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ABSTRACT
Recently, pre-training methods tailored for IR tasks have achieved
great success. However, as the mechanisms behind the performance
improvement remain under-investigated, the interpretability and
robustness of these pre-trained models still need to be improved.
Axiomatic IR aims to identify a set of desirable properties expressed
mathematically as formal constraints to guide the design of rank-
ing models. Existing studies have already shown that considering
certain axiomsmay help improve the e�ectiveness and interpretabil-
ity of IR models. However, there still lack e�orts of incorporating
these IR axioms into pre-training methodologies. To shed light on
this research question, we propose a novel pre-training method
with Axiomatic Regularization for ad hoc Search (ARES). In the
ARES framework, a number of existing IR axioms are re-organized
to generate training samples to be �tted in the pre-training pro-
cess. These training samples then guide neural rankers to learn the
desirable ranking properties. Compared to existing pre-training
approaches, ARES is more intuitive and explainable. Experimen-
tal results on multiple publicly available benchmark datasets have
shown the e�ectiveness of ARES in both full-resource and low-
resource (e.g., zero-shot and few-shot) settings. An intuitive case
study also indicates that ARES has learned useful knowledge that
existing pre-trained models (e.g., BERT and PROP) fail to possess.
This work provides insights into improving the interpretability of
pre-trained models and the guidance of incorporating IR axioms or
human heuristics into pre-training methods.
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1 INTRODUCTION
These years have witnessed the �ourish of pre-trained language
models in Natural Language Processing (NLP) [11, 34, 39, 47]. Based
on the pre-training and �ne-tuning paradigm, classical transformer
models such as BERT [11] have achieved state-of-the-art perfor-
mance in various downstream tasks. Recently, the great success of
these pre-trained models (PTMs) has also attracted much attention
from the Information Retrieval (IR) community [45, 46, 49]. Besides
applying PTMs in various tasks [12], researchers also aimed at de-
signing pre-training approaches tailored to improve performance
of speci�c tasks such as ad hoc retrieval [4, 26, 28]. Although their
work achieved promising retrieval performance, the mechanism
behind the performance improvement remains under-investigated.
Most existing pre-trained models are like black boxes because their
o�-the-shelf parameters will be gradually updated in the �ne-tuning
stage. In this regard, these models may lack interpretability and
hence be vulnerable to potential malicious textual attacks.

To increase the interpretability, e�ectiveness, and robustness of
ranking models, researchers have attempted to introduce certain
IR axioms or human heuristics into model training [8, 20, 22, 36].
Generally, axiomatic IR aims at formalizing a set of desirable con-
straints that any reasonable IR models should (at least partially)
satisfy. Each axiom mainly focuses on a single attribute that a good
ranking function should possess. For example, the basic TFC1 [13]
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axiom states that we should give a higher score to the document
with more occurrences of a query term. Similarly, the STM [15] and
the PROX [20] axiom families focus on the semantic term matching
and term proximity constraints, respectively. Either by adding con-
straints with these axioms on the learning objective or augmenting
the perturbed pairwise cases to the training set, retrieval models
can be improved by a certain margin in terms of ranking perfor-
mance. However, to our best knowledge, there are still no existing
e�orts that consider these axioms in the pre-training process. In
addition, most axioms are de�ned to provide pairwise preference
on a document pair given a speci�c query. It is therefore relatively
di�cult to directly apply them in the pre-training process where
only documents are available and queries need to be generated.

To incorporate the IR axioms into the pre-training process of
neural ranking models, we propose a novel pre-training framework
with Axiomatic Regularization for ad hoc Search (ARES). ARES
mainly consists of three stages: 1) Pseudo Query Sampling (PQS),
2) Preference Predictor Constructing (PPC), and 3) Axiomatically
Regularized Pre-training (ARP). In the PQS stage, we sampled a set
of pseudo queries from each document in the corpus with a simple
yet e�ective contrastive sampling strategy. Then in the PPC stage,
we collected ordered query pairs through four sampling settings and
extracted axiomatic features for each pair. The axiomatic feature
map and the weak preference labels will be further used to train a
preference predictor, i.e., an axiomatic binary decision model. In
the �nal stage of ARP, the query pairs regularized with axioms will
be fed into the pre-training process, meaning that we rely on query
pairs instead of document pairs to teach the ranking models.

Compared with existing pre-trained methods, our proposed
ARES training strategy helps learn the model designing knowl-
edge concluded by the IR community in the last decades in the form
of IR axioms. We can control the rules to teach ranking models by
using di�erent subsets of axioms. Therefore, ARES does not require
large-scale supervision data to �ne-tune in di�erent task settings
as much as existing IR-oriented pre-trained models do. Compared
with these models, ARES is expected to be more interpretable and
able to gain better performance in low-resource scenarios (e.g.,
few-shot and zero-shot settings [27, 28]).

In summary, the contributions of this work are three folds:
• Wepropose a novel axiomatic-based pre-trainingmethod, namely
ARES. Compared to existing approaches, the pre-training stage
of ARES is more explainable and better �ts low-resource settings.

• We summarize nine adaptive axioms from existing axioms or
heuristics and categorize them into groups so that they can be
easily applied in the pre-training process.

• Experimental results on multiple public datasets have shown
the e�ectiveness of ARES in both full-resource and low-resource
(zero-shot/few-shot) settings. We further �nd that ARES is the
only PTM that outperforms BM25 on all datasets in low-resource
settings. An intuitive case study also reveals that ARES has
learned retrieval knowledge described in IR axioms as expected.

2 RELATEDWORK
2.1 Pre-trained Language Models
In recent years, pre-trained language models including BERT [11],
Open AI GPT [34], and XLNET [47] have led the trend in the Natural

Language Processing (NLP) �eld. By leveraging the two-stage para-
digm (�rst pre-training the model on a large-scale unlabeled corpus
by optimizing a self-supervised learning loss function and then
�ne-tuning it on limited supervised data), these models can achieve
signi�cantly better performance on a number of downstream tasks.
Due to its strong ability to learn contextualized textual representa-
tions, Transformer [39]-based architectures have become the basic
module in models dealing with various IR tasks [12], such as dense
retrieval [21, 45, 49], query expansion [31], and context-aware rank-
ing [5, 51]. Despite the promising performance achieved by directly
employing BERT, researchers have found that designing learning
objectives tailored for IR can help the model better handle the rank-
ing task. For example, Ma et al. [26] proposed RepresentativeWords
Prediction (ROP) task for pre-training by assuming that a sampled
word set with a higher query likelihood score is more “representa-
tive” to the document. By modeling di�erent dependencies between
the hyperlinks and anchor texts in Wikipedia pages, Ma et al. [28]
presented a new model named HARP, which has achieved state-
of-the-art performance in the ad hoc retrieval task. However, the
mechanisms behind these models are far from being thoroughly dis-
cussed. Unlike B-PROP [27] (improves the query sampling strategy
by bootstrapping), HARP [28] (leverages external knowledge such
as hyperlink relationships) and Condenser/coCondenser [16, 17]
(designs more e�cient model architectures), we focus more on in-
creasing the interpretability of pre-trained models by considering
certain IR axioms. Furthermore, while previous PTMs are usually
data-hungry, we �nd that incorporating certain axioms into pre-
training can also lead to promising zero-shot performance.

2.2 Axiomatic Information Retrieval
The utilization of axioms or retrieval heuristics to better under-
stand and improve information retrieval techniques has been well
established. It were Fang et al. [13] who �rst introduced several
text matching-based heuristics that good retrieval models should
follow to e�ectively handle various retrieval tasks. In the past two
decades, more than 20 axioms have been proposed so far. Accord-
ing to the problem they aim to focus, these axioms can be mainly
divided into several groups: term frequency [13, 14], document
length [13], lower bounds [25], query aspects [18, 43, 50], seman-
tic similarity [15], and term proximity [20]. Each group focuses
on one particular aspect, e.g., document length axioms de�ne the
constraints on the length of a document while term proximity ax-
ioms restrain the positions of each query term appearing in the
document. There exist studies aiming at analyzing neural rankers
with existing axioms [2, 3, 6, 40]. For example, Câmara and Hau�
[3] constructed a diagnostic dataset to explore whether BERT can
learn some existing heuristics. Their results have shown that BERT,
while performing signi�cantly better than traditional models for
ad hoc retrieval, does not ful�ll most retrieval heuristics created
by IR experts. Besides analyzing ranking models, IR axioms and
heuristics have also been employed for improving ranking mod-
els [8, 20, 22, 36]. By adding the axiom-based constraints on the
learning objective, Rosset et al. [36] improved the performance
of neural models such as Conv-KNRM by a certain margin. From
another perspective, Hagen et al. [20] adopted the learning-to-rank
idea to re-rank the top-k results directly using promising axiom



combinations. Although these studies have achieved some success
in better understanding IR models, whether considering certain
axioms while pre-training is useful and how to incorporate them
into the pre-training process remain under-investigated.

3 AXIOMS FOR PRE-TRAINING
In this section, we will brie�y introduce the basic knowledge of
axiomatic ideas for information retrieval and the adaptive axioms
we use for pre-training. In Section §3.1, we �rst give an overview
of classical axioms. These axioms usually provide the preference
judgment between paired documents given a speci�c query un-
der some assumptions. In this regard, they can hardly be directly
exploited in our pre-training setting where 1) queries need to be
generated from the document, and 2) the preference for a query
pair w.r.t. a document needs to be decided. Therefore, we modify
these axioms into query-centric ones to adapt to the pre-training
process (as described in Section §3.2).

3.1 Review: IR Axioms
Through decades of development, a system of IR axioms has been
well established. Existing axioms can be broadly divided into six
following groups according to the aspects they emphasize:
• Term frequency: e.g., TFC1-TFC2 [13], TFC3 [14], TDC [13].
• Document length: e.g., LNC1 [13], LNC2 [13], TF-LNC [13].
• Lower-bounding term frequency: e.g., LB1-LB2 [25].
• Query aspects: e.g., REG [43], AND [50], DIV [18].
• Semantic similarity: e.g., STM1-STM3 [15].
• Term proximity: e.g., PROX1-PROX5 [20].
Among them, term frequency and document length constraints are
the �rst to be proposed and are also the most fundamental ones.
For example, TFC1 states that we should give a higher score to a
document with more occurrences of a query term. LNC1 says that the
score of a document should decrease if we add an extra occurrence of
a non-relevant word. These two groups of axioms are too general;
hence they may play little role in improving the performance of the
sophisticated transformer model. The lower-bounding constraints
emphasize the presence-absence gap (0-1 gap) of a query term,
i.e., the marginal e�ect. From another perspective, the REG axiom
describes that a document that covers more query aspects should
be assigned a higher score. Previous work [40] has found that the
REG axiom can do well in explaining the neural ranking models.
Therefore, here we regard REG as a good axiom to increase the
interpretability of pre-trained models. Furthermore, the semantic
similarity and term proximity constraints have also been proved
to be e�ective in improving existing models [36, 40]. We will also
consider them later in the pre-training process.

For a comprehensive overview of axiomatic thinking for IR, we
recommend readers to refer to this guideline1.

3.2 Adaptive Axioms
To better utilize these heuristics in the pre-training process, we
consider nine di�erent axioms and rearrange them into �ve groups
as shown in Table 1. The main di�erence between these adaptive

1https://www.eecis.udel.edu/~hfang/AX.html

axioms and the existing ones is that adaptive axioms give the pref-
erence judgment on a pair of queries given a speci�c document
(< q1,q2,d >). The �ve groups are RANK, REP, PROX, REG, and
STM, respectively. Among them, we regard RANK and REP as the
basic axiomswhile the rest ones as the auxiliary axioms. Here “basic”
means “fundamental” or “necessary” for pre-training rather than
“simple”. Basic axioms usually describe a complex, high-level con-
cept closer to some ranking function or the de�nition of “relevance”.
They may already cover multiple aspects that a good ranking model
should consider and thus can be used alone without being com-
bined with other axioms. By contrast, the auxiliary axioms merely
capture a single aspect and can hardly be leveraged alone. Next, we
will give a detailed description of these adaptive axioms.

3.2.1 RANK. The main idea of the RANK axiom is that for any
document, there may exist one best query that a reasonable ranking
function can rank the document at the top position among the
corpus. To determine the RANK value, a query, a document, and the
corpus are necessary. Empirically, the ranking function should be an
e�cient and e�ective one so that the cost of retrieving documents
for a large number of queries from the corpus is a�ordable. To this
end, here we adopt BM25 as the ranking model and retrieve the top
50 documents from the whole corpus to determine the RANK value
of a query. If a query cannot rank the document within the top 50
positions among the corpus, then we set RANK = +∞.

3.2.2 REP. Following previous work [26, 27], we also consider the
representativeness of a query with regard to the corresponding doc-
ument. In summary, REP requires that a good query should be more
representative of the given document than the randomly sampled
ones. To formalize the representativeness of a query, we calculate
the normalized Query Likelihood (QL) and TF-IDF scores, denoted
as REP-QL and REP-TFIDF, respectively. Here the normalization
is conducted to avoid the length bias (e.g., the longer the query,
the smaller/higher the QL/TF-IDF score). The REP axioms mainly
di�er from the RANK axiom in two ways: I) RANK can be regarded
as the relative order of REP scores; hence the distribution of REP
scores can be denser than that of RANK because there may exist
two queries with the same RANK value but with di�erent REP-QL
scores; II) The REP scores can be directly computed given a query
and document pair without going deep into the corpus.

3.2.3 PROX. The PROX axioms aim to bridge the connection be-
tween query quality and the positions at which query terms ap-
pear in the document. For example, the PROX-1 axiom prefers
the queries whose terms appear more closely to each other in the
document. Given a tuple < q1,q2,d >, if all terms in q1 and q2
appear in d , then the average position di�erence of term pairs for q
within d can be calculated as:

π (q,d) =
1
|P |

∑
(ti ,tj )∈P

δ (d, ti , tj ); (1)

where P = {(ti , tj |ti , tj ∈ q, ti , tj )} is the set of all possible
query term pairs, and δ (d, ti , tj ) is the average number of the words
appearing between term ti and tj . If π (q1,d) < π (q2,d), then q1 is
better than q2. Intuitively, PROX-1 may emphasize the sentence
coherence and highlight the matching of bigram or trigram phrases,
while the REP axioms merely focus on single terms.
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From another perspective, thePROX-2 axiom prefers the queries
whose terms appear at earlier positions in a document. The average
position of the �rst occurrence of all terms t in q given a document
d can be formalized as:

µ(q,d) =
1
N

∑
t ∈q

θ (t ,d); (2)

where θ (t ,d) is the position of the �rst occurrence of term t in d ,
and N is the number of unique terms in q. The smaller µ(q,d) is,
the better the query is. The assumption of PROX-2 is consistent
with the vertically decaying human reading behavior [22, 23]. The
essence of a document, such as the title and the summary, tends to
appear at the head of a document.

3.2.4 REG. As mentioned before, some axioms describe the nature
of the query itself. Concretely, the REG axiom prefers the queries
whose most diverse term appears in a document with more times.
In other words, we should give a higher score to a query if the
document can cover more aspects of this query. To obtain the most
diverse term, we calculate the semantic similarity between each
term and the rest part of the query. The term with the lowest
similarity will be further selected to count the REG value.

3.2.5 STM. Previous axioms mainly consider the syntactic connec-
tions between query and document. To capture the query-document
relationship at the semantic level, we consider three semantic
matching heuristics. The STM-1 axiom prefers the query with
a higher semantic similarity with the document. For convenience,
we use the average-pooled word vectors to represent a query/doc-
ument embedding. As supplementary, the STM-2 axiom is used
to distinguish two queries if they have very close similarities with
the same document. Under this circumstance, the query with more
terms appearing in the document is better. Accordingly, this ax-
iom attaches more importance to exact matches than semantically
similar terms. Finally, the STM-3 axiom favors the query with
more terms that have a similarity with the document higher than a
threshold.

4 ARES
In this section, we will describe the details of the ARES framework
as shown in Figure 1. The key point of our approach is to better
resemble the relevance relationship between query and document in
the pre-training process by leveraging the adaptive axioms de�ned
in Section §3.2. ARES mainly consists of three stages: 1) Pseudo
Query Sampling (PQS), 2) Preference Predictor Constructing (PPC),
and 3) Axiomatically Regularized Pre-training (ARP).

4.1 Pseudo Query Sampling
Our work inherits the spirit of PROP [26] and B-PROP [27] which
adopt Representative Words Prediction (ROP) as the pre-training
task. In their assumption, a query with a higher query likelihood
score is more “representative” of the corresponding document thus
should be assigned a higher score. Similarly, ARES aims to train a
transformer model by predicting the pairwise preference between
two sampled queries based on their axiomatic preference for a
document. To this end, we need to sample a number of pseudo
queries from each document in the corpus for comparison.

Table 1: Adaptive axiom descriptions. Here “�” denotes the
preference of a speci�c axiom.

Axiom Description (< q1,q2,d >)

RANK
Given d , If a reasonable ranking function ϕ can rank
d higher under q1 than under q2 among the whole
corpus, then q1 � q2.

REP-QL Given d , if q1 can be generated from d with a higher
query likelihood score than q2, then q1 � q2.

REP-TFIDF Given d , if q1 has a higher normalized TF-IDF score
than q2, then q1 � q2.

PROX-1 If terms in q1 appear more closely to each other in
d than q2, then q1 � q2.

PROX-2 If the �rst occurrences of terms in q1 appearing in d
precede that of q2, then q1 � q2.

REG Given d , if d can cover more aspects of q1,
then q1 � q2.

STM-1 Given d , if q1 is more semantically related to d than
q2, then q1 � q2.

STM-2
Given that the similarity di�erence between q1 and
q2 with d is smaller than a threshold, if there are
more q1 terms appearing in d than q2, then q1 � q2.

STM-3 If there are more terms semantically similar to d in
q1 than q2, then q1 � q2.

In this work, we do not focus on bootstrapping the sampling
approach with complicated self-attention architectures in BERT.
Inspired by the divergence-from-randomness idea [1], we adopt
a simple yet e�ective strategy based on the contrastive term dis-
tribution. The main assumption of the strategy is to sample more
representative queries so that the pre-training task will be relatively
more challenging and the model can learn more useful knowledge.

To begin with, the term distribution for a speci�c document
P(w |θD ) and the general term distribution of the corpus P(w |θC )
can be calculated as follows:

P(w |θD ) =
c(w,D) + µP(w |θC )

|D | + µ
, (3)

P(w |θC ) =
DF (w) + 1∑

w ′∈V DF (w ′) + |V |
, (4)

where c(w,D) denotes the number of termw in a document D, µ is
the Dirichlet smoothing parameter,DF (w) represents the document
frequency of termw , and V is the vocabulary set.

Then we obtain the contrastive term distribution by computing
the divergence between the document term distribution and the
general term distribution:

γw = −P(w |θD )logP(w |θC ), (5)

P(w |θcontrastive ) =
exp(γw )∑

w ∈V exp(γw )
; (6)

Here P(w |θcontrastive ) is the contrastive term distribution. If a
termw is more representative of the document then this probability
will be higher. The softmax function ensures that the summation
of probabilities over all terms is 1.

Given a document and its contrastive term distribution, we sam-
ple queries with equal length (so that some axioms can be directly
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Figure 1: Illustration of the proposed ARES framework. Generally, there are three main stages: 1) Pseudo Query Sampling
(sample some query term sets from a given document), 2) Preference Predictor Constructing (extract pairwise axiomatic fea-
tures and preference labels to train a classi�cation model), 3) Axiomatically Regularized Pre-training (judge the preference
for sampled query pairs, and then pre-train the vanilla BERT model with a multi-task learning objective).

applied without modi�cation). Following previous work [26–28],
we �rst draw a Possion distribution to sample a query length l
and then sample the pseudo query q (i.e., an unordered word set)
according to the length based on the contrastive term distribution:

P(x) =
λxe−λ

x
,x = 1, 2, 3, ..., (7)

q = {w1, ...wl },wk ∼ P(w |θcontrastive ) (8)

By investigating the RANK scores of all pseudo queries, the distribu-
tion is categorized into �ve intervals: [1, 2) (32.08%), [2, 5] (11.19%),
[6, 10] (4.28%), [11, 50] (10.07%), and [51,+∞) (42.38%). More than
30% of these queries can rank the corresponding document �rst
among the whole corpus. The overall distribution is also not highly
concentrated, indicating the rationality of our sampling strategy.

4.2 Preference Predictor Constructing
Before preparing reasonable < q+,q−,d > tuples for pre-training,
we �rst need to construct an axiomatic preference predictor. Once
the preference predictor is trained, it can be applied in any corpus
to generate axiomatic preference labels for query pairs and no
labeled data is needed anymore for pre-training. To better explain
the role each axiom plays in the decision process and to improve the
prediction accuracy, here we chose XGBoost [7] as the classi�cation
model.We then used the training set of the well-knownMSMARCO
document ranking [30] task to sample the query pairs for judgment.
Each document labeled as “relevant” to one or multiple queries may
be used to generate training pairs. Here we regarded all training
queries as positive examples of their relevant documents.

As for negative queries, we designed four settings to sample
them from the whole pseudo query set that we obtained in Sec-
tion §4.1. Detailed descriptions for each setting are given in Table 2.
To capture discrimination at various levels, we collected di�erent
subsets of pseudo queries by adding some constraints. For I, we
randomly sampled negative queries from all pseudo queries. As a
certain proportion of low-quality queries are sampled in setting
I, it will be relatively simple for the model to learn the di�erence.
The decisions are increasingly intractable from setting II to IV, as
negative queries become more competitive against the positive
ones, e.g., setting IV only selects the queries which can rank the

Table 2: Four settings of sampling negative queries. The dis-
crimination di�culties are incremental from setting I-IV.

Setting Sampling strategies AUC

I
Randomly sample negative queries from all
pseudo queries for a document. 0.9027

II Sample according to p = so�max(1/RANK). 0.8714

III
Ignore the documents if none of its pseudo
queries has a RANK value of 1. Then sample
queries from the rest documents as done in I.

0.7734

IV
Only consider those queries whose RANK
values are less than or equal to 5. 0.8258

corresponding document within the top �ve positions. For each
document, we sample one negative query to organize the training
cases.

Given all positive and negative query pairs, we further extract
preference features for each axiom. We �rst randomly shu�ed all
query pairs to balance the number of preference labels (0/1). Then
for each axiom A for each < qi ,qj ,d > tuple, we collect a feature
matrixM as follows:

MA[i, j] =


1, if qi �A qj ,

0, if qi =A qj ,

−1, otherwise .

(9)

Here qi �A qj represents that the axiom A prefers qi over qj and
qi =A qj says thatA deems the two queries as the same. We split all
pairs into training and testing set with a ratio of 9:1. As the data size
is considerable (all settings contain over 150k cases), we applied two-
fold cross-validation while training and used the best-performing
model to predict the testing cases. The averaged predicting AUC
scores are presented in the third column of Table 2. We can observe
that the prediction accuracy roughly decreases from setting I to
IV, which is consistent with our expectation because the negative
queries become harder.

To further investigate the role each axiom plays in the decision
process, we plot the distribution of feature importance (based on
information gain) in Figure 2. Generally, in setting I and II, the
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Figure 2: Axiom importance learned by XGBoost (normal-
ized by the axiom with the highest importance).

decision process is dominated by RANK, REP-QL, PROX-2, and
STM-3, while in the setting III and IV, REP-QL, PROXs, and RANK
are more important. The importance of the RANK axiom is much
higher than that of other axioms in setting I and II. This phenome-
non is reasonable because the negative queries are relatively easy
to be distinguished from the positive ones in these two settings.
Hence, only using the RANK axiom can achieve a rather promis-
ing prediction accuracy. However, in setting III and IV, negative
queries have almost the same RANK value as the positive ones.
More discriminative axioms such as REP-QL and PROXs will have
greater impacts in these scenarios. The feature distributions of set-
ting III/IV also provide empirical support for the basic idea of PROP
and B-PROP, which mainly consider the REP-QL axiom and have
achieved promising performance in the ad hoc retrieval task.

As the axiom importance distribution is similar between the I/II
and III/IV settings, we will only consider the setting I (denoted as
ARESsimple ) and IV (denoted as AREShard ) hereinafter. In addition,
we consider the setting where all axioms do not con�ict (denoted as
ARESstr ict ), i.e., we only select the cases where all axioms prefer
the same query. To validate the e�ectiveness of both basic and
auxiliary axioms, we also consider two other variants ARESREP
and ARESRANK by leveraging only the REP and RANK axioms.

4.3 Axiomatically Regularized Pre-training
Based on the pseudo queries we sampled from each document in
the corpus, we applied the axiomatic preference predictor trained in
Section §4.2 to conduct pairwise preference judgment among these
queries. Generally, ARES aims to jointly optimize a loss function as

presented in Equation 10:

Ltotal = LRel + LMLM ; (10)

Here LRel is a pairwise loss (similar to the ROP objective) which
can help the model better �t the de�nition of relevance, and LMLM
is the Masked Language Modeling (MLM) [11] objective. For the
pairwise loss, we use margin ranking loss (a.k.a., hinge loss) to
ensure that the model can learn the axiomatic knowledge in the
pre-training process (Equation 11):

LRel =max(0,marдin − P(q+ |d) + P(q− |d)); (11)

P(q+ |d) and P(q− |d) denote how relevant q+ and q− is to the docu-
ment d based on the model prediction. Following previous work [26,
28], we empiricially setmarдin = 1 here. For all transformer-based
models, P(q |d) can be obtained by calculatingMLP(h[CLS ]), where
h[CLS ] is the pooled output of transformer.

By reconstructing the language pattern, the MLM objective has
been proved crucial to learn good contextual representations for
queries and documents. It can be de�ned as follows:

LMLM = −
∑

x̂ ∈m(x )

log p(x̂ |x\m(x )); (12)

wherex denotes the input sequence,m(x) andx\m(x ) are themasked
word set and the rest words in x , respectively.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We leverage MS MARCO document collection [30]
as the pre-training corpus. It contains over 3.2M high-quality web
page documents, which is su�cient to support pre-training.

For downstream tasks, we �ne-tune ARES on �ve widely-used
ad hoc retrieval benchmarks: MS MARCO Document Ranking (MS
MARCO) [30], TREC 2019 Deep Learning Track (TREC DL 2019) [9],
Robust04 [41], Million Query Track 2007 (MQ2007) [33], and TREC
COVID [42]. Basic statistics of these datasets are presented in Ta-
ble 3. Although sharing the same training set, DL 2019 collects
�ner-grained human labels for 43 queries while MS MARCO con-
tains 0/1 labels for 5,193 testing queries. The data sizes of Robust04
and MQ2007 are relatively small. For years, they have been widely
used for evaluating the performance of ranking models. By con-
trast, TREC COVID is a new dataset that contains the questions
and articles concerning the pandemic of COVID-19.

Among them, MS MARCO, TREC DL 2019, and TREC COVID
contain plenty of training cases (over 300k). The �ne-tuned system
performance may tell little about the knowledge learned by o�-the-
shelf pre-trained models. To this end, we also aim to investigate
the e�ectiveness of various PTMs by testing their zero-shot and
few-shot performances on these three datasets. In addition, to test
the adaptive ability of each model, we also adopt the testing set
of EntityQuestions (EQ) [37] dataset (including 22,036 queries) to
evaluate their zero-shot performance.

5.1.2 Baselines. We consider three groups of baseline models for
performance comparison:
• Traditional IR Models:
– BM25 [35] is a classical and highly e�ective probabilistic re-
trieval model, usually used for �rst-stage retrieval.



Table 3: Basic statistics of all datasets. The superscript
“1/2” denotes that the dataset will be used for �ne-
tuning/evaluating the zero-shot performance, respectively.

Dataset Genre #Queries #Documents
MS MARCO1,2 web pages 0.37M 3.2M
TREC DL 20191,2 web pages 0.37M 3.2M
Robust041 news 250 0.5M
MQ20071 .gov pages 1,692 25M
TREC COVID1,2 biomedical articles 0.32M 8.8M
EntityQuestions2 wikipedia pages 0.22M 21M

– QL [48] is one of the best performing language models that
are based on Dirichlet smoothing.

• Neural IR Models:
– KNRM [44] is an interactive-based neural ranking model that
uses kernel-pooling to provide soft matching signals for queries
and documents.

– Conv-KNRM [10] fuses the contextual information of sur-
rounding words for matching by adding a convolutional layer
based on KNRM.

• Pre-trained Models:
– BERT [11] is a multi-layer bi-directional Transformer pre-
trained with Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP) tasks.

– TransformerICT [4] is designed for passage retrieval in ques-
tion answering scenarios. It jointly optimizes the Inverse Cloze
Task (ICT) with MLM.

– PROP [26] adopts the Representative Words Prediction (ROP)
task to better learn the matching between the sampled word
sets and the document. In our paper, we consider both the
released checkpoints PROPwiki and PROPmarco

2.
– HARP [28] introduces the hyperlinks and anchor texts into
pre-training and achieves the state-of-the-art performance on
ad hoc retrieval. As no pre-trained HARP checkpoint is publicly
available, we only cite its reference performance reported in
the corresponding published paper.

5.1.3 Evaluation Metrics. For the two small datasets (i.e., Robust04
and MQ2007), we randomly divide all queries into �ve folds and
then evaluate the model performance by conducting 5-fold cross-
validation. The �nal results are obtained by averaging the perfor-
mance on each testing fold. Following previous work [19, 29], we
report precision at rank 20 (P@20) and normalized discounted cu-
mulative gain at rank 20 (NDCG@20) on Robust04. As for MQ2007,
we report NDCG@10 and NDCG@20 values. On TREC COVID,
P@20 and NDCG@10 are used to measure the model performance.
For MS MARCO and DL 2019, we follow the o�cial instructions
to use MRR@10 (MRR@100) and NDCG@10 (NDCG@100) as the
evaluation metrics.

5.1.4 Implementation. For traditional models, we use the Anserini
toolkit3. The best parameters (k1 = 3.8,b = 0.87) reported for

2We do not consider B-PROP as a baseline in this paper because 1) no pre-trained
checkpoint is publicly available, 2) we focus more on judging the preference given a
query pair rather than improving the query sampling strategy.
3https://github.com/castorini/anserini

retrieval are employed for BM25. For KNRM and Conv-KNRM,
we use the OpenMatch4 toolkit as the implementation. Here the
300d GloVe [32] vectors are used to initialize the word embeddings.
For BERT, we adopt the Pytorch version of the BERT-base check-
point released by Google5. For PROP, two pre-trained checkpoints6
(PROPwiki and PROPmarco ) are directly used for �ne-tuning. Fi-
nally, we implement ARES and reproduce the TransformerICT
model by using the popular Huggingface Transformer library7.

In the pre-training stage, we set the length expectation λ = 3
while sampling pseudo queries. As for the MLM learning objec-
tive, we follow the masking strategy of BERT (randomly selecting
15% words in the input sequence, and the selected words will be
replaced by the [MASK] token in 80% of time, by a random token
in 10% of time, and unchanged in 10% of time). For each document,
we generate ten pseudo queries via the contrastive sampling strat-
egy and then randomly sample two query pairs for pre-training
(Equation 11). To save the e�ort of training our model from scratch,
BERT-base is used to initialize the parameters of ARES.We adopt the
AdamW [24] optimizer with a linear warm-up rate of 0.1 to update
model parameters. To support a larger batch size with limited GPU
resources, we employ mixed-precision training and parallel training
techniques in our implementation. The maximum input length for
all models is 512. We pre-train ARES with a learning rate of 5e-5 and
a batch size of 168 (28*6) for one epoch. The pre-training process
normally takes about two days on six Nvidia GeForce RTX 3090 24G
GPUs. To �nd the best checkpoint, we sample 5,000 queries from
the MS MARCO training set and test the zero-shot performance
of ARES checkpoint every 10k steps. The one with the best perfor-
mance on these queries will be further selected for �ne-tuning.

In the �ne-tuning process, we train each model with supervised
data and then apply them to rerank the document candidates. Gener-
ation approaches of document candidates are quite di�erent across
datasets. For Robust04, we rerank the top 200 BM25 candidates.
As for TREC COVID, following OpenMatch, we use the top 60
candidates provided by the BM25-fusion method. In MQ2007, each
query is o�cially provided with about 40 candidate documents. For
MS MARCO and DL 2019, we use both the o�cial top 100 candi-
dates and the top 100 candidates generated by an e�ective dense
retrieval approach named ADORE+STAR [49] (denoted as “AS” in
what follows). We concatenate query text with document content
and feed the input sequence ([CLS];q;[SEP];d;[SEP]) into various
transformers. In MS MARCO and DL2019, we use the concatena-
tion of the title, URL, and body as document content, which is a
common practice in dealing with these two datasets. The output
representations of [CLS] will be leveraged to calculate a pair-wise
loss similar to Equation 11. All pre-trained models are �ne-tuned
with a learning rate of 1e-5 and a batch size of 320 (40*8) for 20
epochs. It takes about 100 minutes to �ne-tune one epoch on eight
Nvidia Tesla V100-32GB GPUs.

To facilitate the reproductivity of our results, we release the
source code for our experiments as well as the pre-trained ARES
checkpoints in the link below 8.

4https://github.com/thunlp/OpenMatch
5https://github.com/google-research/bert
6https://github.com/Albert-Ma/PROP
7https://github.com/huggingface/transformers
8https://github.com/xuanyuan14/ARES-master

https://github.com/castorini/anserini
https://github.com/thunlp/OpenMatch
https://github.com/google-research/bert
https://github.com/Albert-Ma/PROP
https://github.com/huggingface/transformers
https://github.com/xuanyuan14/ARES-master


Table 4: Overall performance of ARES and other baselines on two large-scale datasets. “†” denotes the result is signi�cantly
worse than our ARES using paired t-test atp < 0.05 level. The best results are in bold and the second-best results are underlined.
Note that for HARP, the reported metrics are reference values and the signi�cance test can not be conducted.

Model Type Model Name
MS MARCO TREC DL 2019

O�cial Top100 AS Top100 O�cial Top100 AS Top100

MRR@10 MRR@100 MRR@10 MRR@100 nDCG@10 nDCG@100 nDCG@10 nDCG@100
Traditional
Models

BM25 .2656† .2767† .2962† .3107† .5315† .4996† .5776† .4795†

QL .2143† .2268† .2664† .2819† .5234† .4983† .6227† .4981†

Neural IR
Models

KNRM .1526† .1685† .1721† .1913† .3071† .4591† .3427† .4387†

Conv-KNRM .1554† .1792† .1833† .2251† .3112† .4762† .3612† .4565†

Pre-trained
Models

BERT .3826† .3881† .4105† .4197† .6540 .5325 .6351 .5001†

TransformerICT .3860† .3913† .4113† .4208† .6491 .5320 .6344 .4998†

PROPwiki .3866† .3922† .4124† .4219† .6399† .5311 .6237† .4998†

PROPmarco .3930† .3980† .4186† .4278† .6425† .5318 .6447 .5038
HARP .3961 .4012 N/A N/A .6562 .5337 N/A N/A

Our
Approach

ARESsimple .3995 .4041 .4302 .4386 .6505 .5353 .6378 .5054
(ARES best) (.39951) (.40462) (.43021) (.43861) (.66663) (.53973) (.64602) (.50793)

5.2 Overall Performance
Table 4 systematically reports the performance of various models
on MS MARCO and TREC DL 2019. Note that in this table, we only
report the performance of the best ARES variant (ARESsimple ) and
the best metrics achieved by di�erent ARES variants (denoted as
“ARES best”, the superscript 1/2/3 denotes ARESsimple , AREShard ,
and ARESREP , respectively). Through the experimental results, we
have the following �ndings:

• All pre-trained models signi�cantly outperform traditional and
neural IR models. This indicates the e�ectiveness of the trans-
former architecture and the two-stage training paradigm. Through
pre-training, these models may have learned helpful knowledge
for text matching and thus perform substantially better.

• Pre-trained models tailored for IR such as PROP and HARP per-
form signi�cantly better than BERT.Without a specially designed
training objective, BERT is like a dilettante in terms of ranking.
Based on the ROP task, PROP can better capture the matching
between queries and documents than BERT. By learning the con-
trastive relationships buried in the Wikipedia hyperlinks, HARP
is slightly superior to other PTMs on the two datasets.

• In general, ARES performs best among all the models in most
metrics, even better than HARPwhich introduces external knowl-
edge on Wikipedia. The best performing variant is ARESsimple
which emphasizes the RANK axioms while also considering
other heuristics. The improvement on the DL 2019 dataset is
not that signi�cant because the testing set is so small (with only
43 queries). However, we �nd that ARESREP can do much bet-
ter by achieving the highest nDCG@10 value of 0.6666. As the
performance for most PTMs on the o�cial top 100 candidates is
relatively better than that on the AS candidates, we guess that
this dataset focuses more on the exact matches between queries
and documents. Therefore, ARESREP may have an advantage
over other models by merely leveraging two REP axioms.

On the three small datasets, we also �nd similar trends as in MS
MARCO. As shown in Table 5, ARES performs best on Robust04

Table 5: Overall performance of ARES and other baselines
on three small datasets. “N” stands for NDCG. “†” denotes
the result is signi�cantly worse than ARES at p < 0.05 level
using pairwise t-test.

Model Name TREC-COVID Robust04 MQ2007
P@20 N@10 P@20 N@20 N@5 N@10

BM25 .4857† .4792† .3670† .4265† .3835† .4142†
QL .4729† .4683† .3540† .4135† .3749† .4033†

KNRM .3986† .3619† .3408† .3871† .3295† .3594†
Conv-KNRM .4043† .3490† .3600† .4140† .3378† .3706†

BERT .5386 .5580† .3855† .4526† .4532† .4768†
TransformerICT .5286† .5418† .3928† .4590† .4512† .4755†
PROPwiki .5429 .6104 .3892† .4604† .4606† .4793†
PROPmarco .5257† .5944 .3910† .4644† .4628† .4841
ARESsimple .5400 .5969 .4048 .4810 .4729 .4901

and MQ2007 and achieves competitive performance on the TREC-
COVID dataset. The improvement of ARES over the PROP models
is not very signi�cant on the TREC-COVID dataset. This may be
because the number of training cases in TREC-COVID is huge (320k
pairs) while there are only 35 testing queries. After �ne-tuning,
most PTMs show close performance. Therefore, evaluation results
on this dataset may not be very typical.

5.3 Low-resource Settings
As the �ne-tuning process will cover the original nature of pre-
trained models, we further investigate the model e�ectiveness in
low-resource settings, i.e., zero-shot and few-shot scenarios.

5.3.1 Zero-shot performance. We compare the zero-shot perfor-
mance of various transformers with BM25. In this scenario, we
directly test the re-ranking performance of the o�-the-shelf pre-
trained models without any supervision data for �ne-tuning. As
revealed in Table 6, ARESsimple signi�cantly outperforms all other
models, and it is also the only model that substantially outperforms



Table 6: Zero-shot performance of various transformers.
“M”, “N”, and “P” stand for MRR, NDCG, and Precision. “†”
denotes the result is signi�cantly worse than ARESsimple at
p < 0.05 level using pairwise t-test.

Model Name MS MARCO DL 2019 COVID EQ
M@10 M@100 N@10 N@100 P@20 P@10

BM25 .2962 .3107 .5776† .4795† .4857† .6690†

BERT .1820† .2012† .4059† .4198† .4314† .6055†
PROPwiki .2429† .2596† .5088† .4525† .4857† .5991†
PROPmarco .2763† .2914† .5317† .4623† .4829† .6454†

ARESstr ict .2630† .2785† .4942† .4504† .4786† .6923
AREShard .2627† .2780† .5189† .4613† .4943 .6822†
ARESsimple .2991 .3130 .5955 .4863 .4957 .6916

BM25 across various datasets. On the contrary, other ARES counter-
parts also achieve competitive performances without �ne-tuning,
especially on the EntityQuestions (EQ) benchmark whose testing
set is much larger than other datasets. This observation indicates
the e�ectiveness of incorporating IR axioms into the pre-training
process. In fact, the search domains of TREC COVID and Enti-
tyQuestions are very di�erent from that of MS MARCO documents.
According to the promising adaptive ability on these datasets, ARES
variants may have learned more ubiquitous rules concerning rele-
vance and thus own higher robustness.

5.3.2 Few-shot performance. To test the model e�ectiveness from
various angles, we also compare the performance of ARES with
PROP after �ne-tuned with limited supervised data on various
datasets. Here we adopt the same experimental settings as in the
full-resource training. As shown in Figure 3, ARES outperforms
PROP on all datasets using the same number of training queries.
Note that we do not report the performance of BERT here because
its few-shot performance is much worse than ARES and PROP. On
TREC COVID, DL 2019 and MS MARCO, PROP needs about 1k-2k
queries for training to surpass BM25 while ARES needs none. These
results have shown the great potential of ARES in scenarios where
limited or even no supervised data is available.

5.4 Ablation Study
To further verify the e�ectiveness of di�erent axioms in ARES, we
conduct an ablation study by comparing the performance among
various ARES variants on theMSMARCOdataset, includingARESREP ,
ARESRANK , ARESstr ict , AREShard , andARESsimple . Among them,
the latter three counterparts incorporate all axioms into pre-training
while the �rst two only consider one group of basic axioms. The re-
sults are given in Table 7. We can observe that leveraging all axioms
normally signi�cantly improves the system performance compared
to only using a proportion of them. The performance of AREShard
and ARESsimple are rather close, slightly better than ARESstr ict .
This is reasonable because forcing the positive queries to satisfy all
the constraints may be too strict. A wiser approach may be learning
a classi�cation model (i.e., a predictor) to balance the importance of
each axiom in the pairwise decision process. ARESsimple performs
overall the best among all variants. There may be two reasons: 1)
leveraging the preference predictor trained on randomly sampling
negative queries (setting I) may help the pre-trained model learn a

Table 7: Ablation study on ARES variants. “†” denotes the
result is signi�cantlyworse thanARESsimple atp < 0.05 level
using pairwise t-test.

Variant
MS MARCO

O�cial Top100 AS Top100

MRR@10 MRR@100 MRR@10 MRR@100
ARESREP .3946† .3997 .4235† .4324†

ARESRANK .3920† .3971† .4159† .4253†

ARESstr ict .3967 .4016 .4251† .4339
AREShard .3995 .4046 .4290 .4380
ARESsimple .3995 .4041 .4302 .4386

more general distribution of query di�erence, 2) as the prediction
accuracy is the highest in the setting I, using the corresponding pre-
dictor may introduce less noisy data into the pre-training process.
We further �nd that ARESREP outperforms ARESRANK , especially
on AS top 100 candidates. As the discriminative power of the RANK
heuristic is low, totally depending on it for pre-training may cause
problems in distinguishing two high-quality queries. In addition,
ARESREP slightly outperforms PROP, indicating the e�ectiveness
of combining TF-IDF with QL scores.

5.5 Case Study
To analyze the di�erence of the ranking mechanism behind ARES
and the best baseline PROP, we use Integrated Gradient (IG) [6,
38] as the interpretation method. In a nutshell, IG computes the
integral of integrated gradients to show the importance of each
input attribution for the output. We visualize the attribution results
of ARESsimple and PROP on one case in the TREC DL 2019 dataset.
As revealed in Figure 4, distributions of attribution attention for
ARES and PROP are quite di�erent. We can observe that positive
terms are more concentrated on the front part of the document
for ARES while the distribution is more scattered in the whole
document-wide for PROP. This phenomenon implies that ARES
pays more attention to the head content by employing the PROX-2
axiom. Besides, ARES focuses more on the bigram phrases such as
“gold�sh grow” and “make gold�sh”.Without the guidance of PROX-
1, PROP usually attends to single terms. As a central query term,
“gold�sh” is emphasized in ARES, while PROP captures the less
informative word “do” and gives a negative attribution to “gold�sh”.
Therefore, ARES can better estimate the document’s relevance
(highly relevant) and thus rank the document higher.

6 CONCLUSION
In this work, we have proposed a novel pre-training method with
Axiomatic Regularization for ad hoc Search, namely ARES. We
�rst sample a set of pseudo queries via an e�ective and e�cient
contrastive sampling strategy for each document in the corpus.
Then an axiomatic preference predictor (i.e., a decision tree) is
built by �tting a constructed pairwise dataset. The distribution
of feature importance learned in this process intuitively indicates
the role each axiom plays in the decision process. We further ap-
ply the trained axiomatic predictors to judge the preference for the
pseudo queries and pre-train the BERT-base model with these query



Figure 3: Few-shot performance of ARES and PROP when �ne-tuned with di�erent number of limited supervised data.
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(a) Without �ne-tuning, ARESsimple ranks the relevant document at the �rst position.
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(b) Without �ne-tuning, PROP ranks the relevant document at the 14th position.

Figure 4: Attribution results of the zero-shot performance of ARESsimple and PROP on a TRECDL2019 case (qid: 489204, docid:
D897966). The color of each term indicates the attribution value, where red is positive, blue is negative, and white is neutral.
The deeper the color is, the larger the absolute value is. This �gure is best viewed in color.

pairs. According to the experimental results on multiple datasets,
ARES can achieve competitive ranking performance compared to
existing state-of-the-art approaches. Speci�cally, ARES has shown
promising performance in low-resource settings, i.e., it is the only
pre-trained model that substantially outperforms BM25 on various
benchmark datasets without any supervision signals for �ne-tuning.
Results of the ablation study have also implied the necessity of com-
bining all axioms in the pre-training process. We further conduct
a case study by visualizing the attribution of query and document
terms at the zero-shot inferencing stage. The case study indicates
that ARES has learned the desirable knowledge covered by certain
axioms such as PROX-1 and PROX-2.

Our work is a primary attempt at increasing the interpretability
of pre-training methods. As with any research, there are limita-
tions to our work. These limitations may inspire interesting future
directions. Firstly, there still exists an over�tting problem in the
pre-training process. At this stage, we adopt the early-stop strategy
with validation to alleviate this problem. In the future, more robust
regularization techniques can be explored to better �x it. Secondly,
although we interpret the concept of relevance by using several
axioms, it is still a long way before we thoroughly �gure out the
oracle de�nition of relevance. In the future, more intensive work
needs to be done on exploring the undetected aspects concerning
relevance.
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