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Calibration in recommender systems ensures that the user’s interests distribution over groups of items is reflected with their

corresponding proportions in the recommendation, which has gained increasing attention recently. For example, a user who watched

80 entertainment videos and 20 knowledge videos is expected to receive recommendations comprising about 80% entertainment and

20% knowledge videos as well. However, with the increasing calls for responsible recommendation, it has become inadequate to

just match users’ historical behaviors especially when items are grouped by their qualities, which could result in undesired effects

at the system level (e.g., overwhelming clickbaits). In this paper, we envision the two-sided calibration task that not only matches

the users’ past interests distribution (user-level calibration) but also guarantees an overall target exposure distribution of different

item groups (system-level calibration). The target group exposure distribution can be explicitly pursued by users, platform owners,

and even the law (e.g., the platform owners expect about 50% knowledge video recommendation on the whole). To support this

scenario, we propose a post-processing method named PCT. PCT first solves personalized calibration targets that minimize the

changes in users’ historical interest distributions while ensuring the overall target group exposure distribution. Then, PCT reranks

the original recommendation lists according to personalized calibration targets to generate both relevant and two-sided calibrated

recommendations. Extensive experiments demonstrate the superior performance of the proposed method compared to calibrated and

fairness-aware recommendation approaches.
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1 INTRODUCTION

Recommender systems play an important role in supporting various human decision-making activities in e-commerce,

entertainment, and social networks. Early recommendation methods usually focus on maximizing accuracy and

enhancing personalization [10, 32]. Although such a paradigm leads to recommendation results with high interaction

rates, recommender systems could bring undesirable effects (e.g., misinformation spreading [9], group polarization [7])

without appropriate technical interventions. Thus, there has been increasing attention paid to beyond-accuracy

characteristics of recommendations, such as diversity [30], novelty [6], fairness [17], and so on [3, 8].

One of the critical characteristics of recommender systems is calibration, which has gained rising attention recently [1,

21, 27, 29]. Calibrated recommendation aims to generate a recommendation list that consists of items in the same

proportion of the topics the user has previously liked [27]. For example, if a user’s interaction history contains 80

entertainment videos and 20 knowledge videos, calibrated recommendation expects the top-k recommendation list

comprises 80% entertainment and 20% knowledge videos as well. Calibration ensures that the various (past) areas of

interest of a user are reflected with their corresponding proportions [29]. This is of great importance to avoid the

dominance of users’ main interests and maintain consistency with users’ historical interest distributions.

However, with the increasing calls for responsible recommendation [3, 8], it has become inadequate to only calibrate

the recommendation results according to users’ historical interactions, which might still result in undesired platform

ecology from the system perspective. For example, low-quality items (e.g., clickbaits, misinformation, etc.) usually have

higher clicking persuasion but lead to negative impacts on users’ experiences [12, 18]. If most users are dedicated to

low-quality items, high-quality items can hardly get proper exposure due to the calibration towards users’ interest

distributions. We validate this on a recently published dataset Tenrec [38], where each item (i.e., article) is manually

annotated with a quality score (from 0 to 9, higher scores are better) based on its content. In this news streaming

scenario, Figure 1(a) shows that users indeed interact with more low-quality items on average. As a result, calibrated

recommendation could still lead to unhealthy platform ecology dominated by low-quality items.

To this end, it is important to additionally regulate the exposure proportion of high-quality items at the system

level [12, 18, 34]. In this paper, we envision the two-sided calibration task that not only matches the users’ past interest

distribution (user-level calibration) but also guarantees an overall target group exposure distribution (system-level

calibration), as shown in Figure 1(b). The target exposure distribution could be explicitly pursued by users, platform

owners, and even the law. For example, an online learning platformmay expect a certain ratio of exposure to authoritative

courses. Compared to previous calibrated recommendation studies [1, 27, 29], the two-sided calibration task additionally

seeks to ensure a given overall target group exposure distribution, which enables systemic regulation of different groups

of items. Compared to some fairness-aware studies [19, 35, 36], although they can also achieve systemic group exposure

regulation, they do not take user-level calibration into consideration. Previous work [29] has shown that user-level

calibration is a complementary notion of fairness and is also important for responsible recommendation.

In practice, the two-sided calibration task faces two main challenges: 1) how to determine the target group exposure

distribution for each user to optimize user-level calibration while ensuring system-level calibration? 2) how to generate

the final recommendation result for each user that is both relevant to his/her interests and close to the personalized

target group exposure distribution? First, different from previous calibrated recommendation studies that directly treat

the user’s historical interest distribution as the target exposure distribution, it is non-trivial for two-sided calibration to

derive the target exposure distribution for each user under the restriction of system-level calibration. Second, regulating
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Fig. 1. (a) Average interactions per item for items with different quality scores in the Tenrec dataset. Users interact with more
low-quality items, in which case calibrated recommendation still leads to unhealthy platform ecology. (b) Illustration of the proposed
two-sided calibration task, which not only matches users’ past interest distributions (user-level calibration) but also ensures an
expected overall distribution (system-level calibration).

the group exposure distribution for each user is likely to hurt the ranking performance, which needs careful algorithm

designs to achieve a better tradeoff.

To support the two-sided calibration task, we propose a post-processing method based on Personalized Calibration

Targets (PCT), which consists of two modules: PCT-Solver and PCT-Reranker. First, PCT-Solver focuses to solve

personalized target group exposure distributions that minimize the changes in users’ historical interest distributions

while ensuring the overall target group exposure distribution, which can be formulated as a linear programming

problem. Then, PCT-Reranker reranks the original recommendation lists according to these personalized calibration

targets to generate both relevant and two-sided calibrated recommendations. Extensive experiments show that PCT

can better balance various objectives of recommendation (ranking performance, item coverage, calibration) compared

to existing calibrated and fairness-aware methods. The main contributions of this work can be summarized as follows:

• To the best of our knowledge, we are the first to investigate the two-sided calibration task, which additionally

ensures a given overall target exposure distribution besides typical user-level calibration.

• We propose a post-processing method based on personalized calibration targets (PCT) to better support the

two-sided calibration task.

• Extensive experiments on public and industrial datasets show that PCT can better balance different objectives of

recommendation while achieving system-level calibration.

2 RELATEDWORK

2.1 Calibrated Recommendation

Calibrated recommendation is first introduced in [22] and made widely aware by [29]. In brief, calibration in rec-

ommender systems measures whether the recommendations delivered to a user are consistent with the distribution

of items the user has previously consumed. For example, if a user has watched 80% entertainment videos and 20%

knowledge videos, the user might expect to see a similar distribution in the recommendation. Typical recommendation

methods that focus on accuracy can easily lead to the dominance of users’ main interests, which makes calibrated
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recommendation of great importance in practice. To achieve calibrated recommendation, existing methods are mainly

based on reranking. Steck [29] uses a greedy optimization that starts with an empty recommendation set and iteratively

adds items to it if adding that item makes the list more relevant and calibrated. Seymen et al. [27] formulated calibrated

recommendation as a mixed integer program with an L1-norm-based miscalibration penalty. Abdollahpouri et al. [1]

further solve the calibration problem based on minimum-cost flow.

However, all the previous calibrated recommendation methods only focus on user-level calibration, which can

not guarantee the overall content quality of presented items (e.g., clickbait). With the increasing calls for quality-

aware responsible recommendation, it has become inadequate to just match the user’s historical interest distribution.

Differently, the proposed two-sided calibration task additionally pursues system-level calibration beyond user-level

calibration, which enables systemic exposure regulation of different groups of items.

2.2 Fairness-aware Recommendation

Fairness is another important beyond-accuracy characteristic in recommendation. The concrete definition of fairness

varies across different studies. According to stakeholders considered in the algorithm, there are user-side fairness [15],

item-side fairness [14, 20], and two-sided fairness [35, 36]. User-side fairness usually aims at eliminating discrimination

suffered by some users and encourages similar ranking performances across users. Item-side fairness usually focuses on

providing fair exposure opportunities for different items. The expected item exposure is generally determined by the

item’s interaction rates (e.g., CTR). Two-sided fairness combines the above two lines of work and pursues the balance

between user-side fairness and item-side fairness. Furthermore, according to the granularity of fairness, there exist

individual fairness [25] and group fairness [2].

The proposed two-sided calibration task is related to but differs from existing fairness-aware studies. Although

item-side/two-sided group fairness also regulates overall group exposure (similar to system-level calibration), it does

not consider user-level calibration. Note that user-side fairness (similar ranking performance across users) cannot lead

to user-level calibration (close item distribution for each user). Previous work [29] has shown that user-level calibration

is a complementary notion of fairness and is also important for responsible recommendation.

2.3 Quality-aware Recommendation

The quality of an item in this work is determined by its content but not user interactions. For example, clickbaits usually

have high click through rates but are considered low-quality
1
because their contents are non-informative. There have

been a few studies focusing on the topic of quality-aware recommendation. Existing works can be categorized into

two folds: quality effects analyses and quality modeling. On the one hand, more and more platforms are inclined to

annotate item qualities according to their contents and investigate the quality effects. In the mobile news streaming

scenario, Lu et.al. [18] identify the effects of the quality of news on user preferences and user behaviors. Users are

more likely to click on low-quality news because it has a more attractive title, but when reading low-quality news,

users usually read less with fewer revisits. Further, Iizuka et.al. [12] investigate the effects of news article quality on ad

consumption based on quality annotations according to authenticity, value, expression, and headline. Sessions with

high-quality news exposure are shown to have more ad consumption than sessions with low-quality news. On the

other hand, some studies aim to model item quality based on users’ implicit feedback. Early attempts mainly focus to

identify low-quality or even harmful items (e.g., clickbaits) and filter these items in the ranking phase [24]. Other works

1
The concrete standard to define quality may differ from application scenarios, which is not the focus of this paper.
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use behavior signals (e.g., dwell time) as proxies for quality modeling, which serves as another objective beyond the

original relevance prediction [34, 37].

However, with these item quality annotations (either human labeling or behavior estimation), existing works only

implicitly improve the exposure quality. It still lacks investigation on how to ensure a given degree of exposure to

high-quality items, which can be encompassed by the proposed two-sided calibration task when items are grouped by

their quality.

3 PROBLEM FORMULATION

In this section, we formalize how to measure user-level calibration and system-level calibration. The proposed two-sided

calibration task aims to generate recommendation results that pursue both user-level and system-level calibration.

LetU and I represent the set of users and items, respectively. We consider an attribute (e.g., quality) that categorizes

items into different groups, where the attribute value takes from a finite set G (e.g., G = {𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚,ℎ𝑖𝑔ℎ}). The
mapping function 𝐻 : I → G returns the group of a given item.

3.1 User-level Calibration

For each user 𝑢 ∈ U, we denote the interacted item set as 𝐼𝑢 and the top-𝐾 recommendation list as 𝑅𝑢 . Then, we can

define the historical interest distribution p𝑢 and the group exposure distribution q𝑢 as follows:

p𝑢 (𝑔) =
∑
𝑖∈𝐼𝑢 𝐼 (𝐻 (𝑖) = 𝑔)

|𝐼𝑢 |
, q𝑢 (𝑔) =

∑𝐾
𝑘=1

𝑟𝑘 · 𝐼 (𝐻 (𝑅𝑢 [𝑘]) = 𝑔)∑𝐾
𝑘=1

𝑟𝑘
, 𝑔 ∈ G. (1)

Here 𝐼 (·) is an indicator function that only returns 1 if the condition is true, and 𝑟𝑘 is the weight at rank 𝑘 . Each element

p𝑢 (𝑔), q𝑢 (𝑔) ∈ [0, 1] and
∑
𝑔∈G p𝑢 (𝑔) = 1,

∑
𝑔∈G q𝑢 (𝑔) = 1.

The historical interest distribution p𝑢 (𝑔) measures the ratio of item group 𝑔 the user 𝑢 has interacted. The group

exposure distribution q𝑢 measures the rank-weighted ratio of item group 𝑔 in the top-𝐾 recommendation list 𝑅𝑢 . The

simplest 𝑟𝑘 can be equal across rankings (i.e., 𝑟𝑘 = 1). Considering that the rankings of recommended items usually

affect the examination probability, we use a decreasing ranking weight by default (i.e., 𝑟𝑘 = 1/log
2
(𝑘 + 1)).

Then, the user-level calibration can be defined as follows:

Definition 1 (User-level Calibration). The recommendation is user-level calibrated if the group exposure distribution

is close to the historical interest distribution for each user.

q𝑢 = p𝑢 , ∀𝑢 ∈ U .

In practice, we can use various disparity metrics to measure the distance between q𝑢 and p𝑢 , such as the Kullback-

Leibler (KL) divergence and Hellinger distance.

3.2 System-level Calibration

We define the overall group exposure distribution q as the average across users:

q =
1

|U|

|U |∑︁
𝑢=1

q𝑢 (2)

Besides the user-level calibration, system-level calibration additionally pursues a given target distribution q̂. Here the
overall target group exposure distribution q̂ can be determined by different stakeholders (e.g., platform owners, law).
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Fig. 2. Overview of the proposed PCT method. There are two main modules in PCT: 1) the PCT-Solver solves personalized target
exposure distributions q̂𝑢 that minimize the changes in users’ historical interest distribution p𝑢 while ensuring the target group
exposure distribution q̂; 2) the PCT-Reranker generates the final recommendation list according to personalized calibration targets q̂𝑢 .

For example, to enhance platform reputation, the owner may identify a set of high-quality items (i.e., G = {𝑜𝑡ℎ𝑒𝑟, ℎ𝑖𝑔ℎ})
and expect that these items take up half of the exposure resources (i.e., q̂ = [0.5, 0.5]).

The system-level calibration is defined as follows:

Definition 2 (System-level Calibration). The recommendation is system-level calibrated if the overall group

exposure distribution is close to the target group exposure distribution.

q = q̂.

Similar disparity metrics as user-level calibration can be used to measure system-level calibration.

3.3 Tradeoff in Two-sided Calibration

User-level calibration and system-level calibration can hardly be achieved simultaneously. If the recommendation is

perfectly user-level calibrated, the overall group exposure distribution will be:

q =
1

|U|

|U |∑︁
𝑢=1

q𝑢 =
1

|U|

|U |∑︁
𝑢=1

p𝑢 = p. (3)

If the historical interest distribution on average (i.e., p) does not equal the target group exposure distribution q̂ (the

common case), the recommendation will not be perfectly system-level calibrated.

In the meantime, there are multiple ways to achieve perfect system-level calibration. For example, we can simply

regulate each user’s exposure distribution q𝑢 to match the overall target q̂. However, this intuitive solution ignores the

characteristics of each user, which may deviate from some users’ historical interest distributions p𝑢 to a large extent,

yielding poor user-level calibration. This motivates us to find personalized calibration targets that minimize the changes

in users’ historical interest distributions while ensuring system-level calibration.
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4 PERSONALIZED CALIBRATION TARGETS (PCT)

To better support the two-sided calibration task, we propose a post-processing method based on personalized calibration

targets (PCT), as shown in Figure 2. The core idea is to solve personalized calibration targets q̂𝑢 that minimize the

changes in users’ historical interest distribution p𝑢 while satisfying the overall target group exposure distribution q̂,
which can be formulated as a linear programming problem. There are mainly two modules in PCT: 1) the PCT-Solver

that solves personalized target exposure distributions q̂𝑢 and 2) the PCT-Reranker that reranks original recommendation

results according to q̂𝑢 . In the following, we will introduce these two modules in detail.

4.1 PCT Solver

Notice that perfect user-level calibration will make the overall group exposure distribution q consistent with the

historical interest distribution on average p, i.e., Eq.(3). Let 𝐷 (·, ·) denote a disparity metric between two distributions

(e.g., KL divergence, L2 distance). If we consider the current disparity 𝐷 (p, q̂) between the averaged historical interest

distribution p and the target group exposure distribution q̂ as a loss function, we can obtain the global gradient direction

with respect to p:

g =
∇p 𝐷 (p, q̂)
| |∇p 𝐷 (p, q̂) | |

. (4)

This gradient direction conveys the message about how to adjust users’ exposure distributions to achieve system-level

calibration on the basis of perfect user-level calibration.

Then, based on the historical interest distribution for each user p𝑢 , we can take the personalized calibrated target q̂𝑢
as the result of updating one step towards the negative gradient direction on top of p𝑢 :

q̂𝑢 = p𝑢 − 𝛾𝑢g, (5)

where 𝛾𝑢 is a scalar that represents the step size for each user. Then, the problem can be induced to solve these

user-specific 𝛾𝑢 .

It is noteworthy that 𝛾𝑢 actually reflects the miscalibration degree for each user. If 𝛾𝑢 increases, the changes in the

user’s historical interest distribution p𝑢 also enlarge, which leads to poorer user-level calibration. Therefore, we propose

to minimize the weighted sum of 𝛾𝑢 with the constraint of ensuring 1) the system-level calibration target q̂ and 2) the

legality of personalized calibration targets q̂𝑢 , which can be formalized as a linear programming problem:



min

𝛾𝑢
.

∑
𝑢∈U 𝑤𝑢𝛾𝑢

s.t.
∑
𝑢∈U 𝛾𝑢g =

∑
𝑢∈U (p𝑢 − q̂)

0 ≤ 𝛾𝑢 ≤ 𝑙𝑢 , ∀𝑢 ∈ U .

(6)

Here𝑤𝑢 measures the weight of each user (𝑤𝑢 = 1 by default). A larger weight will enforce more emphasis on this user

to reduce the influence on his/her historical interest distribution, which can be determined by the application scenario

(e.g., responding to users’ adjustments). The first constraint makes sure that the target group exposure distribution can

be achieved, i.e.,

∑
𝑢∈U q̂𝑢/|U| = q̂. The second constraint makes sure that the personalized calibration targets are

legal distributions, i.e., 0 ≤ q̂𝑢 ≤ 1. To ensure such legality, the maximal step size 𝑙𝑢 for each user can be calculated as:

𝑙𝑢 = min ((p𝑢 (𝑔) − 𝐼 (g(𝑔) < 0)) /g(𝑔), 𝑔 ∈ G) , (7)

7
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Based on the solved 𝛾𝑢 , we can obtain the personalized calibration targets q̂𝑢 via Eq.(5). Compared to the naive

solution that lets q̂𝑢 = q̂ (called Global-Solver hereafter), our PCT-Solver can also ensure that the system-level calibration

target is achieved. Besides, minimizing 𝛾𝑢 helps avoid drastic changes to the historical interest distribution for each

user, which benefits the user-level calibration. We will compare the distributions of user-level calibration of different

methods in Section 5.4.

4.2 PCT Reranker

To achieve the personalized target group exposure distribution q̂𝑢 solved in PCT-Solver, we propose to balance the

output obtained by a recommender system through reranking, which is a common practice in the literature [1, 29]. Here,

a direct solution is to rerank each user’s recommendation results based on maximum marginal relevance (MMR) [5].

This method starts with an empty recommendation set �̃�𝑢 and iteratively adds items to it if adding that item makes the

list more relevant and calibrated, until the size of �̃�𝑢 reaches 𝐾 [29].

In particular, the marginal relevance of each candidate item 𝑖 can be defined as the combination of the predicted

relevance 𝑦𝑢,𝑖 and the disparate exposure [19]:

𝑠𝑢,𝑖 = 𝜆 · 𝑦𝑢,𝑖 − (1 − 𝜆) · 𝐷
(
q̂𝑢 , q |�̃�𝑢∪{𝑖 }

)
. (8)

Here q |�̃�𝑢∪{𝑖 } is the group exposure distribution of the current item list �̃�𝑢 together with the candidate item 𝑖 . The

tradeoff hyperparameter 𝜆 controls the balance between ranking performance and calibration. If 𝜆 = 1, the final

recomemndation list �̃�𝑢 is the same as the original 𝑅𝑢 ; otherwise �̃�𝑢 is selected in consideration of disparate exposure.

Although the above MMR algorithm can obtain the reranking recommendation list �̃�𝑢 as expected, it has two main

limitations:

• MMR selects each item in a greedy approach, which lacks the global perspective and hence leads to sub-optimal

results.

• The marginal relevance uses the original predicted score 𝑦𝑢,𝑖 , while under the common pairwise learning setting,

predicted scores of different users may have different ranges.

To alleviate the above limitations, our PCT-Reranker enhances the MMR algorithm in two folds. First, we "directly"

add some originally top-ranked items to �̃�𝑢 if this action will not exceed the target group exposure determined by the

personalized calibration target q̂𝑢 . Second, for the vacancies that no item can be added in the first iteration, we use the

MMR algorithm to select the item with the maximal marginal relevance, where the predicted relevance score 𝑦𝑢,𝑖 is

replaced with the rank of each item in 𝑅𝑢 . The detailed algorithm is described in Algorithm 1.

In the first iteration, PCT-Reranker traverses all the top-K positions from 1 to 𝐾 (Line 5-12). Notice that each position

in the top-𝐾 recommendation list contributes a fixed exposure 𝑟𝑘 according to its rank 𝑘 . The total exposure resource in

the top-𝐾 recommendation list is

∑𝐾
𝑘=1

𝑟𝑘 (Line 1). Then, we can use the personalized calibration target q̂𝑢 to determine

the target exposure resource allocated to different item groups (Line 2). For each position, we select the highest-ranked

and unselected item in 𝑅𝑢 that will not exceed the target exposure resource allocated to the corresponding item group

(Line 7). When an item is selected at a specific position, the current exposure resource for each item group will be

updated (Line 33). It is possible that no item can be selected for some specific position if the current exposure resource

is close to the target one. These positions will be skipped temporally. The above pilot iteration directly selects some

top-ranked items in 𝑅𝑢 that are "safe" to appear in �̃�𝑢 . This enhances the global perspective of the traditional MMR

algorithm because there is no need to ensure that every prefix of the recommendation list is calibrated.

8
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Algorithm 1 PCT-Reranker Algorithm

Input: the number of items to recommend for each user 𝐾 ; original recommended item list 𝑅𝑢 ; ranking weight 𝑟𝑘 ;

mapping from item to group 𝐻 (·); personalized calibration targets q̂𝑢 ; tradeoff hyperparameter 𝜆

Output: final recommended item list �̃�𝑢
1: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑟1 + 𝑟2 + · · · + 𝑟𝐾
2: 𝑡𝑎𝑟𝑔𝑒𝑡 ← q̂𝑢 ∗ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 # target exposure resource

3: 𝑒𝑥𝑝 ← [0] ∗ |G| # current exposure resource

4: �̃�𝑢 ← [−1] ∗ 𝐾, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑠𝑒𝑡 ()
5: for 𝑘 ← 1, 2, · · · , 𝐾 do # First Iteration

6: for 𝑖 ∈ 𝑅𝑢 do
7: if 𝑖 ∉ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 and 𝑒𝑥𝑝 [𝐻 (𝑖)] + 𝑟𝑘 ≤ 𝑡𝑎𝑟𝑔𝑒𝑡 [𝐻 (𝑖)] then # not exceed the target exposure resource

8: Select(𝑖, 𝑘)

9: break
10: end if
11: end for
12: end for
13: for 𝑘 ← 1, 2, · · · , 𝐾 if �̃�𝑢 [𝑘] = −1 do # Second Iteration

14: 𝑠𝑐𝑜𝑟𝑒 ← [−1] ∗ |G|, 𝑖𝑡𝑒𝑚 ← [−1] ∗ |G|
15: for 𝑔 ∈ G do # score the top item for each group

16: 𝑎𝑠𝑠𝑢𝑚𝑒_𝑒𝑥𝑝 ← 𝑒𝑥𝑝

17: 𝑎𝑠𝑠𝑢𝑚𝑒_𝑒𝑥𝑝 [𝑔] ← 𝑒𝑥𝑝 [𝑔] + 𝑟𝑘
18: 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 ← (𝑎𝑠𝑠𝑢𝑚𝑒_𝑒𝑥𝑝 − 𝑡𝑎𝑟𝑔𝑒𝑡)2 .𝑠𝑢𝑚()/2 # disparity if this item is added

19: for 𝑟𝑎𝑛𝑘, 𝑖 ∈ 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 (𝑅𝑢 ) do
20: if 𝑖 ∉ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 and 𝐻 (𝑖) = 𝑔 then
21: 𝑠𝑐𝑜𝑟𝑒 [𝑔] ← 𝜆/(𝑟𝑎𝑛𝑘 + 1) − (1 − 𝜆) ∗ 𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 # maginal relevance score

22: 𝑖𝑡𝑒𝑚[𝑔] ← 𝑖

23: break
24: end if
25: end for
26: end for
27: Select(𝑖𝑡𝑒𝑚[𝑎𝑟𝑔𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒)], 𝑘)
28: end for
29: return �̃�𝑢
30:

31: function Select(𝑖, 𝑘) # select item 𝑖 at position 𝑘

32: �̃�𝑢 [𝑘] ← 𝑖

33: 𝑒𝑥𝑝 [𝐻 (𝑖)] ← 𝑒𝑥𝑝 [𝐻 (𝑖)] + 𝑟𝑘
34: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑.𝑎𝑑𝑑 (𝑖)
35: end function

In the second iteration, PCT-Reranker selects items for the vacancies after the first iteration based on MMR (Line

13-28). We use the L2 distance as the default disparity measurement 𝐷 (·, ·) (Line 18). Differently, to avoid wide-range

scales of predicted scores, we leverage the rank of each item in 𝑅𝑢 to calculate the marginal relevance (Line 21), which

ranges from 0 to 1 for all the users. Besides, notice that if two items 𝑖, 𝑗 belong to the same group and 𝑦𝑢,𝑖 > 𝑦𝑢,𝑗 , the

marginal relevance score 𝑠𝑢,𝑖 > 𝑠𝑢,𝑗 also holds because the disparity term only relies on the item group. As a result, we

can only consider the highest-ranked item for each group and compare their marginal relevance scores (Line 27).
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After the above two iterations, we can derive the reranked top-𝐾 recommendation list �̃�𝑢 as expected.Wewill compare

the proposed PCT-Reranker with traditional MMR in Section 5.3. Note that other advanced reranking methods [1, 27]

can also be adopted here. We leave investigations of other rerankers as future work.

4.3 Efficiency Discussion

For the PCT-Solver, there have been mature algorithms [11] and toolkits (e.g., scipy, gurobi) to efficiently solve such an

optimization problem. Besides, it is noteworthy that these personalized calibration targets can be solved in advance

(offline), which is not the bottleneck of online services. Meanwhile, considering that the scale of this linear programming

problem equals the number of users |U|, the offline time complexity can also be non-negligible when the number of

users grows very large. To accelerate this process, we propose to randomly split users into chunks with a maximum

size 𝐶 < |U|. The chunk-level calibration target is directly set to the overall target q̂ on the whole, while personalized

calibration targets are solved within each chunk. In this way, we can get ⌈|U|/𝐶⌉ subproblems, and the system-level

calibration is still ensured. These subproblems can be solved in parallel and the time complexity is controlled by the

chunk size 𝐶 . Although chunking users may not lead to the global optimum, our experiments show that we can obtain

satisfactory results with a relatively small chunk size (e.g., 𝐶 = 5, 000), which enables the PCT-Solver to be applicable to

large-scale scenarios.

For the PCT-Reranker, the time complexity is analyzed as follows. The first iteration takes 𝑂 (𝐾 |I |) time in a naive

way. However, this process can be accelerated to 𝑂 (𝐾 |G|) with a similar idea to the merge sort. In particular, we can

maintain an ordered list for each item group 𝑔 ∈ G, where all the items in the list belong to the same group and preserve

the order in 𝑅𝑢 . For each position, we compare the top-ranked items of |G| ordered lists. The item with the highest

relevance score 𝑦𝑢,𝑖 and enough exposure resource for the corresponding group (adding this item will not exceed the

target exposure) will be selected and then removed from the ordered list. In this way, the time complexity of the first

iteration can be reduced to 𝑂 (𝐾 |G|). In the second iteration, we will take 𝑂 ( |I|) to determine the highest-ranked

items for each quality group. Then, the marginal relevance scores are computed in 𝑂 ( |G|2). So the second iteration

takes 𝑂 (𝐾 ( |I| + |G|2)) time. The total time complexity is 𝑂 (𝐾 ( |G| + |I| + |G|2)). In comparison, ordinary MMR takes

𝑂 (𝐾 |I | |G|). Considering that |I | is usually large and 𝐾, |G| are small, PCT-Reranker is much faster than MMR in

practice. Our experiments will also compare the efficiency of different methods in Section 5.5.

5 EXPERIMENTS

In this section, we present our experimental settings and results. Our experiments are designed to answer the following

research questions:

• RQ1: Can the proposed PCT method achieve better user-level calibration (and other objectives of recommenda-

tion) while ensuring system-level calibration compared to state-of-the-art baselines?

• RQ2: What are the impacts of the two main modules in PCT respectively (PCT-Solver and PCT-Reranker)?

• RQ3: Why are the personalized calibration targets solved in PCT-Solver helpful to enhance user-level calibration?

• RQ4: How about the efficiency of PCT compared to other reranking methods?

5.1 Experimental Settings

5.1.1 Datasets. We use two datasets in our experiments, including both public and industrial datasets.
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• Tenrec [38]: This is a recently published dataset collected from feeds recommendation platforms of Tencent,

which includes four scenes split by the concrete platform and the item type. We use the QK-article subset because

it contains the labeled quality of each item (article). Considering the whole subset is quite large, we randomly

sample 20,000 users and filter out users/items with less than 5 associated interactions, yielding a dataset with

19,965 users, 31,413 items, and 884,315 interactions. Without loss of generality, we group items based on quality

scores
2
and consider two groups G = {𝑛𝑜𝑟𝑚𝑎𝑙, ℎ𝑖𝑔ℎ}. Items whose quality scores are at least 7 are defined as the

high-quality group (21% of the total item set), while the others are treated as the normal-quality group.

• CMCC-Q: This is an industrial dataset collected from China Mobile. This dataset contains video watching

activities on smart TV, including 7,294 users, 1,971 videos, and 89,749 interactions. The quality of each video

(binary scale, normal/high quality) is annotated according to three aspects: production, culture value, and society

value. Videos are considered high-quality if they are both well-made and beneficial to the development of culture

and society. Three experts are employed to annotate the quality of each video (Fleiss’ kappa = 0.5889, reaching

moderate agreement), and we use majority voting to get the final annotation. Finally, there are 183 high-quality

items that take up 9.28% in the item set.

In the above two datasets, we use the quality attribute to group items because we are interested in improving the exposure

of high-quality items (quality-aware responsible recommendation). Note that the proposed two-sided calibration can

also work with other grouping attributes (e.g., provider, category, popularity) if the corresponding information is

available and the recommendation platform cares about calibration towards those attributes.

5.1.2 Target Group Exposure Distribution. Our proposed two-sided calibration task supports a given target group

exposure distribution q̂ for system-level calibration. Here we present two example policies that could be pursued.

However, note that our proposed method is agnostic to the calibration target, which can be extended to any other

policies depending on users, platform owners, or the law.

• AvgEqual: This policy aims to ensure that a group receives the exposure proportional to its ratio in the item set

(average equity), i.e., q̂(𝑔) = |I𝑔 |/|I|.
• Equal: This policy aims to ensure the same degree of exposure among groups (overall equity), i.e., q̂(𝑔) = 1/|G|.

5.1.3 Backbone Recommenders. We use three different kinds of recommenders as the backbone to produce the

original recommendation results:

• BPRMF [26]: This is a classic collaborative filtering method that optimizes MF with a pairwise ranking loss,

where the negative item is randomly sampled from the item set.

• LightGCN [10]: This is a simplified graph convolution network for collaborative filtering that performs linear

propagation between neighbors on the user-item bipartite graph.

• SASRec [13]: This is a typical sequential method that utilizes self-attention to exploit the mutual influence

between historical interactions.

5.1.4 Evaluation Protocols. To support both general and sequential backbone models, we adopt the leave-one-out

strategy to split the training, validation, and test set [16, 31, 33]. To evaluate the effect of two-sided calibration, we

introduce the following two metrics to measure user-level calibration and system-level calibration, respectively:

2
This dataset provides three quality scores by different scoring systems. We use item_score3 because it is the most fine-grained (10-level annotations)

with reasonable distributions.
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• Miscalibration (𝐶𝐾𝐿) [29]: This metric measures user-level calibration by the KL-divergence between users’

historical interest distributions p𝑢 and group exposure distributions q𝑢 :

C𝐾𝐿 =
1

|U|
∑︁
𝑢∈U

∑︁
𝑔∈G

q𝑢 (𝑔) log
q𝑢 (𝑔)
p𝑢 (𝑔)

, (9)

which favors lower values for better user-level calibration.

• Minority group exposure (𝐸𝑚) [19]: This metric measures system-level calibration by the overall exposure

ratio of the minority group 𝑔𝑚 (the high-quality group in our datasets, i.e., 𝑔𝑚 = ℎ𝑖𝑔ℎ):

𝐸𝑚 =
1

|U|
∑︁
𝑢∈U

q𝑢 (𝑔𝑚), (10)

which should be as close as the expected exposure 𝐸𝑚 = q̂(𝑔𝑚) determined by the system-level calibration target.

The minority group exposure 𝐸𝑚 is intuitive and effective especially under our setting with two item groups because

the exposure ratio of the other group will be 1 − 𝐸𝑚 . If 𝐸𝑚 is close to the target value 𝐸𝑚 , we can say the system-level

calibration is achieved.

For fair comparisons, we control the degree of system-level calibration of different methods and compare other

metrics. In particular, we tune hyperparameters (e.g., the tradeoff hyperparameter 𝜆 in MMR) to make sure minority

group exposure 𝐸𝑚 is as expected (𝐸𝑚 ± 0.01). Besides the user-level calibration metric (𝐶𝐾𝐿), we also compare the

ranking performance (NDCG) and the coverage of the minority group (COV𝑚). NDCG concerns whether the ground-

truth item is ranked top in the recommendation list, while COV𝑚 measures whether all the items in the minority group

are recommended at least once.

5.1.5 Baselines. Note that previous calibrated recommendation studies cannot ensure the target group exposure dis-

tribution (system-level calibration). Thus, we only report the results of a typical calibrated recommendation method [29]

for reference (Calibrated). We mainly compare our PCT with methods that are able to support the proposed two-sided

calibration task.

• Boosting: This is a widely applied method in industry that gives higher scores to items in the minority group,

i.e., 𝑦𝑢,𝑖 + 𝛼 · 𝐼 (𝐻 (𝑖) = 𝑔𝑚). The target group exposure distribution can be achieved by tuning the weight 𝛼 .

• TFROM [36]: This is a two-sided fairness-aware recommendation model that reranks the original recommenda-

tion results to control items’ exposure and balance the loss of users’ ranking performance.

• RegExp [19]: This is a recently proposed reranking method to regulate group exposure for items based on MMR,

where each user’s recommendation list is regulated towards the overall regulation target.

Note that some other related fairness-aware methods [4, 23, 28] have been encompassed in the above baselines. As for

the previous quality-aware recommendation method [34], we find it can hardly achieve a given degree of exposure

quality but only increases the exposure quality to some extent, which fails to achieve system-level calibration.

5.1.6 Implementation Details. We use the ReChorus [31] framework to run all the backbone recommendation

models. For Calibrated, we set the tradeoff hyperparameter 𝜆 = 0.5 to balance user-level calibration and ranking

performance. For other baselines, we tune corresponding hyperparameters to achieve similar 𝐸𝑚 for fair comparisons.

For PCT, we use the L2 distance as the disparity measurement to derive the gradient g in Eq.(4). To solve the linear

programming problem, we use the linprog function in scipy. The chunk size 𝐶 is set to 5000 because we find the
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Table 1. Experimental results based on top-10 recommended lists on the Tenrec dataset. We control the degree of system-level
calibration measured by the minority group exposure (𝐸𝑚 ) and compare different methods in terms of ranking performance (NDCG),
minority group coverage (COV𝑚 ), and user-level calibration (𝐶𝐾𝐿). ↑ means higher values are better and ↓ favors lower values. The
best results among methods that achieve system-level calibration are in bold face, and the second best results are underlined. The ∗

indicate 𝑝 ≤ 0.05 for the paired t-test of PCT vs. the best baseline (except for Calibrated).

Setting

Target Group Exposure Distribution q̂

AvgEqual (𝐸𝑚 = 0.21) Equal (𝐸𝑚 = 0.50)

Backbone Method 𝐸𝑚 NDCG ↑ COV𝑚 ↑ 𝐶𝐾𝐿 ↓ 𝐸𝑚 NDCG ↑ COV𝑚 ↑ 𝐶𝐾𝐿 ↓

B
P
R
M
F

Base 0.16 0.2379 0.3855 0.3858 0.16 0.2379 0.3855 0.3858

+Calibrated 0.19 0.2335 0.4141 0.0519 0.19 0.2335 0.4141 0.0519

+Boosting

0.21

±0.01

0.2375 0.4463 0.2708

0.50

±0.01

0.1929 0.6635 0.4505

+TFROM 0.2316 0.4739 0.0530 0.2096 0.7108 0.2797

+RegExp 0.2270 0.4164 0.0532 0.2105 0.6624 0.2566

+PCT (ours) 0.2350 0.5468∗ 0.0081∗ 0.2112 0.7560∗ 0.2515∗

L
i
g
h
t
G
C
N

Base 0.17 0.2725 0.6015 0.3400 0.17 0.2725 0.6015 0.3400

+Calibrated 0.19 0.2670 0.6300 0.0692 0.19 0.2670 0.6300 0.0692

+Boosting

0.21

±0.01

0.2716 0.6644 0.2500

0.50

±0.01

0.2204 0.7075 0.3952

+TFROM 0.2650 0.6969 0.0526 0.2405 0.9119 0.2795

+RegExp 0.2587 0.6290 0.0532 0.2409 0.8809 0.2575

+PCT (ours) 0.2677 0.7442∗ 0.0089∗ 0.2443∗ 0.9307∗ 0.2439∗

S
A
S
R
e
c

Base 0.17 0.2884 0.6594 0.3510 0.17 0.2884 0.6594 0.3510

+Calibrated 0.19 0.2816 0.6726 0.0742 0.19 0.2816 0.6726 0.0742

+Boosting

0.21

±0.01

0.2874 0.7106 0.2666

0.50

±0.01

0.2334 0.8948 0.3602

+TFROM 0.2805 0.7438 0.0532 0.2591 0.9311 0.2796

+RegExp 0.2726 0.6819 0.0532 0.2576 0.9070 0.2578

+PCT (ours) 0.2825 0.8010∗ 0.0088∗ 0.2633∗ 0.9457∗ 0.2433∗

optimization problem of this size can be solved in seconds with satisfactory results. Each experiment is repeated 5 times

with different random seeds and we report the average score. The codes are publicly available
3
.

5.2 Overall Performance (RQ1)

Table 1 shows the reranking results based on top-10 recommendation lists on the public Tenrec dataset, integrated

with various backbone models and target group exposure distributions (system-level calibration targets). From the

experimental results, we mainly have the following observations.

Firstly, the typical calibrated recommendation method (Calibrated) only focuses on user-level calibration (lower

𝐶𝐾𝐿) but fails to achieve system-level calibration (mismatch between 𝐸𝑚 and 𝐸𝑚). The calibrated results give higher

minority group exposure 𝐸𝑚 than the backbone model, but it can not approach the expected 𝐸𝑚 according to the target

group exposure distribution q̂. As a result, previous calibrated recommendation methods are still likely to result in

undesired effects on the platform ecology. In Tenrec, the high-quality (minority) group takes up 21% in the item set but

only receives 19% exposure even if the recommendation is user-level calibrated, which might not be expected by the

platform owner. This validates the necessity of the proposed two-sided calibration task.

3
https://github.com/THUwangcy/ReChorus/tree/RecSys23
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Table 2. Experimental results on the CMCC-Q dataset. Other settings show similar results.

Setting

Target Group Exposure Distribution q̂

Equal (𝐸𝑚 = 0.50)

Backbone Method 𝐸𝑚 NDCG ↑ COV𝑚 ↑ 𝐶𝐾𝐿 ↓

S
A
S
R
e
c

Base 0.12 0.1848 0.5847 0.5708

+Calibrated 0.15 0.1812 0.7213 0.1079

+Boosting

0.50

±0.01

0.1528 0.9071 0.6600

+TFROM 0.1644 0.9508 0.4191

+RegExp 0.1667 0.9508 0.3921

+PCT (ours) 0.1763∗ 0.9891∗ 0.3838∗

Secondly, other baseline methods can ensure the target group exposure distribution (𝐸𝑚 ≈ 𝐸𝑚), achieving the goal of

system-level calibration. Comparing the two system-level calibration targets, the Equal policy expects higher minority

group exposure and hence leads to a larger loss of user-level calibration (𝐶𝐾𝐿) and ranking performance (NDCG), which

is more challenging than the AvgEqual policy. Different baselines also have different characteristics. Boosting is only

effective to preserve ranking performance when the target exposure is close to the original one (AvgEqual), while

generally suffering poor user-level calibration. TFROM and RegExp both take fairness into consideration, yielding

similar NDCG and𝐶𝐾𝐿 . The results show that although these fairness-aware methods do not directly optimize user-level

calibration, they can bring better-calibrated results than the naive Boosting method. In comparison, TFROM better

improves the minority group coverage (higher COV𝑚) due to the specially designed reranking strategy. RegExp gives

better user-level calibration under the Equal target, which may benefit from treating all the users equally.

Last but not the least, the proposed PCT achieves significantly better user-level calibration than other methods

while ensuring system-level calibration. Besides, PCT can maintain competitive ranking performance and improve

minority group coverage to a large extent. In particular, PCT yields extremely low 𝐶𝐾𝐿 under the AvgEqual policy. The

proposed PCT-Solver help avoid drastic changes in users’ historical interest distributions while ensuring the target

group exposure distribution. Note that although the NDCG and 𝐶𝐾𝐿 are worse than Calibrated under the Equal policy,

they are not comparable because Calibrated does not achieve system-level calibration. PCT is still the best among

baselines that achieve similar 𝐸𝑚 . Furthermore, Table 2 shows the experimental results on the CMCC-Q dataset. Here

we mainly show the results when integrated with the more challenging Equal policy and the most powerful backbone

SASRec (other settings yield similar results). The consistent superior performance compared to other baselines validates

the effectiveness of PCT.

5.3 Ablation Study (RQ2)

There are two main modules in PCT, namely PCT-Solver and PCT-Reranker. In this section, we replace each module with

other methods to show the impacts of PCT-Solver and PCT-Reranker respectively. On the one hand, when determining

personalized calibration targets q̂𝑢 , we replace the proposed PCT-Solver with Global-Solver, which simply lets q̂𝑢 = q̂.
Each user’s recommendation list will be calibrated towards the overall target group exposure distribution. On the other

hand, when reranking each user’s recommendation results according to q̂𝑢 , we replace the proposed PCT-Reranker

with MMR, which iteratively adds items that make the list more relevant and calibrated in a greedy way.
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Table 3. Ablation Study on the public Tenrec dataset. We replace the solver and the reranker in PCT.

Method

Setting AvgEqual (𝐸𝑚 = 0.21)

Solver Reranker 𝐸𝑚 NDCG ↑ COV𝑚 ↑ 𝐶𝐾𝐿 ↓
BPRMF - - 0.16 0.2379 0.3855 0.3858

(a) Global-Solver MMR

0.21

±0.01

0.2281 0.4150 0.0533

(b) PCT-Solver MMR 0.2289 0.5170 0.0132

(c) Global-Solver PCT-Reranker 0.2317 0.4831 0.0525

PCT PCT-Solver PCT-Reranker 0.2350 0.5468∗ 0.0081∗

Table 3 shows the results when integrated with the AvgEqual target and the BPRMF backbone on the Tenrec dataset

(other settings yield similar results). First, comparing (b) vs. (a) and PCT vs. (c), we can see that the PCT-Solver is

always better than the Global-Solver. The PCT-Solver not only significantly improves the user-level calibration𝐶𝐾𝐿 but

also leads to higher NDCG and COV𝑚 . Second, comparing (c) vs. (a) and PCT vs. (b), the PCT-Reranker can further

benefit the improvements of NDCG and COV𝑚 , as well as slightly enhance 𝐶𝐾𝐿 . As a result, both PCT-Solver and

PCT-Reranker are of great importance, which helps the full PCT achieve the best results on the whole.

5.4 Analysis on User-level Calibration (RQ3)

To further understand the rationale of the proposed PCT-Solver, Figure 3 shows the distributions of user-level calibration

𝐾𝐿(p𝑢 | | q𝑢 ) of different methods, integrated with the Equal target and the BPRMF backbone on the Tenrec dataset.

The main experiments in Section 5.2 have shown that PCT is superior to other methods in terms of the overall 𝐶𝐾𝐿 ,

while Figure 3 gives a more fine-grained perspective about user-level calibration. It is clear to see that Boosting could

bring a strong mismatch between the historical interest distribution p𝑢 and group exposure distribution q𝑢 for some

users. RegExp alleviates this issue to some extent but there still exist users will high KL-divergence. Differently, the

PCT-Solver in our PCT method seeks to minimize the changes in users’ historical interest distributions, and hence the

maximal KL-divergence is significantly smaller than other methods. This conveys the message that no user’s interest

distribution is greatly altered in the recommendation list generated by PCT. Besides, notice that the distribution of

KL-divergence is much more centered than other methods. As a result, PCT is capable of achieving better user-level

calibration while ensuring system-level calibration, which distributes the distribution shift to all the users more equally.

5.5 Efficiency Comparison (RQ4)

Finally, we show the reranking efficiency of different methods on the Tenrec dataset. For fair comparisons, The efficiency

experiments are conducted on the same machine (Intel Core 12-core CPU of 3.5GHz). We can see that PCT is a little

slower than TFROM but much faster than RegExp. Each user’s recommendation list can be reranked in 1.5ms by PCT,

which is generally acceptable in practice. Compared to RegExp which uses the conventional MMR for reranking, PCT

does not need to calculate the marginal relevance score of each candidate item and hence leads to lower time complexity

as discussed in Section 4.3.

6 CONCLUSION

In this paper, we investigate the two-sided calibration task for quality-aware responsible recommendation. Previous

calibrated recommendation studies only focus on user-level calibration. However, with the increasing calls for responsible
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0.0 0.2 0.4 0.6 0.8 1.0
KL-divergence (user-level calibration)

PCT

RegExp

Boosting

Fig. 3. Distributions of KL-divergence between a user’s historical
interest distribution p𝑢 and group exposure distribution q𝑢 .

Method TFROM RegExp PCT

Reranking Time 14sec 22min 30sec

Table 4. Efficiency of reranking 19,965 users’ top-10 recom-
mended item lists on the Tenrec dataset.

recommendation, it has become inadequate to just match users’ past interest distributions, which could still lead to

undesired effects on the platform ecology. To this end, we propose the two-sided calibration task that additionally

pursues system-level calibration, where the target group exposure distribution could be determined by users, platform

owners, and even the law. To better support the two-sided calibration task, we propose a post-processing method

based on personalized calibration targets (PCT). For one thing, PCT-Solver solves personalized target group exposure

distributions to minimize the changes in users’ historical interest distributions while ensuring the overall target exposure

distribution. For another, PCT-Reranker reranks the original recommendation results to generate both relevant and

calibrated recommendation lists. Experiments on public and industrial datasets show that PCT can achieve better user-

level calibration while satisfying system-level calibration than state-of-the-art baselines. PCT also achieves comparative

ranking performance and significantly improves coverage of the minority item group.

In the future, we plan to validate the long-term benefits of our method via online experiments. It is also interesting

to investigate the connection between fairness and calibration. Our experiments show that they might benefit from

each other, but existing methods mainly focus to address one of them.
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