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Sequential Recommendation with Multiple Contrast Signals

CHENYANG WANG, WEIZHI MA, CHONG CHEN, MIN ZHANG, YIQUN LIU, and

SHAOPING MA, Tsinghua University, China

Sequential recommendation has become a trending research topic for its capability to capture dynamic user

intents based on historical interaction sequence. To train a sequential recommendation model, it is a common

practice to optimize the next-item recommendation task with a pairwise ranking loss. In this paper, we revisit

this typical training method from the perspective of contrastive learning and find it can be taken as a spe-

cialized contrastive learning task conceptually and mathematically, named context-target contrast. Further, to

leverage other self-supervised signals in user interaction sequences, we propose another contrastive learning

task to encourage sequences after augmentation, as well as sequences with the same target item, to have

similar representations, called context-context contrast. A general framework, ContraRec, is designed to unify

the two kinds of contrast signals, leading to a holistic joint-learning framework for sequential recommen-

dation with different contrastive learning tasks. Besides, various sequential recommendation methods (e.g.,

GRU4Rec, Caser, and BERT4Rec) can be easily integrated as the base sequence encoder in our ContraRec

framework. Extensive experiments on three public datasets demonstrate that ContraRec achieves superior

performance compared to state-of-the-art sequential recommendation methods.
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1 INTRODUCTION

Sequential behaviors in modern web applications play a crucial role in recommender systems, such
as product viewing, website clicking, music listening, etc. As a result, sequential recommendation
has attracted increasing attention recently, which aims to predict the next action based on re-
cent interactions. Traditional researches utilize Markov Chain to model transitions between items
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Fig. 1. Conceptual illustration of different contrast signals in sequential recommendation. The typical train-

ing method (next-item recommendation with pairwise ranking loss) can be seen as discriminating between

the historical sequence and the target item (context-target contrast). Besides, we propose to leverage the

contrast signal between historical sequences (context-context contrast). Intuitively, similar sequences (aug-

mented sequences, sequences with the same target item) are expected to have similar representations.

[14, 15, 42, 51]. With the development of deep learning, recent efforts gain impressive progress on
deep sequential recommendation models [18, 19, 24], where various neural networks are adopted
as the sequence encoder to model dynamic user intents.
To train deep sequential recommendation models, many studies in this field follow a supervised

learning paradigm, where each training instance contains an interacted item as the target and
corresponding historical interactions as the input. However, different from standard supervised
tasks in other domains, whose label information comes from external knowledge (e.g., category
of an image) [4, 12, 13], the input and label here both intrinsically exist in the original interaction
sequence. This makes it more consistent with the setting of self-supervised learning, which is a
form of unsupervised learning that automatically generates supervision signals from data. From
this perspective, we revisit the typical training method of sequential recommendation and propose
that it actually acts as a specialized contrastive learning task.
Contrastive learning is a branch of self-supervised learning and aims at “learn to compare”,

which constructs discrimination tasks from the data itself and has achieved impressive success in
domains like computer vision (CV) and natural language processing (NLP) [33]. In sequential
recommendation, the target item and historical interactions are both parts of the whole interaction
sequence. Besides, given the historical sequence, the typical pairwise ranking objective [41] aims
to drive the target item to get a higher ranking score than other items. Conceptually, this can be
seen as discriminating between the historical sequence and the target item (called context-target

contrast, shown in the upper part of Figure 1). Furthermore, we mathematically show that the
pairwise ranking loss is a variant of the commonly adopted contrastive loss (details in Section 3.2).
Current studies mainly rely on such context-target contrast signal and aim to design powerful

sequence encoders [19, 24, 31, 44, 61, 63]. Although this is capable of learning feasible sequence
representations and has become the common practice, we argue that there are two primary prob-
lems. Firstly, the increasingly sophisticated sequence encoders (e.g., GRU [5], Transformer [47])
require a large amount of data and are prone to suffer from the data sparsity and overfitting issues.
Secondly, most existing methods only focus on modeling correlations between the historical
sequence and the target item, which ignore other contrast signals hidden in user interaction
sequences.
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To tackle the problems addressed above, we propose to additionally model the representation
invariance between similar historical sequences to explore other contrast signals (called context-

context contrast, shown in the lower part of Figure 1). Intuitively, sequences that reflect similar
user intents should have similar representations. In this work, we investigate two kinds of “sim-
ilar sequences” from the interaction data. For one thing, considering that a user’s intent will not
be influenced by small perturbations over the interaction sequence [45, 52], we devise several
augmentation methods to construct different views of a given sequence as similar instances. For
another, inspired by the idea of collaborative filtering [21], sequences followed by the same target
item (even generated by different users) are likely to reflect similar user intents. As a result, we pro-
pose to encourage sequences after augmentation, as well as sequences with the same target item,
to have close representations. We believe that incorporating such context-context contrast signal
not only hinders sequential recommendation models from overfitting the next-item recommen-
dation task, but also helps enhance sequence representations, and hence benefits the subsequent
recommendation.
To unify the two kinds of contrast signals, namely context-target contrast and context-context

contrast, we present a novel framework ContraRec, which jointly learns different contrastive learn-
ing tasks for sequential recommendation. For the context-target contrastive learning task, we ex-
tend the common BPR loss to a general contrastive loss by revisiting the typical training method
from the perspective of contrastive learning. For the context-context contrastive learning task,
a specific contrastive loss is designed to discriminate between similar and dissimilar interaction
sequences, which supports multiple positive pairs compared to the common contrastive loss. No-
tably, ContraRec is a general framework that is flexible to integrate various sequence modeling
methods as the base sequence encoder.
Extensive experiments on three public datasets show that ContraRec achieves superior perfor-

mance compared to state-of-the-art sequential recommendation models. Additional experiments
demonstrate the rationality of the proposed sequence augmentation methods. Besides, it is shown
better to adopt a joint-learning framework rather than just utilizing the context-context contrast
signal for pre-training and fine-tuning on the next-item recommendation task. ContraRec even
outperforms the base sequential model with less than 40% of the training data, which exhibits its
capability to make full use of the limited data.
The main contributions of this work are summarized as follows:

• We revisit the typical training method of sequential recommendation from the perspective
of contrastive learning. The common BPR pairwise ranking loss is shown to be a specialized
contrastive learning task conceptually and mathematically (called context-target contrast sig-
nal).
• We further explore additional contrast signals by modeling the representation invariance of
similar historical sequences. Specifically, a generalized contrastive loss is devised to encour-
age sequences after augmentation, as well as sequences with the same target item, to have
similar feature representations (called context-context contrast signal).
• A general framework, ContraRec, is presented to jointly learn the two kinds of contrast
signals, leading to a holistic contrastive learning paradigm for sequential recommendation.
ContraRec is also flexible to integrate various sequential recommendation models.
• Extensive experiments on three public datasets demonstrate that ContraRec leads to remark-
able improvements compared to state-of-the-art sequential recommendationmodels, and the
improvements are more significant when limited data is available.

The rest of this paper is organized as follows. We first introduce some preliminaries in Sec-
tion 2. Next we revisit the typical trainingmethod of sequential recommendation and elaborate our
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Table 1. Notations

Notation Description

U the set of users
I the set of items
it the target interacted item at time step t
St the historical sequence before time step t
S̃t the augmented sequence of historical sequence St
f (·) the sequence encoder function
д(·) the similarity function

it ∈ Rd the embedding of item it
f (St ) ∈ Rd the representation of historical sequence St

ContraRec framework in Section 3. In Sections 4 and 5, we present the experimental results and
related analyses to show the effectiveness and characteristics of ContraRec. Subsequently, some
related work is reviewed in Section 6. We conclude this work and discuss the limitations as well
as future directions in Section 7.

2 PRELIMINARIES

In this section, we first formulate the sequential recommendation problem and describe the typical
training method (next-item recommendation with BPR pairwise ranking loss). Then we introduce
the basic concepts of contrastive learning as well as the commonly adopted InfoNCE loss. Our
main notations are summarized in Table 1.

2.1 Sequential Recommendation

Let U and I denote the user and item set, respectively. For each user u ∈ U , we are given a
chronologically ordered list [i1, i2, . . . , iNu

], where each element it ∈ I is an item interacted at time
step t andNu is the length of the interaction sequence. Then the task of sequential recommendation
is: given the historical sequence before the target time step t , denoted as St , generating an ordered
list of items that the user may be interested in.
In general, most deep learning based sequential recommendation models focus on devising a

specific sequence encoder f (·), which encodes the historical sequence St into a dense real-value
vector f (St ) (called sequence representation). The sequence encoder generally converts items into
embeddings first (the embedding of item it is denoted as it ). Then, various deep learning methods
can be utilized to process the sequential data and generate the sequence representation, such as
RNN [19], CNN [45], and attentionmechanism [24]. Subsequently, a similarity functionд(·) derives
the ranking score ŷ (St , it ) between the historical sequence St and the target item it :

ŷ (St , it ) = д ( f (St ), it ) . (1)

The similarity function usually takes a simple form and dot product is the most common prac-
tice, i.e., д ( f (St ), it ) = iTt f (St ). As for the learning objective, most studies follow the next-item
recommendation task and utilize BPR [41] pairwise ranking loss to train the model:

LBPR =
∑
(St ,it )

− logσ (ŷ (St , it ) − ŷ (St , i−t )
)
, (2)

where σ denotes the sigmoid function and i−t is a randomly sampled negative item that the user
has not interacted with. This loss function aims to optimize the probability that the target item it
gets a higher score than random negative items given the historical sequence St .
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2.2 Contrastive Learning

Contrastive learning is a branch of self-supervised learning that aims to discriminate between
similar and dissimilar samples directly generated from the data [33]. Different from generative
self-supervised models (e.g., Autoencoder [27], Generative Adversarial Network [10]), contrastive
methods do not need to recover “pixel-level” details of the data and at the same time retain neces-
sary semantics via “learn to compare”. The goal of contrastive learning is to encode data samples
into a low-dimensional space so that samples that are semantically similar will be close to each
other and far away from the others in the representation space.
Let x , y represent two similar data samples and zx , zy denote their low-dimensional representa-

tion vectors. Besides, we haveK negative samples that are dissimilar with x , whose representations
are [z1, z2, . . . , zK ]. Generally, contrastive learning methods minimize the following temperature-
scaled InfoNCE loss [38] as the contrastive loss:

l (zx , zy ) = − log
exp(д(zx , zy )/τ )

exp(д(zx , zy )/τ ) +
∑K

k=1 exp(д(zx , zk )/τ )
, (3)

where д(·) is a similarity function between representations (e.g., cosine similarity) and τ is a hyper-
parameter called temperature. Higher temperatures will lead to smoother distributions, and lower
temperatures will make the loss focus more on adjacent samples. Optimizing this loss intuitively
pushes up the similarity of semantically similar samples and pushes down the similarity when two
samples are dissimilar.

3 THE PROPOSED FRAMEWORK

In this section, we first give an overview of the proposed ContraRec framework. Then, we elaborate
two contrastive learning tasks in ContraRec and describe corresponding technical details. Finally,
we discuss the characteristics of ContraRec in comparison to related methods.

3.1 ContraRec Overview

Figure 2 shows the overall structure of ContraRec. Different from the typical training method of
sequential recommendation, ContraRec jointly learns two contrastive learning tasks: (1) context-
target contrast (CTC) and (2) context-context contrast (CCC).
On the one hand, we revisit the commonly adopted BPR pairwise ranking loss and find it actually

acts as a specialized InfoNCE loss, which discriminates between historical sequences and target
items. Based on this finding, we generalize BPR loss to context-target contrastive (CTC) loss, which
is able to better support multiple negative samples during training.
On the other hand, to extract additional contrast signals in user interaction sequences, we pro-

pose to push up the representation similarity of similar historical sequences, leading to a context-
context contrastive learning task. Here, similar sequences include not only different views gen-
erated from the same historical sequence but also sequences with the same next item. Finally,
ContraRec unifies the two kinds of contrast signals with a joint learning framework.

3.2 Context-Target Contrast (CTC)

3.2.1 Revisiting Typical Training Method of Sequential Recommendation. Currently, most stud-
ies about sequential recommendation follow a supervised learning paradigm, where an interacted
item is the prediction target, and its historical sequence serves as the input. Then, a BPR pairwise
ranking loss as Equation (2) is generally optimized to train the sequential recommendation model.
Here we show that such training strategy is actually a specialized contrastive learning task for two
reasons, both conceptually and mathematically.
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Fig. 2. Overview of the proposed ContraRec framework. ContraRec mainly consists of two contrastive learn-

ing task: (1) context-target contrast (CTC) and (2) context-context contrast (CCC). The first contrast signal

(CTC) is a generalization of the common BPR pairwise ranking objective. As for the second contrast signal

(CCC), we aim to push up the representation similarity of similar sequences. Here similar sequences include

not only different views generated from the same historical sequence but also sequences with the same next

item. Finally, ContraRec unifies the two kinds of contrast signals with a joint learning framework, leading

to a holistic contrastive learning paradigm for sequential recommendation.

Firstly, different from supervised tasks in other domains, where the label information totally
comes from external knowledge, the inputs and labels in sequential recommendation inherently
exist in the original user interaction sequences. Current studies manually decouple the complete
sequence into input historical sequences and target items to discriminate between them. Given the
historical sequence, the target item is driven to get a higher ranking score compared to other items.
This is conceptually consistent with the setting of contrastive learning: the historical sequence and
the target item are similar samples directly extracted from the data, while other items are dissimilar
instances given the historical sequence.
Secondly, the BPR pairwise ranking loss, i.e., Equation (2), can be proven a variant of contrastive

loss as follows:

LBPR =
∑
(St ,it )

− logσ (ŷ (St , it ) − ŷ (St , i−t )
)

=
∑
(St ,it )

− log ��
�

1

1 + exp
(
−
(
ŷ (St , it ) − ŷ (St , i−t )

)) ��
�

=
∑
(St ,it )

− log ��
�

exp (ŷ (St , it ))

exp (ŷ (St , it )) + exp
(
ŷ (St , i−t )

) ��
�
.

(4)

Remember that in most deep sequential recommendationmodels, ŷ (St , it ) is derived by a similarity
function, i.e., Equation (1). Substituting the similarity function д(·) into Equation (4), we will get a
similar format as the common contrastive loss, i.e., Equation (3). Specifically, this typical BPR pair-
wise ranking loss becomes a specialized InfoNCE loss l ( f (St ), it ) under the following constraints:
(1) there is only one negative sample in the denominator, and (2) the temperature τ = 1. There-
fore, the commonly adopted BPR loss in sequential recommendation is intrinsically related to the
InfoNCE loss in contrastive learning. This typical training method actually discriminates between
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the representations of historical sequences and target items by optimizing a variant of contrastive
loss.

3.2.2 Context-Target Contrastive Loss. Given the analyses above, the typical training method
of sequential recommendation can be seen to discriminate between historical sequences and tar-
get items, named context-target contrast in this paper. Instead of directly optimizing BPR loss as
the common practice, we further extend BPR to a general contrastive loss. Here we loosen the
constraints summarized above and devise the following context-target contrastive (CTC) loss:

LCTC = τ1 ·
∑
(St ,it )

l (f (St ), it )︷�����������������������������������������������������������������������︸︸�����������������������������������������������������������������������︷
− log �

�

exp (д( f (St ), it )/τ1)

exp (д( f (St ), it )/τ1) +
∑K

k=1 exp (д( f (St ), ik )/τ1)
�
�
, (5)

where ik is the sampled negative items that the user has not interacted with, and τ1 is the tempera-
ture hyper-parameter. The outer coefficient τ1 is to re-scale the gradient according to the derivation
in previous work [11]. We use the common dot product as the similarity function д(·). When the
number of negative items K = 1 and the temperature τ1 = 1, CTC loss degrades to BPR loss
according to previous discussions.
Compared to the original BPR loss, CTC loss naturally supports multiple negative samples. Note

that it is also possible to derive an enhanced version of BPR loss when there are multiple negative
samples, named BPR+:

LBPR+ =
∑
(St ,it )

− 1

K

K∑
k

logσ (ŷ (St , it ) − ŷ (St , ik )) , (6)

which repeats the positive instancemultiple times tomake it get a higher score than every negative
item. However, this naive enhanced version does not consider the weights of different negative
samples, in which case simple negative samples not only contribute little to the gradient updates
but also weaken the contribution of hard negative samples due to the mean operation. On the
contrary, the temperature hyper-parameter in CTC loss gives a simple but effective way to make
the model pay different attentions to negative samples according to their hardness.
In our ContraRec framework, we adopt this CTC loss to learn the context-target contrast task.

We will show its superiority compared to BPR and its enhanced version (BPR+) in Section 5.2,
especially when the number of negative samples grows.

3.3 Context-Context Contrast (CCC)

In the section above, we show that the typical method to train sequential recommendation models
can be taken as a contrastive learning task, which discriminates between historical sequences and
target items extracted from the complete interaction sequence (context-target contrast). Current
studies mainly rely on this task but neglect other self-supervision signals hidden in user interac-
tion sequences. This motivates us to design other contrastive learning tasks so as to learn better
sequence representations and overcome practical issues like data sparsity and overfitting.
In this section, we propose to additionally leverage the contrast signal between historical

sequences (context-context contrast), which models the representation invariance of similar se-
quences. The basic idea is that historical sequences that reflect similar user intents should get
close representations. Specifically, we first generate two augmented sequences (also called views)
of the input historical sequence and assume that sequences after augmentation are intent-invariant.
Subsequently, a specific sequence encoder derives low-dimensional representations of the aug-
mented sequences, where various sequential recommendation methods can be adopted as the base
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sequence encoder. Then, a context-context contrastive (CCC) loss is proposed to encourage similar
sequences to have close representations. Next, we introduce the three main components in detail.

3.3.1 Sequence Augmentation. The sequence augmentation component Auд(·) applies random
augmentation to the original sequence. For each input historical sequence St , we generate two

randomly augmented sequences S̃t
a
= Auд(St , seed1) and S̃t

b
= Auд(St , seed2). Here seed1 and

seed2 are two random seeds that determine the concrete augmentation method (e.g., mask, re-
order) and the effect of augmentation (e.g., masked positions). Given the augmentation set,Auд(·)
first randomly chooses a specific augmentation method with equal probability, and then applies
it on the input sequence. The design of augmentation methods in the augmentation set may re-
late to concrete application scenarios and recommendation models. In this work, we present two
augmentation methods as examples, which will be detailed in Section 3.5.

3.3.2 Sequence Encoder. The sequence encoder component f (·) is responsible for encoding the
input sequence St into a low-dimensional representation f (St ) ∈ Rd (d is the dimension of the
representation space). Note that the sequence encoder here is sharedwith that in the context-target
contrastive learning task, i.e., there is only one set of parameters for the sequence encoder in our
ContraRec framework. This makes the knowledge learned from different tasks able to benefit each
other. As for the concrete architecture of the sequence encoder, there is no specific restriction. In
practice, most deep learning based sequence modeling methods cater to the requirement, such
as RNN, CNN, Transformer, and so on. This makes ContraRec a general framework, and various
deep sequential recommendation models (e.g., GRU4Rec, Caser, BERT4Rec) can be integrated as
the sequence encoder.

3.3.3 Context-Context Contrastive Loss. The context-context contrastive loss LCCC aims to en-
courage the representations of similar sequences to be close to each other. Let us denote the orig-
inal training mini-batch as B = {(S1, i1), (S2, i2), . . .}, whose element contains a target item it
and corresponding historical sequence St . After the sequence augmentation component, we get

an augmented sequence set A = {S̃1a , S̃1b , S̃2a , S̃2b , . . .} with size 2|B|, where each original se-
quence yields two different views. Then we aim to find similar and dissimilar sequences within
the augmented sequence set A (in-batch comparison).

For one thing, assuming the sequence augmentation can be seen as an intent-invariant trans-

formation, the two sequences derived from the same historical sequence (e.g., S̃1
a
and S̃1

b
) should

have similar representations. For another, sequences derived from different historical sequences

may also reflect similar user intents if their target items are the same (e.g., S̃1
a
and S̃2

a
assuming

i1 = i2). Notice that for both circumstances, the identity of the target item1 can be utilized as a
sign of similar sequences. The augmented sequences also share the same target item because their

original historical sequences are identical. Thus, we define the set of similar sequences of S̃t inA
as T (S̃t ) = {S̃ ′t ∈ A | it = i ′t }. This set includes not only the paired augmented sequence of S̃t , but
also other augmented sequences that derived from different interaction sequences with the same

target item (if exists). As a result, for each element S̃t ∈ A, there is possibly more than one positive
instance in A.

The common InfoNCE loss only supports one positive instance given an input instance. Thus, we
extend InfoNCE loss and devise the following context-context contrastive loss LCCC to encourage

the representation of a given sequence S̃t ∈ A to be close to the representations of all its similar

1Note that there is no information leakage here because the target items are visible during training.
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ALGORITHM 1: Learning algorithm of ContraRec

Input: user-item interactions data
⋃

u ∈U Su ; structure of sequence encoder f (·); sequence aug-
mentation component Auд(·); CTC loss temperature τ1; CCC loss temperature τ2; CCC loss
coefficient γ ; number of negative samples K ; batch size |B|

Output: sequence encoder parameters Θ
1: Randomly initialize all parameters Θ
2: for sampled mini-batch B = {(St , it )} from⋃u ∈U Su do

3: Sample K negative items {ik }Kk=1 for each instance (St , it )
4: Compute LCTC according to Equation (5)

5: S̃t
a
= Auд(St , seed1), S̃t

b
= Auд(St , seed2) # sequence augmentation

6: Compute LCCC according to Equation (7)
7: L ← LCTC + γLCCC + λ | |Θ| |2
8: Update model parameters Θ to minimize L
9: end for

10: return Θ

sequences S̃ ′t ∈ T (S̃t ):

LCCC = τ2 ·
∑

S̃t ∈A

1

|T (S̃t ) |
∑

S̃ ′
t
∈T (S̃t )

l
(
f (S̃t ), f (S̃ ′t )

)
, (7)

where l ( f (S̃t ), f (S̃ ′t )) is the contrastive loss between a single pair of similar sequence representa-
tions:

l
(
f (S̃t ), f (S̃ ′t )

)
= − log

exp
(
sim( f (S̃t ), f (S̃

′
t ))/τ2

)
∑

˜S−
t
∈A\S̃t exp

(
sim( f (S̃t ), f ( ˜S

−
t ))/τ2

) . (8)

The denominator in Equation (8) has 2|B| − 1 terms and cosine similarity is utilized to measure
the difference between representations,2 i.e., д(x, y) = cos(x, y) = xT y/‖x‖‖y‖. τ2 is another
temperature hyper-parameter as described in Section 2.2. It is noteworthy that LCCC allows more
than one similar sample in the mini-batch, which generalizes the commonly adopted InfoNCE loss
in other domains.

3.4 Joint Learning

To unify the two kinds of contrastive learning tasks, namely context-target contrast and context-
context contrast, we jointly optimize the two losses as a holistic contrastive learning framework:

min
Θ

L = LCTC + γLCCC + λ | |Θ| |2, (9)

where the context-context contrastive loss LCCC is controlled by a coefficient γ and we add
l2-normalization to all parameters. Note that the proposed ContraRec framework does not
introduce any additional parameters, and the main parameters lie in the sequence encoder
component. The overall learning procedure of ContraRec is demonstrated in Algorithm 1.
On the other hand, if the context-target contrast signal (next-item recommendation task in the

typical training method) is taken as the main learning objective, the context-context contrast sig-
nal can be utilized for pre-training (optimizing LCCC ahead of LCTC ). However, the pre-training
method isolates the two kinds of contrastive learning tasks and hinders model training from a

2We also tried dot product as the similarity function, but cosine similarity was shown to be more effective.
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Fig. 3. Illustration of the proposed sequence augmentation methods.

holistic contrastive learning framework. We will compare the performance of joint learning and
pre-training in Section 4.3.

3.5 Sequence Augmentation Methods

Data augmentation methods are shown to be crucial for learning image representations in com-
puter vision [22, 46]. However, in sequential recommendation, it remains unknown whether se-
quence augmentation would benefit the representation learning and how to augment historical
sequences without changing the original user intents. As a primary attempt, we explore two se-
quence augmentation methods in this work, namely mask and reorder (shown in Figure 3). We
believe that there exist other potential augmentation methods and different application scenarios
may suit different augmentation or even combinations, which we plan to leave for future work.

3.5.1 Mask. In practice, users’ intents are seldom dominated by a single interaction but gener-
ally remain stable over a period of time. A user may interact with a series of similar items with a
specific intention. Based on this consideration, we propose to use randommask as a sequence aug-
mentation method, which randomly masks a proportion of input tokens to a special mask token.
This technique is also common in natural language processing tasks to avoid overfitting [2, 6, 55].
Specifically, the augmentation procedure can be formulated as follows:

p1 ∼ Beta(α = 3, β = 3), n1 = �Np1	,
idx = zeros_like(St ),

idx[: n1] = 1, Shuffle(idx ),

S̃t = Copy(St ), S̃t [idx] = [mask].

(10)

Given the historical sequence St (the length denoted as N ), we first sample a proportion p1
from a Beta distribution3 and determine the number of positions n1 we want to mask. Then, we
randomly choose n1 positions and set corresponding items in the sequence to the mask token.

3.5.2 Reorder. Intuitively, the order of user interactions in most real-world scenarios is in a
flexible manner [45, 52]. Users may purchase a set of items simultaneously and the inner order
does not matter. Besides, recent self-attention based sequential recommendation models gain sig-
nificant performance improvements [24, 44] but care less about the temporal order compared to
RNN, which implies that the sequence order may be not that important. Therefore, we propose to

3We also tried other parameter settings (α, β ) of the Beta distribution and found the impacts are slight. Beta(α = 3, β = 3)

usually yields promising results.

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 11. Publication date: January 2023.



Sequential Recommendation with Multiple Contrast Signals 11:11

augment historical sequences based on partial permutation:

p2 ∼ Beta(α = 3, β = 3), n2 = �Np2	,
sstar t ∼ {0, 1, 2, . . . ,N − n2},
send = sstar t + n2,

S̃t = Copy(St ), Shuffle(S̃t [sstar t : send ]).

(11)

Similarly, we sample a proportion p2 first and determine the length n2 we want to reorder. Sub-
sequently, we uniformly select a continuous sub-sequence with length n2 and randomly shuffle
it, while interactions not included in the selected sub-sequence remain in the original order. This
avoids shuffling the whole sequence each time and endows more randomness into the learning
procedure, which potentially enhances the model robustness.

Both of the methods introduced above yield an augmented sequence S̃t with the same length
N as the input sequence St . It is noteworthy that the sequence augmentation component is not
restricted to the proposed twomethods.We leave the investigation of other augmentationmethods
as future work to center our contribution to the overall contrastive learning framework.

3.6 Discussion

In summary, ContraRec presents a holistic contrastive learning framework for sequential recom-
mendation, which consists of two kinds of contrastive learning tasks. For one thing, the commonly
adopted next-item recommendation task with BPR pairwise ranking is revisited and generalized
to a context-target contrastive (CTC) loss. For another, ContraRec models the representation in-
variance of similar historical sequences via the proposed context-context contrastive (CCC) loss,
which encourages the sequences after augmentation, as well as sequences with the same target
item, to have close representations. The two contrastive learning tasks are jointly optimized in
the ContraRec framework. And various sequential recommendation models can be integrated to
achieve better performance by learning better sequence representations. In this section, we com-
pare ContraRec with two lines of related work, namely alternative training methods of sequential
recommendation and contrastive learning in other domains.

3.6.1 Alternative TrainingMethods of Sequential Recommendation. Recent work [44, 58, 65] also
begins to explore other self-supervision signals and alternative training strategies (e.g., masked
item prediction, segment prediction, see Section 6 for more details). However, they mainly follow
a two-stage learning paradigm, which first pre-train with other self-supervised tasks and fine-
tune on the traditional next-item recommendation task. Neither of them investigates the connec-
tion between contrastive learning and next-item recommendation with BPR pairwise ranking loss.
Differently, ContraRec makes the training of sequential recommendation a holistic contrastive
learning framework together with the proposed context-context contrast signal. Besides, the self-
supervised tasks in previous studies are mainly based on specific sequence encoders (e.g., Trans-
former block), while ContraRec does not introduce any extra parameters and serves as a general
framework for various sequential recommendation models.

3.6.2 Contrastive Learning in Other Domains. Contrastive learning has achieved great success
recently in domains like computer vision (CV) [4, 12, 37] and natural language processing

(NLP) [9, 35, 55]. Take CV as an example, related studies usually transform input images into
different views and utilize the InfoNCE loss to distinguish whether the augmented images come
from the same input. However, in sequential recommendation, it is still not clear whether the data
augmentation could benefit the representation learning and how to augment historical sequences
without changing the original user intents. Hence, we devise two sequence augmentation methods
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in ContraRec to validate the effectiveness of data augmentation. Besides, considering the charac-
teristics of sequential recommendation, the proposed LCCC also encourages sequences with the
same target item to have similar representations, which extends the common InfoNCE loss to sup-
port multiple positive pairs. Notice that if there is no historical sequence with the same target item

in the mini-batch, T (S̃t ) has only one element (the paired augmented sequence of S̃t ) and LCCC

degrades to the commonly adopted InfoNCE loss in other domains.

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Datasets. We conduct extensive experiments on three public datasets in real-world rec-
ommendation scenarios:

• Beauty4: This is one of the series of product review datasets crawled from Amazon [16]. The
data is split into separate datasets by the top-level product category.
• Yelp-20185: This is a popular dataset for business recommendation, including restaurants,
bars and so on. We use the transaction records after Jan. 1st, 2018 following previous
work [53].
• Gowalla6: This is the check-in dataset [32] obtained from Gowalla, where users share their
locations by checking-in.

To keep consistent with the default “5-core” setting in Amazon datasets, we preprocess the Yelp-
2018 and Gowalla dataset to ensure each user and item has at least five associated interactions. The
statistics of datasets after preprocessing are summarized in Table 2.

4.1.2 Evaluation Protocols. We adopt the leave-one-out strategy to evaluate model perfor-
mance, which is widely used in previous work [7, 49, 65]. For each interaction sequence, we use the
most recent interaction for testing, the second recent interaction for validation, and the remaining
interactions for training. In the meantime, considering that the Gowalla dataset contains repeat
interactions for each user,7 it is possible that the target item in the validation/test dataset has been
seen in the training set. To avoid correlation between the three sets of data, we filter the validation
and test data of Gowalla such that the target item is the first instance that the user has not been vis-
ited before (around 55% of the users meet the requirement). Some initial experiments were done
without the filtering where the results were also positive, but in order to focus on avoiding the
potential correlations between the data, only results from the filtered dataset will be presented.
To speed up model evaluation, we randomly sample 1,000 items as negative items, and this set-

ting is shown to be close to the non-sampling version [28, 30]. We employ Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG) [23] as evaluation metrics. HR@k mea-
sures whether the target item appears in the top-k recommendation list, while NDCG@k further
concerns about its position in the ranking list. Let дu ∈ [1, 1001] denote the rank of the target
item for each user u, then HR@k and NDCG@k can be defined as follows under our experimental
settings:

HR@k =
1

|U |
∑
u ∈U

I (дu ≤ k ),

NDCG@k =
1

|U |
∑
u ∈U

I (дu ≤ k )

log2 (дu + 1)
,

(12)

4https://jmcauley.ucsd.edu/data/amazon/links.html.
5https://www.yelp.com/dataset.
6http://snap.stanford.edu/data/loc-gowalla.html.
7The Beauty and Yelp-2018 datasets have been preprocessed to ensure that there is no repeat interaction.
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Table 2. Statistics of Datasets After Preprocessing

Dataset
#user
(|U |)

#item
(|I |)

#inter
(
∑
u Nu )

avg.
length

density time span

Beauty 22.4k 12.1k 198.5k 8.9 0.07% 2002.06.12 - 2014.07.23
Yelp-2018 88.4k 45.9k 1057.2k 12.0 0.03% 2018.01.01 - 2019.12.13
Gowalla 76.9k 304.4k 4616.6k 60.0 0.02% 2009.02.03 - 2010.10.22

where I (·) is an indicator function that only returns 1 when the condition is met, otherwise 0. We
repeat each experiment five times with different random seeds and report the average score.

4.1.3 Baselines. We compare our method with various representative works, including state-
of-the-art sequential recommendation models and recent studies based on self-supervised
learning.

• FPMC [42]: This method combines matrix factorization and Markov Chains with a user-
specific transition matrix.
• GRU4Rec [19]: This method utilizes GRU (Gated Recurrent Unit, a variant of RNN) [5]
to model sequential interactions.
• Caser [45]: This is a CNN-based method that captures high-order Markov Chains by apply-
ing horizontal and vertical convolutional operations on interaction sequences.
• SASRec [24]: This method utilizes self-attention [47] to exploit the mutual influence be-
tween historical interactions.
• BERT4Rec [44]: This is a state-of-the-art sequential recommendation model that uses bidi-
rectional self-attention [47] to derive sequence representations.
• S3Rec [65]: It designs four pretext tasks for context-aware recommendation and then fine-
tunes on the next-item recommendation task, which is a state-of-the-art method based on
self-supervised learning. Due to the fact that there is no feature information in our setting,
we only use the masked item prediction and segment prediction tasks in S3Rec for fairness.
• CLRec [64]: This method uses the contrastive loss to optimize an attention-based sequential
recommendation model to improve both effectiveness and fairness.
• CL4SRec [58]: This is a recent study that also investigates the contrast signal between aug-
mented historical sequences based on contrastive learning. But it only takes sequences aug-
mented from the same input as similar instances and uses a simple softmax loss.

4.1.4 Implementation Details. We implement our method with PyTorch and the codes are pub-
licly available to facilitate reproducibility.8 We use Adam [26] as the optimizer due to its success
in recent deep learning methods. Early stop is adopted if NDCG@5 on the validation dataset con-
tinues to drop for 10 epochs. We consider a maximum of 50 recent interactions as the historical
sequence.
We use the transformer layer in BERT4Rec as the default sequence encoder in our ContraRec

because it has been shown to be effective in most scenarios. We will demonstrate the performance
of ContraRec when integrating different base sequence encoders in Section 4.4. As for hyper-
parameters of ContraRec, the coefficient of LCCC is tuned within [0, 0.01, 0.1, 1, 5, 10]; the tem-
peratures τ1 and τ2 are tuned from 0.1 to 1 with step 0.1 respectively; the batch size |B| is tuned
between [256, 512, 1024, 2048, 4096]. With regard to the number of negative items in CTC loss, we
set K = 1 by default for fair comparisons because baseline sequential recommendation models

8https://github.com/THUwangcy/ReChorus/tree/TOIS22.
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generally use one negative sample during training. Besides, we will also report the results when
K = 64 for ContraRec, denoted as ContraRec(multi). All the parameters are normally initialized
with 0 mean and 0.01 standard deviation.

4.2 Overall Performance

For each dataset, we report the performances of two kinds of ContraRec according to whether
there is only one negative sample during training:

• ContraRec: This is the proposed contrastive learning framework with K = 1 and τ1 = 1 in
LCTC (equivalent to jointly optimize LBPR and LCCC ). This ensures a fair comparison with
base sequential recommendation models because they only use one negative item.
• ContraRec(multi): This is the full version of the proposed ContraRec, where the number of
negative items K in LCTC is set to 64 and τ1 is tuned between 0.1 and 1.

Table 3 shows the performance and the running time of different methods. We summarize the
experimental results in three folds.

4.2.1 Effectiveness of ContraRec. Firstly, self-supervised learning based methods are generally
better than traditional sequential recommendation models, and CL4SRec becomes the strongest
baseline. CL4SRec improves the performance of sequential recommendation models through en-
couraging the representation similarity between augmented sequences, which shows the useful-
ness of exploiting other contrast signals in sequential recommendation. Further, the proposed Con-
traRec and ContraRec(multi) achieve the best performance on all the datasets.

Compared to traditional sequential recommendationmodels, themain difference of ContraRec is
optimizing the context-context contrastive loss in addition. The consistent improvements demon-
strate that the context-context contrast signal between similar historical sequences indeed helps
the model obtain better sequence representations and hence benefits the next-item recommenda-
tion task. Compared to S3Rec and CLRec, the superiority of ContraRec shows that the sequence-
augmentation based contrastive task is more beneficial to the representation learning in sequential
recommendation. Compared to CL4SRec, we use the InfoNCE loss instead of the simple softmax
loss, which is shown to be capable of better addressing the exposure bias in recommendation [64].
We also do not restrict the similar sequences to those augmented from the same input sequence,
but incorporate sequences with the same target item inspired by the idea of collaborative filtering.
This helps the proposed method achieve the best performance consistently.

4.2.2 Efficiency Analyses. Table 3 also shows the efficiency of different methods. To measure
the running time, all the experiments are conducted with the same batch size of 256 and on the
same machine (Intel Xeon 8-Core CPU of 2.2GHz and single NVIDIA GeForce RTX 2080Ti GPU)
for fair compar ison. We notice that, in general, more recent models require more time for a single
iteration (time/iter), while the convergence speeds (#iter) of different methods are usually diverse,
leading to varying training time in total (total time). On the one hand, regarding the training time
for a single iteration, our method is inevitably slower (no more 2×) than traditional sequential
recommendation models because we need to encode additional two augmented sequences in each
batch. Similarly, the recent contrastive method CL4SRec also needs more time for a single iteration.
On the other hand, ContraRec converges very fast and only requires about 50 iterations to achieve
stable performance, while CL4SRec usually needs more than 100 iterations. The reason is that our
ContraRec leverages multiple contrast signals and uses the temperature-scaled contrastive loss
to help the model focus more on hard negatives. As a result, the total training time of ContraRec
is similar with traditional sequential methods (ContraRec and SASRec both need around 9.3h
to achieve the optimal performance on the largest Gowalla dataset), which does not introduce
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Table 3. Performance on Three Datasets

Method
Beauty

NDCG@5 HR@5 NDCG@10 HR@10 time/iter #iter total time

FPMC [41] 0.0933 0.1345 0.1112 0.1900 4.4s ∼100 ∼7m
GRU4Rec [19] 0.0748 0.1113 0.0903 0.1591 8.1s ∼150 ∼20m
Caser [45] 0.0662 0.1011 0.0814 0.1484 9.0s ∼150 ∼23m
SASRec [41] 0.1070 0.1499 0.1245 0.2045 11.6s ∼100 ∼20m
BERT4Rec [44] 0.1024 0.1453 0.1208 0.2022 13.1s ∼150 ∼33m
S3Rec [65] 0.1020 0.1426 0.1184 0.1934 12.1s ∼150 ∼30m
CLRec [64] 0.1077 0.1536 0.1251 0.2071 12.3s ∼50 ∼10m
CL4SRec [58] 0.1103 0.1567 0.1301 0.2215 20.9s ∼100 ∼35m
ContraRec 0.1202** 0.1719** 0.1417** 0.2386** 20.2s ∼50 ∼17m
ContraRec(multi) 0.1300** 0.1802** 0.1496** 0.2409** 22.1s ∼50 ∼18m

Method
Yelp-2018

NDCG@5 HR@5 NDCG@10 HR@10 time/iter #iter total time

FPMC [41] 0.1395 0.2073 0.1719 0.4370 30.2s ∼150 ∼1.3h
GRU4Rec [19] 0.1732 0.2540 0.2092 0.3659 44.1s ∼200 ∼2.5h
Caser [45] 0.1549 0.2294 0.1898 0.3377 50.8s ∼200 ∼2.8h
SASRec [41] 0.1842 0.2610 0.2189 0.3687 64.4s ∼100 ∼1.8h
BERT4Rec [44] 0.1882 0.2668 0.2229 0.3743 72.5s ∼100 ∼2.0h
S3Rec [65] 0.1923 0.2703 0.2294 0.3801 65.2s ∼200 ∼3.6h
CLRec [64] 0.2014 0.2901 0.2398 0.4012 71.3s ∼50 ∼1.0h
CL4SRec [58] 0.2098 0.3002 0.2465 0.4103 127.1s ∼150 ∼5.3h
ContraRec 0.2132* 0.3042* 0.2512* 0.4219** 121.2s ∼50 ∼1.7h
ContraRec(multi) 0.2193** 0.3103** 0.2568** 0.4267** 144.2s ∼50 ∼2.0h

Method
Gowalla

NDCG@5 HR@5 NDCG@10 HR@10 time/iter #iter total time

FPMC [41] 0.2498 0.3267 0.2752 0.4054 292.3s ∼100 ∼8.1h
GRU4Rec [19] 0.2925 0.3959 0.3296 0.4108 299.8s ∼150 ∼8.3h
Caser [45] 0.2736 0.3758 0.3119 0.4944 321.0s ∼100 ∼8.9h
SASRec [41] 0.4742 0.6120 0.5124 0.7293 335.4s ∼100 ∼9.3h
BERT4Rec [44] 0.4813 0.6215 0.5235 0.7324 377.5s ∼100 ∼10.5h
S3Rec [65] 0.4836 0.6302 0.5324 0.7398 340.1s ∼150 ∼14.2h
CLRec [64] 0.4918 0.6362 0.5354 0.7458 378.1s ∼50 ∼5.3h
CL4SRec [58] 0.5236 0.6646 0.5521 0.7725 680.1s ∼100 ∼18.9h
ContraRec 0.5586** 0.7067** 0.5913** 0.8070** 667.3s ∼50 ∼9.3h
ContraRec(multi) 0.5662** 0.6976** 0.5961** 0.7895** 780.2s ∼50 ∼10.8h
The best result is in bold face, and the strongest baseline is underlined (** means significantly better than the

strongest baseline with p < 0.01). “time/iter”, “#iter”, “total time” represents the training time for a single iteration,

the number of iterations to converge, and the total training time, respectively (second/minute/hour [s/m/h]).
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Table 4. Performance of Different Variants of ContraRec

Method
Beauty Yelp-2018 Gowalla

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

BERT4Rec 0.1208 0.2022 0.2229 0.3743 0.5235 0.7324

Augment 0.1205 0.2027 0.2328 0.3884 0.5254 0.7395
ContraRec-Pre 0.1342 0.2301 0.2502 0.4103 0.5724 0.7826
ContraRec-SP 0.1381 0.2339 0.2508 0.4121 0.5875 0.7948
ContraRec-AP 0.1317 0.2256 0.2414 0.4013 0.5802 0.7893

ContraRec 0.1417 0.2386 0.2512 0.4219 0.5913 0.8070

Augment follows the typical BPR training paradigm but randomly augments the input sequence. ContraRec-

Pre adopts the pre-training strategy. ContraRec-SP only encourages sequences augmented from the same

input history to have similar representations. ContraRec-AP adds an additional linear projection to sequence

representations before calculating LCCC .

significantly more time costs. Considering the remarkable improvements brought by ContraRec,
we believe the performance gains somewhat justify the runtime costs.

4.2.3 Effect of More Negative Samples. Beyond the consistent improvements of ContraRec, we
find ContraRec(multi) generally achieves higher performances compared to ContraRec. This indi-
cates the usefulness of more negative samples during training, which brings richer contrast signals
and further enhances the model performance. It is more possible to get hard negative items when
the number of negative samples increases, hence providing a better estimation of the updating gra-
dient. For general sequential recommendation models, although it is also feasible to use more than
one negative sample with LBPR+ (i.e., Equation (6)), we will experimentally show in Section 5.2
that the proposed LCTC benefits more from multiple negative samples. At the same time, exper-
iments in the following sections will adopt the version when K = 1 (i.e., ContraRec instead of
ContraRec(multi)) for fair comparisons with other methods, unless noted otherwise.

4.3 ContraRec Variants

To validate the plausibility of the proposed framework structure, we investigate the performance
of four variants of ContraRec:

• Augment: This method follows the typical training paradigm but randomly augments the
input historical sequence with our proposed augmentation component during training.
• ContraRec-Pre: This variant pre-trains the base sequential recommendation model with
LCCC for 50 epochs and then fine-tunes with LCTC .
• ContraRec-SP: This variant only encourages sequences augmented from the same input
sequence to have close representations, in which case each sequence has a single positive
(SP) instance, similar with the common practice of contrastive learning in other domains,

i.e., L′CCC =
∑

St ∈B l ( f (S̃t
a
), f (S̃t

b
)).

• ContraRec-AP: In other domains, it has been shown effective to add an additional projec-

tion (AP) head to the representation before calculating the contrastive loss [4]. This variant

applies a learnable linear transform M ∈ Rd×d to sequence representations f (S̃t ) before

calculating Equation (8), i.e., l (MT f (S̃t ),M
T f (S̃ ′t )).

Table 4 shows the performance of different methods on each dataset. We summarize the observa-
tions in four folds.
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4.3.1 Effect of Sequence Augmentation. It is noteworthy that the Augment version usually per-
forms a little better than the base sequential recommendation model BERT4Rec. Compared to the
base sequential model, the only difference of the Augment version is randomly augmenting the
input historical sequence during training. If the augmentation methods actually change the orig-
inal user intents, the performance of the Augment version is expected to somewhat suffer a loss.
On the contrary, the consistent performance improvements of the Augment version imply the ra-
tionality of the proposed sequence augmentation methods, namely mask and reorder. On the one
hand, user intents are generally stable over a period of time, which will not be greatly influenced
if some interactions are missing. On the other hand, user behaviors in many real-world scenarios
are generally flexible and do not follow a rigid order.

4.3.2 Comparison of Training Strategy. Different from the joint learning framework of Con-
traRec, previous work [4, 65] usually adopts the two-stage learning strategy, which first pre-trains
model parameters with pretext tasks and then fine-tunes on the main task. Here we treat context-
context contrast (LCCC ) as the pretext task and context-target contrast (LCTC ) as the main task.
From Table 4, it can be found that ContraRec-Pre also gets consistently better results compared to
the base sequential recommendation model. This directly validates the usefulness of the proposed
context-context contrastive learning task because it is only used for pre-training. The fine-tuning
stage is the same as the training procedure of the base sequential recommendation model. Mean-
while, ContraRec-Pre is still inferior to ContraRec all the time. This suggests that it is better to
adopt a holistic contrastive learning framework with joint learning but not just utilize the context-
context contrast signal for pre-training. The two kinds of contrastive learning tasks (LCTC and
LCCC ) potentially benefit each other during training, which is more suitable to be unified together.

4.3.3 Effect of Multiple Positive Pairs. Experiments demonstrate that ContraRec-SP suffers con-
sistent performance losses, which implies the usefulness of multiple positive pairs in context-
context contrast. This also differs our ContraRec from CL4SRec and contrastive learning studies in
other domains. Although sometimes historical sequences with the same target item might reflect
dissimilar user preferences (attracted by different aspects of the item), there are also many cases
where the same target item indeed reflects similar user intents. As a result, pushing up the similar-
ity of their representations helps to enhance the capacity of the sequence encoder. Notice that the
performance drop of ContraRec-SP is not that large. One possible reason is that somemini-batches
may not contain historical sequences with the same target item because there are numerous items
in the dataset. Even though, we argue this is a unique supervision signal in sequential recommen-
dation that should be taken into consideration, which enriches the context-context contrast signal
and further boosts the recommendation performance.

4.3.4 Effect of Additional Projection Head. Different from the observation in other domains, we
find adding a projection head hurts the overall performance of ContraRec. Although ContraRec-
AP still outperforms the base sequential recommendation model, it is inferior to ContraRec all the
time. This may result from the ranker function in sequential recommendation, which generally
takes a simple form like dot product. Unlike models in computer vision that needs another lin-
ear classification layer after getting the image representation, sequential recommendation directly
recommends items close to the sequence representation. Hence, it may be better to drive the rep-
resentations of similar sequences to be close to each other in the original representation space.

4.4 Integration with Different Base Sequence Encoders

Note that the proposed ContraRec serves as a general framework and different sequence mod-
els can be easily integrated as the base sequence encoder. In the main experiments, we adopt
BERT4Rec as the default encoder for the effectiveness of the transformer layer. To validate the
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Table 5. Performance of ContraRec when Adopting Different Base Sequence Encoders

Method
Beauty Yelp-2018 Gowalla

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

GRU4Rec 0.0903 0.1591 0.2092 0.3659 0.3296 0.5108
+ ContraRec 0.1273 0.2177 0.2371 0.3920 0.4245 0.6268

Caser 0.0814 0.1484 0.1898 0.3377 0.3119 0.4944
+ ContraRec 0.1063 0.1864 0.2084 0.3570 0.4344 0.6381

BERT4Rec 0.1208 0.2022 0.2229 0.3743 0.5235 0.7324
+ ContraRec 0.1417 0.2386 0.2512 0.4219 0.5913 0.8070

flexibility of our ContraRec, Table 5 shows the results of integrating GRU4Rec, Caser, and
BERT4Rec (three representative deep learning techniques to model sequential data, i.e., RNN,
CNN, and Transformer) as the base sequence encoder, respectively. We can see that ContraRec
brings significant performance improvements to distinct base sequential models on all the
datasets. This shows the effectiveness and flexibility of our framework. It is noteworthy that
GRU4Rec+ContraRec even outperforms BERT4Rec on Yelp-2018 with a less expressive sequence
encoder. Meanwhile, the best performing BERT4Rec also gets encouraging improvements with
ContraRec.

4.5 Comparison of Different Augmentation Methods

To validate the effectiveness of the two proposed sequence augmentation methods, four augmen-
tation strategies are compared in this section. Remember that we randomly choose a specific aug-
mentation method with equal probabilities by default in ContraRec, denoted as Random Choice.
Here, we test the performance when only one augmentation method is adopted, denoted asMask

Only andReorder Only, respectively. Besides, we also compare the case when two augmentation
methods are simultaneously applied on the input sequence, denoted as Stacking. Table 6 shows
the performance of different augmentation methods on each dataset.
We observe that different augmentation methods perform differently and there does not ex-

ist a golden augmentation strategy. The best results are achieved by distinct strategies for differ-
ent datasets. For example, Reorder Only performs the best on Beauty and Yelp-2018, while Ran-
dom Choice is more suitable for Gowalla. This indicates that distinct augmentation methods may
learn different knowledge, and hence are good at some certain scenarios. Designing other dataset-
specific augmentation or exploring adaptive sequence augmentationmethods is probably a promis-
ing future direction, which needs some domain-knowledge and a deep understanding of the data.
In the meantime, there are also some patterns that can be concluded from the experimental

results. First, considering the single augmentation method, Reorder Only generally yields promis-
ing results while Mask Only performs a little worse. The reorder operation might introduce some
knowledge that can be hardly learned by the traditional context-target contrastive task (i.e., BPR
pairwise ranking), which implies that the temporal order of interactions is not that important in
these datasets. However, we think this is possibly highly related to the concrete recommendation
scenarios. For product review dataset Beauty, users’ preferences might not change much over time,
and the average length of the user interaction sequence is short. For Gowalla, the interactions are
spaced more closely in time as shown in Table 2, and most users are only active within a shorter
time period. While for other datasets that the time-series information is especially important, it
will be better to investigate other data-specific augmentation methods. Second, although the mask

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 11. Publication date: January 2023.



Sequential Recommendation with Multiple Contrast Signals 11:19

Table 6. Performance of Different Sequence Augmentation Strategies

Method
Beauty Yelp-2018 Gowalla

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

Mask Only 0.1352 0.2275 0.2166 0.3942 0.5879 0.8038
Reorder Only 0.1424 0.2400 0.2576 0.4273 0.5913 0.8033
Stacking 0.1307 0.2216 0.2423 0.4021 0.5820 0.7964
Random Choice 0.1417 0.2386 0.2512 0.4219 0.5913 0.8070

Mask Only and Reorder Only adopt a single augmentation method respectively. Stacking simultaneously

applies two augmentation methods on the input sequence. Random Choice selects a specific augmentation

method with equal probabilities.

operation does not bring significant performance gains when adopted solely, Random Choice is
superior to Reorder Only on Gowalla with the incorporation of the mask operation. This implies
the potential importance to combine different augmentations in some certain datasets, which may
especially benefit from encouraging sequences after different augmentations to have similar rep-
resentations. Third, stacking multiple augmentation methods is not as useful as expected, which
yields sub-optimal performance. Applying various augmentation methods together may change
the structure of the original sequence to a large extent, in which case the user intent can hardly
be ensured to stay consistent. Finally, although Random Choice is not always the best performing
strategy, it generally achieves encouraging results. Thus, it is reasonable to choose RandomChoice
as the default augmentation strategy in ContraRec.

5 FURTHER ANALYSES

5.1 Training Data Size

One of the motivations of additionally exploring the context-context contrast signal in ContraRec
is to alleviate the data sparsity issue. We first analyze the impacts of training data size and validate
whether ContraRec is capable of making better use of the data. Figure 4 shows the performances
of ContraRec and BERT4Rec when utilizing different ratios of training data on Yelp-2018. Results
on other datasets and combinations with other sequence encoders are similar.
First, we can see different methods generally yield better results when more training data is

available. This shows the importance of training data size for deep learning basedmethods. Second,
ContraRec consistently outperforms the base sequential recommendationmodelwhen utilizing dif-
ferent ratios of training data. It is noteworthy that with only 40% of the data, ContraRec is superior
to the full base model using all the data. Besides, the relative improvements of ContraRec are more
obvious when limited data is available, and there are still encouraging performance gains with
all the data. These observations imply that the the additional self-supervised signal (i.e., context-
context contrast) in ContraRec helps to make full use of the data and is potentially capable of
alleviating the data sparsity problem in practice.

5.2 Number of Negative Samples in CTC Loss

In Section 3.2, we revisit the typical pairwise ranking training method and extend BPR loss to a
general contrastive loss LCTC , which supports multiple negative samples during training. Here,
we investigate how does the performance change as the number of negative samples increases.
Figure 5 shows the performance of ContraRec on Beauty when varying the number of negative
samples. Results on other datasets demonstrate similar trends. For comparison, we also report the
performances when substituting LCTC with LBPR (only one negative sample) and LBPR+ (i.e.,
Equation (6)), respectively. From the figure, we mainly have two observations as follows.

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 11. Publication date: January 2023.



11:20 C. Wang et al.

Fig. 4. Performance when using different ratios of training data on Yelp-2018. Relative improvements com-

pared to the base model are annotated.

Fig. 5. Performance when varying the number of negative samples during training on Beauty. The proposed

CTC loss benefits more from multiple negative samples than BPR+.

First, it is generally beneficial to use more negative samples. Notice that LCTC and LBPR+ both
outperform LBPR (the dotted line) when there are multiple negative samples. This shows the
usefulness of sampling multiple negative items, in which case hard negative samples are more
probable to be included and provide more valuable gradient updates. Second, the proposed LCTC

benefits more from multiple negative samples. It is noteworthy that the performance when us-
ing LCTC steadily rises up as the number of negative samples increases. As for LBPR+, although it
gets slightly better results compared toLBPR , its performance does not benefit frommore negative
samples. This is mainly because LBPR+ does not weigh each negative sample differently, in which
case simple negative samples do not provide useful gradient updates and weaken the contributions
of hard negative samples at the same time. On the contrary, the temperature hyper-parameter in
LCTC provides a simple but effective way to control the model’s attention payed to different neg-
ative samples. Therefore, we propose that LCTC can become an optional substitute for LBPR to
train general sequential recommendation models in practice.

5.3 Parameter Sensitivity

Then, we conduct a series of experiments to investigate the impacts of major hyper-parameters in
our ContraRec framework, including the coefficient of the context-context contrastive loss γ , the
batch size |B|, and the temperature τ2 in the context-context contrastive (CCC) loss.

5.3.1 Coefficient of the Context-Context Contrastive Loss. The coefficient γ in the final objec-
tive function Equation (9) controls the importance of the context-context contrastive learning task.
Figure 6 shows the NDCG@10 of ContraRec with different base sequential recommendation mod-
els when the coefficient ranges within [0, 0.01, 0.1, 1, 5, 10]. First, it can be observed that the
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Fig. 6. Effect of the coeffecient γ of the context-context contrastive loss LCCC . The performance generally

increases first, and then decreases.

Fig. 7. Effect of the batch size during training. ContraRec usually benefits from a larger batch size.

context-context contrastive learning task indeed benefits the recommendation performance. It is
useful to encourage sequences after augmentation aswell as sequenceswith the same target item to
have similar representations. Although the typical context-target contrastive task can also achieve
the goal that multiple sequences with the same target learn similar embeddings, the CCC loss fur-
ther addresses this explicitly. Besides, the knowledge to learn augmentation-invariant representa-
tions in the CCC loss can hardly be captured by the traditional learning paradigm. Compared to
the situation when only optimizing LCTC (γ = 0), ContraRec achieves better results under most
settings ofγ on all the datasets. Besides, the overall trend increases first and then decreases. Notice
that γ = 1 generally yields promising results, while the best setting varies across datasets, which
may rely on the data scale and the concrete scenario.

5.3.2 Batch Size. Considering the context-context contrastive learning task in ContraRec, the
number of negative samples in LCCC is directly relevant to the training batch size due to in-batch
comparison. According to [38], the negative InfoNCE loss will be a tighter lower bound of mutual
information between similar instances when the number of negative samples increases. Besides,
a larger batch size will make it more possible that different sequences in the batch share the same
target item. Therefore, large batch sizes are expected to lead to better results. Figure 7 shows the
performance when different batch sizes are adopted. It can be seen that ContraRec indeed benefits
from larger batch sizes. The best result is generally achieved with the batch size of 4,096,9 while
ContraRec is still much better than the base sequential recommendation model with a small batch
size of 256.

5.3.3 Temperature. Another important hyper-parameter is the temperature τ2 in Equation (8),
which controls the smoothness of the softmax distribution. Figure 8 shows the performance of
ContraRec when the temperature ranges from 0.1 to 0.6. We find most settings of τ2 lead to better

9We did not try the batch size of 8,192 or higher because of the limited GPU memory.
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Fig. 8. Effect of the temperature in the context-context contrastive (CCC) loss.

results than the base sequential encoder, and a small temperature around 0.2 generally yields en-
couraging results, which is also stable across datasets. When the temperature is small, the model
may benefit from focusing more on similar samples while neglecting the ones too far away. In the
meantime, too small or especially too large temperatures will also hurt the performance.

6 RELATEDWORK

In this section, we review two lines of work related to ours and present the main differences of the
proposed ContraRec.

6.1 Sequential Recommendation

Different from general recommendation methods [3, 17, 41], sequential recommendation leverages
historical sequences to better capture current user intent [39]. Previous studies depend on Markov
chains to model the transition pattern between items [42, 43, 50]. Recently, with the development
of deep learning, there has been much work utilizing deep models to encode historical sequences
to hidden vectors [8, 19, 29, 48, 49, 61, 63]. GRU4Rec [19] first introduces RNN to the seqeun-
tial recommendation domain, and Caser [45] utilizes a CNN-based method to capture high-order
Markov chains by applying convolutional operations on historical sequences. Besides, inspired by
the effectiveness of the attention mechanism in other domains [1, 59], SASRec [24] first applies
self-attention to model the mutual influence between historical interactions, achieving impressive
performance improvements. However, most deep sequential recommendation models focus on the
structure of the sequence encoder and rely on the next-item recommendation task (context-target
contrast), while ignoring other self-supervised signals like context-context contrast addressed in
ContraRec.
On the other hand, some recent work about sequential recommendation begins to explore al-

ternative training strategies. BERT4Rec [44] adopts a Cloze objective that predicts the randomly
masked items in the sequence by their context. Ma et al. [36] propose to predict the future sequence
instead of next item and construct a seq2seq training strategy based on disentanglement. Yuan
et al. [62] investigate the pretraining strategy on sequential data and transfer the learned param-
eters to downstream tasks. However, neither of them investigates the contrast signals directly
extracted from historical sequences (e.g., finding similar sequences based on augmentation and
target item in ContraRec). Besides, they usually need specific sequence encoders to fit their train-
ing strategies, while ContraRec does not introduce any extra parameters and serves as a general
framework to boost various deep sequential recommendation models.

6.2 Contrastive Learning

Contrastive learning is a branch of self-supervised learning, which obtains supervision signals
from the data itself and usually predicts part of the data from other parts [33]. Compared to
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supervised learning that needs manual labels, self-supervised learning has drawn increasing at-
tention for its data efficiency and generalization ability. There are mainly two directions in
self-supervised learning, namely generative methods and contrastive methods. Generative meth-
ods [7, 40] generally aim to reconstruct “pixel-level” details of the transformed data, while con-
trastive methods [4, 12, 20, 25, 38] discriminate the relationship of paired samples in a classification
manner. Considering that a good representation may still not be powerful enough to recover de-
tails of the data, contrastive methods are more consistent with human intuition and have achieved
great success in CV and NLP recently.
Deep InfoMax [20] first uses a contrastive learning task to model the mutual information be-

tween a local patch and its global context. Subsequently, CPC [38] pioneers the practice of max-
imizing mutual information between the past and future parts in sequential data. More recently,
studies begin to directly discriminate between similar and dissimilar samples, where using rich
negative samples is shown to be important [56]. MoCo [12] develops momentum contrast learning
with a dynamic queue to increase the number of negative samples. SimCLR [4] further illustrates
the importance of a hard positive sample strategy by data augmentation, which generates different
views of an input image as similar samples and adopts in-batch comparison to obtain dissimilar
samples.
Inspired by the success of contrastive learning in other domains, researchers in the recommen-

dation domain also begin to investigate possible application directions. Yao et al. [60] devise a
self-supervised learning framework based on feature correlations of items. Zhuang et al. [34] and
Wu et al. [54] propose to apply contrastive learning on graph neural networks for graph-based
recommender systems, which construct self-supervised signals through graph augmentation. In
the domain of sequential recommendation, S3-Rec [65] devises four self-supervised tasks from raw
features of items in the interaction sequence. CLRec [64] uses the contrastive loss to address the
exposure bias in recommendation. Xia et al. [57] try to construct hypergraph for session-based
recommendation and leverage contrastive learning to improve the graph representation learning.
Xie et al. [58] design a contrastive learning task based on sequence augmentation, which might be
the most relevant work to us. However, they only consider the context-context contrast signal of
augmented sequences from the same input sequence, and only use a simple softmax loss to model
the next-item recommendation task. The proposed ContraRec framework differs from these stud-
ies by providing a holistic contrastive learning paradigm for sequential recommendation. On the
one hand, we first find the typical BPR pairwise ranking loss is a specialization of InfoNCE loss
and extend it to a general context-target contrastive loss. On the other hand, we creatively define
two kinds of “similar sequences” based on sequence augmentation and the identity of target item,
which is not fully explored in previous work. Besides, different from the typical pre-training strat-
egy [58, 65], ContraRec jointly optimizes the two contrastive learning tasks, leading to a holistic
contrastive learning framework for sequential recommendation.

7 CONCLUSION AND FUTURE WORK

In this work, we first revisit the typical training method of sequential recommendation (next-item
ranking with a pairwise ranking loss) from the perspective of contrastive learning, which can
be taken as a specialized contrastive learning task (called context-target contrast). Based on this
finding, we extend the common BPR pairwise ranking loss to a general contrastive loss LCTC .
Besides, we propose another contrastive learning task to explore other self-supervised signals hid-
den in user interaction sequences. Specifically, a specialized contrastive loss LCCC is devised to
model the representation invariance between similar interaction sequences, where sequences af-
ter augmentation, as well as sequences with the same target item, are encouraged to have similar
representations (called context-context contrast).
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Furthermore, we present a general framework ContraRec to unify the two kinds of contrast
signals with joint learning, leading to a holistic contrastive learning framework for sequential
recommendation. To generate different views of the input sequence, we adopt two sequence aug-
mentation methods, namely mask and reorder. ContraRec is flexible to integrate various existing
sequential recommendation models as the base sequence encoder. Extensive experiments on three
public datasets demonstrate that ContraRec brings significant improvements, especially when lim-
ited data is available.
At the same time, our ContraRec framework still has some limitations. On the one hand, different

recommendation scenarios may suit different sequence augmentation methods. We mainly give
two example augmentation methods and they may not cater to the characteristics of other datasets
(especially the reorder method). It will be interesting to design domain-specific augmentation or
explore adaptive augmentation methods based on meta-learning. On the other hand, the current
framework requires a large batch size to provide adequate negative samples, which may result
in potential training issues with the limitation of computational resources. In the future, other
contrastive learning structures can be investigated to alleviate this problem.
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