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ABSTRACT
Large language models (LLMs) have demonstrated remarkable ca-
pabilities across various research domains, including the field of
Information Retrieval (IR). However, the responses generated by
off-the-shelf LLMs tend to be generic, i.e., cannot capture the dis-
tinctiveness of each document with similar content. This limits
the performance of LLMs in IR because finding and distinguish-
ing relevant documents from substantial similar documents is a
typical problem in many IR tasks. To address this issue, we pro-
pose an unsupervised alignment method, namely Reinforcement
Learning from Contrastive Feedback (RLCF), empowering LLMs to
generate both high-quality and context-specific responses. Our ap-
proach constructs unsupervised contrastive feedback signals based
on similar document groups, and adopts a reward function, named
group-wise reciprocal rank, to optimize LLMs. We conduct exten-
sive experiments to evaluate the effectiveness of RLCF.
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1 INTRODUCTION
Large Language Models (LLMs) have demonstrated promising per-
formances across a wide range of research fields, including infor-
mation retrieval (IR). IR aims to fulfil information needs of indi-
viduals though locating relevant documents from large-scale cor-
pus [10], which plays a fundamental role in the digital era [8, 21,
62]. Previous studies have utilized LLMs in IR tasks such as gen-
erating search snippets [25, 29, 34, 46], conducting query or doc-
ument expansion [23, 37, 55], creating training data for retrieval
models [3, 15, 54], and etc. These studies have demonstrated the
significant potential of LLMs in IR.

However, while widely adopted, applying an off-the-shelf LLM
directly to IR tasks could be suboptimal. One of key reasons is
the misalignment between the capabilities of off-the-shelf LLMs
and the needs of IR tasks, particularly the capability to provide re-
sponses that capture the distinctiveness of each document among
similar documents [15, 23]. For instance, Figure 1 show the results
of FLAN-T5 [11] when used for document summarization, a repre-
sentative IR task. As we can see, off-the-shelf FLAN-T5 generates
the same summary for three different documents, making them
indistinguishable to human. Using such summaries as document
representations or search snippets is not acceptable in search en-
gines, as they fail to assist users in quickly and accurately locating
their desired documents.

To empower LLMs with desired response attributes, one of the
most widely adopted methods is to conduct LLM alignment. The
idea of LLM alignment is to construct feedback to LLM’s responses
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Philippine share prices 
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...Philippine share prices 
closed lower thursday amid 
renewed fears about the 
global economic slowdown...

Doc 1

...Philippine share prices 
closed lower tuesday on 
fears that a congressional 
vote to quash an 
impeachment complaint 
against president gloria 
arroyo...
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Similar Documents

...Philippine share prices 
closed lower on tuesday, 
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downturn in foreign markets, 
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LLM

Generated Summaries 
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Figure 1: Illustrations of LLMs application in document sum-
marization for similar documents. The distinctive parts of
each document are highlighted in different colors.

based on the preferred attributes (e.g., helpfulness [42], harmless-
ness [14, 31, 61], etc.) and use them to optimize LLMs. Depending
on how the feedback is collected, existing LLM alignments can be
broadly categorized into human-based methods and model-based
methods. Unfortunately, none of the existing alignment methods
can be used to improve distinctiveness of response from LLMs.

• While human-basedmethods such as RLHF [42] are flexible and
generic, the cost of collecting large-scale human feedback is
expensive and usually prohibitive in IR scenarios.

• While existing model-based methods such as RLAIF [31] and
RLCD [61] do not require human in the loop, they are inher-
ently incapable of capturing distinctiveness, as their feedback
signals (i.e., reward scores) are computed in a point-wise man-
ner. Specifically, the distinctive information of an LLMs response
must be specified in the context of other similar responses, and
thus the feedback signals of distinctiveness can only be derived
from differentiating multiple responses in a group-wise man-
ner, where existing methods are clearly infeasible.

To address these limitations and improve the distinctiveness of
LLMs responses, we propose a novel optimization framework called
Reinforcement Learning fromContrastive Feedback (RLCF). RLCF
is a group-wise alignment method that constructs feedback of dis-
tinctiveness for a group of similar inputs, and it is fully unsuper-
vised. The workflow of RLCF is depicted in Figure 2. Specifically,
we first identify a group of similar documents for each document
in the corpus. Then, each document in the group is fed to an LLM
to obtain a corresponding response. For example, the responses
could be summaries of long documents for a summarization task.
Next, we construct contrastive feedback from the group of LLM-
generated responses, using a reward function named group-wise
reciprocal rank. Finally, the LLM is optimized based on the con-
trastive feedback with the standard Proximal Policy Optimization
(PPO) algorithm [49].

An input.

The policy model 
generates a 
response for the 
input.

The reward 
model directly 
calculates a 
reward for the 
response.

Representation 
encoder

Reward 
model

A group consisting of several 
similar inputs.

The policy model generates a 
response for each input in the 
group.

i j k

i j kThe representation encoder 
maps the documents and 
responses into a semantic 
space.

r

r r r

i ik

The reward is calculated 
based on the comparison 
between responses, 
corresponding documents, 
and their similar documents 
in the semantic space.

RLHF / RLAIF / RLCD RLCF

Figure 2: The comparison between existing alignment meth-
ods and RLCF. The dotted line represents that the reward
score is returned to LLM for PPO optimization.

To demonstrate the effectiveness of RLCF in optimizing the dis-
tinctiveness of LLMs responses, we conduct comprehensive exper-
iments, which include three representative IR tasks, various scales
of LLMs (ranging from 770M to 11B) with both encoder-decoder
and decoder-only architectures, and both Chinese and English cor-
pora. In particular, we evaluate RLCF on the tasks of document
summarization, document expansion and data augmentation. Note
that the performances on these tasks are essentially sensitive to the
distinctiveness of the LLM-generated responses (e.g., summaries).
For document summarization, we directly evaluate the quality of
the LLM-generated summaries, measured by human evaluation and
an automatic metric called Rouge-diff. To assess the effectiveness
of RLCF-optimized LLMs in document expansion and data augmen-
tation, we evaluate the LLMs responses through downstream doc-
ument retrieval tasks, i.e., comparing the performances of retrieval
models enhanced by LLMs with different alignment methods. The
results indicate that, compared to existing alignmentmethods, RLCF
can significantly improve the distinctiveness of LLMs responses,
which can largely benefit various IR applications 1.

We summarize our main contributions as follows:
• To the best of our knowledge, we are the first to study the
distinctiveness of LLMs response and demonstrate its signif-
icance in powering IR applications.

• We propose a novel framework namely RLCF which utilizes
the contrastive feedback to unsupervised align the capabil-
ity of LLMs with the needs of IR.

• The experimental results demonstrate the effectiveness of
RLCF on both English and Chinese LLMs as well as various
parameter scales and architectures.

2 RELATED WORK
2.1 Large Language Models
Recently, LLMs are emerged and boost many natural language pro-
cessing tasks. The architecture of LLMs, particularly the Trans-
former [53], leads to significant improvements in capturing textual
semantics. This advancement empowers many influential models
1The codes are released at https://github.com/Deriq-Qian-Dong/RLCF
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such as BERT [16] and GPT [43]. These models pave the way for
subsequent advancements like GPT-2 [44] and GPT-3 [6], with in-
creasingmodel sizes and capabilities.The training pipeline of LLMs
also earned significant attention in recent years due to its pivotal
role in enabling models like GPT to exhibit remarkable language
understanding and generation capabilities. Pre-training is a cor-
nerstone of training LLMs and involves training the model on a
massive corpus to learn linguistic patterns and structures, lever-
aging the tasks such as masked language modeling [16], next to-
ken prediction [43] and etc. By utilizing large-scale pre-training,
LLMs acquire a general understanding of language, making them
available for various downstream tasks. Supervised Fine-Tuning
(SFT) involves training LLMs on task-specific datasets with labeled
examples. This stage adapts the generic linguistic knowledge ac-
quired during pre-training to specific tasks, such as sentiment anal-
ysis [19], text classification [18, 20], and dialogues [42]. Alignment
technique facilitates LLMs in learning from the generated responses
and environmental feedback, thereby aligning the capability with
the desired attribute. The environment feedback could be from hu-
man [42] or other models [1]. This approach has shown promise in
improving the helpfulness and harmlessness of LLMs.

2.2 Alignment for LLM
Alignment techniques, which aim to ensure that language models
act in accordance with human values or desired attributes, have
garnered significant research attention. This surge of interest is
primarily attributed to the widespread proliferation and increas-
ing impact of language models in recent years. In recent years, re-
searchers have increasingly turned their focus to leveraging hu-
man feedback as a valuable resource for optimizing language mod-
els [2, 51, 69]. Reinforcement learning is typically employed for
such optimization, leading to the development of a class of meth-
ods referred to as RLHF (Reinforcement Learning from Human
Feedback). RLHF [42] leverages human-provided reward signals to
guide the training process of languagemodels, enhancing their per-
formance in various natural language generation tasks. Despite the
superior performance, a major drawback of RLHF is the require-
ment for extensive manual labor to provide feedback, making it
expensive and time-consuming. Recently, RLAIF [31] utilizes the
feedback from the LLM itself to train a reward model, and aligns
the capability of LLM in a same manner with RLHF. RLCD [61]
utilizes the positive and negative prompts to output preferred re-
sponses, thereby training the reward model.

2.3 LLM Applications in IR
Document Summarization. Document summarization is a vital
research area in information retrieval. Here, we provide an overview
of document summarization. Extractive summarizationmethods [28,
35, 39, 65] select sentences or phrases directly from the input doc-
ument to form a summary. Abstractive summarization [4, 48, 50,
60, 66] approach imitates human that comprehends a source doc-
ument and writes a summary based on the salient concepts of the
document Multi-document summarization [5, 7, 64] concentrates
on generating concise summaries from a cluster of topic-related
documents. Besides, PLMs, such as BART [32], GPT-2 [44], and
T5 [45], are also be used for multi-document summarization task.

Language Model for Document Expansion. LLMs are widely
used to supplement missing information, therebymitigating issues
associated with data sparsity [57] or information gaps [67]. The
vocabulary mismatch between query and document could be effec-
tively alleviate by document expansion using language models [23,
40, 55]. Doc2Query [41] predicts which queries will be issued for
a given document and then expands it with those predictions with
a vanilla sequence-to-sequence model, trained using datasets con-
sisting of pairs of query and relevant documents. DocT5Query [40],
employing T5 [11] as its backbone in the Doc2Query framework,
achieves remarkable performance, illustrating that an enhanced
backbone results in superior improvements. Doc2Query- [23] il-
lustrates the significance of query quality in document expansion.
The research suggests that eliminating low-quality queries can en-
hance the effectiveness of Doc2Query.
Language Model for Data Augmentation. Data augmentation
is an effective strategy to address the challenge of limited training
sample sizes. This challenge is especially prominent in the zero-
shot learning scenario, which can be viewed as a cold-start prob-
lem. Owing to LLMs’ superior language comprehension capabili-
ties, they are extensively employed for data augmentation in nu-
merous research fields, like text classification [13], multilingual
commonsense reasoning [56], dense retrieval [3, 15, 26, 27, 54] and
etc. The distinctiveness of responses from LLMs plays a pivotal
role in data augmentation, particularly in dense retrieval. Dense
retrieval is trained using query and document pairs, which draws
extensive attention from both academia and industry due to its su-
perior performance when applied to the documents it has already
been trained on [17, 33, 36]. However, in practical search engines,
a large number of new web documents are emerged daily, which
often leads to a collapse in the performance of dense retrieval meth-
ods with respect to these new documents [15, 52].Therefore, boost-
ing the zero-shot performance of dense retrieval on new docu-
ments is a crucial challenge, in which LLMs play a pivotal role.

3 REINFORCEMENT LEARNING FROM
CONTRASTIVE FEEDBACK

In this section, we present the details of our proposed framework,
Reinforcement Learning from Contrastive Feedback (RLCF). It fa-
cilitate LLMs to capture fine-grained distinctions in similar input
documents and output responses that are more distinctive.

3.1 Motivation
Existing alignment methods, such as RLHF [42], RLAIF [31], RLCD
[61], etc., have demonstrated effectiveness in adjusting response
attributes (e.g., helpfulness). However, these methods can hardly
be utilized to enhance the distinctiveness of LLMs response due to
two limitations. First, the feedback signals of existing alignment
methods are not applicable for our task at hand. In particular, hu-
man feedback can be carefully-designed to imply distinctiveness,
yet is clearly too expensive to scale. On the other hand, model-
based feedback has moremanageable cost since it relies on amodel
but a human to generate accurate feedback. Unfortunately, as shown
in our experiments, existing LLMs struggle to provide accurate
feedback w.r.t. distinctiveness. Second, the feedback computation
in existing alignment methods follows a point-wise input manner.
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Table 1: The notations used in this paper.

Notations Descriptions
𝑞 The query used to search a document.
𝑑 A document from corpus.
D The corpus of documents.
G𝑑 The similar documents of document 𝑑 .
𝑜𝑑 The response of LLM for document 𝑑 .
𝜋 The original parameters of LLM.
𝜋𝑅𝐿
𝜙

The optimized RL policy.
R The reward used to optimize LLM, including the

penalty term.
GRR The reward function, referred to as group-wise

reciprocal rank (GRR).
Inst An instruction used for response generation.

As shown in the left part of Figure 2, a reward score is computed
for a single input in the existingmethods, while overlooking the re-
lationships between inputs. Consequently, the subtle distinctions
among similar inputs are neglected, which could result in trivial or
less informative outputs. Therefore, a natural question is: How to
construct a group-wise feedback with high-quality and low-
cost to enhance the distinctiveness of LLMs’ responses?

To answer the question, we propose an unsupervised alignment
method, namely Reinforcement Learning fromContrastive Feedback
(RLCF). As shown in Figure 3, we first construct data for formu-
lating contrastive feedback, including similar documents identifi-
cation and response generation. After that, the rest part in this fig-
ure outlines the process of optimizing an LLMwith the contrastive
feedback, which teaches the LLM to identify more distinctive infor-
mation from a document. The commonly used notations are sum-
marized in Table 1.

3.2 Data Construction
Similar Documents Identification. To facilitate the capacity of
LLMs for capturing subtle distinctions among documents, we first
need to gather groups of similar documents for computing con-
trastive feedback. To avoid the high cost of data labeling, we lever-
age an unsupervised dual-encoder to construct each group of sim-
ilar documents.

In particular, we randomly select a document 𝑑 in the corpusD,
and retrieve its top-K most similar documents to form the similar
documents G𝑑 of document 𝑑 , which can be formally defined as

G𝑑𝑖 = {𝑑 𝑗 | argmax
top-K

𝑆
(
𝑑𝑖 , 𝑑 𝑗

)
,∀𝑑 𝑗 ∈ D, 𝑖 ≠ 𝑗}, (1)

where 𝑆 (𝑑𝑖 , 𝑑 𝑗 ) denotes the similarity score between𝑑𝑖 and𝑑 𝑗 . Tak-
ing a standard dual-encoder based dense retriever as an example,
the similarity between documents are computed as

𝑆 (𝑑𝑖 , 𝑑 𝑗 ) = 𝐸𝑑𝑖 ⊗ 𝐸𝑑 𝑗
. (2)

Here, the ⊗ means the inner production operation, and

𝐸𝑑 = Avg_Pooling (M (𝑑)) , (3)

which is the average pooling of the last layer’s token representa-
tions produced by the encoder M.

Contrastive 
feedback

PPO

Response
 od

Similar
documents

Representation 
encoder

Corpus

υ
Similar

documents
Document

Response
 od

Responses 
of 

Similar documents group

Response od

Step 1. Similar documents 
identification

Step 4. 
Optimization

Step 2. 
Response 
generation

Step 3. Contrastive 
feedback calculation

Figure 3:The framework ofRLCF.We take the response𝑜𝑑 as
an example for illustration of group-wise contrastive feed-
back calculation. The green and blue rectangles represent
the embedding of response and documents, respectively.
The ⊗ represents the inner production operation between
the embedding 𝐸𝑜𝑑 and 𝐸G.

Please write a summary for the document.
Document: {d}
Summary: 

请为下面这个文档生成一个摘要。
文档：{d}
摘要：

Please write a query based on the document.
Document: {d}
Query:

Please write a query based on the document.
Document: {d}
Query:

English Summarization Chinese Summarization

Document Expansion Data Augmentation

Figure 4: The templates used in our RLCF framework.

ResponseGeneration.Next, for each group of similar documents
G = {𝑑 ∪ G𝑑 }, we use an LLM to generate a response for each
document within the group. These response could be a query or
the summary w.r.t. the document, or any other desired output.

More specifically, for each document 𝑑 ∈ G, we concatenate the
pre-defined instruction (denoted as Inst) as the input prefix for 𝑑 ,
which can be defined as

𝑜𝑑 = LLM (Inst ⊕ 𝑑) , (4)

where ⊕ represents the concatenation operation. The instruction
templates are presented in Figure 4.
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3.3 Model Optimization
Contrastive Feedback. To construct contrastive feedback with a
group of similar documents, we first use an unsupervised dual en-
coder, as the representation encoder, to maps the responses and
documents into a sematic space, and then compute the similarity
between 𝑜𝑑𝑖 and each document 𝑑 𝑗 ∈ G =

{
𝑑𝑖 ∪ G𝑑𝑖

}
. Intuitively,

the similarity score between 𝑑𝑖 and 𝑜𝑑𝑖 would be the highest if
LLM captures the key information of 𝑑𝑖 that distinguish it from
other documents in G𝑑𝑖 . Based on this intuition, we leverage a
group-wise reciprocal rank (GRR) to implement contrastive feed-
back, which can be defined as

GRR(𝑜𝑑𝑖 ,G) =
𝜆∑ |G |

𝑗=1 I(𝑆 (𝑜𝑑𝑖 , 𝑑𝑖 ) ≤ 𝑆 (𝑜𝑑𝑖 , 𝑑 𝑗 ))
, (5)

where I is an indicator function and 𝜆 is a hyper-parameter. 𝑆 (𝑜𝑑𝑖 , 𝑑 𝑗 )
represents the similarity score of response 𝑜𝑑𝑖 and document 𝑑 𝑗 .
The similarity score is defined in Equation 2.

The computation of contrastive feedback is efficient. Although it
necessitates |G|2 comparisons for the construction of a group-wise
feedback, each document in a similar document group G requires
encoding only once. These encoded document representations can
then be reused to conduct inner product operations with multiple
responses fromG. For RLHF [42] and RLAIF [31], with the increase
in the size of G, their computational overhead of constructing a
group-wise contrastive feedback increase dramatically. Each com-
parison involves the evaluation of a document-response pair, lead-
ing to quadratic computational complexity. Moreover, the expense
associated with utilizing either an LLM annotator or a human an-
notator is considerably higher than that of dense retrieval.

Notably, GRR(𝑜𝑑𝑖 ,G) is computed in a group-wisemanner, specif-
ically relying on the group G. Previous alignment techniques uti-
lize a point-wisemanner for computing reward scores, relying solely
on 𝑜𝑑𝑖 and 𝑑𝑖 . This is problematic for adapting LLMs for IR because
the distinctiveness of responses can only be measured in a group-
wise manner. In other words, we cannot determine the distinctive-
ness of a response for a document unless it is compared with re-
sponses generated for other documents.
Optimization. Our objective is to optimize the policy model, i.e.,
the LLM, using contrastive feedback to generate responses that are
desired in the context of IR.We achieve this through reinforcement
learning, specifically with the PPO [49] algorithm.We consider the
GRR as the reward score for the entire response, and maximize it
using the PPO algorithm. Following prior study [42], we also incor-
porate a term in the reward that penalizes the KL divergence be-
tween the optimized RL policy 𝜋𝑅𝐿

𝜙
with parameters𝜙 and the orig-

inal LLM 𝜋 . The penalty term prevents the policy model from pro-
ducing responses that diverge significantly from the vanilla LLM,
thereby preserving the language capabilities of the policy model.
The full reward R could be written as

R(𝑑, 𝑜𝑑 ,G) = GRR(𝑜𝑑 ,G) − 𝛽 log
[
𝜋RL𝜙 (𝑜𝑑 | 𝑑)/𝜋 (𝑜𝑑 | 𝑑)

]
, (6)

where 𝛽 is a hyper parameter that balances the GRR and penalty
term.

4 EXPERIMENTAL SETUP
4.1 LLM Applications in IR
There are three popular applications of LLMs in IR, including docu-
ment summarization [25, 29, 34, 46], document expansion for sparse
retrieval [23, 55] and data augmentation for dense retrieval [3, 15].
We evaluate RLCF on the optimizing LLMs for these tasks.
Document Summarization.Document summarization is a direct
application of LLMs in many information systems, which is criti-
cal for reducing users’ cognitive burden. Obviously, the summa-
rization performance highly relies on the distinctive information
captured by the summarization model (i.e., LLMs). However, due
to a notable lake of distinctiveness in the responses of off-the-shelf
LLMs, they often provide indistinguishable summaries for similar
documents, such as the example shown in Figure 1.
Document Expansion for Sparse Retrieval. Document expan-
sion is an effective technique for enhancing the performance of
sparse retrieval [23, 40, 41], usually via mitigating the vocabulary
mismatch between query and document. To facilitate the accuracy
of retrieval, the expansion of a document is desirable to be distinc-
tive compared with other similar documents, for which we find out
that vanilla LLMs are not well-aligned.
Data Augmentation for Dense Retrieval. For dense retrieval,
data augmentation using LLMs is an effective solution for handling
out-of-distribution (OOD) documents (e.g., newly-created contents)
and scenarios [15], where the labeled data is usually scarce. In par-
ticular, existing methods propose to generate synthetic queries for
the OOD documents, and train a retrieval model on such synthetic
query-document pairs with contrastive learning [9].

4.2 Datasets
Document Summarization. To compare the effectiveness for dif-
ferent alignment methods on document summarization, we per-
form experiments on two datasets: LCSTS for Chinese and Giga-
word for English. LCSTS [24] is a widely used dataset employed
for Chinese text summarization task. It was created to facilitate re-
search and development in the field of short text summarization.
Gigaword [50] is extensively utilized in English text summariza-
tion research, comprises substantial news articles and their associ-
ated headline summaries. This dataset is known for its extensive
coverage of diverse topics and its massive size, which makes it
a valuable resource for training and evaluating text summariza-
tion models. The corpus of LSCTS and Gigaword contain millions
of documents. The corpus of other datasets, such as CNN/Daily
Mail [38], WikiSum [22] and PubMed [12], are typically of smaller
size. Documents in these datasets diverge significantly, whichmakes
them easy to be differentiated and not appropriate to simulate real
IR scenarios. Therefore, these datasets are not the primary focus of
this paper.
Document Expansion andDataAugmentation forDocument
Retrieval. We use the BEIR [52] to evaluate the effectiveness of
data augmentation. BEIR [52] is a widely-used benchmark for doc-
ument retrieval. It comprises a variety of tasks, including passage
retrieval, entity retrieval, fact checking, and others. The dataset in-
cludes a broad range of domains, such as medical, finance, and sci-
ence. NQ [30] is not included in our experiments, because it is pre-
sented in the training stage of FLAN-T5 [15].
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4.3 Baselines
We utilize two representative LLM alignment methods, namely Re-
inforcement Learning fromAI Feedback(RLAIF) [31] and Reinforce-
ment Learning from Contrast Distillation(RLCD) [61], to evaluate
the effectiveness of RLCF. RLAIF leverages feedback signals from
the LLM itself, thus eliminating the necessity for expensive hu-
man annotation. Specifically, the LLM generates two responses
to the same input, which are then evaluated by the LLM based
on a elaborated instruction for preference annotation. The reward
model is subsequently trained using these annotated preference
samples. RLCD employs both positive and negative prompts to di-
rectly generate positive and negative responses respectively, and
subsequently trains the reward model using these pairwise sam-
ples.

Both RLAIF and RLCD are unsupervised alignment methods.
Upon obtaining the reward model, their optimization pipeline is
identical to Reinforcement Learning fromHuman Feedback (RLHF)
[42], specifically employing Proximal PolicyOptimization (PPO) [59].

4.4 Implementation Details
We only utilize the corpus of summarization datasets (i.e., LCSTS
and Gigaword) to conduct RLCF optimization and other model-
based LLM alignment methods. Subsequently, inference is directly
performed for the optimized LLM, followed by comparative analy-
sis. In our experiments, we employ FLAN-T5 [11] as the backbone
of LLMs for English datasets, which is an encoder-decoder architec-
ture. We perform experiments using FLAN-T5 models with 770M,
3B, and 11B parameters, respectively. For the Chinese dataset, we
utilize BELLE-7B-2M [63], which is a decoder-only architecture
and achieve promising instruction-following ability in Chinese. Al-
though GPT-3.5 and GPT-4 demonstrate superior performance, the
undisclosed parameters hinder the training and evaluation of align-
ment. We use Contriever [26] as the unsupervised dual-encoder𝑀
in RLCF. Each document is limited to the first 512 tokens, and any
tokens beyond 512 are truncated. The 𝜆 in Equation 5 is 10, and
the group size used in our experiments is 32, i.e., |G| is 32. The
sparse retrieval method used in document expansion experiments
is BM25 [47], implemented by Anserini 2 with default parameters.

To maximize the efficient utilization of GPU memory, we op-
timize all the parameters in FLAN-T5 with 770M parameters, the
last 23 layers of FLAN-T5 with 3B parameters, the last 4 layers of
FLAN-T5 with 11B parameters, and the last 12 layers of BELLE-7B-
2M, respectively. During text generation, we simply use the greedy
decoding strategy.

All experiments are implemented with PyTorch and Hugging-
face. DeepSpeed with ZeRO stage 2 is utilized for efficient training.
All the training and evaluation are conducted on 8 NVIDIA Tesla
A100 GPUs (with 40G RAM).

4.5 Evaluation
Automatic Evaluation. For data augmentation of dense retrieval,
we directly utilize the traditional metrics of document retrieval, i.e.,
Mean Reciprocal Rank (MRR), Recall, and Normalized Discounted
Cumulative Gain (NDCG). We introduce Rouge-diff as an evalu-
ation metric for document summarization, aimed at assessing the
2https://github.com/castorini/anserini

distinctiveness of summarieswithin similar documents.TheRouge-
diff is a variant of Rouge-N, which is defined as

Rouge-diff𝑜𝑑𝑖 =
|𝑠𝑒𝑡 (𝑜𝑑𝑖 ) ∩ (𝑠𝑒𝑡 (𝑑𝑖 ) \ 𝑠𝑒𝑡 (∪G𝑑𝑖 )) |

|𝑠𝑒𝑡 (𝑑𝑖 ) \ 𝑠𝑒𝑡 (∪G𝑑𝑖 ) |
. (7)

Here, 𝑠𝑒𝑡 (𝑡) represents the tokens of text 𝑡 after deduplication, and
|𝑠𝑒𝑡 (𝑡) | denotes the number of tokens in 𝑠𝑒𝑡 (𝑡). Additionally, we re-
port GRR for summarization evaluation, which is defined in Equa-
tion (5).
Human Evaluation. To make the evaluation more convincing,
we further conduct human evaluation on summaries. Firstly, we
randomly sample 200 documents that are not used in the RLCF opti-
mization. Subsequently, we identify the 3 most similar documents
for each of these documents, forming 200 groups documents with 4
documents in each group. Finally, we generate summaries for these
200*4 documents using both vanilla LLMs and RLCF-optimized
LLMs, as well as GPT-4. We recruit three annotators from a pool
of Ph.D. students, each with expertise in areas such as natural lan-
guage processing and information retrieval. We provide annota-
tion guidelines to our human experts and instruct them to conduct
a three-level annotation. The annotation guidelines involve three
dimensions: distinctiveness, correctness and concision. Distinctive-
ness refers to the ability of the summary to distinguish itself from
similar documents. It requires the summary to highlight unique
and critical points that set it apart from other similar documents.
Correctness represents the accuracy and completeness of the infor-
mation presented. Concision concerns the brevity of the summary.
A concise summary effectively conveys the main points of the orig-
inal document in as few words as possible. The annotation process
in RLCF is conducted at the group level, wherein the ultimate deci-
sion regarding superior responses is made through comprehensive
evaluation. We conduct comparisons between the vanilla LLM and
the RLCF-optimized LLM, as well as between the RLCF-optimized
LLM and GPT-4. During the process of annotation, two LLMs are
randomly designated as LLMA and LLM B to avoid bias. The anno-
tator’s task is to assess the quality of the summaries and determine
which one is superior. The decision is based on the above aspects
of the summaries, i.e., distinctiveness, correctness, and concision.

5 EXPERIMENTAL RESULTS
5.1 Document Summarization
For Chinese document summarization, we employ BELLE-7B-2M,
and for English document summarization, we utilize FLANT5-3B
as the initial parameters of LLMs. We conduct both automatic eval-
uation and human evaluation for document summarization.
Automatic Evaluation. We randomly select 512 documents that
are not used in the RLCF optimization to form the initial test set.
Subsequently, the four documents most similar to each document
in the initial test set are retrieved by a dual-encoder, thereby ex-
tending the initial test set and making the evaluation challenging.
As a result, the final test set consists of 2048 documents.

The experimental results are presented in Table 2. From this ta-
ble, we can draw the following findings:

• RLCF optimization significantly improves the Rouge-diff on
the test set, demonstrating its effectiveness on document
summarization in IR context.
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• RLCF optimization leads to significant improvements on both
Chinese and English datasets, highlighting its effectiveness
across different languages aswell as various parameter scales
and architectures.

• GPT-3.5 and GPT-4.0 demonstrate superior performance in
generating distinctive responses compared to publicly avail-
able LLMs. However, as the parameters of GPT-3.5 and GPT-
4.0 have not been released, conducting RLCF optimization
experiments on them is currently unfeasible.

• Model-based alignmentmethods (i.e., RLAIF and RLCD) can-
not outperform GPT-3.5 and GPT-4.0 on LCSTS, owing to
the inherent linguistic capabilities of the Chinese LLMBELLE-
7B-2M, which are comparatively weaker than those of the
English LLM FLAN-T5. The unreliable feedback constrains
the effectiveness of model-based alignment methods.

• In comparison to point-wise based alignmentmethods, RLCF
significantly outperforms them, underscoring the effective-
ness of the group-wise manner.

Human Evaluation. We also incorporate human evaluation in
our experiments. The settings of human evaluation are presented
in Section 4.5. The evaluation results are presented in Figure 5.
From this figure, we can draw the following conclusions:

• Responses generated by the RLCF-optimized LLMs contain
more distinctive information than those produced by vanilla
LLMs, making them more suitable for IR scenarios.

• Gigaword’s results are superior to those of LCSTS. This dis-
crepancy can be attributed to Gigaword’s larger corpus size
(3.8 million vs. 2.4 million) and the higher degree of similar-
ity among its documents, making it has more similar docu-
ments to construct contrastive feedback.

• TheRLCF-optimized LLMs exhibit performance on par with
GPT-4 on both Chinese and English datasets. Given the mas-
sive scale of parameters in GPT-4, the effectiveness of RLCF
is remarkable, as the LLMs used in our experiments have
only 3-7 billion parameters.

• GPT-4 slightly outperforms the RLCF-optimized LLMon the
Chinese dataset. This discrepancy could be attributed to the
inherent disparities in the fundamental capabilities of LLMs.
The publicly available English LLM is superior to its Chinese
counterpart.

• We noticed an inconsistency between the results of human
evaluation and automatic evaluation. Despite that RLCF op-
timized LLMs achieve more superior automatic metrics, re-
sponses generated by GPT-4 sufficiently satisfy users’ re-
quirements in document summarization task, yielding hu-
man evaluation scores comparable to those of RLCF-optimized
LLMs. Nevertheless, we believe that automatic metrics can
reveal more nuanced performance differences than human
evaluation can. In the task of document summarization, it is
challenging for humans to judge performance accurately.

5.2 Document Expansion for Sparse Retrieval
Document expansion is an effective technique to alleviate the vo-
cabulary mismatch, thus improving the performance of sparse re-
trieval. Due to constraints in computational resources, we only
generate five queries per document for the purpose of document

Table 2: Experimental results of document summarization
on LCSTS and Gigaword. Significant improvement or degra-
dation w.r.t. vanilla LLM is indicated (+/-) (p-value≤0.05).

Model LCSTS Gigaword
Rouge-diff GRR Rouge-diff GRR

GPT-3.5 23.8 90.9 15.5 78.9
GPT-4.0 25.6 90.9 17.6 78.9
Vanilla LLM
BELLE/FLAN-T5

22.1 90.4 11.9 75.2

w/ RLAIF 22.7 90.6 18.5 77.3
w/ RLCD 23.4 90.8 19.3 78.2
w/ RLCF 32.2+ 91.7+ 32.5+ 80.9+

56.8%

19.5%19.5%

RLCF Wins Vanilla Wins Draw

BELLE+RLCF wins

BELLE winsDraw
(a) LCSTS

63.9%

13.1%23.0%

RLCF Wins Vanilla Wins Draw

FLAN-T5+RLCF wins

FLAN-T5 winsDraw
(b) Gigaword

23.3%

28.0%

48.7%

RLCF Wins GPT-4 Wins Draw

BELLE+RLCF wins

GPT-4 winsDraw
(c) LCSTS

23.2%

20.1%
56.7%

RLCF Wins GPT-4 Wins Draw

FLAN-T5+RLCF wins

GPT-4 winsDraw
(d) Gigaword

Figure 5: The results of human evaluation.

expansion, and employ BM25 [47] to assess the effectiveness of the
expanded contents, and we restricted our document expansion ex-
periments to seven datasets from BEIR [52], each containing fewer
than onemillion documents.The generation of five queries per doc-
ument for a dataset comprising millions of documents requires a
significant investment of GPU hours, amounting to thousands.

The effectiveness of document expansion is influenced by inher-
ent characteristics of the dataset. Therefore, we incorporate statis-
tical information, including the average length of documents and
intra-list similarity, into Table 3. We divided this table into two
groups based on the average document length to facilitate the anal-
ysis. Intra-list similarity (ILS) [58, 68] is defined as

ILSD =

∑ |D |
𝑖=1

∑ |D |
𝑗=𝑖+1 𝑆 (𝑑𝑖 , 𝑑 𝑗 )∑ |D |

𝑖=1
∑ |D |

𝑗=𝑖+1 1
, (8)

where 𝑆 (𝑑𝑖 , 𝑑 𝑗 ) is the similarity score between 𝑑𝑖 and 𝑑 𝑗 .
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Table 3: Experimental results of sparse retrievalmethods on BEIR. Significant improvement w.r.t. the best baseline is indicated
(+) (p-value≤0.05). DocExp is the abbreviation for document expansion. The metrics used in this table is NDCG@10.

Dataset #Avg. Doc. Length200 #Avg. Doc. Length200
FiQA SCIDOCS ArguAna TREC-COVID Avg. SciFact NFCorpus Touche Avg.

ILS 1.27 1.29 1.32 1.49 1.34 1.21 1.26 1.39 1.28
BM25 .162 .133 .231 .456 .246 .666 .318 .489 .491
DocExp
FLAN-T5(3B)

.215 .138 .253 .563 .292 .668 .325 .489 .494

w/ RLAIF .208 .138 .259 .560 .291 .671 .318 .489 .493
w/ RLCD .207 .137 .253 .562 .290 .669 .319 .494 .494
w/ RLCF .216 .139 .270+ .582+ .302 .674+ .320 .498+ .497
Improv. 0.5% 0.7% 4.2% 3.4% 3.4% 0.4% - 0.8% 0.6%

The experimental results are shown in Table 3. Compared with
document expansion from off-the-shelf LLM, the average BM25
performance is improved from .246 to .292 when the average doc-
ument length is less than 200. This highlights that the problem of
mismatched vocabulary is more prominent in shorter documents.
Thus, shorter documents are better suited for assessing the effec-
tiveness of various alignment techniques in document expansion.
Besides, DocExp w/ RLCF outperforms other methods on six out
of seven datasets, with notable excellence on ArguAna and TREC-
COVID.These two datasets exhibit higher ILS scores. A heightened
ILS score signifies increased similarity among documents in the
corpus, indicating a more pronounced inclination for distinctive
expanded contents.This demonstrates that as the similarity among
documents within the corpus grows, LLMs increasingly depend on
RLCF to enhance their performance.

5.3 Data Augmentation for Dense Retrieval
The experimental results of BEIR are presented in Table 4. No-
tably, the settings used in this table are entirely zero-shot. To fa-
cilitate the evaluation of data augmentation’s quality, we utilize
the BERT-based-uncased [16] as the initial parameters of dense re-
trieval. From this table, we can draw the following findings:

• Across all datasets, RLCF-optimized LLMs consistently out-
perform other alignment methods in data augmentation for
dense retrieval. This demonstrates the effectiveness of our
RLCF framework for aligning the capability of LLMs with
the data augmentation in IR.

• ComparedwithDataAugwithout any alignment, point-wise
alignment methods, RLAIF and RLCD, do not exhibit sig-
nificant improvements. This underscores the superiority of
group-wise contrastive feedback used in RLCF.

To further analyze the impact of different scales of LLMs on
data augmentation, we conduct an analysis of scaling LLMs on
MS-MARCO. We use LLMs with 770 million, 3 billion, and 11 bil-
lion parameters in the experiment.The results are illustrated in Fig-
ure 6, which demonstrates that RLCF can consistently improve the
performance of data augmentation with different parameter scales.
Notably, the metrics we employ are MRR@10 and Recall@1000, as
these are widely used metrics in the MS-MARCO benchmark. Ad-
ditionally, as depicted in Figure 6, the RLCF-optimized LLMs out-
perform the LLMs with equivalent parameters.
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Figure 6: Scaling law of LLMs on the application of data aug-
mentation. The x-axis is parameter scale in billions.
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Figure 7: The relationship between the inference time and
group size for RLAIF and RLCF. The y-axis represents the
logarithmic scale of time (seconds) for better visualization.

5.4 Efficiency Analysis
In this section, we conduct an analysis of the group-wise feedback
computation inference times. As depicted in Figure 7, the inference
time of RLAIF exhibits an approximate exponential increase with
the growth of the group size. The time overhead in RLCF is pri-
marily lies in encoding documents and responses, while the com-
putational cost of inner product calculations is negligible. Notably,
the LLM used in Figure 7 for RLAIF is FLAN-T5-3B, while the dual
encoder used in RLCF is Contriever with only 110 million param-
eters. When the group size is 32, RLAIF requires a time overhead
of 11.3 seconds, utilizing 6.2 GB of additional GPU memory for
group-wise feedback computation. Upon increasing the parame-
ters of the LLM to 7 billion, the time overhead escalates to 50.9 sec-
onds, and additional GPUmemory usage rises to 14.3 GB. As a com-
parison, RLCF requires only an additional GPU memory overhead
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Table 4: Experimental results of dense retrieval methods on BEIR. Significant improvement w.r.t. the best baseline is indicated
(+) (p-value≤0.05). DataAug is the abbreviation of data augmentation.

Dataset(→) ArguAna FiQA NFCorpus SCIDOCS SciFact COVID Touche DBPedia HotpotQA Fever MARCO Avg.
Method(↓) NDCG@10
DataAug
FLAN-T5(3B)

.166 .152 .144 .073 .339 .452 .155 .173 .335 .292 .133 .219

w/ RLAIF .162 .159 .144 .072 .345 .467 .145 .183 .348 .291 .128 .222
w/ RLCD .125 .144 .153 .065 .352 .473 .112 .166 .340 .314 .122 .215
w/ RLCF .210+ .168+ .155 .081+ .379+ .502+ .164+ .192+ .390+ .347+ .144+ .245
Improv. 26.5% 5.7% 1.3% 11.0% 7.7% 6.1% 5.8% 4.9% 12.1% 10.5% 8.3% 10.4%

Recall@100
DataAug
FLAN-T5(3B)

.795 .444 .184 .203 .708 .068 .279 .280 .526 .574 .814 .442

w/ RLAIF .789 .448 .197 .207 .737 .071 .281 .298 .527 .579 .809 .445
w/ RLCD .724 .427 .191 .185 .717 .072 .238 .299 .525 .601 .792 .434
w/ RLCF .844+ .450 .202+ .209 .744+ .076+ .304+ .319+ .564+ .646+ .834+ .471
Improv. 6.2% 0.4% 2.5% 1.0% 0.9% 5.6% 9.2% 6.7% 7.0% 7.5% 2.5% 5.8%
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Figure 8: The cases of responses generated by vanilla LLMs
and RLCF-optimized LLMs for highly similar documents.

of 0.25GB and a time overhead of 2.2e-3 seconds. Consequently,
RLCF is an efficient alignment method for adopting LLMs to IR.

5.5 Case Study
In this subsection, we present several cases to illustrate the effec-
tiveness of RLCF, as shown in Figure 8. Since LLMs are employed
for generating queries in both document expansion and data aug-
mentation, we represent these two applications solely by the use
of ”Data Augmentation” in Figure 8. In the first case of data aug-
mentation, the query generated by vanilla LLMs could even match
all documents. In the second case, despite the generated queries
being relatively more relevant to the documents, they still lack dis-
tinctiveness. A query generated by vanilla LLMs for one document
can still match another document.

For the task of document summarization, despite that the gener-
ated summarizes are accurate for individual documents by vanilla
LLMs, they are not suitable within the pipeline of IR. As shown in
Figure 8, after RLCF optimization, the summaries generated by the
LLMs not only precisely summarize themain idea of the document,
but also capture the specific part of documents.

6 CONCLUSION
In this work, we propose a novel framework, namely RLCF, that
leverages contrastive feedback to optimize large language models.
Specifically, we construct groups of similar documents by an un-
supervised dual encoder model, and then use an LLM to generate
a response for each document. Next, we leverage the generated re-
sponse to construct a contrastive feedback for the LLM optimiza-
tion, which is implemented by a group-wise reward function, i.e.,
group-wise reciprocal rank. By doing this, the LLM can be opti-
mized via PPO algorithm to be aligned with the requirements of
information retrieval. We conduct experiments on three popular
applications of LLMs in information retrieval, demonstrating the
effectiveness of RLCF.
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