.5)

ILD@5 0.7359 0.7363 0.7288 0.7400 0.7178 0.7402 0.7371 0.7295 0.7219 0.7464 (0.8) 0.7502 (1.4) 0.7429 (0.4) 0.7507 (1.4)

ILD@20 0.7729 0.7681 0.7594 0.7754 0.7469 0.7715 0.7576 0.7680 0.7726 0.7862 (1.7) 0.7910 (2.3) 0.7802 (0.9) 0.7906 (2.3)

F1@5 0.1513 0.1655 0.1535 0.1684 0.1586 0.1686 0.1704 0.1661 0.1707 0.1831 (7.3) 0.1838 (7.6) 0.1862 (9.1) 0.1862 (9.1)

F1@20 0.2658 0.2763 0.2664 0.2772 0.2688 0.2802 0.2814 0.2802 0.2789 0.2937 (4.4) 0.2944 (4.6) 0.2941 (4.5) 0.2953 (4.9)

CDs

Re@5 0.0313 0.0371 0.0365 0.0385 0.0349 0.0376 0.0408 0.0387 0.0392 0.0429 (5.1) 0.0424 (3.9) 0.0436 (6.9) 0.0430 (5.4)

Re@20 0.0734 0.0742 0.0740 0.0759 0.0745 0.0751 0.0762 0.0758 0.0753 0.0802 (5.2) 0.0794 (4.2) 0.0820 (7.6) 0.0806 (5.8)

ND@5 0.0206 0.0237 0.0253 0.0241 0.0230 0.0237 0.0262 0.0256 0.0267 0.0294 (10.1) 0.0289 (8.2) 0.0298 (11.6) 0.0301 (12.7)

ND@20 0.0328 0.0339 0.0345 0.0362 0.0337 0.0346 0.0354 0.0358 0.0363 0.0385 (6.1) 0.0382 (5.2) 0.0391 (7.7) 0.0388 (6.9)

CC@5 0.0569 0.0544 0.0548 0.0533 0.0556 0.0559 0.0547 0.0550 0.0560 0.0571 (0.4) 0.0580 (1.9) 0.0564 (-0.8) 0.0587 (3.2)

CC@20 0.1134 0.1146 0.1157 0.1150 0.1162 0.1195 0.1143 0.1207 0.1126 0.1216 (0.7) 0.1233 (2.2) 0.1206 (-0.1) 0.1249 (3.5)

ILD@5 0.7637 0.7469 0.7601 0.7648 0.7625 0.7651 0.7436 0.7460 0.7238 0.7672 (0.3) 0.7679 (0.4) 0.7668 (0.2) 0.7681 (0.4)

ILD@20 0.7925 0.7906 0.7917 0.7860 0.7954 0.8052 0.7846 0.7922 0.8014 0.8040 (-0.1) 0.8125 (0.9) 0.8079 (0.3) 0.8134 (1.0)

F1@5 0.0488 0.0565 0.0574 0.0582 0.0541 0.0570 0.0618 0.0595 0.0608 0.0665 (7.5) 0.0656 (6.2) 0.0674 (9.0) 0.0672 (8.7)

F1@20 0.0951 0.0966 0.0969 0.0997 0.0967 0.0981 0.0993 0.0994 0.0995 0.1052 (5.5) 0.1045 (4.8) 0.1071 (7.5) 0.1059 (6.2)

Anime

Re@5 0.2672 0.2902 0.2847 0.2860 0.2898 0.2909 0.2920 0.2914 0.2873 0.3096 (6.0) 0.3106 (6.4) 0.3203 (9.7) 0.3170 (8.6)

Re@20 0.5899 0.6010 0.5873 0.5914 0.5910 0.5927 0.6002 0.6076 0.5912 0.6245 (2.8) 0.6250 (2.9) 0.6318 (4.0) 0.6306 (3.8)

ND@5 0.1758 0.2035 0.1895 0.2040 0.2006 0.2023 0.2051 0.2049 0.2060 0.2134 (3.6) 0.2146 (4.2) 0.2190 (6.3) 0.2172 (5.4)

ND@20 0.2804 0.2914 0.2817 0.2901 0.2905 0.2921 0.2956 0.2970 0.2916 0.3091 (4.1) 0.3076 (3.6) 0.3122 (5.1) 0.3098 (4.3)

CC@5 0.3156 0.3137 0.3143 0.3102 0.3127 0.3200 0.3110 0.3115 0.3116 0.3180 (-0.6) 0.3249 (1.5) 0.3241 (1.3) 0.3245 (1.4)

CC@20 0.5604 0.5564 0.5613 0.5539 0.5603 0.5615 0.5577 0.5585 0.5437 0.5620 (0.1) 0.5688 (1.3) 0.5694 (1.4) 0.5690 (1.3)

ILD@5 0.7840 0.7735 0.7692 0.7638 0.7781 0.7834 0.7806 0.7702 0.7629 0.7891 (0.7) 0.7944 (1.3) 0.7852 (0.2) 0.7935 (1.2)

ILD@20 0.8079 0.8076 0.8159 0.8142 0.7869 0.8120 0.8028 0.8071 0.8004 0.8124 (-0.4) 0.8246 (1.1) 0.8147 (-0.1) 0.8265 (1.3)

F1@5 0.3158 0.3395 0.3298 0.3365 0.3383 0.3408 0.3416 0.3402 0.3381 0.3552 (4.0) 0.3575 (4.7) 0.3629 (6.2) 0.3615 (5.8)

F1@20 0.5320 0.5395 0.5328 0.5361 0.5328 0.5381 0.5401 0.5441 0.5328 0.5560 (2.2) 0.5587 (2.7) 0.5612 (3.1) 0.5618 (3.2)

ML-1M

Re@5 0.0759 0.0791 0.0726 0.0780 0.0775 0.0795 0.0812 0.0804 0.0797 0.0850 (4.7) 0.0864 (6.4) 0.0867 (6.8) 0.0860 (5.9)

Re@20 0.1870 0.2015 0.1864 0.2018 0.1923 0.2010 0.2053 0.2010 0.2029 0.2181 (6.2) 0.2155 (5.0) 0.2186 (6.5) 0.2180 (6.2)

ND@5 0.0490 0.0505 0.0480 0.0493 0.0491 0.0502 0.0518 0.0509 0.0523 0.0542 (3.6) 0.0551 (5.4) 0.0559 (6.9) 0.0560 (7.1)

ND@20 0.0826 0.0849 0.0796 0.0836 0.0845 0.0860 0.0859 0.0877 0.0864 0.0896 (2.2) 0.0891 (1.6) 0.0902 (2.9) 0.0904 (3.1)

CC@5 0.3057 0.3042 0.2967 0.3013 0.3014 0.3032 0.2974 0.3011 0.2980 0.3082 (0.8) 0.3095 (1.2) 0.3046 (-0.4) 0.3089 (1.0)

CC@20 0.5613 0.5542 0.5651 0.5612 0.5594 0.5617 0.5558 0.5590 0.5610 0.5693 (0.7) 0.5699 (0.8) 0.5647 (-0.1) 0.5690 (0.7)

ILD@5 0.7987 0.7830 0.7926 0.7782 0.7911 0.7860 0.7816 0.7914 0.7895 0.8030 (0.5) 0.8043 (0.7) 0.7976 (-0.1) 0.8034 (0.6)

ILD@20 0.8250 0.8175 0.8218 0.8158 0.8116 0.8233 0.8241 0.8232 0.8200 0.8276 (0.3) 0.8291 (0.5) 0.8285 (0.4) 0.8294 (0.5)

F1@5 0.1122 0.1158 0.1086 0.1139 0.1135 0.1159 0.1184 0.1172 0.1177 0.1237 (4.5) 0.1255 (6.0) 0.1263 (6.6) 0.1259 (6.4)

F1@20 0.2257 0.2369 0.2232 0.2364 0.2303 0.2377 0.2405 0.2388 0.2392 0.2522 (4.9) 0.2501 (4.0) 0.2528 (5.1) 0.2527 (5.1)
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Figure 3: NDCG and Recall performance comparison among different PAtt mechanisms w.r.t. Top-N.

Figure 3, we can observe that: (i) the “+K” variant performs the

poorest (but still better than SASRec), possibly because introducing

superfluous Key could interfere with the learning of the DPP kernel,

thereby weakening its ability to distribute probabilities for subsets

in the global context; (ii) The “+VK” variant, despite introducing

more weight parameters, does not perform well, indicating that

PAtt does not require redundant parameters to excessively match

the predictive task of SR.

In Figure 4, we investigate the influence of the maximum length

𝑇 on the recommendation accuracy (NDCG@20) of attention-based
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Figure 4: NDCG@20 performance w.r.t. sequence length.
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Figure 5: Attention Weights Visualizations on ML-1M.

methods. When the value of 𝑇 is set to be small, items in the pre-

vious positions of the long sequence are truncated, which reduces

the number of feedbacks in datasets, resulting in further sparse

datasets. Analyzing the performance variations across different

methods in response to various 𝑇 values provides a comprehensive

answer to RQ4. We select two representative self-attention-based

models, the seminal work SASRec and the recent STRec, for com-

parison with PAtt
2
and PAtt

3
. Our findings are as follows: (i) All

methods experience a certain enhancement with the increase of

𝑇 , indicating the impact of sparsity (when 𝑇 is small) on SR. Our

methods demonstrate a very significant advantage compared to the

two baselines, especially at 𝑇 = 5 and 𝑇 = 10. This suggests that

our probabilistic attention is more skilled at handling data sparsity

issues compared to other self-attention models; (ii) At 𝑇 = 30, our

methods outperform other baselines, even those at 𝑇 = 50. When

set to 𝑇 = 20, they achieve results comparable to other baselines at

𝑇 = 30. This suggests that our methods pave the way for achieving

commendable recommendation results, even with limited previous

information, which highlights a significant advantage of PAtt.

In addition, we conduct a comparative analysis of the attention

weights heatmap learned by SASRec, PAtt
2
, and PAtt

3
, for the same

user of ML-1M in Figure 5. We observe that, in contrast to the rela-

tively scattered attention demonstrated by SASRec, both PAtt
2
and

PAtt
3
are more capable of capturing attention with a discernible

pattern. This indicates that leveraging probabilistic attention within

a global context enables the capture of complex dependency inter-

actions within the sequence, consequently enhancing performance.

Moreover, PAtt
3
that introduces triple dependency demonstrates a

capability to capture a broader range of behavior patterns compared

to PAtt
2
(only considers dual dependency), as evidenced by similar

attention weights encompassing more items. This underscores a

further validation of our proposed definition of dependency in-

teractions, and also elucidates why PAtt
3
outperforms PAtt

2
, as it

embraces a wider and richer set of dependencies.

The training efficiency of different models when handling vari-

ous maximum lengths𝑇 on two datasets (Anime andML-1M) is also

compared. We discover that when data is sparse (𝑇 = 5), the PAtt-

based models (PAtt
2
and PAtt

3
) require a similar amount of time per

epoch for training as SASRec. Although training efficiency tends to

decrease as𝑇 increases, due to the increase in the number of subsets

related to probabilistic attention, it is important to acknowledge

that, in real-world recommendation applications, the number of

available previous sequences for users is inherently limited (𝑇 = 5

is usually set to 30 or 50 in existing studies [10, 29, 31, 53]). Conse-

quently, this does not impede the utilization of PAtt. Even when

the number of items in the sequence is substantial, the training

time used by our PAtt
2
and PAtt

3
methods is on the same order of

magnitude as traditional self-attention models, while the relative

improvement in performance is indeed significant. Moreover, our

model, at 𝑇 = 30, consumes close time to SASRec at 𝑇 = 50, while

significantly outperforming it in terms of accuracy. This balance

between efficiency and effectiveness highlights the robustness and

practicality of PAtt models, making them a preferable choice for

handling complex user behavioral sequences in dynamic recom-

mendation environments.

5 Conclusion
In this work, we delve into the intrinsic nature of sequential rec-

ommendation tasks, proposing a conceptualization of the potent

Transformer’s self-attention as mutual dependencies among items

within a sequence. To formulate these dependency interactions, we

transmute the well-formulated repulsion interactions from Deter-

minantal Point Processes (DPP) and, adopting a novel perspective,

envision the distribution of attention as probability allocations

within global DPP probabilistic models, thereby deriving an inno-

vative probabilistic attention model, PAtt. Remarkably, our model

steers clear of the traditional Query-Key-Value setup, achieving

commendable results with a mere Sampler. Furthermore, the con-

cept of dependency interactions, as defined at first, incorporates

associations among a greater number of items into the formulation

of attention weight, enhancing the model’s capacity to represent

sequences. We also design a novel DPP kernel, capable of integrat-

ing DPP kernels with varied inclinations and balancing different

tendencies (similarity and diversity), which is a departure from the

traditional quality vs. diversity decomposition of DPP kernel [28].

The introduction of this kernel affirms the extensibility of PAtt. By

providing precise definitions and formulations for new attention

models and architectures, PAtt stands to expand researchers’ under-

standing and development of the Transformer. The insights gained

from this work could serve as a foundation for developing more so-

phisticated models that further intertwine the notions of attention

and probabilistic modeling, paving the way for breakthroughs in

creating models that can understand and predict sequences with

higher accuracy and diversity. Expanding PAtt to cover additional

sequence analysis tasks is a key future research direction.
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A Appendix
A.1 Diversity-aware Attention
Consider two independent positive semi-definite kernel matrices, L
and C, an integrated kernel T, and a subset 𝑌 . For clarity, L, C, and
T respectively represent L(𝑆 ) , CS𝑢

, and T(𝑆 )
. We examine:

P(𝑌 ) = det(T𝑌 )
det(T + I)

=
det (L𝑌 )
det (C𝑌 )

/det
(
C−1 (L + C)

)
=

det (L𝑌 )
det (C𝑌 )

/det(L + C)
det(C) .

(13)

The objective is to analyze the manner in which P(𝑌 ) evolves as
det(C𝑌 ) augments, with L and C held as independent kernels.

Theorem A.1. Given independent kernels L and C, P(𝑌 ) dimin-
ishes as the category scope of 𝑌 expands.

Proof. Consider the expression for P(𝑌 ):

P(𝑌 ) = det(L𝑌 )
det(C𝑌 )

× det(C)
det(L + C) (14)

Firstly, observe that det(L𝑌 ) remains invariant for changes in

det(C𝑌 ) due to the presumed independence of matrices L and C.
Thus, an increment in det(C𝑌 ), while keeping det(L𝑌 ) constant,
will precipitate a reduction in the fraction

det(L𝑌 )
det(C𝑌 ) .

Secondly, the fraction
det(C)

det(L+C) remains unaffected by alterations

in det(C𝑌 ), thus holding constant with respect to changes in 𝑌 .

Given these observations, it is evident that while the second

component of the expression retains its magnitude, the increase

in det(C𝑌 ) conduces a decrease in P(𝑌 ), as the first component

diminishes while the latter remains constant. In alignment with

the objective function described in Equation 10, when a subset 𝑌

is diverse, indicating a broad category scope, the corresponding

det(C𝑌 ) is consequently learned to be a larger value. Hence, it is

derived that an increase in category scope of the subset 𝑌 reduces

the probability of P(𝑌 ). Consequently, the corresponding attention
is augmented, as it takes the negation of the probability. □

A.2 Baselines and Implementations
We carry out the implementation of PAtt using PyTorch on a

NVIDIA Quadro P2000 GPU. A thorough grid search is undertaken

to examine all hyper-parameters across the compared methods,

with test performance reported based on peak validation results.

For all methods in consideration, the embedding dimension is ex-

plored within the set {32, 64, 128}. The maximum sequence length

of our models is examined from 5 to 50 for various analyses and

is set to 30 for all experiments, while the learning rate is adjusted

within

{
10

−3, 10−4
}
. In addition, we investigated the dropout rate

within {0.3, 0.5, 0.7} and 𝜆 within {0.5, 1.0, 4.0, 8.0, 16.0} specifically
for PAtt. For methods grounded on self-attention, the number of

layers was explored within {1, 2, 3}, the number of heads within

{1, 2, 4}, the maximum sequence length within {30, 50, 100} for base-
lines. An early stopping strategy is applied, model optimization will

be ceased if NDCG@20 of validation does not exhibit improvement

for 10 consecutive epochs. Following is a detailed introduction and

hyper-parameter search ranges of the baselines:

• Caser4 is proposed in [2], which aims to capture high-order

patterns by applying horizontal and vertical convolutional oper-

ations for sequential recommendation. We search the length 𝐿

from {5, 10}, and 𝑇 from {1, 3, 5}.

4
https://github.com/graytowne/caser_pytorch
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• GC-SAN5
[55] integrates GNN with a self-attention mechanism

to identify both local and long-range transitions of neighboring

items hidden within each interaction session. We tune weight

factor 𝜔 from 0.4 to 0.8.

• CL4SRec6 [53] is the first work that incorporates CL into se-

quential recommendation based on the basic self-attention model.

We test the crop/mask/reorder proportion of items from 0.2 to

0.7 according to the experimental results of [53].

• DuoRec7 [39] provides a model-level augmentation based on

Dropout to enable better semantic preserving and address the

representation degeneration problem. The scale weight 𝜆 is chose

from {0.1, 0.2, 0.3, 0.4, 0.5}.
• SASRec8 [26] is a seminal sequential recommendation method

that depends on the self-attention mechanism. We search the

dropout rate from {0.3, 0.5, 0.7}.
• BERT4Rec9 [43] employs a masked item training scheme, anal-

ogous to the masked language model sequential in NLP, using

the bi-directional self-attention mechanism as its backbone. We

tune the mask proportion 𝜌 in {0.2, 0.4, 0.6}.
• STOSA10

[11] is recently proposed, utilizing the difference be-

tween distributions as a substitute for the traditional attention

weight calculationmethod.We search the L2 regularizationweight

from

{
10

−1, 10−2, 10−3
}
.

• MOJITO11
[45] employs Gaussian mixtures of attention-based

temporal context and item embedding representations for se-

quential modeling. We test weight 𝜆 for balancing long- and

short-term representation in {0.1, 0.2, 0.5, 0.8, 1.0}}.
• STRec12 [29] is a recently proposed self-attention based sequen-

tial recommendation model that identifies the sparse attention

phenomenon by replacing self-attention with cross-attention.

We search the dropout rates (attention and hidden state dropout)

from {0.2, 0.3, 0.4, 0.5, 0.6, 0.7} to obtain the best combination.

A.3 Experiments
Recommendation models leveraging DPP to enhance diversity are

often designed for traditional recommendation scenarios, as indi-

cated by [5, 12, 13, 49]. A direct comparison with these models is

neither sufficient nor fair, given our method’s specific focus on

sequential recommendation. To address this, we not only consider

existing DPP-based models like PD-GAN [49] and CDSL [36] but

also introduce a newly designed model, AMAP. The implementa-

tion details are:

• PD-GAN utilizes DPP MAP to generate items for the discrimi-

nator in traditional recommendation systems. We initialize the

PD-GAN generator parameters using BPR matrix factorization,

adhering to the approach in the original work.

• AMAP, our proposed DPP-refined baseline based on SASRec,

employs the MAP generation approach from DPP [5] to select

recommendations, which is a departure from the conventional

5
https://github.com/johnny12150/GC-SAN

6
https://github.com/RuihongQiu/DuoRec

7
https://github.com/RuihongQiu/DuoRec

8
https://github.com/zfan20/STOSA

9
https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch

10
https://github.com/zfan20/STOSA

11
https://github.com/deezer/sigir23-mojito

12
https://github.com/ChengxiLi5/STRec

Table 3: Performance comparison between DPP-based SR
models and PAtt.

Dataset Metric PD-GAN AMAP CDSL PAtt
2
(%) DPAtt

2
(%)

Beauty

ND@5 0.0556 0.0790 0.0829 0.0960 (15.80) 0.0954 (14.11)

ND@20 0.0941 0.1197 0.1225 0.1386 (10.44) 0.1380 (9.96)

CC@5 0.0560 0.0536 0.0547 0.0538 (-3.92) 0.0550 (-1.78)

CC@20 0.1195 0.1184 0.1181 0.1180 (-1.25) 0.1209 (1.17)

F1@5 0.0558 0.0639 0.0659 0.0690 (4.70) 0.0698 (5.92)

F1@20 0.1053 0.1191 0.1202 0.1275 (6.07) 0.1289 (7.24)

Anime

ND@5 0.1213 0.2018 0.2032 0.2134 (5.02) 0.2146 (5.61)

ND@20 0.1670 0.2912 0.2922 0.3091 (5.82) 0.3076 (5.31)

CC@5 0.3168 0.3196 0.3165 0.3180 (-0.50) 0.3249 (1.66)

CC@20 0.5653 0.5624 0.5598 0.5620 (-0.58) 0.5688 (0.62)

F1@5 0.1754 0.2473 0.2471 0.2554 (3.36) 0.2585 (4.44)

F1@20 0.2578 0.3837 0.3839 0.3988 (3.88) 0.3993 (4.01)

method used in SASRec where recommendations are chosen

based on ranking items by their predicted relevance scores.

• CDSL [36] is a state-of-the-art DPP-based method for sequential

recommendation. It uses DPP likelihood to guide the learning pro-

cess for SR in balancing recommendations, and we have applied

this approach on the SASRec model.

In Table 3, F1 measurement is calculated based on NDCG and

CC. For these three baselines, the DPP kernel construction is based

on the standard quality (predicted relevance score) vs. diversity
(diverse kernel C) decomposition.

The above Table 3 offers observations:

• While PD-GAN shows some advantages in diversity in certain

scenarios, its NDCG scores are significantly lower compared

others. This illustrates that traditional recommendation models

based on DPP are not adequately equipped to handle tasks an-

ticipating dynamic preferences. It also underscores the rationale

behind our initiative to design new DPP-refined model AMAP,

tailored to meet these evolving requirements.

• When comparing AMAP and CDSL against their base model

SASRec (as shown in Table 2), it can be observed that the extent

of improvement in results is not significant. This suggests that the

performance of AMAP and CDSL is still largely constrained by

the underlying model, as these methods serve to adjust or guide

the base model to balance accuracy and diversity of suggestions,

rather than designing a new model.

Furthermore, we find that the three baselines, which utilize the

standard quality vs. diversity kernel, often experience a trade-off

where an increase in diversity comes at the cost of accuracy. How-

ever, the diversity-aware attention DPAtt excels in balancing accu-

racy and diversity aspects and achieves the best F1 performance.

This suggests that the existing quality vs. diversity DPP kernel is

less effective compared to our newly proposed composite kernel

in Equation 11 (detailed and mathematically analyzed in Appen-

dix A.1), which adopts a novel construction form. The composite

kernel T(𝑆 )
is directly applied in the probabilistic attention model

with the aim of balancing the dependency and category-aware di-

versity in attention distribution, rather than trading off accuracy

for diversity in MAP generation.

 

1967

https://github.com/johnny12150/GC-SAN
https://github.com/RuihongQiu/DuoRec 
https://github.com/RuihongQiu/DuoRec 
https://github.com/zfan20/STOSA
https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch
https://github.com/zfan20/STOSA
https://github.com/deezer/sigir23-mojito
https://github.com/ChengxiLi5/STRec

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preliminaries
	3.2 Probabilistic Attention
	3.3 PAtt Calculation

	4 Experiments
	4.1 Experimental Settings
	4.2 Comparisons
	4.3 Property Analysis

	5 Conclusion
	6 Acknowledgments
	References
	A Appendix
	A.1 Diversity-aware Attention
	A.2 Baselines and Implementations
	A.3 Experiments




