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ABSTRACT
Sequential recommender systems predict items that may interest
users by modeling their preferences based on historical interactions.
Traditional sequential recommendation methods rely on captur-
ing implicit collaborative filtering signals among items. Recent
relation-aware sequential recommendation models have achieved
promising performance by explicitly incorporating item relations
into the modeling of user historical sequences, where most relations
are extracted from knowledge graphs. However, existing methods
rely on manually predefined relations and suffer the sparsity issue,
limiting the generalization ability in diverse scenarios with varied
item relations.

In this paper, we propose a novel relation-aware sequential rec-
ommendation framework with Latent Relation Discovery (LRD).
Different from previous relation-aware models that rely on prede-
fined rules, we propose to leverage the Large LanguageModel (LLM)
to provide new types of relations and connections between items.
The motivation is that LLM contains abundant world knowledge,
which can be adopted to mine latent relations of items for recom-
mendation. Specifically, inspired by that humans can describe rela-
tions between items using natural language, LRD harnesses the LLM
that has demonstrated human-like knowledge to obtain language
knowledge representations of items. These representations are fed
into a latent relation discovery module based on the discrete state
variational autoencoder (DVAE). Then the self-supervised relation
discovery tasks and recommendation tasks are jointly optimized.
Experimental results on multiple public datasets demonstrate our
proposed latent relation discovery method can be incorporated
with existing relation-aware sequential recommendation models
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and significantly improve the performance. Further analysis exper-
iments indicate the effectiveness and reliability of the discovered
latent relations.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Sequential recommendation, Large language model, Latent relation

ACM Reference Format:
Shenghao Yang,WeizhiMa, Peijie Sun, QingyaoAi, Yiqun Liu,Mingchen Cai,
and Min Zhang. 2024. Sequential Recommendation with Latent Relations
based on Large Language Model. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’24), July 14–18, 2024, Washington, DC, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3626772.3657762

1 INTRODUCTION
Sequential recommendation is a promising research topic in the
community of recommender systems, aiming to predict the next
item the user prefers based on his/her interaction history [40].
Various methods have been proposed to address the sequential
recommendation task. Early studies focused on estimating the tran-
sition relations between items based on Markov chain assump-
tions [30]. In recent years, with the advancement of deep learning,
various deep neural networks, such as Recurrent Neural Networks
(RNNs) [11, 13, 17], Convolutional Neural Networks (CNNs) [34],
and Transformers [10, 15, 21, 33], have been incorporated to bet-
ter model user preferences reflected in their sequential historical
interactions.

Although existing methods have achieved remarkable perfor-
mance, they usually rely on item-based collaborative filtering algo-
rithms [32] to calculate the implicit collaborative similarity between
items while overlooking the explicit relations between items, which
are prevalent and significantly influence user decisions in the real
recommendation scenario. Recently, some relation-aware sequen-
tial recommendation methods [36, 37, 43] have been proposed to
explicitly consider item relations during modeling user preferences
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and significantly improve the performance of the sequential recom-
mendation. However, current approaches still face some challenges
that limit the application of these models.

Specifically, for most existing relation-aware methods, item rela-
tion data is typically stored in a knowledge graph, which may suffer
from sparsity issue of two aspects. Firstly, the relation sparsity on
the edge set. The relational item modeling of existing methods is
performed based on manually predefined relations. The attribute-
based relations (e.g., “share category”) and co-occurrence-based
relations (e.g., “also buy”) are usually used as these relations are
relatively straightforward to define and can be derived from user
interaction data and item metadata. Nevertheless, the relations be-
tween items are diverse in the real world, and manually defined
relations are sparse compared to all latent relations. Relying on a
restricted set of predefined relations limits the model’s capacity
to generalize effectively across diverse recommendation scenar-
ios. Secondly, the item sparsity on the vertex set. It is caused by
the inherent data sparsity issue of recommender systems [31] and
particularly affects the data collection of the co-occurrence-based
relation since it requires substantial interaction data to collect item
pairs that conform to the relation definition. To alleviate the above
issue, we investigate to discover latent relations between items that
contribute to the recommendation.

In this paper, we propose a language knowledge-based Latent
Relation Discovery (LRD) method for the sequential recommen-
dation. The motivation behind this approach is inspired by the
fact that humans usually describe relations between items in natu-
ral language based on their knowledge. Observing the rich world
knowledge and semantic representation capabilities exhibited by
Large Language Models (LLMs) [3, 25, 35], we propose to leverage
the abilities of LLMs to discover latent item relations. Specifically,
we design a self-supervised learning framework to facilitate the
process of discovering latent relations. We first leverage an LLM to
obtain language knowledge representations of items. Subsequently,
a relation extraction module is adopted to predict the latent relation
between two items. Then we incorporate an item reconstruction
module to reconstruct the representation of one item based on the
representation of the predicted relation and the other item. Through
this self-supervised learning process, the objective of reconstructing
the original items forces the relation extraction module to predict
relations with sufficient accuracy and generality. Furthermore, we
incorporate the LRD into the existing relation-aware sequential
recommendation frameworks and perform joint optimization.

The merits of our proposed framework are threefold. Firstly, LRD
does not rely on manually defined relations, and can autonomously
discover latent relations between items. This enhances the model’s
ability to better capture diverse preferences reflected in user inter-
action history. Secondly, the optimal objective of the relation-aware
sequential recommendation task serves as supervised signals to
guide the relation discovery process, leading to the discovery of
relations more beneficial to the recommendation. Last but not least,
analyzing the predicted item relations by the LRD contributes to bet-
ter interpretability of relation-aware sequential recommendation
models.

We perform experiments on multiple public datasets to evalu-
ate our proposed LRD approach. Leveraging latent relations de-
rived from language knowledge-based item representation, the

Table 1: Notations.

Notations Descriptions

U The set of user
V The set of item
T The set of triplets
R The set of relations
R𝑑𝑒𝑓 The set of predefined relations
R𝑙𝑎𝑡𝑒𝑛𝑡 The set of latent relations
𝑆𝑢 The interaction sequence of user 𝑢
u ∈ R𝑑 The id embedding of user 𝑢
m𝑢,𝑣 ∈ R𝑑 The relation-aware user sequence representation of 𝑢
v ∈ R𝑑 The id embedding of item 𝑣

e ∈ R𝑑𝐿 The LLM-based embedding of item 𝑣

r ∈ R𝑑 The embedding of relation 𝑟

relation-aware sequential recommendation model captures more
comprehensive user sequence representations. Experimental results
demonstrate that compared to state-of-the-art (SOTA) relation-
aware sequential recommendation models, the model enhanced
by LRD achieves significantly better performance. Further analy-
sis experiments reveal that the LRD module is indeed capable of
discovering reasonable relations between items.

The main contributions of our work are summarized as follows:
• To the best of our knowledge, we first propose to discover
latent relations based on LLM for relation-aware sequential
recommender systems.

• We propose an LLM-based latent relation discovery frame-
work, i.e., LRD, to harness the language knowledge to dis-
cover latent relations, which is a self-supervision learning
method and flexible to work with existing relation-aware
sequential recommenders through joint learning.

• Experimental results onmultiple public datasets demonstrate
that LRD significantly improves the performance of exist-
ing relation-aware sequential recommendation models by
effectively discovering reliable relations between items.

2 PROBLEM STATEMENT
LetU andV denote the sets of users and items, respectively. For
each user 𝑢 ∈ U, its chronologically-ordered interaction history is
represented as 𝑆𝑢 = {𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝑁𝑢

}. For an item 𝑣𝑖 ∈ V , there
may exist another related item 𝑣−𝑖 with relation 𝑟 , denoted as a
triplet (𝑣𝑖 , 𝑣−𝑖 , 𝑟 ). R denotes the set of relations, which is further
divided into predefined relations set R𝑑𝑒𝑓 and latent relations set
R𝑙𝑎𝑡𝑒𝑛𝑡 . All relational item triplets associated with predefined rela-
tions T can be stored in a knowledge graph G, where the vertex
set comprises all relational item pairs, and the edge set consists of
all the predefined relations.

The objective of the sequential recommendation task is to pro-
vide a ranked list of items for the user 𝑢 at the next interaction
considering their interaction history 𝑆𝑢 . The relation-aware sequen-
tial recommendation further considers the relation between each
historic item 𝑣𝑖 ∈ 𝑆𝑢 and the target item 𝑣 𝑗 . The existing methods
only consider the relations in 𝑅𝑑𝑒𝑓 , while our method LRD further
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Figure 1: Overall Framework of relation-aware sequential recommendation with LRD. There are two main components of
LRD: a relation extraction module to estimate the latent relation based on the language knowledge representation of two items
obtained by LLM and an item reconstruction module to reconstruct the item based on the estimated relation and another
item. The predefined relations from the knowledge graph and latent relations from LRD are both used to contribute to the
relation-aware user preference modeling in the recommendation.

incorporates a latent relations set 𝑅𝑙𝑎𝑡𝑒𝑛𝑡 . The notations used in
this paper are defined in Table 1.

3 METHOD
3.1 Framework Overview
The framework of our proposed relation-aware sequential recom-
mendation based on latent relation discovery is illustrated in Fig-
ure 1.

The key component of the framework is the latent relation discov-
ery module, which is designed as a self-supervised learning process
inspired by the Discrete-state Variational Autoencoder (DVAE) [23].
The latent relation discovery module comprises two submodules: 1)
A relation extractionmodule that utilizes an LLM to obtain language
knowledge representations of items and predicts the latent relation
between two items based on their language knowledge represen-
tations. 2) An item reconstruction module that reconstructs the
representation of one item based on the representation of the pre-
dicted latent relation and the other item. Here, we incorporate the
latent relation discovery module into the relation-aware sequential
recommender. Specifically, we use the predicted latent relations to
extend the predefined item relation embedding to better construct
the user preference model. At the same time, we use the objectives
of recommendation tasks to guide the discovery of more useful
relations.

Next, we introduce the overall design of the latent relation dis-
covery approach in Section 3.2, followed by the pipeline of the
relation-aware sequential recommendation model based on latent
relation discovery in Section 3.3.

3.2 Latent Relation Discovery (LRD)
3.2.1 Optimization Objective. Our objective is to predict the latent
relation between two items. Since latent relations are those not
covered by manually crafted relation datasets, we cannot train the
model with supervised learning. Instead, we adopt a self-supervised

learning method inspired by DVAE. Following [23], we assume that
all relations follow a uniform distribution 𝑝𝑢 (𝑟 ), and the optimiza-
tion objective is formalized as the following pseudo-likelihood:

L(𝜃 ) = log
∑︁
𝑟 ∈R

𝑝 (𝑣𝑖 , 𝑣−𝑖 |𝑟, 𝜃 )𝑝𝑢 (𝑟 )

≈
2∑︁

𝑖=1
log

∑︁
𝑟 ∈R

𝑝 (𝑣𝑖 |𝑣−𝑖 , 𝑟 , 𝜃 )𝑝𝑢 (𝑟 ),
(1)

where 𝑣𝑖 and 𝑣−𝑖 denote a pair of items, 𝑖 ∈ {1, 2}. 𝑣−𝑖 denotes
{𝑣1, 𝑣2}\{𝑣𝑖 } and 𝑝 (𝑣𝑖 |𝑣−𝑖 , 𝑟 , 𝜃 ) denotes the probability of one item
given another item and a relation, where 𝜃 denotes the parameters
set.

The pseudo-likelihood L(𝜃 ) can be lower-bounded based on
Jensen’s inequality through a variational posterior 𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 ):

L(𝜃 ) > L(𝜃,𝜓 ) =
2∑︁

𝑖=1

∑︁
𝑟 ∈R

𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 ) log 𝑝 (𝑣𝑖 |𝑣−𝑖 , 𝑟 , 𝜃 )

+ 𝛼𝐻 [𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 )],
(2)

where 𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 ) is the relation extraction module used to pre-
dict the relation between a pair of items and 𝑝 (𝑣𝑖 |𝑣−𝑖 , 𝑟 , 𝜃 ) is the
item reconstruction module that reconstructs the representation
of the item given the predicted relation and another item. 𝜓 and
𝜃 denote the parameters of the two modules, respectively. Intu-
itively, maximizing the probability of reconstructing the original
item force 𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 ) to provide sufficiently accurate and highly
generalizable relations. 𝐻 is an entropy term used to regularize the
probabilities predicted by the relation extraction module, ensuring
more uniform predictions. 𝛼 is the hyper-parameter to balance the
regularization strength. Next, we further present the design of the
relation extraction module 𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 ) and the item reconstruc-
tion module 𝑝 (𝑣𝑖 |𝑣−𝑖 , 𝑟 , 𝜃 ) separately.
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3.2.2 Relation Extraction. In the relation extraction module, we
aim to predict the latent relation between two given items. In-
tuitively inspired by the ability of humans to describe relations
between two items with natural language based on their knowl-
edge, we investigate discovering latent relations between items
from the perspective of language knowledge. Considering that LLM
has exhibited human-like world knowledge and effective semantic
representations, we leverage LLM to obtain item representations
that potentially embed important information for discovering item
relations not covered in the manually predefined relation set. We
refer to these representations as language knowledge item repre-
sentations and feed them into the relation extraction module.

Specifically, given an item 𝑣 = {𝑤1,𝑤2,𝑤3, ...,𝑤𝑁𝑣
}, where 𝑤𝑖

denotes each token of the item’s text. We feed the token sequence
into the LLM to obtain the language knowledge representation of
the item, as shown in Equation (3).

e =𝑊1 (𝐿𝐿𝑀 ( [𝑤1,𝑤2,𝑤3, ...,𝑤𝑁𝑖
])) + 𝑏1, (3)

where 𝐿𝐿𝑀 (·) denotes a specific pooling strategy on the hidden
states of the LLM’s last layer to obtain the output item represen-
tation. Different LLMs may use different pooling strategies, such
as CLS-pooling, mean-pooling, etc [16].𝑊1 ∈ R𝑑𝐿×𝑑 and 𝑏1 ∈ R𝑑
denote the weight and bias of a projection layer, respectively, which
is used to reduce the dimensionality of the LLM’s output to match
the input dimensions of the recommendation model.

Next, the relation extractionmodule𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 ) in Equation (2)
predicts the relation between two given items on the relation set R
based on their language knowledge representations, i.e., e𝑖 ∈ R𝑑
and e−𝑖 ∈ R𝑑 . In practice, we can adopt any classifier that allows
gradient backpropagation. Without loss of generality, we use a
lightweight linear classifier:

𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 ) = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑊2 [e𝑖 ; e−𝑖 ] + 𝑏2), (4)

where𝑊2 ∈ R2𝑑×|R | and 𝑏2 ∈ R | R | are the weight and bias of the
linear classifier, respectively, and [; ] denotes the concatenation
operation.

3.2.3 Relational Item Reconstruction. Through the relation extrac-
tion module, we estimate the latent relation between two items
𝑣𝑖 and 𝑣−𝑖 . Given the estimated relation and one of the items, the
item reconstruction module aims to reconstruct the other item. The
specific definition is as follows:

𝑝 (𝑣𝑖 |𝑣−𝑖 , 𝑟 , 𝜃 ) =
exp(𝜙 (𝑣𝑖 , 𝑣−𝑖 , 𝑟 ))∑

𝑣′
𝑖
∈V exp(𝜙 (𝑣 ′

𝑖
, 𝑣−𝑖 , 𝑟 ))

, (5)

where 𝜙 (𝑣𝑖 , 𝑣−𝑖 , 𝑟 , 𝜃 ) is a scoring function for two items and a rela-
tion, and any triplet scoring function can be used. Without loss of
generality, we use DistMult [44] as scoring functions:

𝜙 (𝑣𝑖 , 𝑣−𝑖 , 𝑟 ) = v𝑇𝑖 diag(r)v−𝑖 , (6)

where diag(r) is a diagonal matrix with the relation embedding
r as its diagonal elements. Note that we use the representation
of item IDs v𝑖 for reconstruction instead of language knowledge
representation e𝑖 . This design is to align the representation space
of the predicted relation 𝑟 and the relation-aware recommendation
model.

Since Equation (5) involves calculations across the entire set of
itemsV , resulting in high computational complexity, we approxi-
mate log 𝑝 (𝑣𝑖 |𝑣−𝑖 , 𝑟 , 𝜃 ) using negative sampling as follows:

log𝑝 (𝑣𝑖 |𝑣−𝑖 , 𝑟 , 𝜃 ) = log𝜎 (𝜙 (𝑣𝑖 , 𝑣−𝑖 , 𝑟 , 𝜃 )
+ log𝜎 (−𝜙 (𝑣−𝑖 , 𝑣−𝑖 , 𝑟 , 𝜃 ))),

(7)

where 𝜎 is the sigmoid activation function, and 𝑣−
𝑖
is a randomly

sampled negative item. Ultimately, the optimization objective in
Equation (2) becomes:

L(𝜃,𝜓 ) =
2∑︁

𝑖=1

∑︁
𝑟 ∈R

𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 ) [log𝜎 (𝜙 (𝑣𝑖 , 𝑣−𝑖 , 𝑟 , 𝜃 )

+ log𝜎 (−𝜙 (𝑣−𝑖 , 𝑣−𝑖 , 𝑟 , 𝜃 )))] + 𝛼𝐻 [𝑞(𝑟 |𝑣𝑖 , 𝑣−𝑖 ,𝜓 )] .
(8)

3.3 LRD-based Sequential Recommendation
In this section, we present how to apply latent relations extracted
by LRD into a relation-aware sequential recommender. We first
introduce the pipeline of the sequential recommendation explic-
itly considering item relations in Section 3.3.1, followed by the
joint optimization framework of the latent relation discovery and
relation-aware sequential recommendation in Section 3.3.2.

3.3.1 Relation-aware Sequential Recommendation. Given a user’s
interaction history 𝑆𝑢 = {𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝑁𝑢

} and a target item 𝑣 𝑗 , the
user’s preference can be reflected in the history of interacted items.
We further explicitly consider the relations between each historical
item and the target item for sufficient user preference modeling.
Formally, the preference score of user 𝑢 for target item 𝑣 𝑗 is defined
as:

𝑦𝑢,𝑗 = (u +m𝑢,𝑗 )v𝑇𝑗 + 𝑏 𝑗 , (9)

where u ∈ R𝑑 and v𝑗 ∈ R𝑑 are representations of the user and target
item, m𝑢,𝑗 ∈ R𝑑 is the user’s historical sequence representation
considering the relations between historical items and the target
item. 𝑏 𝑗 ∈ R𝑑 is the bias term.

Calculatingm𝑢,𝑗 is a crucial step in modeling relation-aware user
preferences. Specifically, it is the aggregation of multiple user se-
quence representations considering different relations types, which
is defined as:

m𝑢,𝑗 = AGG( [s𝑢 𝑗 ,𝑟1 ; s𝑢 𝑗 ,𝑟2 ; ...; s𝑢 𝑗 ,𝑟 |R | ]), (10)

where AGG is an aggregation function that can adopt various aggre-
gation methods such as mean-pooling, max-pooling, and attention-
pooling [36, 43].R is the relations set, including predefined relations
in the knowledge graph and latent relations discovered by the LRD.
s𝑢 𝑗 ,𝑟 is the historical sequence representation of user 𝑢 given a
relation 𝑟 and target item 𝑣 𝑗 , defined as:

s𝑢 𝑗 ,𝑟 =
∑︁
𝑣𝑖 ∈𝑆𝑢

𝜔 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 )v𝑖 , (11)

where𝑤 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) is the relation intensity between historical item
𝑣𝑖 and target item 𝑣 𝑗 under relation 𝑟 . It is a normalized weight
across historical items, defined as:

𝜔 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) =
exp(𝜙 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ))∑

𝑣′
𝑖
∈𝑆𝑢 exp(𝜙 (𝑣 ′

𝑖
, 𝑣 𝑗 , 𝑟 ))

, (12)

where 𝜙 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 ) is the triplet scoring function given two items
and a relation. The scoring function used here is consistent with
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the one used in the item reconstruction module in Section 3.2.3,
i.e., Equation (5). This alignment facilitates joint optimization in
subsequent steps.

3.3.2 Joint Learning. For the relation-aware sequential recommen-
dation task, we adopt the BPR pairwise loss [29] to define its opti-
mization objective:

L𝑟𝑒𝑐 = −
∑︁
𝑢∈U

𝑁𝑢∑︁
𝑗=2

log𝜎 (𝑦𝑢,𝑗 − 𝑦𝑢,𝑗− ). (13)

To leverage discovered latent relations for the recommendation
task and simultaneously let user interaction data guide the relation
discovery process, we jointly optimize the objectives of the latent
relation discovery task in Equation (8) and the recommendation
task in Equation (13). For this purpose, we make little modifications
to the Equation (8) and explicitly represent item pairs as historical
items and target items, as shown below:

L𝑙𝑟𝑑 = −
∑︁
𝑢∈U

𝑁𝑢∑︁
𝑗=2

𝑗−1∑︁
𝑖=1

∑︁
𝑟 ∈R

𝑞(𝑟 |𝑣𝑖 , 𝑣 𝑗 ,𝜓 ) [log𝜎 (𝜙 (𝑣𝑖 , 𝑣 𝑗 , 𝑟 , 𝜃 )

+ log𝜎 (−𝜙 (𝑣−𝑖 , 𝑣 𝑗 , 𝑟 , 𝜃 ))]
+ 𝛼𝐻 [𝑞(𝑟 |𝑣𝑖 , 𝑣 𝑗 ,𝜓 )] .

(14)

Additionally, to ensure the model’s capability to model prede-
fined relations. We adopt a widely used knowledge graph embed-
ding method to optimize the representations of items and relations
in the knowledge graph, and the optimization objective is shown
as:

L𝑘𝑔𝑒 = −
∑︁

(𝑣𝑖 ,𝑣−𝑖 ,𝑟 ) ∈T
log𝜎 (𝜙 (𝑣𝑖 , 𝑣−𝑖 , 𝑟 ) − 𝜙 (𝑣−𝑖 , 𝑣

−
−𝑖 , 𝑟 )) . (15)

The knowledge graph embedding task is also included in the
joint optimization framework. Ultimately, the joint optimization
objective is defined as:

L = L𝑟𝑒𝑐 + 𝛾L𝑘𝑔𝑒 + 𝜆L𝑙𝑟𝑑 , (16)

where 𝛾 and 𝜆 are the coefficients of the knowledge graph embed-
ding task and the latent relation discovery task, respectively.

4 EXPERIMENTS
In this section, we first introduce the experimental setting and then
present experimental results and analyses to answer the following
research questions:

• RQ1: How is the effectiveness of LRD-enhanced relation-
aware sequential recommendation models?

• RQ2: Does each component of LRD-enhanced relation-aware
sequential recommender contribute to the recommendation
performance?

• RQ3: Does LRD discover reliable and vital relations between
items?

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on three publicly avail-
able datasets from diverse domains to validate themodel’s capability
to discover latent relations in various recommendation scenarios.

Table 2: Statistics of the datasets after preprocessing.

Datasets MovieLens Offices Electronics

User-Item
Interactions

#user 943 4,905 192,403
#item 1,349 2,420 63,001
#inter. 99,287 53,258 1,682,498
density 7.805% 0.448% 0.014%

Item
Relations

#relation 2 4 4
#triplets 886K 778K 2,148M

• MovieLens1: This dataset is widely used for movie recom-
mendations and consists of user ratings and attribute infor-
mation for movies. We utilized the MovieLens-100k version
for our experiments. Two predefined relations, namely “re-
lease year” and “genre”, are extracted from the dataset. To
discover latent relations between items, in addition to the
text of movie title, release year, and genre available in the
dataset, we crawl movie information from IMDB2, including
director, actor, and brief based on movie titles and release
year.

• Amazon Office Products and Electronics [9, 24]: These
two datasets are subsets from theAmazon e-commerce dataset,
representing two distinct domains. They contain user ratings,
reviews, and rich item metadata. We utilize two attributes
(i.e., category and brand) and co-occurrence information (i.e.,
“also buy” and “also view") as predefined item relations. Texts
of the item title, category, and brand are used to discover
latent relations between items.

For all datasets, following previous work [36], we filter users and
items with fewer than 5 interactions. The statistical information
for each dataset after preprocessing is presented in Table 2.

4.1.2 Baselines. We selected multiple sequential recommendation
models as baselines for our experiments:

• Caser [34] adopts convolutional filters to capture sequential
patterns of embed user sequences.

• GRU4Rec [11] utilizes Gated Recurrent Units (GRU) to
model user representation by capturing patterns in the his-
torical interaction sequence.

• SASRec [15] incorporates self-attention mechanisms to ag-
gregate the historical item representations to obtain the user
representation.

• TiSASRec [18] further considers time intervals between
historical interactions based on the SASRec.

• RCF [43] adopts a two-level attention network to integrate
item relations into the modeling of the user sequence repre-
sentation.

• KDA [36] incorporates a Fourier-based temporal evolution
module to capture the dynamic changes in item relations
over time.

Among these methods, Caser, GRU4Rec, SASRec, and TiSAS-
Rec belong to item-based collaborative filtering models, while RCF
and KDA are models that explicitly incorporate item relations. Our
1https://grouplens.org/datasets/movielens/100k/
2https://www.imdb.com/
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Table 3: Overall performance of different models. The best performances are denoted in bold fonts. “H@K” is short for “HR@K”
and “N@K” is short for “NDCG@K”, respectively. The subscript “LRD” denotes the model is enhanced by LRD. “Improv.” means
the relative improvement of the LRD-based model over the corresponding vanilla model. The superscripts † and ‡ indicate
𝑝 ≤ 0.05 and 𝑝 ≤ 0.01 for the paired t-test of the LRD-based model vs. vanilla model.

Datasets MovieLens Office Electronics

Metrics H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10
Caser 0.5217 0.6872 0.3571 0.4107 0.3095 0.4762 0.1993 0.2530 0.4620 0.5865 0.3435 0.3838
GRU4Rec 0.5101 0.6723 0.3451 0.3976 0.3295 0.4856 0.2164 0.2670 0.4699 0.5994 0.3487 0.3906
SASRec 0.5186 0.6829 0.3712 0.4242 0.4027 0.5439 0.2751 0.3210 0.4805 0.6083 0.3587 0.4000
TiSASRec 0.5313 0.6882 0.3812 0.4322 0.4014 0.5433 0.2745 0.3209 0.5114 0.6329 0.3860 0.4253

RCF 0.5101 0.6660 0.3635 0.4137 0.4145 0.5696 0.2911 0.3413 0.5790 0.7004 0.4475 0.4868
RCFLRD 0.5398‡ 0.6882‡ 0.3886‡ 0.4365‡ 0.4381‡ 0.5761‡ 0.3127‡ 0.3573‡ 0.5828† 0.7035† 0.4510† 0.4901†
Impro. +5.82% +3.33% +6.91% +5.51% +5.69% +1.14% +7.42% +4.69% +0.66% +0.44% +0.78% +0.68%

KDA 0.5748 0.7381 0.4182 0.4711 0.4453 0.6145 0.3127 0.3676 0.6008 0.7194 0.4665 0.5049
KDALRD 0.6066‡ 0.7434‡ 0.4420‡ 0.4867‡ 0.4826‡ 0.6302‡ 0.3403‡ 0.3881‡ 0.6111‡ 0.7295‡ 0.4760‡ 0.5143‡

Impro. +5.53% +0.72% +5.69% +3.31% +8.38% +2.55% +8.83% +5.58% +1.71% +1.40% +2.04% +1.86%

proposed LRD method can discover latent item relations beneficial
for recommendations to enhance existing relation-aware sequential
recommendation models. Therefore, we compare the performance
of LRD-enhancedRCF andKDA, i.e.,RCFLRD andKDALRD , with
the baselines above.

4.1.3 Evaluation Metircs. We use two evaluation metrics, HR@K
and nDCG@K, to evaluate the performance of the models, where K
is set to 5 and 10. We adopt the leave-one-out method to construct
the dataset. Specifically, for a user’s interaction history sequence, we
use the last item for testing, the second-to-last item for validation,
and the remaining items for training. When predicting the next
item, following previous work [36], we rank the ground-truth next
item against 99 randomly sampled negative items.

4.1.4 Implementation Details. We implement LRD and baseline
models with the ReChorus3 library. We harness a widely used
LLM, i.e., GPT-34, to obtain language knowledge representations
of items. The max length of the history sequence is set to 20. For
all models, we use the Adam optimizer and carefully search for hy-
perparameters, with a batch size of 256 and embedding dimension
of 64. The early stop is adopted if the nDCG@5 does not improve
for 10 epochs. We tune the learning rate in {1e-2, 1e-3, 1e-4} and
the l2-normalization coefficients in {1e-4, 1e-5, 1e-6, 0}. The coef-
ficients of the knowledge graph embedding task and the latent
relation discovery task are tuned within {0.1, 1, 5, 10}. The number
of latent relations to discover is tuned between {5, 6, 7, 8, 9, 10}.
The regularization coefficient of the relation extraction module
of LRD is set to 0.1. The code of our implementation is available
at:https://github.com/ysh-1998/LRD.

4.2 Performance Comparison (RQ1)
We compare two LRD-enhanced relation-aware sequential recom-
mendation models, namely RCFLRD and KDALRD, with baseline
methods. The overall experimental results are presented in Table 3.

3https://github.com/THUwangcy/ReChorus/tree/master
4We use a version tailed for text embedding, i.e., text-embedding-ada-002

For baseline methods, several observations can be made. Firstly,
traditionalmethods perform significantlyworse than relation-aware
methods in highly sparse datasets, i.e., Amazon. While the perfor-
mance gap is not significant in the relatively dense dataset, i.e.,
MovieLens. This demonstrates that traditional methods heavily
rely on rich interaction data. Secondly, RCF and KDA achieve sig-
nificantly better performance than non-relation-aware sequential
recommendation models by incorporating item relations into the
sequential recommendation. This indicates that explicitly modeling
relations between historical items and the target item contributes to
the user sequence modeling by capturing sufficient user preference.
Thirdly, TiSASRec and KDA give superior performance by utilizing
modules that model temporal information based on SASRec and
RCF, respectively. This demonstrates that considering temporal fac-
tors in modeling user interaction sequences can effectively enhance
model performance.

The RCFLRD and KDALRD achieve significant performance im-
provements over the vanilla models and outperform almost all
non-relation-aware methods. We attribute these improvements to
the fact that previous relation-aware sequential recommendation
methods rely on predefined relations, limiting the model’s abil-
ity to capture diverse item relations. Especially on datasets with
fewer predefined relations, i.e., MovieLens, the performance of RCF
is not significantly better than traditional methods. While the ca-
pability of RCF effectively improves by leveraging our proposed
LRD method. Moreover, the performance improvement of KDALRD
suggests that the discovered latent relations by LRD also exhibit
temporal evolution characteristics.

4.3 Ablation study (RQ2)
In this section, we investigate the contributions of each component
of our proposed LDR-based relation-aware sequential recommenda-
tion model to the recommendation performance. For this purpose,
we design two variant models: (1) w/o LLM, where item ID repre-
sentations replace the language knowledge representation obtained
through LLM to investigate whether language knowledge is crucial
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Figure 2: Ablation Study on variant models

in the relation discovery process. (2) w/o KGE, which removes the
knowledge graph embedding task, meaning the model cannot opti-
mize the representation of predefined relations utilizing supervised
signals in the knowledge graph. The vanilla model without the LRD
can also be seen as a variant model, i.e., w/o LRD.

Figure 2 presents the comparative results of the variant models,
revealing several findings. Firstly, removing the LLM for obtaining
item language knowledge representations leads to a noticeable
performance decline. This indicates that ID representations lacking
rich semantic information have limited effectiveness in the process
of discovering latent relations, emphasizing the crucial role of LLM’s
rich world knowledge. Secondly, the variant model without the KGE
task shows a significant performance decrease, highlighting the
necessity of maintaining the modeling of predefined relations while
utilizing latent relations.

4.4 Latent Relation Analyses (RQ3)
To further validate the effectiveness and reliability of the latent
item relations discovered by LRD, we perform additional analysis
experiments.

4.4.1 Relation Embeddings. To investigate the distribution of the
learned relation embeddings, we select the model with the best
performance on the Office dataset, i.e., KDA𝐿𝐶𝐷 , and calculate the
pair-wise cosine similarity of the relation embeddings. This model
has 12 relations, including predefined relations (1-4) and latent
relations (5-12). The similarity matrix is shown in Figure 3. We
can find that there is a notable difference between the embeddings
of predefined relations and latent relations. This is reasonable as
the learning of predefined relation embeddings primarily relies on
supervised signals from the knowledge graph, while the learning of
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Figure 3: The pair-wise cosine similarity of the relation em-
beddings of KDA𝐿𝐶𝐷 on Office dataset. The labels on the hor-
izontal and vertical axes denote the relation IDs, where 1-4
are predefined relations and 5-12 are latent relations learned
by LRD.

latent relation embeddings depends on the latent relation discovery
task. It is worth noting that the relation extraction module of LRD
also predicts predefined relations for the reconstruction of relational
items. This indicates that the joint optimization of the latent relation
discovery task and the knowledge graph embedding task helps
the model effectively distinguish predefined relations from latent
relations during the learning process.

4.4.2 Latent Relational Items. To provide a clearer illustration of
the learned item relations, we present representative item pairs of
several relation types in Figure 4. These pairs are obtained by sort-
ing the model’s scores for these item pairs on these relations, i.e.,
the selected item pairs are samples with higher scores under each
relation. To facilitate readability, we have simplified the item de-
scriptions. Several observations can be made from Figure 4. Firstly,
items in relation #1 generally exhibit complementary functionali-
ties and are frequently purchased together. This indicates that the
model effectively learns predefined relations from the knowledge
graph, i.e., the “also buy” relation. Secondly, the model groups item
pairs with common characteristics into the same latent relation
type. These relations are more complex than predefined relations,
possibly involving multi-hop connections and demonstrating char-
acteristics tailored to specific scenarios and tasks. The relation #5
reflects the relations between items in document processing, editing,
and storage scenarios. Items like “Inkjet Printers” and “Expanding
File Jackets & Pockets”, though not directly related, can establish
a two-hop relation through “printing paper”, completing a docu-
ment processing procedure. Relation #8 focuses on tasks related to
transportation. Items like “Transparent Tape” and “Cart, Chrome
Shelving” are related to the task of packing and transporting goods.

These examples further demonstrate the reliability of the latent
relations discovered by LRD and confirm the conclusion drawn in
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#1

#5

#8

Item1 Desktop Staplers Inkjet Printer Copy &
Multipurpose Paper

Item2 Staples Inkjet Printer Ink Ballpoint Pens

Item1 Transparent Tape Shipping Labels Label Makers

Item2 Cart, Chrome
Shelving

Security Lock
Boxes Envelope

Item1 Inkjet Printers Laser Printers Porous-Point Pens

Item2 Expanding File
Jackets & Pockets Ballpoint Pens Hanging Folders

Figure 4: Descriptions of representative item pairs belong to
relation #1, #5 and #8 of KDA𝐿𝐶𝐷 on Office dataset, where
relation #1 is “also buy”, relation #5 and #8 are learned latent
relations.

Section 4.4.1 that latent relations differ significantly from prede-
fined relations. Leveraging these more complex and diverse rela-
tions, LRD-based relation-aware sequential recommendation mod-
els effectively capture more intricate user preferences, resulting in
improved recommendation performance.

4.4.3 Case Study. To further demonstrate how the model leverages
latent relations to achieve improved recommendation performance,
we present a case in Figure 5. In this case, we record the triplet
scores between each historical item and the target item on all re-
lations. The relation with the highest score is considered as the
predicted relation between items. As shown in Figure 5, only one
predefined relation exists between historical items and the target
item, i.e., “also buy.” Relying solely on this predefined relation, KDA
fails to rank the target item at a high position. While LRD-based
model KDALRD , identifies latent relations #5 and #12 between items
1 and 3, and the target item, respectively. Considering the find-
ings from Sections 4.4.1 and Section 4.4.2, latent relations #5 and
#12 exhibit similar embeddings and both reflect item relations in
the document processing scenario. Specifically, in this case, the
printout from the “Wireless All-in-One Printer" and the document
recorded with the “Pen-Grip Fine Point Pen" both can be stored
in the “Folder". Benefiting from the discovered latent relations by
LRD, KDALRD ranks the target item in the 4th position, significantly
outperforming the vanilla model KDA.

4.5 Hyper-parameter Sensitivity
In this section, we perform a sensitivity analysis on two crucial
hyperparameters of LRD: the number of latent relations the model
aims to discover, i.e., Num_latent, and the coefficient of the latent
relation discovery task in the joint optimization, i.e., 𝜆. We aim to
analyze the effect of hyperparameter selection on model perfor-
mance. Firstly, we examine the sensitivity of the model performance
to different values of num_latent. Note that to isolate the impact
of the two hyperparameters, we present the average performance

# 12

also buy

# 5

Rank by KDALRD:    4
Rank by KDA:        28Wireless All-in-One

Printer

Removable Labels

Pen-Grip Fine
Point Pen

Hanging Folder
without Tab

History Items Target Item

Item 1

Item 2

Item 3

Figure 5: The interaction history of user A3N4VTNFPMTHEF
on Office dataset. KDA𝐿𝐶𝐷 ranks the target at a high posi-
tion leveraging the learned latent relation between historical
items and target item, i.e., relation #5 and #12, which out-
performs KDA solely utilizing predefined relation, i.e. “also
buy”.

under the same num_latent value across all 𝜆 values. Figure 6 illus-
trates the model performance under various num_latent values and
several observations can be made. Firstly, the model exhibits signif-
icant performance differences under different num_latent values,
indicating that both learning an insufficient number of latent rela-
tions and learning redundant or useless relations impair the model
performance. Secondly, the overall trends of performance changes
with num_latent are generally consistent across different models
on the same dataset. While the optimal num_latent value varies for
different datasets. Specifically, the optimal value for MovieLens is
6, while for the Office dataset is 5. This aligns with the assumption
that there are differences in item relations across diverse recom-
mendation scenarios. Next, we analyze the hyperparameter 𝜆. The
performance shown in Figure 6 represents the average metrics un-
der the same 𝜆 value across all num_latent values. We observe a
stable improvement in model performance until the optimal value is
reached, which is generally consistent on the same dataset for two
models. That demonstrates the effectiveness of the latent relation
discovery task.

5 RELATEDWORK
5.1 Sequential Recommendation
In the literature of recommender systems, sequential recommenda-
tion is a widely researched task, aiming to recommend items that
interest users based on their historical interactions [40]. Earlier
works adopt the Markov chain to model item transition relations
in the interaction history of users [8, 30]. In recent years, with
the development of deep learning methods, various deep neural
networks have been proposed to capture user preferences in histor-
ical interaction sequences. It includes Recurrent Neural Networks
(e.g., GRU [11], LSTM [41] and HRNN [27]), Convolutional Neu-
ral Networks [34, 45], Attention-based Network [15, 17, 33], and
Graph Neural Networks [5, 42]. The core idea of these methods is to
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Figure 6: nDCG@5 comparison w.r.t. the number of latent
relations and the coefficient of the latent relation discovery
task, i.e., 𝜆.

capture item-based collaborative filtering information in historical
interactions, overlooking explicit relations between items, which is
crucial for understanding user behavior and extracting user prefer-
ences. The proposed approach in this paper can effectively uncover
relations among items, thus providing a more accurate modeling of
user preferences.

5.2 Relation-aware Recommendation
In contrast to traditional recommendation methods that only con-
sider item-based collaborative filtering similarity, relation-aware
recommendation methods explicitly incorporate relations between
items into the recommendation model. One line of methods con-
structs a knowledge graph containing relations between items and
relations between items and attributes [1, 4, 22, 38, 39, 46]. These
methods enhance item representations through knowledge graph
embedding tasks. CKE [46] constructs a knowledge graph contain-
ing items and attributes and optimizes graph embedding tasks and
recommendation tasks jointly. CFKG [1] further incorporates users
into the knowledge graph. It defines a special “purchase” relation as
the proxy of the interactions between users and items to transform
the recommendation task into the knowledge graph embedding
task. Another research direction focuses on sequential recommen-
dation scenarios and explicitly models relations between historical
items and the target item [36, 37, 43]. RCF [43] proposes a two-level
attention framework to compute the user’s attention to relation
types and the relation intensity between historical items and the
target item separately. Furthermore, considering the evolution of
item relations over time, KDA [36] proposes a Fourier-based tem-
poral evolution module to incorporate time information into the
modeling of relational items. Nevertheless, existing methods rely
on manually predefined relations and suffer from relation sparsity
and item sparsity issues. In this paper, we propose to uncover latent

relations among items, enabling the model to adapt to diverse and
complex recommendation scenarios.

5.3 Large Language Model for Recommendation
Recently, the emergence of Large Language Models (LLMs) [3, 25,
26, 35, 47] has revolutionized the field of natural language process-
ing. The performance of various natural language processing tasks
has significantly improved with the reasoning abilities and world
knowledge of LLMs [14, 48]. The application of LLMs to recom-
mendation tasks has been widely researched in two main research
directions [6]. One line of work leverages LLMs’ reasoning capabil-
ities and knowledge to solve various recommendation tasks. Liu et
al. [19] utilize ChatGPT [25] to perform five recommendation tasks
in zero-shot and few-shot settings, achieving impressive results in
explanation generation tasks while performing poorly in the di-
rect recommendation and sequential recommendation tasks. P5 [7]
transform various recommendation tasks into natural language for-
mat and feed them into T5 [28]. Then the model is fine-tuned with
the language modeling training objective and exhibits performance
improvement on five recommendation tasks. Another line of re-
search investigates combining recommendation models with LLMs.
TALLRec [2] constructs instruction-tuning samples based on the
user rating data and fine-tune LLaMA [35] with parameter-efficient-
tuning, i.e., LoRA [12], achieving promising performance on few-
shot recommendation scenario. ONCE [20] utilizes ChatGPT as a
data augmenter to acquire knowledge-enhanced representations of
users and news, improving the performance of the news recommen-
dation. However, existing recommendation methods with LLMs
have significant limitations in terms of performance and efficiency.
In this paper, we leverage the rich world knowledge of the LLM
to acquire language knowledge representations of items, which is
used to discover item relations that contribute to recommendations.
We fully utilize the knowledge of the LLM and ensure the efficiency
of the overall framework.

6 CONCLUSION
In this paper, we propose a novel method for discovering latent
item relations based on the Large Language Model, namely LRD.
Leveraging the rich world knowledge of LLM and a self-supervised
learning approach, LRD effectively extracts latent item relations.We
jointly optimize LRDwith existing relation-aware sequential recom-
mender systems. On the one hand, the latent relations discovered
by LRD provide more sophisticated item associations, contributing
to the sufficient modeling of intricate user preference. On the other
hand, the supervision signals from user interactions guide the rela-
tion discovery process effectively. Experimental results on multiple
public datasets demonstrate that LRD significantly improves the
performance of existing relation-aware sequential recommenda-
tion methods. Further analyses demonstrate the reliability of the
latent relations. Note that the crucial LLM in our method is not
meticulously selected in the current implementation. It leaves us
a future work to explore the performance of our method utilizing
more advanced LLMs.
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