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Constructing Click Model for Mobile Search with

Viewport Time
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A series of click models has been proposed to extract accurate and unbiased relevance feedback from valu-

able yet noisy click-through data in search logs. Previous works have shown that users search behavior in

mobile and desktop scenarios are rather different in many aspects, therefore, the click models designed for

desktop search may not be effective in the mobile context. To address this problem, we propose two novel

click models for mobile search: (1) Mobile Click Model (MCM), which models click necessity bias and exami-

nation satisfaction bias; (2) Viewport Time Click Model (VTCM), which further extends MCM by utilizing the

viewport time. Extensive experiments on large-scale real mobile search logs show that: (1) MCM and VTCM

outperform existing models in predicting users’ clicks and estimating result relevance; (2) MCM and VTCM

can extract richer information, such as the click necessity of search results and the probability of user sat-

isfaction, from mobile click logs; (3) By modeling the viewport time distributions of heterogeneous results,

VTCM can bring a significant improvement over MCM in click prediction and relevance estimation tasks.

Our proposed click models can help better understand user behavior patterns in mobile search and improve

the ranking performance of mobile search engines.
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1 INTRODUCTION

Previous studies showed that user clicks can be used as implicit relevance feedback to improve
the ranking of search results [17]. However, clicks on a result are inherently stochastic and

This work is supported by the National Key Research and Development Program of China (2018YFC0831700) and Natural

Science Foundation of China (Grant No. 61622208, 61732008, 61532011). This work is also part of NExT++ project, supported

by the National Research Foundation, Prime Minister’s Office, Singapore under its IRC@Singapore Funding Initiative.

This article is an extension of Mao et al. [30]. Compared with the previous conference version, it introduces a new View-

port Time Click Model (VTCM) that incorporates viewport time information. It also includes an extensive experimental

assessment of the new model and compares the performance with a number of existing models including MCM.

Authors’ addresses: Y. Zheng, J. Mao, Y. Liu (corresponding author), C. Luo, M. Zhang, and S. Ma, Tsinghua University,

Beijing, 100084, China; emails: {zhengyk13, maojiaxin}@gmail.com, {yiqunliu, chengluo, z-m, msp}@tsinghua.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1046-8188/2019/09-ART43 $15.00

https://doi.org/10.1145/3360486

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 43. Publication date: September 2019.

https://doi.org/10.1145/3360486
mailto:permissions@acm.org
https://doi.org/10.1145/3360486


43:2 Y. Zheng et al.

systematically biased by factors such as the position [8, 17] and presentation style [4, 38] of
the result. Therefore, a number of click models (see Reference [6] for an overview) have been
proposed to model user click behavior as a stochastic process and obtain unbiased relevance
feedback from the biased click logs.
The performance of a click model depends heavily on making correct assumptions on user

search behavior. By assuming a user will examine and click the results on the search engine re-
sult page (SERP) in a certain way, a click model can estimate how different kinds of biases affect
users’ click actions and derive unbiased relevance feedback from click logs. However, user search
behavior in the mobile environment are different from those in the desktop context. For exam-
ple, previous studies suggest that users will pay more attention to the top-ranked results and scan
fewer results on a small screen [20]; relevance judgments for documents are also affected by search
devices [36]. Therefore, the existing click models originally designed for the desktop environment
may not be as effective in the mobile search context. We need to refine the existing behavioral
assumptions of click models to adapt to the shift from desktop to mobile.
One of the factors that may alter user behavior in the mobile environment is the heterogeneity

of search results. Today’s search engines return richer results than the homogeneous 10 blue links
on both mobile and desktop. The heterogeneous results have a larger impact on user interaction
behavior on mobile SERPs because: (1) Compared to desktop search, direct answer and knowledge
card results are federated into mobile SERPs more frequently. In many circumstances, these results
present useful information on the SERP and users do not need to click the hyperlinks to visit the
corresponding landing pages. While loading a page on mobile devices may take a longer time than
on desktop devices, this strategy helps to reduce users’ interaction costs as well as data usage on
mobile; (2) Due to the limit of screen size, the heterogeneous results are usually injected into the
main ranking list and often occupy a large proportion of user viewport.1 In a recent study, Luo
et al. [28] showed these two factors may affect user behavior in mobile search and proposed to
incorporate them in the evaluation of mobile search engines.
As an example, we show two SERPs for the same query, ann arbor, on mobile and desktop

in Figure 1. Compared with the desktop SERP in Figure 1(b) that displays the knowledge graph
result on the right side, the knowledge graph result is placed at the first position in the mobile
SERP (Figure 1(a)) and occupies almost the whole initial viewport. This result is highly likely to
be examined by users and affect their following actions. The knowledge graph result contains a
brief introduction to the city, as well as information about the weather and local time. A user who
wants to gather some basic information about Ann Arbor will find the knowledge graph result
relevant and useful even without clicking it. She may even feel satisfied and leave the SERP just
after examining the first knowledge graph result. In this case, an existing click model will: (1)
mistakenly regard the skipping (i.e., no click) behavior on the first result as a negative relevance
feedback; (2) ignore the cut-off effect [26]—that the user can be satisfied with the non-clicked
knowledge graph result but still assume the user will scan the following results.
To address these problems in the mobile search context, we propose a novel click model named

Mobile Click Model (MCM). The proposed MCM assumes that: (1) Some types of search results
(e.g., the knowledge graph and direct answer results) have lower click necessity than others, which
means that they can fulfill users’ information needs without requiring any clicks (click necessity
bias); (2) A user can be satisfied after examining a search result with low click necessity, because
this kind of result is designed to satisfy users’ common information needs directly on SERPs (ex-
amination satisfaction bias).

1The portion of the SERP that is visible on the screen of the mobile phone at a certain time.
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Fig. 1. Examples of SERPs on (a) mobile and (b) desktop fromGoogle. Only the content in the initial viewport
is shown.

Besides user clicks, we can also leverage the viewport time signal in mobile search. Several
works [22, 23] looked into the viewport time in mobile search and found that it has a strong
correlation with user attention and can be adopted as a kind of effective feature to predict user
satisfaction. Viewport coordinates can be recorded by the search engine when specific user behav-
iors happen, such as entering or leaving the SERP, scrolling up and down, and so on. Thus, we can
unobtrusively collect viewport coordinates and calculate the viewport time of search results2 on
the SERP. Therefore, we further extend MCM by incorporating the viewport time of search results
and propose a new click model named Viewport Time Click Model (VTCM). In VTCM, we treat
viewport time as the second observed variable besides the user click. We will introduce how we
incorporate click necessity bias and examination satisfaction bias into MCM as well as how VTCM
models the viewport time distributions in Section 3.
Through extensive experiments on a large-scale mobile search log from a popular commercial

search engine in China, we first show that MCM and VTCM can effectively infer the parameters
for click necessity and examination satisfaction, along with the parameters for relevance and click
satisfaction, from users’ interaction logs with heterogeneous mobile SERPs. With the viewport
coordinate data available in the mobile search log, we further show that VTCM can effectively
estimate the viewport time distributions under different conditions of examination behavior, user
clicks, and examination satisfaction. With these parameters learned from logs, we can: (1) improve
the ranking of heterogeneous results in mobile search; (2) analyze how users interact with a certain
type of vertical results. The experiment results also show that MCM and VTCM achieve better
performance in both click prediction and relevance estimation tasks than the baseline click models
that are not specifically designed for the mobile environment.
The rest of the article is organized as follows: We first provide an overview of the background

of mobile search and click models in Section 2. In Section 3, we will formally introduce MCM and

2The duration of search results exposed in the viewport.
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VTCM and then compare them with existing click models. The experiment setup and results are
presented in Section 4. Finally, we conclude the article and discuss directions for future work in
Section 5.

2 RELATEDWORK AND BACKGROUND

2.1 Search Behavior on Mobile

With the rise of mobile search, understanding user search behavior on mobile devices becomes
increasingly important. Existing research has characterized the differences between desktop search
and mobile search in various aspects.
First, compared to desktop search, mobile search is often conducted to fulfill different types of

information needs, in diverse contexts. Yi et al. [43] and Kamvar et al. [19] are among the first who
spotted a difference in the distribution of query categories across difference search devices. Song
et al. [35] further found that the information needs of mobile searchers varied at different times
of the day. They also showed that a mobile user tended to search at different locations and users’
click preferences changed with the search devices. Recently, Harvey and Pointon [14] suggested
that users often use mobile devices to search in an “on the go” context, where they might be
interrupted or distracted. They conducted a user study to assess the impact of these “fragmented
attention” situations on user search behavior and performance. The differences in search contexts
and information needs on mobile and desktop suggest that the mobile search engine should return
different results to satisfy mobile searchers. Therefore, it is crucial to develop new methods to
extract relevance feedback from mobile search logs.
Second, the user interface (UI) of mobile search is very different from that of desktop search.

Unlike a desktop PC with a large display (13 to 30 inches) as well as a mouse and a keyboard as
input devices, a mobile phone usually has a much smaller screen (4 to 5 inches) and responds to
a variety of touch interactions, including swiping, zooming, and on-screen text input. Previous
works studied how the differences in UIs affect user search behavior on mobile and desktop. Re-
garding the differences in input interactions, Kamvar and Baluja [18] and Song et al. [35] showed
that while the query length was not significantly different on mobile and desktop, the mobile
searcher tended to issue fewer queries in a session than the desktop searcher; Guo et al. [13] pro-
posed to use the mobile touch interactions as features to estimate the relevance of mobile search
results and identified some similarities and differences between users’ fine-grain interactions on
the landing pages in both desktop andmobile environments. However, the difference in screen size
may impose more efforts for the mobile searchers to gather the same amount of information. Kim
et al. [20] conducted an eye-tracking study to compare users’ SERP scanning patterns on small
screens and large screens. They found that on small screens, users gave more attention to top-
ranked results and exhibited a more linear scanning pattern. Recently, Ong et al. [32] found that
users used different search strategies to adapt to the SERPs with varying Information Scent Levels
and Information Scent Patterns [42] on mobile and desktop. These studies showed that user search
behavior on mobile devices was different from that in traditional desktop settings, therefore the
click models that were originally designed to model user click behavior in desktop search need to
be adapted for mobile environment.
Third, today’s mobile search engines will return more diverse results to cope with some specific

information needs (e.g., checking the weather forecast or looking for a restaurant nearby) and
reduce users’ interaction cost in mobile environment. These heterogeneous vertical results may
alter user search behavior on mobile. For desktop search, Liu et al. [26] conducted a dedicated
eye-tracking study to analyze the effects of different types of vertical results on users’ examina-
tion and click behavior on SERPs. For mobile search, Lagun et al. [22] studied how knowledge
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graph results affected users’ attention and satisfaction. Their results showed that when a relevant
knowledge graph result was presented, the user would pay less attention to the results below it,
spend less time on the whole SERP, and feel more satisfied in the search. They also used an eye-
tracker to measure user gaze time on each search result and found that users paid more attention
to the second and third results than the first results in mobile search, which is different from the
findings in the eye-tracking studies conducted in desktop search settings (e.g., References [11, 17]).
Williams et al. [40] found that in mobile search, the direct answer results often led to good aban-

donment, where the user was directly satisfied by the SERP without clicking any hyperlinks, and
they proposed a gesture model that utilizes viewport time features to predict user satisfaction for
the abandoned queries. Williams et al. [41] further looked into how different types of answer verti-
cals affect user behavior in mobile search. These findings emphasized the importance of modeling
the heterogeneity of search results in building click models for mobile search.
Fourth, the different context between desktop and mobile devices leads to the different types

of available user behavior data collected in the search logs. On desktop devices, the hover with
mouse cursor can be collected by the search engine system and serve as the user attention in
the search process, which is shown to be useful in several research tasks, such as inferring result
relevance [31] and predicting user clicks [15]. However, there is no mouse cursor in the mobile
environment, so several works [22, 23] suggested using viewport time as an alternative to serv-
ing as a kind of user attention. As the screens of mobile devices are much smaller than desktop
devices and can usually contain only one to three search results at the same time, Lagun et al.
[22] looked into the viewport time in mobile search and showed its strong correlation with users’
eye gaze. Lagun et al. [23] found that the viewport data is useful for measuring user attention on
both information-rich advertisement and organic search results in the mobile environment. Mao
et al. [29] study the relationship between the user’s usefulness feedback and their search behav-
ior, showing that the viewport time features can be used to estimate usefulness when user clicks
are absent. Based on large-scale mobile search logs, Wang et al. [39] looked into the relationship
between the viewport time and user behavior, such as user examination and clicks, showing that
the viewport time that users spend on viewing clicked results has different distribution from the
one spent on viewing results without any user click. In a word, although the viewport time of
mobile search results is inherently stochastic, these works showed that it is systematically related
to types of results, examination behavior, user clicks, and satisfaction. Therefore, in this work, we
incorporate the viewport time as an additional signal in click models.

2.2 Click Models for Web Search

In this section, we will first present some definitions and notations used in this article and in-
troduce some existing click models, along with their corresponding behavioral assumptions, in
these notations. We will also introduce existing research on click models that has considered the
heterogeneity of search results and richer user behavior information.
When a user submits a query q to the search engine in a session s , a SERP that consists of M

ranked search results, (d1,d2, . . . ,dM ), will be returned to the user. Usually,M is set to 10, because
there are usually 10 results on the first page. di denotes the search results ranked at position i . di
can be an organic result or one of different types of vertical results. We use vi to denote the type
of di . M binary random variables (C1,C2, . . . ,CM ) are used to indicate whether the user click di
(Ci = 1) or skip di (Ci = 0). Ci can be observed in the search log. A click model is usually a proba-
bilistic generative model of the click sequence (C1,C2, . . . ,CM ) that models the joint distribution
P (C1,C2, . . . ,CM ).

Originally, click models were proposed to explain the position bias that users are more likely to
click top-ranked results, because these results are more likely to be examined. To model this bias
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caused by differences in examination likelihood at different ranks, the Examination Hypothesiswas
formulated by Richardson et al. [33] in predicting the click-through rate of ads and Craswell et al.
[8] in modeling the position bias in web search. This hypothesis assumes that a user will click a
search result if and only if she examined the result and was attracted by it:

Ci = 1 ⇐⇒ Ei = 1 ∧Ai = 1. (1)

Ei and Ai are binary random variables. Unlike Ci , they are latent variables that cannot be ob-
served directly from search logs. Ei = 1 indicates the user examineddi and otherwise Ei = 0.Ai = 1
means the search result can attract the user’s click whenever she examines it. Ai is usually con-
sidered as fully determined by the relevance between query q and result di :

P (Ai = 1) = αq,di . (2)

Therefore, Ai is independent of Ei , and the click probability of di can be computed as:

P (Ci = 1) = P (Ei = 1) · P (Ai = 1). (3)

A series of click models have different implementations of P (Ei ). For example, the cascade model

proposed by Craswell et al. [8] assumes a user will examine the search results sequentially from
top to bottom until she clicks a result. Therefore, P (Ei = 1) = 1,∀i ≤ j, where j is the rank of last
clicked results in the session. Guo et al. [12] extended the cascade model to multi-click sessions
by assuming that the user will continue to examine next results after clicking a result at position
i with a probability of λi . Dupret and Piwowarski [9] proposed the User Browsing Model (UBM),
which assumes that P (Ei ) depends on the current position i and its distance d to a previously
clicked result:

P (Ei = 1) = γi,d . (4)

Chapelle and Zhang [3] used additional binary variables Si to denote the user’s satisfaction after
clicking a result. If di is clicked (Ci = 1), then Si only depends on the query q and result di and is
considered as an additional signal for relevance:

P (Si = 1|Ci = 0) = 0, (5)

P (Si = 1|Ci = 1) = sq,di . (6)

They also assumed that a user will scan the SERP linearly but they allowed the user to leave the
SERP, not examining lower-ranked search results, when she is satisfied by a result di (Si = 1) or
choose to abandon the query with a probability 1 − γ :

P (E1 = 1) = 1, (7)

P (Ei = 1|Si−1 = 1) = 0, (8)

P (Ei = 1|Ei−1 = 0) = 0, (9)

P (Ei = 1|Si−1 = 0,Ei−1 = 1) = γ . (10)

With the development of deep learning, Borisov et al. [1] proposed Neural Click Model (NCM)
to model the sequence of user actions in the search process and achieved better performance in
the click prediction task than several popular click models with the probabilistic graphical model

(PGM) framework including UBM [9] and DBN [3].
With the emergence of vertical results and federated search, some existing efforts in desktop

web search tried to incorporate the influence of different vertical results into click models. Chen
et al. [4] considered the attention bias that ifdi is a vertical result, it may have a higher examination
probability P (Ei = 1) and the exploration bias that the user may choose not to examine any organic
results if she clicked a vertical with a certain probability e (s ) in the session s . Chuklin et al. [7]
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addressed this problem by assuming that a session is associated with a pre-defined intent I (s ). This
intent and the type of resultvi will affect the examination probability P (Ei ) and click attractiveness
P (Ai ). One can incorporate the influence of intents and result types into a click model that follows
the examination hypothesis (Equation (1)). For example, the UBM can be enhanced in the following
way:

P (Ei = 1) = γi,d (I (s ),vi ), (11)

P (Ai = 1) = αq,di (I (s )). (12)

The Vertical-aware Click Model (VCM) proposed by Wang et al. [38] further modeled how the
presence of different types of verticals affects both the examination probabilities and examination
order of the results on SERP. However, VCM can only model the influence of the first vertical result
on the SERP, making it not suitable for the mobile search scenario where a SERP usually contains
multiple vertical results.
These studies all focused on modeling how vertical results affect the examination probability

P (Ei ), but none of them addressed the problem that some types of vertical results can satisfy users
without requiring any clicks. Chuklin and de Rijke [5] proposed the Clicks, Attention and Satisfac-
tion (CAS) model to address the good abandonments problem in the desktop search environment
by assuming that satisfaction is cumulative and happens during the query session. Such skips on
good results with low click necessity are rather common in mobile search, which motivates us to
propose a new click model to cope with the corresponding click necessity bias and examination
satisfaction bias in mobile environment. Different from the CAS model, our mobile click models
estimate the click necessity of a search result as one of its attribute variables as same as attractive-
ness and satisfaction.
Another line of research tries to incorporate richer user behavior information into click mod-

els. Wang et al. [37] first incorporated non-sequential behavior into click models and proposed
Partially Sequential Click Model (PSCM), while Liu et al. [25] extended PSCM by capturing the
temporal information of user behavior and proposed Time-Aware Click Model (TACM), which
models the relationship between click dwell time and user satisfaction. Liu et al. [27] proposed to
enhance the estimation of examination by incorporating mouse movement information into exist-
ing click models. In this work, as the viewport time information has a strong correlation with user
examination and satisfaction and is available in the mobile search environment, we incorporate
it into the click model to promote the performance in both predicting user clicks and estimating
result relevance.

3 MOBILE CLICK MODEL

3.1 Modeling Biases

We first formally introduce the click necessity bias and examination satisfaction bias as well as
how we incorporate them into click models.

• Click Necessity Bias: Some types of search results (e.g., the knowledge graph and direct an-

swer results) have low click necessity, because they can satisfy users’ information needs without

requiring any clicks, which will lower the click probabilities of these results.

To model the click necessity bias, we introduce a binary variable Ni for the click necessity of
each result di . Ni = 1 indicates that a user must click the result to get the useful information in it,
and Ni = 0 indicates that a user can be satisfied directly by reading or interacting with the snippet
on the SERP. For example, the knowledge graph result that presents rich information in Figure 1(a)
tends to be of lower click necessity than an organic result that contains less useful information.
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We extend the examination hypothesis (Equation (1)) as:

Ci = 1 ⇐⇒ Ei = 1 ∧Ai = 1 ∧ Ni = 1. (13)

A user will click a search result if and only if: (1) she examined it; (2) it is attractive; and (3) she
needs to click it to get useful information. We further assume that Ni only depends on the type of
search results vi :

P (Ni = 1) = βvi . (14)

We acknowledge that P (Ni = 1) may also be affected by other factors such as user intent and
relevance between the query and result, but we choose to use this simplified assumption and leave
the exploration of how to model P (Ni = 1) for future work.

By incorporating the click necessity bias, we can avoid the negative feedback caused by the good
skips on the results with low click necessity. However, we also need to define positive signals, other
than clicks, for these results. Therefore, we propose the examination satisfaction bias:

• Examination Satisfaction Bias:A user can feel satisfied and leave the SERP after examining

a search result that is both attractive and with low click necessity.

We use a binary variable SEi to denote whether the user is satisfied just by examining result di
(examination satisfaction), SCi to denote whether the user is satisfied after clicking it (click satisfac-
tion). We further use Si to denote a user’s state of satisfaction after position i . We assume that: (1) a
user will stay satisfied once she encountered either an examination satisfaction event (SEi = 1) or a

click satisfaction event (SCi = 1); (2) if the user is in the satisfied state Si = 1, she will not examine
follow-up results. Therefore, we have:

Si = 1 ⇐⇒ Si−1 = 1 ∨ (SEi = 1 ∨ SCi = 1), (15)

P (Ei = 1|Si−1 = 1) = 0. (16)

Because Si = 1⇒ Si+1 = 1, we have ∀j > i, P (Ej = 1|Si = 1) = 0. By adding the satisfaction state

variable Si , we allow the click/examination satisfaction event at position i (SCi and SEi ) to influence
all the follow-up examination events (Ej , where j > i).

The click satisfaction (SCi = 1) can happen when a result is clicked, while the examination satis-

faction (SEi = 1) can only occurwhen a result is examined (Ei = 1), attracts user’s attention (Ai = 1),

and it does not need to be clicked (Ni = 0). Similar to DBN, we assume that SEi and SCi are governed
by the parameters that associate with the relevance between q and di :

P (SCi = 1|Ci = 1) = sCq,di , (17)

P (SEi = 1|Ei = 1,Ai = 1,Ni = 0) = sEq,di . (18)

By incorporating the examination satisfaction bias, we can give credits to the search results that
have low click necessity but can provide relevant and useful information for users when there are
no clicks below it. We hope that capturing these signals can help us rank the results with low click
necessity more properly in mobile search.

3.2 Modeling Viewport Time

We treat viewport time Vi as an observed and continuous variable in VTCM model and adopt
continuous probability distributions to model the distributions of results’ viewport time under
different conditions of examination behavior, user clicks, and examination satisfaction. Besides,
we assume that the viewport time probabilities are also related to the type vi of the search result
for which the user usually pays different attention to different types of search results [23, 38]. Based
on the hypotheses of MCM, there are four possible conditions for the ith result in the SERP: (1) The
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user did not examine it (Ei = 0); (2) The user examined it and continued examining another result
in the SERP (Ei = 1,Ci = 0, SEi = 0); (3) The user examined it, felt satisfied, and left (Ei = 1,Ci =

0, SEi = 1); (4) The user examined and clicked it (Ei = 1,Ci = 1, SEi = 0). Therefore, we propose two
versions of VTCM to model the distributions of viewport time. In the first version of VTCM named
VTCMe , we classify the four conditions into two types: examined (Condition 1) and not examined
(Conditions 2, 3, 4). Therefore, for the viewport time ti of the ith search result in the SERP, we
have two conditional probabilities with respect to the two types of conditions, i.e., Equations (19)
and (20).

P (Vi = ti |Ei = 0) = f E=0vi
(ti ), (19)

P (Vi = ti |Ei = 1) = f E=1vi
(ti ). (20)

In the second version of VTCM named VTCMc , we take examination behavior, user clicks, and
examination satisfaction into account to model the viewport time distributions and adopt four
independent conditional probabilities for those conditions, which are listed as follows:

P (Vi = ti |Ei = 0) = f E=0vi
(ti ), (21)

P (Vi = ti |Ei = 1,Ci = 0, SEi = 0) = f E=1,C=0,S
E=0

vi
(ti ), (22)

P (Vi = ti |Ei = 1,Ci = 1, SEi = 0) = f E=1,C=1,S
E=0

vi
(ti ), (23)

P (Vi = ti |Ei = 1,Ci = 0, SEi = 1) = f E=1,C=0,S
E=1

vi
(ti ). (24)

For the viewport time distribution function f in both VTCMe and VTCMc , we try three continu-
ous probability distribution functions: log-normal, gamma andWeibull, whose probability density
functions are listed here:

floд−normal (t ; μ,σ ) =
1

tσ
√
2π

e−
(ln t−μ )2

2σ 2 , (25)

fдamma (t ;k,θ ) =
1

Γ(k )θk
tk−1e−t/θ , (26)

fWeibull (t ; λ,k ) =
k

λ

( t
λ

)k−1
e−(t/λ)

k

. (27)

By incorporating the viewport time information, we can correct the estimated examination
probabilities of search results in a specific search process and extend the assumptions of the click
model by establishing the relationship among viewport time, examination satisfaction, and user
click behavior. We hope that it can help model user behavior and estimate latent variables in the
model, e.g., the relevance and examination satisfaction of search results, more effectively. More
analysis of viewport time distributions learned by VTCM will be discussed in Section 4.3.

3.3 Mobile Click Model

Besides incorporating the click necessity bias and examination satisfaction bias, we can use dif-
ferent functions for P (Ei ) and P (Ai ), which will be equivalent to incorporating the click necessity
bias and examination bias into different click models. In this work, we use UBM’s implementa-
tion of P (Ai ) and P (Ei ) (Equations (2) and (4)) because: (1) it performs well in the click prediction
task; (2) the computation of P (Ei = 1) is fully determined by observable variables Cj , j < i , which
simplifies the inference of posterior.
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Fig. 2. The Bayesian network structure of Mobile Click Model (MCM). Ci is the only observed variable.

We call the derived model Mobile Click Model (MCM) and illustrate it in Figure 2. In this model,
onlyCi can be observed in logs and only Si will influence users’ further behavior. The conditional
probabilities of Ci and the latent variables {Ei ,Ai ,Ni , S

E
i , S

C
i , Si } are given as follows:

P (Ei = 1|Si−1 = 1) = 0, (28)

P (Ei = 1|Si−1 = 0) = γi,d , (29)

P (Ai = 1) = αq,di , (30)

P (Ni = 1) = βvi , (31)

Ci = 1 ⇐⇒ Ei = 1 ∧Ai = 1 ∧ Ni = 1, (32)

P (SEi = 1|¬(Ei = 1 ∧Ai = 1 ∧ Ni = 0)) = 0, (33)

P (SEi = 1|Ei = 1 ∧Ai = 1 ∧ Ni = 0) = sEq,di , (34)

P (SCi = 1|Ci = 0) = 0, (35)

P (SCi = 1|Ci = 1) = sCq,di , (36)

Si = 1 ⇐⇒ Si−1 = 1 ∨ (SEi = 1 ∨ SCi = 1). (37)

3.4 Viewport Time Click Model

We introduce viewport time information into VTCM and illustrate it in Figure 3, where Ci and
Vi are two observed variables. In VTCMe , the conditional probabilities of Vi are only related to
Ei (Equations (19) and (20)), while the conditional probabilities of Vi are related to Ei , Ci , and SEi
in VTCMc (Equations (21)–(24)). In both VTCMe and VTCMc , the probabilities of Ci and latent
variables {Ei ,Ai ,Ni , S

E
i , S

C
i , Si } are given as same as MCM (Equations (28)–(37)).

3.5 Parameter Update

The parameters of MCM are {α , β,γ , sE , sC }, while VTCM includes additional parameters Θ for
the viewport time distributions. The maximum likelihood estimates of these parameters can be
learned from click logs by using the Expectation-Maximization (EM) algorithm. The objective of
VTCM changes, becauseVi is introduced as the second observed variable. The objectives of MCM
and VTCM are to maximize the probabilities given as follows:

JMCM =
∏
s ∈S

P (Cs
1 , . . . ,C

s
M |α , β,γ , sE , sC ), (38)
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Fig. 3. The Bayesian network structure of Viewport Time Click Model (VTCM). Ci and Vi are two observed
variables. In VTCMe , the conditional probability of Vi relies on the prior probability of Ei , while in VTCMc ,

the conditional probability of Vi relies on the joint prior probability of Ei , Ci , and S
E
i .

JVTCM =
∏
s ∈S

P (Cs
1 , . . . ,C

s
M ,V

s
1 , . . . ,V

s
M |α , β,γ , sE , sC ,Θ), (39)

where S is the set of query sessions in the training data and M is the number of documents in a
query session. Please refer to the Appendix for a detailed derivation of the E-step and M-step.
After learning the parameters, we can use them to compute a relevance score for each mobile

search result in the logs. This score can be used to rank the search results according to users’ im-
plicit relevance feedback. For MCM and VTCM, we use Equation (40) to compute the predicted
relevance score, where we treat the probability that the user feels satisfied to the result after ex-
amining it as the relevance score of (q,di ):

relevance (q,di ) � P (Si = 1|Ei = 1)

= αq,di
[
βvi s

C
q,di
+ (1 − βvi )sEq,di

]
. (40)

3.6 Comparisons with Existing Click Models

We compare the behavioral assumptions of MCM and VTCM with the ones of some existing click
models in Table 1.
First, we compare MCMwith two widely used click models: DBN and UBM. Compared to UBM,

MCM takes the click and examination satisfaction into consideration. Therefore, in MCM, the ex-
amination probability P (Ei = 1) is not only dependent on user click behavior on previous results
(C1,C2, . . . ,Ci−1) but also influenced by the relevance of these results captured by the satisfaction
parameters sC

q,dj
and sE

q,dj
, for all j < i . Compared to DBN, MCM relaxes the strict cascade hypothe-

sis in examination that Ei−1 = 0⇒ Ei = 0. Instead, MCM allows skips in an examination sequence
as the UBM does. From this perspective, MCM can be regarded as an effort to unify these two
classic click models.
We also compare MCM with previous efforts on incorporating the heterogeneity of search re-

sults into clickmodels [4, 7, 38]. The existing studies in desktop searchmainly focused onmodeling
the influence of heterogeneous results on user examination behavior (attention bias) and the pref-
erence to a certain type of vertical results caused by different search intents (search intent bias).
None of them addressed the click necessity bias and examination satisfaction bias that are more
common in mobile search.
Compared to MCM and other existing click models, VTCM further utilizes the viewport time

information. During the inference process, the posterior examination probability P (Ei = 1) and
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Table 1. Comparisons between MCM, VTCM, and Some Existing Click Models

D
B
N
[3
]

U
B
M

[9
]

C
h
en

et
al
.[
4]

C
h
u
k
li
n
et

al
.[
7]

W
an
g
et

al
.[
38
]

M
C
M

V
T
C
M

allow skip examination � � � � � �
click satisfaction � �3 � �
attention bias � � �

search intent bias �
click necessity bias � �

examination satisfaction bias � �
viewport time �

satisfaction probability P (Si = 1) will be affected by the viewport time information, which can
help VTCM estimate parameters more effectively and achieve better click prediction performance.

4 EXPERIMENTS

We conduct a series of experiments on large-scale search logs collected from a popular Chinese
mobile search engine to answer the following research questions:

• RQ1: Can VTCM model the viewport time distributions of heterogeneous mobile search
results effectively?

• RQ2: Do MCM and VTCM have better click prediction ability in the mobile environment
than the baseline models?

• RQ3: Can MCM and VTCM provide better relevance estimations of mobile search results
than the baseline models?

• RQ4: How do MCM and VTCM model the click necessity and examination satisfaction
probability of heterogeneous mobile search results?

4.1 Experimental Setup

4.1.1 Datasets. The search logs used in this study were sampled from real mobile search logs of
Sogou.com, a popular Chinese search engine. The search log for a session s consists of a query q,
10 URLs of search results, a 10-dimensional binary click vector (C1,C2, . . . ,C10), a 10-dimensional
viewport time vector (V1,V2, . . . ,V10), and 10 vertical_ids for the search results. For the viewport
time vector, we inject Javascript into SERPs to log users’ scrolling and tab-switch actions. (See
Section 4.1.2 for details about how we compute the viewport time of search results.) In this study,
we use the corresponding vertical_id to indicate the type (vi ) of a search result (di ). We note
that this is a fine-grain categorization of search results, because there are thousands of unique
vertical_ids in the logs. A different vertical_idmay mean that the corresponding result has a
different presentation style or comes from a different source. Organic results have a set of special
vertical_ids, so we can also use them to separate organic results from vertical results.
We use two datasets, Dataset-C for the click prediction task (Section 4.4) and Dataset-R for

relevance estimation task (Section 4.5), because relevance annotations are needed for the latter

3The exploration bias found by Chen et al. [4] assumes that after the user clicks a vertical result, she may choose not to

click any organic results, which is similar to “satisfaction after click.”
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Table 2. The Statistics of Two Datasets Used in This Study

#unique queries #sessions #unique URLs #unique vertical_ids
Dataset-C 2,254,308 4,197,830 14,025,852 2,590
Dataset-R 546 21,443 2,742 171

task. In the relevance estimation task, we will train all click models on the training set of Dataset-
C and evaluate them on Dataset-R according to the collected relevance annotations. The detailed
statistics for the two datasets are shown in Table 2. We remove the sessions in the search logs
without any click.
Dataset-C was generated by sampling about 3% sessions from five weekdays of one week. In the

click prediction task, we divide Dataset-C into two subsets according to their time, with the first
three-day data for training and the last two-day data for test.
Dataset-R was generated through the following process: (1) We first randomly sampled 12K

unique queries from a one-month search log; (2) We then sampled all the sessions associated with
those queries in the training set of Data-C, which may only cover 546 queries of those 12K queries;
(3) We also crawled the SERPs for these queries and collected relevance labels for the top-five re-
sults of these queries using crowdsourcing. Because we assume that a user can be satisfied directly
on the SERP, besides collecting relevance labels for the landing pages (Relpaдe ), we also collect rel-
evance labels for the snippets (Relsnippet ) of mobile results. For the two kinds of relevance labels,
we use two different sets of workers to make relevance judgments. During the judgment process,
the system randomly selected a query and a snapshot of the snippet (or a web page) and showed
them to the crowdsourcing workers at one time. After workers submitted the relevance judgment,
the system repeated the above actions. A 4-level scale (1: not relevant, 2: somewhat relevant, 3:
fairly relevant, and 4: perfectly relevant) was used for both Relpaдe and Relsnippet . Each snippet
and landing page was annotated by at least three crowdsourcingworkers and their relevance labels
were determined by the median of all relevance annotations. All workers are Chinese with basic
reading and computer skills. The values of Fleiss’κ [10] for Relpaдe and Relsnippet are 0.75 and 0.73,
both reaching a substantial agreement level (0–0.2: slight agreement; 0.2–0.4: fair agreement; 0.4–
0.6: moderate agreement; 0.6–0.8: substantial agreement; 0.8–1.0: almost perfect agreement [24]).
We also report the values of Krippendorf’s alpha [21], which are 0.76 and 0.73 for Relpaдe and
Relsnippet , respectively. All the values of Fleiss’ κ and Krippendorf’s alpha indicate an acceptable
quality for relevance annotations.

4.1.2 Viewport Time. Although the viewport time can be treated as user attention, it is not
only biased by the content of the result, but also by the presentation style, result heights, and
other factors. On the one hand, different types of results usually have different heights with a
fixed width in the mobile search environment. On the other hand, a result occupying more area in
the viewport will naturally attract more user attention, leading to a longer viewport time. Lagun
et al. [22] found that the weighted viewport time has the strongest correlation with user attention
among all their methods. We follow them and adopt the weighted viewport time in our experiment
to reduce the presentation bias of the viewport time. For a result in the SERP, its weighted viewport
time is given as follows:

tweiдhted =

n∑
i=1

t iraw ∗
(hie )

2

hiv ∗ hir
, (41)

where tweiдhted is the weighted viewport time of a result,n is the number of viewports in the query

session, t iraw is the raw viewport time of the result in the ith viewport, hie is the visible height of
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the result exposed in the ith viewport, hir is the actual height of the result, h
i
v is the height of the

ith viewport. Specifically, hie/h
i
v represents how much the result occupies the viewport (viewport

coverage) and hie/h
i
r represents how much the result is visible to the user (result exposure) [22].

About 4.3% of results’ weighted viewport time is more than 30s in our dataset. To avoid the impact
of abnormal data to our experiment, we follow Reference [39] and set 30s as an upper bound,
correcting the abnormal viewport durations, which exceed the upper bound to 30s.

4.1.3 Baseline Models. We use three basic click models that do not take the type of search
results into consideration, two vertical-aware click models originated from desktop search, and a
neural click model as the baseline models. We refer to Chuklin et al. [7] for the implementations of
the baseline models and make some necessary modifications to adapt them for a fair comparison
on our dataset.
The three basic click models are the following:

• UBM: User Browsing Model proposed by Dupret and Piwowarski [9] (see Equations (2)–(4)
in Section 2.2).

• DBN: Dynamic Bayesian Network model proposed by Chapelle and Zhang [3] (Equa-
tions (5)–(10)).

• DCM: Dependent Click Model proposed by Guo et al. [12].

Two vertical-aware baseline models are:

• EB-UBM: UBM with the exploration bias modification proposed by Chen et al. [4].
• UBM-layout: UBM that has different γi,d parameters for search results with different lay-

outs (i.e., different types of results). This model was designed by Chuklin et al. [7]. Note
that here we cannot use the UBM-IA model proposed in the same article, because we do not
have a pre-define classification of the search intent for each query. The original UBM-layout
model only considers two types of results: fresh (i.e., news verticals) and web (i.e., organic
results). We modify the model to make it work with an arbitrary number of result types de-
fined by the vertical_ids. This modification improves UBM-layout model’s performance
in click prediction and relevance estimation. Therefore, we only report the performance of
the modified UBM-layout model in this article.

The neural baseline model is:

• NCM: Neural Click Model proposed by Borisov et al. [1]. We implement NCM with the
LSTM configuration.

4.2 Investigating Mobile Search Logs

Williams et al. [40] looked into how vertical results affect user clicks and found that different types
of knowledge graph answers affect user behavior on SERPs differently. In this section, we would
like to follow them and examine the effects of several common result types in the mobile search
on user behaviors based on our dataset to support the designs of our mobile click models.

4.2.1 Comparison between Mobile and Desktop. Before training click models on the mobile
search logs, we want to empirically demonstrate the differences between user click behavior in
mobile and desktop search. So, we randomly sampled 10K mobile search sessions from Dataset-C
and 10K desktop search sessions from the same commercial search engine to conduct a comparison
analysis.
We first show the ratios of vertical results among the top 1, 3, 5, and 10 results in Figure 4. We

can see that the ratios of vertical results in mobile search are higher than those in desktop search
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Fig. 4. The distribution of vertical results on desktop and mobile.

Fig. 5. The Click Through Rate (CTR) of vertical and organic results on desktop and mobile.

(all the differences are statistically significant at p < 0.01 level, independent t-test, two-tailed). On
mobile SERPs, 28.1% of top-10 results and over 40% of the first search results are vertical, showing
a prevalence of heterogeneous results in mobile search.
The click-through rates (CTRs) of both vertical and organic results are shown in Figure 5. For

organic results, the click-through rates on mobile and desktop are comparable. For top-1 results,
the click-through rates are not significantly different (p = 0.14). For top-3, top-5, and top-10 results,
the click-through rates on mobile are slightly but significantly (all p < 0.01) higher than those on
desktop with the absolute differences of 2.3%, 2.8%, and 2.0%, respectively. However, for vertical
results, the click-through rates in mobile search are significantly lower than (all p < 0.01) those in
desktop search with relatively large margins of 12.0%, 3.5%, 10.5%, and 8.3% for top-1, top-3, top-5,
and top-10 results, respectively. The differences in click-through rates on vertical results in mobile
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Fig. 6. The Click Through Rate (CTR) of top-10 results on desktop and mobile.

and desktop search imply that a large number of vertical results on mobile SERPs are designed
to directly satisfy users without being clicked, which emphasizes the importance of modeling the
click necessity bias in mobile context.
We also compare the position biases of click-through rates onmobile and desktop. From Figure 6,

we can see that: (1) The click-through rate for the first mobile results is lower than that for the
first desktop results, which can be explained by the fact that over 40% of the first mobile results
are vertical and a large proportion of them can satisfy users without clicks. (2) The click-through
rates for the second and third results on mobile are higher than those on the desktop. This finding
is consistent with Lagun et al. [22] finding that mobile users tend to have a longer gaze time for
the second and third results [22]. It can also be explained by the spill-over effect [26] that a user
will pay more attention to the results below a visually attractive vertical result.

4.2.2 Viewport Time of Heterogeneous Results. To see if the types of results have an influence on
the distributions of their viewport time, we conduct a statistic analysis of our dataset. For organic
results, the results with zero viewport time account for 52.45%, while this percentage for vertical
results is 49.36%. There also exist a few results with a rather long viewport time, so we artificially
set the upper limit for 30s. There are only about 0.3% of results whose viewport time is longer
than 30s in our search log dataset. For these results, we set their viewport time to 30s to reduce
the impact of individual extreme values on the update of click model parameters. Figure 7 shows
the positive viewport time distributions of heterogeneous results in our search log dataset, where
we only use the results whose viewport time is longer than 0s. In Figure 7(a), we can see that the
positive viewport time distribution of organic results (Mean = 2.87, IQR = [0.41, 3.74], SD = 3.99)
is significantly different from that of vertical results (Mean = 3.79, IQR = [0.56, 4.89], SD = 5.16) at
p < 0.01 level. For organic results, the mean viewport time is shorter than that of vertical results,
and the standard deviation is smaller than that of vertical results. Figure 7(b) shows the positive
viewport time distribution of four most-frequent vertical types of results in search logs. From this
figure, we can see that viewport time distributions vary among different vertical types of results.
Therefore, these results suggest we model the viewport time distribution for each type of results
individually in VTCM.

4.3 Viewport Time Distribution Learned by VTCM

First, to answer RQ1, we would like to look into the selection problem of the viewport time distri-
bution function in VTCM. We calculate the log-likelihood of different distribution functions with
respect to the real viewport time data to see which distribution function can model the viewport
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Fig. 7. The positive viewport time distributions of heterogeneous results in search logs, where only re-
sults with positive viewport time is included. Figure 7(a) shows the one of organic and vertical results. Fig-
ure 7(b) shows the one of four most-frequent vertical results. Image results contain several related images,
while knowledge results provide a few question-answer pairs. “Query” means the query suggestion results.
“Text&Image” represents results presented with a title, a textual snippet, and an image.

Table 3. Log-likelihood of Viewport Time
Distribution Functions in VTCMe and VTCMc

Model Log-normal Gamma Weibull
VTCMe −9.782 −8.981 −8.973
VTCMc −9.671 −8.961 −8.957
All differences are statistically significant at p < 0.001

level, pairwise t-test, two-tailed, n = 1, 910, 040.

time distributions best. The log-likelihood of a distribution function with respect to the real view-
port time data is calculated as follows:

LL =
1

|S |M
∑
s ∈S

M∑
i=1

loд(P (V s
i = tsi |Cs

1, ...,M ,V
s
1, ...,i−1,i+1, ...,M ))

=
1

|S |M
∑
s ∈S

M∑
i=1

loд ��
∑
π ∈Π

P (π |Cs
1, ...,M ,V

s
1, ...,i−1,i+1, ...,M )P (Vi = ti |π )�� , (42)

ΠVTCMe
= {Esi = 0,Esi = 1}, (43)

ΠVTCMc
= {Esi = 0,

Esi = 1 ∧Cs
i = 1 ∧ SE,si = 0,

Esi = 1 ∧Cs
i = 0 ∧ SE,si = 1,

Esi = 1 ∧Cs
i = 0 ∧ SE,si = 0}, (44)

where the viewport time ti is treated as a discrete variable with the minimum unit 1ms for conve-
nience of calculation. π is the condition of viewport time eventsVi , while Π is the set of all possible
π in the click model.

Table 3 shows the log-likelihood of three distribution functions applied in VTCMe and VTCMc .
We can see that with the same distribution function, the log-likelihood of VTCMc is larger than
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Fig. 8. The means and standard deviations of viewport time distributions learned by VTCMe for the first
20 most-frequent types of results and three examples of results with different types. With the query “cat
breed,” the first knowledge vertical result contains several question-answer pairs relevant to the query, the
second image vertical result provides images of cats, while the third organic result is a related web page.

that of VTCMe , indicating that VTCMc can model the viewport time distribution more effectively
than VTCMe . According to the performance of log-likelihood, Weibull is the best one among three
viewport time distribution functions.
Figure 8 shows the means and standard deviations of viewport time distributions learned by

VTCMe for the first 20 most-frequent result types in our dataset. We can see that the mean view-
port time for E = 1 (i.e., the result has been examined by the user) is larger than that for E = 0
(i.e., the result has not been examined), showing VTCMe can effectively learn the difference of
viewport time distributions under the two examination conditions. We select three representative
cases: a knowledge vertical result, an image vertical result, and an organic result. The query of
these snippets in Figure 8 is “cat breed” in English. The first snippet is a knowledge vertical result
showing some related questions and answers written by other users. We can see that the mean
viewport time of this result type for E = 1 is longer than that of other result types, indicating that
users usually spend a rather long time on reading knowledge vertical results in mobile search.
Meanwhile, we notice that its standard deviation is also larger than those of other vertical types.
One possible reason is that the knowledge vertical results sometimes are not useful for some users
with certain intent or not of high quality, so users prefer to spend a shorter time on viewing these
results or directly ignore them. We also show another case, an image vertical result containing
several images of cats, which users spend less time viewing than most other vertical types. The
reason for this phenomenon may be complicated. We just list two possible reasons: On the one
hand, it is naturally faster for users to get the overall meanings of images than text; on the other
hand, due to the small display of mobile devices, users may tend to quickly click the image ver-
tical results after they view it to see the target image clearly. We further look into the organic
results. We can see that its mean viewport time is the shortest among all 20 result types, which
can be caused by a lot of reasons, such as its low ranking position, low attractiveness, or relevance,
and so on.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 43. Publication date: September 2019.



Constructing Click Model for Mobile Search with Viewport Time 43:19

Fig. 9. The means of viewport time distributions of knowledge vertical results and organic results estimated
by VTCMc .

Figure 9 shows the means of viewport time distributions of knowledge vertical results and or-
ganic results learned by VTCMc . A knowledge vertical result contains several question-answer
pairs and occupies a large area in the viewport, while an organic result usually does not seem as
attractive as a vertical result and occupies a relatively small area of the screen. Therefore, from
the results, we can see that the mean viewport time of both knowledge vertical and organic re-
sults for E = 0 is shorter than that for the other three conditions. When the results have been
clicked (E = 1,C = 1, SE = 0) or the user just examines the result without any click and satisfac-
tion (E = 1,C = 0, SE = 0), the mean viewport time of knowledge vertical results is much longer
than that of organic results, showing that users usually spend a long time on viewing knowledge
vertical results than organic results. It usually takes users a shorter time to feel satisfied after exam-
ining the snippets of knowledge results compared to that of organic results (E = 1,C = 0, SE = 1).

Figure 10 shows the real viewport time distributions of knowledge vertical results and organic
results and the ones learned by VTCMe and VTCMc . To be compared with the real viewport time
distributions, the learned distributions need to be weighted by their corresponding prior probabil-
ities. For example, in VTCMe , the probability of Vi in a query session s is given as follows:

P (Vi = ti |Cs
1, ...,M ,V

s
1, ...i−1,i+1,M ) = P (E = 0|Cs

1, ...,M ,V
s
1, ...i−1,i+1,M )P (Vi = ti |E = 0),

+ P (E = 1|Cs
1, ...,M ,V

s
1, ...i−1,i+1,M )P (Vi = ti |E = 1), (45)

where P (E = 0|Cs
1, ...,M ,V

s
1, ...i−1,i+1,M ) and P (E = 1|Cs

1, ...,M ,V
s
1, ...i−1,i+1,M ) are prior probabilities,

while P (Vi = ti |E = 0) and P (Vi = ti |E = 1) are called posterior probabilities. For the convenience
of visualization, we use the mean of all prior probabilities under a condition to weight the corre-
sponding viewport time distribution.
In Figure 10, the distribution “All” (the red line) is the sum of all distributions for possible

conditions. From Figure 10, we can see that both VTCMc and VTCMe are capable of model-
ing the viewport time distributions of the two result types. The mean probabilities P (E = 0,C =
0, SE = 1|Cs

1, ...,M ,V
s
1, ...i−1,i+1,M ) for organic and knowledge results are, respectively, 4.37 × 10−3

and 3.14 × 10−7, causing the purple lines to be very close to X-axis, which also indicates that users
hardly leave (i.e., feel satisfied under the hypothesis of VTCM) after viewing these two types of
results. We further look into the posterior probabilities estimated by VTCMc . Figure 11 shows the
ratio of posterior probabilities under four conditions with the increase of the viewport time. First,
we can see as the viewport time increases, the ratio of the posterior probability for E = 0 decreases,
indicating that in VTCMc , the longer viewport time a result has, the more likely the user has
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Fig. 10. The viewport time distributions of knowledge vertical results and organic results learned by VTCMe

and VTCMc .

examined it. Second, for knowledge vertical results, the ratio of E = 0,C = 1, SE = 0 gets larger
as the viewport time increases, which means that the longer time a user spends on viewing a
knowledge vertical result, the more likely the user will click it. Third, for organic results, the ra-
tio for E = 1,C = 0, SE = 1 gets larger as the viewport time increases, which is mainly because
the posterior probabilities for the other three conditions get much smaller at the same time, indi-
cating that for an organic result with a rather long viewport time, it is less possible for users to
click it.
Regarding as RQ1, we show how VTCMe and VTCMc effectively model the viewport time dis-

tributions of heterogeneous results in mobile search. We also draw from the experimental results
thatVTCMc can outperformVTCMe in both click prediction and relevance estimation tasks based
on modeling viewport time under more fine-grained conditions.

4.4 Click Prediction

When measuring the click prediction performance on the test set, we filter out all the queries
that have a query frequency less than 10 in the training set. Following the convention of previous
works [4, 9, 38], we use two evaluation metrics, log-likelihood (LL) and average perplexity
(AvдPerp), to evaluate models’ performance in the click prediction task. The log-likelihood
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Fig. 11. The posterior probability ratio of four conditions for knowledge vertical results and organic results
in VTCMc .

functions of MCM and VTCM are calculated as follows:

LLMCM =
1

|S |
∑
s ∈S

M∑
i=1

loд(P (Cs
i |Cs

1 , . . . ,C
s
i−1))

=
1

|S |
∑
s ∈S

loд(P (Cs
1 , . . . ,C

s
M ), (46)

LLVTCM =
1

|S |
∑
s ∈S

M∑
i=1

loд(P (Cs
i |Cs

1 , . . . ,C
s
i−1,V

s
1 , . . . ,V

s
i )). (47)

The average perplexity is the mean of perplexity Perpi overM positions:

AvдPerp =
1

M

M∑
i=1

Perpi , (48)

Perpi = 2−
1
|S |
∑
s∈S Cs

i log2 (q
s
i )+(1−Cs

i ) log2 (1−qsi ), (49)

where M = 10 and S is the set of all search sessions in test set, while qsi is the conditional
click probability of result i in session s ∈ S , given the clicks of the first i − 1 results, i.e.,
P (Cs

i |Cs
1 , . . . ,C

s
i−1), predicted by the baseline click models and MCM. For VTCMs, qsi represents

P (Cs
i |Cs

1 , . . . ,C
s
i−1,V

s
1 , . . . ,V

s
i ). A larger LL indicates a better performance, and the relative im-

provement of LL1 over LL2 is given by exp(LL1 − LL2) − 1). While the perfect prediction at position
i will have a perplexity Perpi = 1.0, a smaller value of AvдPerp indicates better prediction accu-
racy. The relative improvement of perplexity value p1 over p2 is computed as (p2 − p1)/(p2 − 1).

4.4.1 Comparison among VTCMs with Different Viewport Time Distribution Functions. To an-
swer RQ1, we also look into the overall click prediction performance of VTCMs with differ-
ent distribution functions on the remaining 283,004 sessions of the test data, which is shown
in Table 4. From the results, we can see that among three viewport time distribution functions,
VTCMswithWeibull achieve the best performance in the click prediction task, followed by gamma,
while VTCMs with log-normal perform worst. With the same viewport time distribution function,
VTCMc has better click prediction ability than VTCMe , indicating that modeling the relationships
among viewport time, user clicks, and examination satisfaction can improve the click prediction
performance.
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Table 4. The Overall Click Prediction Performance of VTCMs with Different
Viewport Time Distribution Functions, Which is Measured in Log-likelihood

(LL) and Average Perplexity (AvдPerp)

Model Viewport LL SD (×10−6) AvдPerp SD (×10−6)
log-normal −2.013 7.88 1.236 2.58

VTCMe gamma −2.011 7.68 1.235 2.51
Weibull −1.997 7.71 1.233 2.51
log-normal −2.007 8.05 1.235 2.64

VTCMc gamma −1.989 7.91 1.233 2.60
Weibull −1.982 7.94 1.232 2.60

All differences over the best results (which are bold) are statistically significant at p < 0.001

level, pairwise t-test, two-tailed, n = 283, 004. SD is the standard deviation of the mean of

LL and AvдPerp .

Table 5. The Overall Click Prediction Performance of VTCMs, MCM, and Baselines
Measured in Log-likelihood (LL) and Average Perplexity (AvдPerp)

Model LL Impr. SD (×10−6) AvдPerp Impr. SD (×10−6)
DBN −2.249 −5.27% 8.78 1.263 −5.29% 2.70
DCM −2.233 −4.52% 7.71 1.263 −5.39% 2.21
UBM −2.175 −1.82% 7.77 1.256 −2.27% 2.22
EB-UBM −2.182 −2.12% 7.65 1.257 −2.65% 2.18
UBM-layout −2.144 −0.35% 7.67 1.251 −0.52% 2.22
NCM −2.131 0.26% 7.46 1.249 0.36% 2.14

MCM −2.136 - 7.71 1.250 - 2.23
VTCMe −1.997 6.54% 7.71 1.233 6.68% 2.51
VTCMc −1.982 7.21% 7.94 1.232 7.18% 2.60

All relative improvements over MCM are calculated and statistically significant at p < 0.001 level, pair-

wise t-test, two-tailed, n = 283, 004. SD is the standard deviation of the mean of LL and AvдPerp .

4.4.2 Comparison with Baselines. To answerRQ2, we compare the overall click prediction per-
formance of MCM, VTCMs, and baselines in Table 5. Note that in the following experiment, we
adoptWeibull distribution for both VTCMc andVTCMe , because VTCMswithWeibull distribution
can achieve the best performance in both modeling the viewport time distributions and predicting
user clicks among all three distribution functions in our previous experiment. We can find in Ta-
ble 5 that MCM significantly outperforms all PGM-based baseline models, including the basic and
vertical-aware baselines, but performs worse than NCM, while VTCM significantly outperforms
MCM and all baselines.
We further compare different models for queries with different query frequencies. From Table 6,

we can see that while the click performance measured in LL increases as the query frequency for
all models, VTCMc performs consistently the best among all click models, followed by VTCMe

and MCM. It is interesting to see that the relative improvements of MCM over baseline models are
larger for queries whose frequency is over 50 in the training set. A possible reason for this phe-
nomenon is that there are more vertical results designed for and federated into the SERPs of hot
queries. We compare the performances of MCM and NCM and find that with the increase of the
query frequency, the performance of MCM gradually gets better than that of NCM. Compared to
MCM, VTCMs achieve the largest relative improvements for queries whose frequency is below 50.
A possible reason for this phenomenon is that when the query is of low frequency, the viewport

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 43. Publication date: September 2019.



Constructing Click Model for Mobile Search with Viewport Time 43:23

Table 6. Log-likelihood of Each Model for Different Query
Frequency in Training Set

Query Freq. [10, 50) [50, 200) [200, inf)
#Sessions 152,265 78,187 52,552
Model LL Impr. LL Impr. LL Impr.
DBN −2.503 −5.74% −2.118 −4.72% −1.706 −4.30%
DCM −2.436 −2.91% −2.133 −5.45% −1.792 −9.56%
UBM −2.396 −1.19% −2.068 −2.23% −1.696 −3.68%
EB-UBM −2.395 −1.16% −2.078 −2.73% −1.718 −5.01%
UBM-layout −2.356 0.47% −2.047 −1.20% −1.673 −2.24%
NCM −2.346 0.89% −2.036 −0.65% −1.648 −0.73%
MCM −2.367 - −2.023 - −1.636 -
VTCMe −2.173 8.21% −1.915 5.34% −1.607 1.78%
VTCMc −2.161 8.70% −1.896 6.27% −1.592 2.69%

All relative improvements over MCM are calculated and statistically significant at p < 0.001

level, pairwise t-test, two-tailed, n = #Sessions.

Fig. 12. Perplexity improvements of click models at different ranking positions compared to MCM. All im-
provements over MCM are statistically significant at p < 0.001 level, pairwise t-test, two-tailed, n = 283, 004.

time information can serve as a kind of users’ positive feedback and help VTCM effectively esti-
mate the examination probability of results as well as the parameters of examination satisfaction.
We will discuss how VTCM learns parameters with the viewport time information in Section 4.6.
We are also interested in the prediction performance at each ranking position. In Figure 12, we

plot the relative perplexity improvements of MCM over two basic baseline models, UBM and DBN,
one best performing vertical-aware baseline, UBM-layout. It is worth noting that two basic click
models, UBM and DBN, behave differently in mobile search. While all the models have comparable
performance at position 1, MCM has larger gains over UBM for positions 2–4 and over DBN for
positions 5–10. UBM performs worse at positions 2–4, because it cannot adjust the examination
probability accordingly when some top-ranked results already satisfy the user. DBN’s performance
drops as the rank increases, because the skip examination behavior is more common at the lower
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positions, which violates DBN’s assumption. MCM overcomes these disadvantages by incorporat-
ing examination/click satisfaction and allowing skip examination. Therefore, it has a consistent
improvement over UBM and DBN at positions 1–7. We speculate that MCM is worse than UBM at
positions 8–10 because the irregularity of click-through rate at the lower positions can be easily
captured by UBM, but for MCM, the estimation of examination probability at position i (P (Ei = 1))
is dominated by the satisfaction probability (P (Si−1 = 1)). The vertical-aware UBM-layout model
has a similar performance patterns to UBM. Because UBM-layout can capture the attention bias
on examination probability, it consistently outperforms UBM across 10 positions.
In Figure 12, we also plot the relative perplexity improvements of VTCMc and VTCMe over

MCM. We can find that the relative improvements (or deteriorations) of VTCMs over MCM are
smaller at positions 1 and 2 than that at other positions. VTCMe slightly outperforms MCM at the
top-two positions, while VTCMc consistently has larger improvements over MCM than VTCMe

at positions 3–10. One reason for the limited positive and even negative improvements of VTCMs
over MCM at positions 1 and 2 is that the top-two results in the SERP usually have longer viewport
time than results at lower positions, so the overall distributions learned for all positions may not
work, which inspires us to model the distributions of each position individually, and we would like
to leave it as a future work. From positions 3 to 5, the performance gaps between VTCM models
and MCM get larger, while it becomes relatively smaller from positions 7–10. To sum up, with the
help of viewport time information, VTCMs can achieve better click prediction performance than
MCM at those positions where user feedbacks are rare.
RegardingRQ1, we find thatWeibull distribution is the best viewport time distribution function

in our experiment according to its outstanding performance in the click prediction task. Regarding
RQ2, we find that VTCMc has the best click prediction ability in the mobile search environment
among all the click models, followed by VTCMe , NCM, and MCM. The improvements of VTCMs
and MCM are consistent for queries with different frequencies and for almost all positions in the
first page. These results suggest that incorporating the click necessity bias, examination satisfac-
tion bias, and viewport time information is effective in modeling user click behavior in mobile
search.

4.5 Relevance Estimation

To address RQ3, we evaluate MCM, VTCMe , VTCMc, and baseline models on Dataset-R and rank
the results according to the predicted relevance score provided by each model. Besides Relsnippet
and Relpaдe , we also compute an average of these two labels Relavд = (Relpaдe + Relsnippet )/2

4.
The ranking results can be evaluated by standard IR evaluation metrics. In this study, we use
nDCG@{1, 3, 5} [16], nERR@5 [2], and MAP@5 [34] as the evaluation metrics for the relevance
estimation task.
Table 7 shows the ranking performance of each click model based on three kinds of relevance

labels. From the results, we can see that the vertical-aware models are generally better than the
basic models in relevance estimation. These results emphasize the importance of considering the
heterogeneity of search results in the mobile context. MCM has better performance than the two
vertical-aware baselines, because the click necessity bias may have a stronger influence on user
click behavior than the attention bias in the mobile environment. VTCM models have signifi-
cant improvement over MCM in the performance of relevance estimation, as they can capture
user attention during the search process with the information of viewport time. For NCM, we fol-
low Borisov et al. [1] and adopt P (C1 = 1| q,d ), the click probability of a document when it appears

4We also tested the geometric and harmonic mean. The results were similar to the arithmetic mean, so we only report the

results using arithmetic mean in the article.

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 43. Publication date: September 2019.



Constructing Click Model for Mobile Search with Viewport Time 43:25

Table 7. Relevance Estimation Performance of Click Models Based on Relsnippet , Relpaдe , and
Relavд as well as Relative Improvements Over MCM

Relsnippet
Model nDCG@1 nDCG@3 nDCG@5 nERR@5 MAP@5

DBN 0.762** −5.85% 0.774** −3.47% 0.859** −1.57% 0.874** −2.54% 0.850** −2.03%
DCM 0.805 −0.58% 0.790** −1.46% 0.867 −0.62% 0.893 −0.36% 0.861** −0.71%
UBM 0.789 −2.61% 0.781** −2.60% 0.865* −0.94% 0.885* −1.28% 0.855** −1.44%
EB-UBM 0.791 −2.38% 0.783** −2.34% 0.866 −0.83% 0.887 −1.09% 0.856** −1.34%
UBM-layout 0.786* −2.91% 0.778** −2.94% 0.860** −1.41% 0.883* −1.54% 0.847** −2.33%
NCM 0.732** −9.56% 0.745** −7.09% 0.845** −3.16% 0.850** −5.23% 0.817** −5.83%
MCM 0.810 - 0.802 - 0.873 - 0.897 - 0.867 -

VTCMe 0.852** 5.21% 0.828** 3.31% 0.888** 1.77% 0.917** 2.23% 0.883** 1.86%

VTCMc 0.855** 5.59% 0.836** 4.27% 0.891** 2.12% 0.919** 2.52% 0.885** 2.10%

Relpaдe
Model nDCG@1 nDCG@3 nDCG@5 nERR@5 MAP@5

DBN 0.809** −4.76% 0.792** −2.42% 0.869** −1.01% 0.894** −1.59% 0.850** −2.18%
DCM 0.793** −6.60% 0.784** −3.41% 0.864** −1.62% 0.891** −1.96% 0.850** −2.18%
UBM 0.818** −3.61% 0.791** −2.50% 0.871** −0.80% 0.898** −1.24% 0.852** −2.02%
EB-UBM 0.821** −3.31% 0.795** −2.12% 0.873** −0.62% 0.900** −0.99% 0.852** −1.94%
UBM-layout 0.828** −2.50% 0.796** −1.92% 0.872** −0.62% 0.902** −0.76% 0.850** −2.18%
NCM 0.769** −9.38% 0.760** −6.34% 0.856** −2.47% 0.872** −4.12% 0.822** −5.43%
MCM 0.849 - 0.812 - 0.878 - 0.909 - 0.869 -

VTCMe 0.857* 0.88% 0.827** 1.89% 0.887** 1.08% 0.921** 1.36% 0.878** 1.07%

VTCMc 0.860* 1.32% 0.835** 2.84% 0.891** 1.46% 0.926** 1.83% 0.882** 1.45%

Relavд
Model nDCG@1 nDCG@3 nDCG@5 nERR@5 MAP@5

DBN 0.763** −5.52% 0.766** −3.72% 0.856** −1.62% 0.871** −2.88% 0.880** −1.96%
DCM 0.776 −3.97% 0.771** −3.09% 0.857** −1.52% 0.881* −1.81% 0.883** −1.53%
UBM 0.781* −3.28% 0.770** −3.23% 0.860** −1.17% 0.880** −1.90% 0.881** −1.76%
EB-UBM 0.785* −2.80% 0.773** −2.89% 0.861** −1.01% 0.882** −1.68% 0.882** −1.69%
UBM-layout 0.787 −2.53% 0.772** −2.94% 0.859** −1.24% 0.882** −1.70% 0.875** −2.42%
NCM 0.737** −8.73% 0.740** −6.98% 0.845** −2.92% 0.853** −4.92% 0.846** −5.67%
MCM 0.808 - 0.796 - 0.870 - 0.897 - 0.897 -

VTCMe 0.832* 3.01% 0.812* 2.06% 0.880** 1.13% 0.909** 1.29% 0.909** 1.30%

VTCMc 0.837* 3.59% 0.821** 3.15% 0.883** 1.51% 0.913** 1.77% 0.912** 1.62%

*/** indicates the difference over MCM is significant at p < 0.05/0.01 level, pairwise t-test, two-tailed, n = 546.

in the first position, as its estimated relevance. We can find that the performance of NCM is the
worst among all models in the relevance estimation task. We attribute this phenomenon to the
fact that NCM was not designed for relevance estimation. The click probability is not suitable to
serve as relevance, because it is not only related to the query and the document but also affected
by the examination behavior of users. In the mobile search environment, we hold that the effect of
examination behavior on the click probability is stronger because of the click necessity bias and
examination satisfaction bias.
To sum up, regarding RQ2, we show that MCM has a better performance in estimating the

relevance of mobile search results than the baseline models, although some differences are not
significant at p < 0.05 level. Both VTCMe and VTCMc have significantly better performances in

ACM Transactions on Information Systems, Vol. 37, No. 4, Article 43. Publication date: September 2019.



43:26 Y. Zheng et al.

Fig. 13. Examples of search results that have the lowest click necessity estimated by MCM (β).

relevance estimation than MCM and all the baseline models. We can also see that VTCMc is con-
sistently better than VTCMe , but their differences are not significant.

4.6 Parameter Analysis

To see howMCMmodels the click necessity bias and examination satisfaction bias inmobile search
(RQ4), we analyze the click necessity parameters β and examination satisfaction parameters sE

learned by MCM.
We first compute the mean of click necessity parameter β of MCM for all organic results and

vertical results. Mean βver tical on Dataset-C is 0.832 (SD = 0.194), which is significantly lower
than βorдanic = 0.953. This confirms our observation in Section 4.2.1 that the vertical results in
mobile search are more likely to have a low click necessity. However, the mean of examination
satisfaction parameter sE for the vertical results M (sE

ver tical
) is 0.242(SD = 0.107), fairly close to

M (sEorдanic ), which equals to 0.244 (SD = 0.108). This result suggests that only a small proportion

of vertical results can directly lead to examination satisfaction.
We further conduct a case study to inspect the relationship between the model parameters in

MCM and the search results. Three types of vertical results with lowest β are shown in Figure 13.
For each vertical type, we select a result and the corresponding query from the logs as an example.5

We can see that these examples all demonstrate useful information directly in the snippet. A user
can get information from them without a click, which is captured by the β parameter. We also
show the estimation of sE for each query-result pair. We can see that the learned sE can reflect the
examination satisfaction to some extent. Users are likely to be satisfied by the result in the first
example if they just want to know the latest lottery result. This can be reflected by a high sE of
0.860. However, if a user wants to get sufficient information about anxiety neurosis, although the
medical knowledge graph result in the last example can provide a good overview, it is less likely
for the user to be satisfied by this single result. Therefore, the corresponding sE estimated byMCM
is only 0.217.
We acknowledge that these examples also reveal a limitation of MCM, which is that sE may

not be a valid relevance indicator in the complex, informational tasks. Merely incorporating the

5The snippet of result is crawled by us, which may be different from the result viewed by the user in the search log, even

if they share the same URL and vertical_id.
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Table 8. An Example of aQuery Session with the Viewport Time, User Clicks, and Related
Probabilities Learned by VTCMc and MCM, Where theQuery Is “avatar” in English

Rank (i)
Viewport

time (s)
Click

Examination prob. Satisfaction prob. Global satisfaction prob.

VTCMc MCM VTCMc MCM VTCMc MCM

1 18.60 1 1 1 0 0 0 0

2 7.61 0 0.970 0.755 0 0 0 0

3 8.15 0 0.987 0.186 0 0 0 0

4 11.90 0 0.968 0.159 0 0 0 0

5 9.71 1 1 1 0.556 0.353 0.556 0.353

6 0 0 0 0.138 0 0.002 0.556 0.354

7 0 0 0 0.177 0 0.010 0.556 0.360

8 0 0 0 0.108 0 0.002 0.556 0.362

9 0 0 0 0.056 0 0.003 0.556 0.364

10 0 0 0 0.052 0 0.001 0.556 0.364

examination satisfaction bias cannot fully solve the problem of assigning positive feedback to the
results that were not clicked.
We incorporate the viewport time information into VTCM as kind of a positive feedback from

users. Thus, to investigate how VTCM estimates the parameters of examination and satisfaction
with the help of viewport time information, we show a session case of the query “avatar” in our
dataset, including the viewport time and user clicks of the top-10 results in the first page as well
as related probabilities learned by VTCMc and MCM, which is shown in Table 8. First, we give
the mathematical expressions of probabilities shown in Table 8. For VTCM, the examination prob-
ability at ranking position i in the session s is P (Esi = 1|Cs ,V s ) and the satisfaction probability
is P (Esi = 1, Ssi = 1|Cs ,V s ), i.e., the probability that the user is unsatisfied after interacting with
the first i − 1 results and becomes satisfied after viewing the ith result. The global satisfaction
for VTCM is P (Ssi = 1|Cs ,V s ), which means the probability that the user feels satisfied with one
of the first i results. For MCM, the three probabilities are P (Esi = 1|Cs ), P (Esi = 1, Ssi = 1|Cs ), and
P (Ssi = 1|Cs ), respectively. When comparing the estimated examination probabilities, we can see
that it is more likely that the user has examined the top-five results because of the rather long view-
port time and two user clicks. All examination probabilities of top-five results learned by VTCM
are more than 0.9, while the examination probabilities of the third and fourth results learned by
MCM are below 0.2. At those positions whose results have zero viewport time, the examination
probabilities estimated by VTCM are zero, while those estimated by MCM are larger than zero.
As for the satisfaction probabilities, we can see that the user left after examining the fifth result.
Thus, it is because this result made the user satisfied based on the hypotheses of VTCM and MCM.
From the results, we can see that VTCM estimates a higher satisfaction probability for the fifth
result than MCM. We also calculate the global satisfaction probability for each position. We can
see that after position 5, this probability given by VTCM is higher than that given by MCM. All
these results show the effectiveness of VTCM in estimating the probabilities and parameters of
examination and satisfaction over MCM.

5 CONCLUSIONS AND FUTURE WORK

Observing that inmobile search, some vertical results (such as direct answer results and knowledge
graph results) have low click necessity and, therefore, will be discriminated by most existing click
models, we propose a simple yet effective Mobile Click Model (MCM) to incorporate the related
click necessity bias and examination satisfaction bias in mobile search. Theoretically, the proposed
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MCM extends the examination hypothesis and can be regarded as a unified generalization of two
most widely used click models, DBN and UBM. Meanwhile, we show that we can utilize viewport
time to further calibrate the estimated probabilities of user examination and satisfaction.We extend
MCM by incorporating viewport time bias into it as the second observed variable and propose
Viewport Time Click Model (VTCM). Specifically, VTCM models the viewport time distributions
for each type of results under different conditions of user examination, user clicks, and examination
satisfaction. Empirically, extensive experiments on large-scale mobile search logs demonstrate that
MCM and VTCM outperform the baseline models in both the click prediction task and relevance
estimation task.
In terms of future work, we note that MCM and VTCM can be further extended in many ways.

First, while the click necessity parameters β are fully learned from click logs in this study, we can
introduce external knowledge into MCM to further improve its effectiveness by defining the prior
of β for each type of vertical result accordingly. Second, as we mentioned in Section 4.6, the cur-
rent definition of examination satisfaction may fail to reflect the relevance of results in complex
search tasks. Instead of always attributing satisfaction to the last-clicked or last-examined result,
we can explore new ways to properly measure the contribution of every search result. Third, as
we mentioned in Section 4.4.2, the viewport time distributions may vary among different ranking
positions. Thus, we can try to model the viewport time distributions for different ranking positions
individually in the clickmodel, whichmay bring inmore improvements. It is alsoworth noting that
while this study is motivated by the difference betweenmobile and desktop search, the click neces-
sity bias and examination satisfaction bias may exist in desktop search, too. In future work, we will
try to adopt MCM and VTCM to the desktop environment, where the mouse events are possible
to be used to improve the satisfaction estimations of vertical results whose click necessity is low.

APPENDIX

We publicly released the implementations of our mobile click models, including MCM and VTCM,
to contribute to the research community.6 In the Appendix, we will first introduce how to update
the parameters of MCM {α , β,γ , sE , sC } and the viewport time-related parameters of VTCM Θ
in the M-step using the posterior distributions of the latent variables {Ei ,Ai ,Ni , S

E
i , S

C
i , Si }. After

that, we will give some details about how to compute the posterior distributions using a forward-
backward algorithm.

M-step

Suppose we have a set of search sessions S and each session s ∈ S is associated with a query qs and
M search results (ds1 , . . . ,d

s
M
) with types (vs1 , . . . ,v

s
M
). We denote Es ,As ,N s , SE,s , SC,s the vector

of latent variables in a session s . The updates of the parameters {α , β,γ , sE , sC } in MCM are as
follows:

αq,d = argmax
α

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d )

[P (As
i = 1|Cs ) log(α ) + P (As

i = 0|Cs ) log(1 − α )],

βv = argmax
β

∑
s ∈S

M∑
i=1

I (vsi = v )

[P (N s
i = 1|Cs ) log(β ) + P (N s

i = 0|Cs ) log(1 − β )],

6https://github.com/THUIR/click_model_for_mobile_search.
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γr,d = argmax
γ

∑
s ∈S

M∑
i=1

I (i = r , i − Pos (lastClick, i ) = d )

[P (Esi = 1, Ssi−1 = 0|Cs ) log(γ ) + P (Esi = 0, Ssi−1 = 0|Cs ) log(1 − γ )],

sCq,d = argmax
sC

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d )

[P (SC,si = 1,Cs
i = 1|Cs ) log(sC ) + P (SC,si = 0,Cs

i = 1|Cs ) log(1 − sC )],

sEq,d = argmax
sE

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d )

[P (SE,si = 1,Esi = 1,As
i = 1,N s

i = 0|Cs ) log(sE )

+ P (SE,si = 0,Esi = 1,As
i = 1,N s

i = 0|Cs ) log(1 − sE )].
In VTCM, the updates of the parameters {α , β,γ , sE , sC } as follows:

αq,d = argmax
α

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d )

[P (As
i = 1|Cs ,V s ) log(α ) + P (As

i = 0|Cs ,V s ) log(1 − α )],

βv = argmax
β

∑
s ∈S

M∑
i=1

I (vsi = v )

[P (N s
i = 1|Cs ,V s ) log(β ) + P (N s

i = 0|Cs ,V s ) log(1 − β )],

γr,d = argmax
γ

∑
s ∈S

M∑
i=1

I (i = r , i − Pos (lastClick, i ) = d )

[P (Esi = 1, Ssi−1 = 0|Cs ,V s ) log(γ ) + P (Esi = 0, Ssi−1 = 0|Cs ,V s ) log(1 − γ )],

sCq,d = argmax
sC

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d )

[P (SC,si = 1,Cs
i = 1|Cs ,V s ) log(sC ) + P (SC,si = 0,Cs

i = 1|Cs ,V s ) log(1 − sC )],

sEq,d = argmax
sE

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d )

[P (SE,si = 1,Esi = 1,As
i = 1,N s

i = 0|Cs ,V s ) log(sE )

+ P (SE,si = 0,Esi = 1,As
i = 1,N s

i = 0|Cs ,V s ) log(1 − sE )].
For the update of the viewport time-related parameters Θ, we use VTCMc with Weibull dis-

tribution for example. In the M-step, we need to update the parameters of Weibull distribution
Θ = {λ,k } as follows:

λE=0v ,k
E=0
v = argmax

λ,k

∑
s ∈S

M∑
i=1

I (vs = v )

P (Esi = 0|Cs ,V s ) log
(
f E=0v (tsi )

)
,
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λE=1,C=0,S
E=0

v ,kE=1,C=0,S
E=0

v = argmax
λ,k

∑
s ∈S

M∑
i=1

I (vs = v )

P (Esi = 1,Cs
i = 0, SE,si = 0|Cs ,V s ) log( f E=1,C=0,S

E=0
v (tsi )),

λE=1,C=1,S
E=0

v ,kE=1,C=1,S
E=0

v = argmax
λ,k

∑
s ∈S

M∑
i=1

I (vs = v )

P (Esi = 1,Cs
i = 1, SE,si = 0|Cs ,V s ) log( f E=1,C=1,S

E=0
v (tsi )),

λE=1,C=0,S
E=1

v ,kE=1,C=0,S
E=1

v = argmax
λ,k

∑
s ∈S

M∑
i=1

I (vs = v )

P (Esi = 1,Cs
i = 0, SE,si = 1|Cs ,V s ) log( f E=1,C=0,S

E=1
v (tsi )),

where f is the probability density function of Weibull distribution (Equation (27)).

E-step

Because MCM assumes that the latent variable in last step Si−1 may determine Ei and Si , we need
to use the forward-backward algorithm to infer the posterior distributions of the latent variables
in each search session s .7 We define the following variables:

fi (x ) = P (Si = x ,C1,C2, . . . ,Ci ),

bi (x ) = P (Ci+1, . . . ,CM |Si = x ).

These two variables can be computed recursively:

fi+1 (x ) =
∑

x ′ ∈{0,1}
fi (x

′)P (Si+1 = x ,Ci+1 |Si = x ′),

bi−1 (x ) =
∑

x ′ ∈{0,1}
bi (x

′)P (Si = x ′,Ci |Si−1 = x ).

With fi (x ) andbi (x ), we can compute the posterior distributions needed in the E-step. For example,
the posterior distributions needed in the update of sE

q,d
can be calculated as follows:

P (SEi = 1,Ei = 1,Ai = 1,Ni = 0|C1,C2, . . . ,CM )

=
fi−1 (0)bi (1)P (SEi = 1,Ei = 1,Ai = 1,Ni = 0,Ci |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (1)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 0)γi,dαq,di (1 − βvi )sEq,di ,

P (SEi = 0,Ei = 1,Ai = 1,Ni = 0|C1,C2, . . . ,CM )

=
fi−1 (0)bi (0)P (SEi = 0,Ei = 1,Ai = 1,Ni = 0,Ci |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (0)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 0)γi,dαq,di (1 − βvi )
(
1 − sEq,di

)
.

7We omit the superscript s here for convenience.
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The posterior distributions needed in the update of sC
q,d

are as follows:

P (SCi = 1,Ei = 1,Ai = 1,Ni = 1|C1,C2, . . . ,CM )

=
fi−1 (0)bi (1)P (SCi = 1,Ei = 1,Ai = 1,Ni = 1,Ci |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (1)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 1)γi,dαq,di βvi s
C
q,di
,

P (SCi = 0,Ei = 1,Ai = 1,Ni = 1|C1,C2, . . . ,CM )

=
fi−1 (0)bi (0)P (SCi = 0,Ei = 1,Ai = 1,Ni = 1,Ci |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (0)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 1)γi,dαq,di βvi
(
1 − sCq,di

)
.

In VTCM, the variables fi (x ) and bi (x ) can be defined as follows:

fi (x ) = P (Si = x ,C1, . . . ,Ci ,V1, . . . ,Vi ),

bi (x ) = P (Ci+1, . . . ,CM ,Vi+1, . . . ,VM |Si = x ).

Thus, they can also be computed recursively:

fi+1 (x ) =
∑

x ′ ∈{0,1}
fi (x

′)P (Si+1 = x ,Ci+1,Vi+1 |Si = x ′),

bi−1 (x ) =
∑

x ′ ∈{0,1}
bi (x

′)P (Si = x ′,Ci ,Vi |Si−1 = x ).

Then the posterior distributions for the updates of sE
q,d

and sC
q,d

in VTCMe can be calculated as

follows:

P (SEi = 1,Ei = 1,Ai = 1,Ni = 0|C1, . . . ,CM ,V1, . . . ,VM )

=
fi−1 (0)bi (1)P (SEi = 1,Ei = 1,Ai = 1,Ni = 0,Ci ,Vi |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (1)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 0)γi,dαq,di (1 − βvi )sEq,di f E=1vi
(Vi = ti ),

P (SEi = 0,Ei = 1,Ai = 1,Ni = 0|C1, . . . ,CM ,V1, . . . ,VM )

=
fi−1 (0)bi (0)P (SEi = 0,Ei = 1,Ai = 1,Ni = 0,Ci ,Vi |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (0)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 0)γi,dαq,di (1 − βvi )
(
1 − sEq,di

)
f E=1vi

(Vi = ti ),
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P (SCi = 1,Ei = 1,Ai = 1,Ni = 1|C1, . . . ,CM ,V1, . . . ,VM )

=
fi−1 (0)bi (1)P (SCi = 1,Ei = 1,Ai = 1,Ni = 1,Ci ,Vi |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (1)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 1)γi,dαq,di βvi s
C
q,di

f E=1vi
(Vi = ti ),

P (SCi = 0,Ei = 1,Ai = 1,Ni = 1|C1, . . . ,CM ,V1, . . . ,VM )

=
fi−1 (0)bi (0)P (SCi = 0,Ei = 1,Ai = 1,Ni = 1,Ci ,Vi |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (0)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 1)γi,dαq,di βvi
(
1 − sCq,di

)
f E=1vi

(Vi = ti ).

In VTCMc , the four posterior distributions are as follows:

P (SEi = 1,Ei = 1,Ai = 1,Ni = 0|C1, . . . ,CM ,V1, . . . ,VM )

=
fi−1 (0)bi (1)P (SEi = 1,Ei = 1,Ai = 1,Ni = 0,Ci ,Vi |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (1)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 0)γi,dαq,di (1 − βvi )sEq,di f E=1,C=0,S
E=1

vi
(Vi = ti ),

P (SEi = 0,Ei = 1,Ai = 1,Ni = 0|C1, . . . ,CM ,V1, . . . ,VM )

=
fi−1 (0)bi (0)P (SEi = 0,Ei = 1,Ai = 1,Ni = 0,Ci ,Vi |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (0)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 0)γi,dαq,di (1 − βvi )
(
1 − sEq,di

)
f E=1,C=0,S

E=0
vi

(Vi = ti ),

P (SCi = 1,Ei = 1,Ai = 1,Ni = 1|C1, . . . ,CM ,V1, . . . ,VM )

=
fi−1 (0)bi (1)P (SCi = 1,Ei = 1,Ai = 1,Ni = 1,Ci ,Vi |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (1)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 1)γi,dαq,di βvi s
C
q,di

f E=1,C=1,S
C=1

vi
(Vi = ti ),

P (SCi = 0,Ei = 1,Ai = 1,Ni = 1|C1, . . . ,CM ,V1, . . . ,VM )

=
fi−1 (0)bi (0)P (SCi = 0,Ei = 1,Ai = 1,Ni = 1,Ci ,Vi |Si−1 = 0)∑

x ∈0,1 fi (x )bi (x )

=
fi−1 (0)bi (0)∑
x ∈0,1 fi (x )bi (x )

I (Ci = 1)γi,dαq,di βvi
(
1 − sCq,di

)
f E=1,C=1,S

C=0
vi

(Vi = ti ).
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