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Result ranking is one of the major concerns for Web search technologies. Most existing methodologies rank
search results in descending order of relevance. To model the interactions among search results, reinforce-
ment learning (RL algorithms have been widely adopted for ranking tasks. However, the online training of
RL methods is time and resource consuming at scale. As an alternative, learning ranking policies in the sim-
ulation environment is much more feasible and efficient. In this article, we propose two different simulation
environments for the offline training of the RL ranking agent: the Context-aware Click Simulator (CCS) and
the Fine-grained User Behavior Simulator with GAN (UserGAN). Based on the simulation environment, we
also design a User Behavior Simulation for Reinforcement Learning (UBS4RL) re-ranking framework, which
consists of three modules: a feature extractor for heterogeneous search results, a user simulator for collecting
simulated user feedback, and a ranking agent for generation of optimized result lists. Extensive experiments
on both simulated and practical Web search datasets show that (1) the proposed user simulators can capture
and simulate fine-grained user behavior patterns by training on large-scale search logs, (2) the temporal infor-
mation of user searching process is a strong signal for ranking evaluation, and (3) learning ranking policies
from the simulation environment can effectively improve the search ranking performance.
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1 INTRODUCTION

Web search engines usually rank results according to their relevance scores in descending order.
Assuming that users browse search results sequentially from top to bottom on search engine
result pages (SERPs), ranking the relevant results at the top positions reduces users’ efforts in
locating useful information. For example, learning-to-rank (LTR) methods can either adopt the
relevance annotations or user click feedback to train a ranking model. Although this established
approach has achieved much success in improving search ranking performance, it faces two im-
portant challenges with the development of recent search techniques.

First, the sequential browsing hypothesis no longer holds in today’s heterogeneous search sce-
narios where images, videos, news, and even applications are aggregated with 10 blue hyperlinks
in a unified result list. Previous studies have revealed that users’ attention may be drawn toward
non-textual information items [66] and vertical results [15, 71], which alters users’ behavior and
leads to a non-sequential examination sequence. Second, the interactions among search results are
largely ignored by existing methods. The selection and ranking of search results depends not only
on their own relevance but also on the context—for example, the complementarity and redundancy
of search results [81].

Regarding the preceding two issues, some existing research efforts formulate the ranking prob-
lem as a Markov decision process (MDP) and solve it with the reinforcement learning (RL)
paradigm [60, 67, 75, 76, 81]. The RL framework is suitable for modeling the interaction effects of
search results; it optimizes the ranking performance globally while considering the context. The
RL approach is more complex than linear ranking methods based on relevance.

However, training RL agents can be a great challenge. The main problem is how to evaluate
the re-ranked result list and design reward functions for the RL agents. Both offline and online
evaluation methods have been adopted in measuring the performance of information systems.
Offline evaluation is based on relevance annotations and usually suffers from expensive annotation
costs and search intent mismatches between assessors and practical search engine users. Online
evaluation regards user feedback such as clicks to indicate satisfaction. However, poor-quality
ranking lists will harm the user experience. It also takes time to collect enough trials and rewards
from users to evaluate the ranking policy.

To not harm the online system performance and to train the RL agent more efficiently, a number
of existing works have adopted a simulation way for online evaluation [67]. To model user interac-
tions with practical search systems, click models such as UBM [25], DCM [32], and DBN [13] repre-
sent user behaviors as sequences of observable and hidden events. These works are mainly based
on the probabilistic graphical model (PGM) framework and handcrafted behavior assumptions.
However, most click models have been designed for homogeneous result lists. User interactions
with search systems are much more complex in heterogeneous search scenarios. In this work, we
propose two novel user simulators to mimic fine-grained user behavior: Context-aware Click
Simulator (CCS) and Fine-grained User Behavior Simulator with GAN (UserGAN).

The first simulator, CCS, is based on a hierarchical structure including the session level and
the result level. It predicts click probability not only according to the multimodal contents of the
search result but also the previous click and SERP context. The interactions among search results
can be implicitly learned through the sequential predicting process. CCS is simpler in structure
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and efficient in training, but it can only predict the click/skip signal of the user browsing process.
Nevertheless, user behavior on SERPs is closely correlated with time and space. The click event
triggered by a user is associated with both temporal signals (e.g., the click time since query sub-
mission) and spatio signals (e.g., the position and area of the search result clicked). Existing studies
have shown that the time between user browsing actions is an important signal to indicate users’
satisfaction in Web search [4].

To take temporal information into account, we propose the second simulator, UserGAN, to sim-
ulate fine-grained user behavior. We use the multidimensional spatio-temporal signal (described
in Section 1) associated with the click event to provide a comprehensive understanding of user be-
havior patterns. We assume that user behaviors obey an implicit distribution. The user simulator
aims to learn and generate an indistinguishable user behavior distribution from the genuine one.
As GANSs have shown great success in a wide range of areas, including computer vision [46, 63, 83],
natural language processing [26, 78], and information retrieval (IR) tasks [35, 49, 72], we choose
GAN to generate a simulated user behavior distribution through adversarial learning. To repre-
sent the multidimensional spatio-temporal signals of user behavior, we also design a modulation-
demodulation process. The modulator encodes the spatial and temporal signals with a Gaussian
distribution while the demodulator recovers the fine-grained user interaction signals with existing
constrained optimization algorithms. UserGAN can simulate click times along with clicks, which
helps perform accurate online evaluation for heterogenous Web search systems.

Based on the user simulators, we propose a User Behavior Simulation for Reinforcement
Learning (UBS4RL) framework for result re-ranking in search engines. As shown in Figure 1,
UBS4RL consists of three modules. First, a feature extractor (JRE [80] or TreeNN [48]) fuses the
visual, textual, and structural information of vertical results to obtain the dense representation.
The extracted result feature is delivered to the user simulator and the ranking agent for subse-
quent processing. In this work, we adopt TreeNN as the feature extractor. It embeds the visual and
textual information into a HTML parse tree, which can better leverage the structural information.
Second, a user simulator (CCS [81] or UserGAN) exploits user behavior patterns from search logs
and mimics fine-grained user feedback including click and time information. The user simulator
interacts with the ranking agent and provides rewards to guide the updating of the ranking pol-
icy. Third, a ranking agent (RLRanker [81]) formulates search result ranking as an MDP. At each
step t, the ranking agent chooses a result from the candidates (actions) to place at position ¢ in
the ranking list. By regarding the already placed results as the current state and setting a proper
immediate reward, the MDP ranking model can take the interactions among search results into
consideration. In this work, the MDP problem is solved with the policy gradient algorithm called
REINFORCE [68].

During training, the ranking agent generates re-ranked result lists and obtains feedback from
the simulation environment (user simulator). Through a large number of trials, the ranking agent
can ultimately learn an optimal ranking policy. For testing, the optimal ranking agent is used to
iteratively fill results into an empty list from top to bottom for re-ranking task. The user simulator
is not used in this stage, as we do not need the rewards to update the ranking agent.

Specifically, the contributions of the proposed UBS4RL framework can be summarized as
follows:

e Two different user simulators are constructed with historical search logs to mimic fine-
grained user behaviors. The user simulators provide reliable online evaluation for ranking
optimization, which enable low-cost and efficient online training of RL agents for ranking
tasks.

e A unified UBS4RL re-ranking framework is proposed to take the interactions among search
results into consideration for re-ranking. It involves three subtasks: feature extraction of
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Fig. 1. The pipeline of the UBS4RL ranking framework, which consists of three modules: a feature extractor
for heterogeneous search results, a user simulator for collecting simulated user feedback, and a ranking agent
for generation of optimized result lists.

heterogeneous search results, ranking evaluation by simulated users, and ranking policy
optimization with RL agents. The framework has the potential to be further extended to a
wide range of optimization tasks for different information systems.

e By conducting experiments on both synthetic and practical datasets, we show significant
improvement on search re-ranking performance, which verifies the effectiveness of the
proposed re-ranking framework.

The rest of the paper is organized as follows. We describe related work in Section 2. Section 3
formally introduces the two user simulators: CCS and UserGAN, while Section 4 introduces the
ranking agent. The experiment settings and results are presented in Sections 5 and 6, respectively.
Finally, we conclude this paper and discuss future work in Section 7. The notations used in this
paper are summarized in Table 1.

2 RELATED WORK
2.1 RLinIR

RL [39, 41] originates from the understanding of how humans learn to take actions in the envi-
ronment from the domains of psychology and neuroscience. It can be formulated as an MDP. An
MDP is typically defined as a tuple consisting of four elements <state space, action space, transi-
tion function, reward function>, which is well aligned with RL problem settings. In an MDP, the
current state encapsulates all of the information needed to make a decision for the future. Simi-
larly, we also take an action based on the current state in RL. Recently, combining RL and deep
learning techniques has shown great success in broad applications [55], such as games [68, 70],
robotics [79], computer vision [8], and natural language processing [69] tasks.

Recently, many works have applied RL methods for ranking tasks [60, 67, 75, 76]. Oosterhuis
and De Rijke [60] adopt the RL approach to deal with complex ranking settings, which learns
both the user preferred document order and displays the position order for result presentations.
The page presentation optimization of SERPs has also been recast as an RL problem in the work
of Wang et al. [75]. Wei et al. [76] formulate the ranking problem as an MDP to optimize the
evaluation measure calculated at all positions. Some work has adapted RL for complex online
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Table 1. Notations of the UBS4RL Ranking Framework

Notation Description

9, fq Query, Query feature

0i, fo.i The ith search result on the SERP, feature of o;

U, u; User interaction feedback, feedback of o;

T,7; Click times from user entering the session, click time for o;
n,1i Rank of search results, rank of o;

o, o; Heights of search results, height of o;

P, pi Click probabilities of search results, click probability of o;

c, ¢ Click sequence (click or skip) for the SERP, click behavior of o;

Qgenuines Qsimulate
Stime, St,i

Sspacea Ss,i
Smst

Vcarrier, Vcarrier

Genuine/simulation user behavior distribution
Temporal signals, the ith temporal signal
Spatio signals, the ith spatial signal
Multidimensional spatio-temporal signal
Genuine/simulated carrier wave encoding the
multidimensional spatio-temporal signal

s, S State, State space

a, A Action, Action space

T Transition function

R,r,R Reward function, Step reward, Discounted cumulative reward
Y Discount factor

7w, 7" Policy, Optimal policy

5:5

system optimization [67], in which a virtual retail platform to train ranking policies offline is
constructed. Assuming that the environment is static, inverse RL methods [56] can learn a reward
function from the data and train policies according to the reward function.

There are several differences between our work and previous RL ranking methods [60, 75, 76].
First, previous works only use human-annotated relevance labels to learn a ranking policy. How-
ever, human annotations are very expensive. In this work, we leverage the abundant user search
logs to optimize the ranking policy, which is more realistic in practical search systems. Second,
to solve the online training problem, we construct a static simulation environment to simulate
search engine users and provide rewards, which is similar to the work of Shi et al. [67]. Third,
previous works only optimize offline evaluation metrics such as NDCG (normalized discounted
cumulative gain) [64]. However, online evaluation metrics such as CTR (click through rate) and
MRR (mean reciprocal rank) may align better with user satisfaction [17] and are widely adopted
in search engines. In this work, the proposed UBS4RL framework can optimize both offline and
online evaluation metrics.

2.2 Search System Evaluation

Evaluation serves as an important element of academic and industrial IR research. Offline and
online evaluation are conducted to measure how well a search system can satisfy users’ informa-
tion needs. Existing RL-based ranking solutions [9, 60, 76, 77, 84] mainly focus on offline evalua-
tion, which is mainly originated from the Cranfield approach [22]. First, professional experts or
crowdsourcing annotators are required to judge the relevance of query-document pairs based on
pre-defined evaluation criteria. Second, some evaluation metrics are designed according to user
behavior analyses to compare the performance of different search systems. Typical offline metrics
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include AP (average precision), NDCG [64], and RBP (rank-biased precision) [54]. However, offline
evaluation has encountered two major problems. First, search intent mismatches exist between the
judgment of annotators and actual users. Second, large-scale annotations are very expensive, mak-
ing it infeasible to obtain an unbiased evaluation result on an incomplete dataset.

In contrast, online evaluation takes advantage of the actual interactions between users and
search engines to measure the quality of ranking algorithms. Users’ interactions such as click
or skip of search results and dwell time can reflect the actual users’ experiences in a search pro-
cess. The aim of online evaluation is to extract the unbiased user satisfaction information from
noisy and biased behavior data. Online evaluation is straightforward to indicate users’ experience
and is inexpensive to collect enough log data. Typical online metrics include CTR, UCTR (binary
value representing click) [20], MRR, number of clicks divided by the PLC (position of the lowest
click) [12], and so on. However, conducting online evaluation usually require a substantial quan-
tity of user traffic for interactive experiments. It is risky to return a poor-quality ranking list to
search engine users, which may heavily harm users’ experiences. In addition, the deployment of
online evaluation is costly and time consuming, making it difficult to perform timely performance
feedback. To tackle these problems, simulation can be adopted as an alternative to online systems.

2.3 User Behavior Simulation

Simulation has become a key method in the investigation of user interactive systems such as dialog
systems, search engines, and E-commerce platforms. The purpose of simulation studies is twofold:
evaluation and exploration. First, simulations provide reliable evaluation for online systems such
as CTR and the revenue of products in E-commerce platforms [67]. Second, simulations are usually
adopted to determine how the systems’ performance changes under different conditions [52]. For
example, the simulation environment provides rewards for the agent in RL approaches when the
actual environment is not available [33].

In search engines, click models can be adopted to simulate actual users’ browsing behavior. Click
models regard users’ interactions with search engines (e.g., clicks) as implicit relevance feedback
and represent user behavior as a sequence of observable and hidden events. They are mainly based
on the PGM framework, and some prior hypotheses of user behavior have to be set manually [6].
Many click models have been proposed according to different user behavior hypotheses, such as
the User Browsing Model (UBM) [25], Dynamic Bayesian Network model (DBN) [13], and
Dependent Click Model (DCM) [32]. As click dwell time and click sequence information are
strongly correlated with users’ perceived relevance and search satisfaction, the Time-Aware Click
Model (TACM) also incorporates temporal information into click models [47]. In heterogeneous
search scenarios, the ordering of the vertical results influence users’ browsing process to a large
extent. Users often examine the higher-ranked vertical results first; the results beside them also
gain more attention [15, 71]. To deal with the emerging vertical results, some advanced click mod-
els such as UBM-Layout [21] and the Mobile Click Model (MCM) [50] are proposed to take the
vertical bias into consideration. Besides the PGM framework, some click models based on neural
networks have been proposed in recent years, which are based on the idea of distributed repre-
sentation of information and interactions, such as the Neural Click Model (NCM) [6] and Click
Sequence Model (CSM) [7].

However, click models are mainly based on prior user behavior hypotheses that require exten-
sive user studies. It is also impossible to consider all of the hypotheses in a single click model. Click
models also suffer from the emergence of new queries and documents, because they can only deal
with query-document pairs that are available in the logs. In addition, click models mainly focus
on click behaviors; however, most of them ignore the click time, which is also informative.
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In this work, we propose a new approach to simulate fine-grained user behavior with the gen-
erative model. The framework requires no prior user behavior hypotheses and directly learns user
behavior pattern from log data. It also has a strong generalization ability in heterogeneous search
scenarios.

2.4 Generative Adversarial Networks

Generative models can learn high-dimensional, complex real data distribution and may be a nice
fit for understanding the distribution of user behavior patterns hidden deeply in feedback sig-
nals. The main goal of generative models is to learn an estimate of an unknown distribution pqata
by minimizing the distance between the estimated probability distribution pmedel and pdata. Some
generative models estimate pmodel explicitly such as Flow-based Generative Models [57, 58] and
Variational Autoencoder (VAE) [40], whereas others can only generate samples from pyo4el like
he generative adversarial networks (GANs) [27, 28].

The Generative Adversarial Network was first proposed by Goodfellow et al. [28] to generate
realistic simulated images. It provides a novel approach to generate data samples through adver-
sarial learning. The framework consists of a generator G and a discriminator D. The generator
tries to capture the real data distribution and generate indistinguishable data samples to confuse
the discriminator, whereas the discriminator tries to distinguish between real (drawn from pgata)
and synthetic (drawn from ppodel) data samples. The objective is to find the Nash equilibrium of
the minimax two-player game.

The use of GANSs has achieved great success in a wide range of deep learning fields like com-
puter vision, natural language processing, and IR tasks. The IR tasks include image generation [63],
image translation [83], image super-resolution [46], sentence generation [26, 78], audio genera-
tion [43, 57], and so on. In IR fields, Wang et al. [72] proposed IRGAN [72] to combine the gen-
erative retrieval method and the discriminative retrieval method. GAN has also been used for
document common feature learning (CAN [16]), community detection (CommunityGAN [35]), ex-
pert retrieval (USGAN [44]), graph representation learning (GraphSGAN [24]), recommendation
system (CFGAN [11]), personalized search (PSGAN [49]), and so on.

Although GAN is capable of generating new random examples for a given dataset, there is no
way to control the generation process. This can be overcome by an enhanced Conditional GAN [53].
By conditioning the model on additional information, it is possible to control the data generation
process. For example, in the MNIST dataset, we can generate a given number of targeted images.
In this work, we adopt Conditional GAN to simulate a user behavior distribution. The generated
user behavior is based on the multimedia content of each search result on SERPs. In this way, we
can generate SERP-specific rather than random user behavior.

2.5 Counterfactual LTR

LTR methods have been widely adopted in information retrieval tasks. Generally, LTR algorithms
take a set of search results as input and predict the ranking scores [2, 37, 73, 74] or a permutation
of them [61]. Search results are then sorted with the ranking scores in descending order. Many
LTR methods take users’ click feedback for learning, as click feedback is abundant in search en-
gines. However, click feedback is well known to be biased and noisy. To learn an unbiased ranking
model with biased click feedback, a variety of unbiased LTR methods have been proposed, which
can be broadly categorized into two families: the bandit LTR methods and the counterfactual LTR
methods. The bandit LTR methods usually learn from online result manipulation and user feed-
back (e.g., [34, 59, 65]), which will negatively impact users’ search experience. The counterfactual
LTR methods originally leverage click logs for offline learning [2, 37, 73, 74]. The key idea of
counterfactual LTR methods is to learn Inverse Propensity Weighting (IPW) [37, 73] and the
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estimation of examination propensity from biased click logs. For example, Wang et al. [71] pro-
pose a few methods to estimate the selection bias and address it using IPW. Joachims et al. [37]
derive a Propensity-Weighted Ranking SVM for discriminative learning from biased click feedback.
They adopt click models as the propensity estimator. In addition, Wang et al. [72] also propose a
regression-based expectation-maximization algorithm (REM) algorithm to debias click feed-
back without relying on randomization. To unify the learning of propensity models and ranking
models, Ai et al. [2] propose a dual learning algorithm (DLA) that jointly learns an unbiased
ranker and an unbiased propensity model.

Similar to counterfactual LTR methods, the proposed UBS4RL framework also learns a ranking
model with biased click logs in a offline manner. However, counterfactual LTR methods mainly
focus on learning a propensity model to estimate the user examination probability at each position
and use the estimated weights to modify the training loss. Differently, UBS4RL neither learns the
propensity model nor modifies the training loss of the ranking model. Instead, we propose the user
simulator to learn both the intrinsic relevance of search results and user click bias on the SERP.
The user simulator mimics biased user click and click time behavior on different randomization of
result lists, which is not exactly a debiasing model. Specifically, the ranking policy will try a lot
of different rankings of the same result list. The user simulator provides biased click feedback on
each given ranking list. Although the feedback itself is biased, the ranking policy can eventually
find a best ranking strategy through a large number of trials. More importantly, the RL methods
make successive decisions based on current states, which can take the interactions among search
results into consideration. However, the counterfactual LTR methods do not take the underlying
assumption that ranking of search results can be formulated as an MDP.

3 UBS4RL: USER SIMULATOR
3.1 CCS: Context-aware Click Simulator

3.1.1 Session Level. As shown in Figure 2, the lower level of the CCS is the session based module.
It is implemented as a bi-directional GRU (BiGRU) [19] framework. The concatenation of the
last hidden states of the two directions in the BiGRU is adopted as the session feature. From top to
bottom and bottom to top, the session feature captures the global context information of the result
list:

ht = [z1:t, ZN:N-1+1]s (1)
ht+l = BiGRU(ht’fo,t+1)> (2)
fees = hn = [z1:N, 2N ], (3)

where N is the number of search results in a query session, z;; is the hidden state of BiGRU
in the forward direction while zy; is that in the backward direction at step i, [-] denotes the
concatenation of different features, f, ; is the feature of the tth search result in the session, and
fses is the session feature. The initial hidden state hy for BiGRU is the query feature f;.

3.1.2  Result Level. The higher result-level module is designed to predict the click probability of
each search result sequentially based on the session context. At each step, three different kinds of
features are aggregated as the input to a single-direction GRU. The first one is the session feature
encoding the global context. The second one is the result feature at each step. A common assump-
tion in click models is that previous clicks influence the click behavior in the users’ subsequent
browsing. Following this assumption, we take the click behavior at the previous step as the third
input feature.

The click behavior can be click, skip, or unknown (for the initial step), which is embedded into
a vectorial representation through the click encoder (Equation (4)). At each step of the GRU, the
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Fig. 2. The framework of CCS. The hollow purple circles represent user clicks. The session level compresses
the global information of the SERP as the context. The result level predicts click probability according to the
multimodal contents of the search result, previous click, and SERP context.

hidden state is projected into a click probability score between 0 and 1 through the click decoder
(Equation (9)). The prediction of the result level module can be formulated as follows:

felk.r = embedding(c;—1), (4)

fo,t = Wofo,t + by, (5)
ﬁes = Waes foes + bses, (6)
fr = Uatkes fourr fres], ()
ht = GRU(h;-1, f2). (8)
pr = sigmoid(Weh: + beik), 9)

where ¢;_; € {click, skip,unknown} denotes the click behavior in step t-1; W,, Wses, Weik and
bo, bses, bl are weights and biases for each kind of features, respectively; and p;, is the final pre-
dicted click probability of the tth search result in the ranking list p, € [0, 1].

The loss function is CrossEntropy, which is defined as follows:

M N
1
Lip.eid) = JZ ;<—cj,ilogp,-,i = (1= i) log (1= p;.)) + All6II. (10)

where M is the number of training sessions; N is the number of results in the query session; c; ;
and p; ; denote the click label and predicted click probability of the ith result in the jth training
sample, respectively; 0 includes all the parameters in the neural network; and A denotes the L2
regularizer coefficient.

3.2 UserGAN: Fine-grained User Behavior Simulator with GAN

We use the multidimensional spatio-temporal signal to represent user behavior in UserGAN. How-
ever, it is composed of multiple separate and discrete signals such as click/skip signal, click time,
click position, and result area, which cannot be directly learned and generated by GANSs. To tackle
this problem in generating discrete data distributions, there are mainly three kinds of existing
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Fig. 3. The UserGAN framework consists of three components: modulator, simulator, and demodulator. The
multidimensional spatio-temporal signal is used to describe fine-grained user behavior. The simulated user
behavior can be used for Web search online evaluation. p; denotes the result position. 7; denotes the click
time.

solutions: (1) integrating a GAN with VAE [40] or Autoencoder (AE) to project discrete data into
continuous latent space [38]; (2) designing tailored objective functions instead of the standard GAN
objective function [14, 82]; and (3) integrating GAN with RL, which regards the discriminator as
the environment to provide rewards for the generator [26, 31, 45, 78]. Unfortunately, none of these
solutions are suitable for the online evaluation scenarios since we aim to generate multiple discrete
signals to simulate fine-grained user behavior. Inspired by signal transmission approaches in elec-
tronics [1], we leverage a modulation and demodulation framework. The modulator encodes the
spatial and temporal signals with a Gaussian distribution while the demodulator can recover the
fine-grained user interaction signals with existing constrained optimization algorithms [42]. The
framework of UserGAN is shown in Figure 3, which is composed of three components: the modu-
lator, the simulator, and the demodulator. The following gives some basic definitions of UserGAN.

3.2.1  Preliminary.

Definition 1 (Multidimensional Spatio-temporal Signal). User behavior in real-world online sys-
tems is linked to time and space—for example, the mouse movement event or fixation event [29] to
a specific area at a specific time on a webpage. In this work, we focus on the click event on SERPs.
The click event triggered by a user is associated with temporal signals Stime = {St.1, St.15- - - » St.m}
like the timestamp and spatial signals Sspace = {Ss,1, 55,1, - - - » Ss,n} like the result position and re-
sult area, where S;; and S j indicate independent temporal and spatial signals, respectively. These
separate signals together constitute the multidimensional spatio-temporal user behavior signal

Smst = Stime U Sspace'

Definition 2 (Modulator). The modulator is used to construct a carrier wave with input signals.
They are usually used in the real world to place multiple audio and video streams on the same wire.
For online systems, the multidimensional spatio-temporal signal Sy,s¢ of user behavior can also be
modulated as a carrier wave so that it can be transmitted to other modules for signal processing and
learning. The multiple spatial and temporal signals can be subsequently demodulated to recover
the original information [1]. The carrier wave Vi rier is defined as follows:

Vearrier = Modulator(Spst). (11)
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Definition 3 (Simulator). The simulator captures the properties of real-world signals and gener-
ates the simulated signals when the real environment is not accessible. Assume that with different
Smst from the real environment, the modulator can generate a set of Varier samples denoted as
A. The simulator can then learn about the characteristics of carrier waves from the samples A.
When we feed the condition information p to the simulator, it can produce a simulated carrier
wave Vcame, based on p. The simulator is defined as follows:

—~

Vearrier = Simulator(o|A). (12)

Definition 4 (Demodulator). A demodulator is a module that is used to recover the signal infor-
mation from the modulated carrier wave. Demodulation is the reverse process of modulation. For
example, the signals transmitted on the wire are recovered to the original audio and video streams
by the demodulator. In our case, the carrier wave Veayrier is demodulated to the multidimensional
spatio-temporal signal Sy that contains the multiple original spatial and temporal signals of user
behavior. The aim of the demodulator is to restore the original information with as little loss as
possible.

— —~

Smst = DemOdu[atOr(VcarriEI’) (13)

In this work, the temporal signal Click Time 7 (the interval of a click action since the user
enters the session), spatial signals Click Position 7 (the ranks of search results), and Result Area
(the heights of search results as they have the same width) are considered jointly to describe the
fine-grained user behavior on SERPs:

Smst = Stime U Sspace ={t.n, a}, (14)
t={nhn={n}e={a}i=12,...,N, (15)

where N is the number of search results on the SERP.

The UserGAN framework follows a pipeline that takes three steps to simulate user behavior.
First, the multidimensional spatio-temporal signal Syt is fed into the modulator and transformed
into the continuous carrier wave Veapier- Second, the simulator learns to generate the simulated
carrier wave Vcamer, which is implemented as a Conditional GAN. Third, the simulated carrier
wave is recovered to the original spatial and temporal signals Smst Of user behavior by the demod-
ulator for online evaluation. The detailed implementation of the three modules is introduced in
the following.

3.2.2  Modulator: Gaussian Distribution. The Gaussian distribution (also known as the normal
distribution) is a bell-shaped curve that occurs often in nature. It is important in statistics and
is often used in the natural and social sciences to represent real-valued random variables whose
distributions are not known [10]. The probability density function of the Gaussian distribution N
is controlled by the mean value y and the standard deviation o.

N plrlpot) = ——e 5 (16)
i ooxlp,0%) = e o

oV2mr
The standard Gaussian distribution has its center at zero (z = 0) and a variance of unity (¢ = 1).
Every Gaussian distribution is a version of the standard Gaussian distribution whose domain has
been stretched by ¢ and then translated by p.

Gaussian modulation of single click event. The user’s psychological activities during a click event
on SERPs, such as attention, planning, and action, can be assumed to obey the Gaussian distribu-
tion. We use the location factor p to describe the spatial signals Sg,ace = {1, ¢}, Whereas the scale
factor o is used to describe the temporal signals Stime = {7}.
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2.0
— click the 1st result at 10s
click the 3rd result at 20s
— click the 6th result at 80s
15 — click the 9th result at 30s
— user behavior carrier wave
1.0
0.5
0.0

Position

Fig. 4. An example of the user behavior carrier wave of a search session. The SERP contains 10 search results.
The user clicks the 1st, 3rd, 6th, and 9th result at times 10s, 20s, 80s, and 30s, respectively. f is set to 0.02.

In this work, we use the unity height of the search results to denote the result area o and thus
a; = 1,i = 1,2,...,N. We assume that the click position 7 is at the center of each search result
because there is no accurate click position recorded in the search log and ; = i,i = 1,2,...,N.
A hyperparameter f is used to control the sensitivity of the Gaussian distribution N to the click
time 7.

pi = ©,(n, @) (17)
ni=1
1 .
= Z @+ Jay, =i-0.5 (18)
k=1
0i = O,(7) (19)
= fr; (20)
For each click event, the representing Gaussian distribution N, can be defined as follows:
) 1 _ (x=(i=0.5)?
Ne: o @e(xlpof) = ———e 267 | (21)

ﬁﬂ"/ﬁ

wherei =1,2,...,N and N is the number of search results on the SERP.

Gaussian modulation of a search session. As shown in Figure 4, for each search session, the car-
rier wave of user behavior ¢(x|z, n, &, p) is the superimposition of the Gaussian distribution cor-
responds to each click event. Each Gaussian distribution of a single click event is weighted by
the corresponding click probability p; of the ith search result. Finally, we define the modulator as
follows:

Vearrier = MOdUIator(Smst)s (22)
= ¢(x|T,n, @, p), (23)
N
= Z pi X @e(x|pi, 07, (24)
_ (x=(i=0.5)% os)>2

Z ﬁT Bevon: W (25)

where p; = 1 if the ith search result is clicked and p; = 0 otherwise for the log data.

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 5. Publication date: January 2023.



User Behavior Simulation for Search Result Re-ranking 5:13

3.2.3  Simulator: Conditional GAN. As proposed in the work of Mirza and Osindero [53], the
GAN can be extended to a conditional model if both the generator and discriminator are condi-
tioned on some auxiliary information, such as class labels or data from other modalities. In this
work, we perform the conditioning by feeding the multimedia information of SERPs into both the
discriminator and the generator. The feature vector of each search result is concatenated as the
representation of the SERP:

fserp = [fo,lafo,an,fo,N]’ (26)

where [-] indicates the concatenation operation and N is the number of search results on the SERP.

Conditional adversarial learning. The simulator consists of a generator G and a discriminator
D, which are conditioned on the SERP information fp. To learn a simulated user behavior dis-
tribution Qgimulate over the genuine user behavior distribution Qgenuine, the generator builds a
mapping function from a prior noise distribution p,(z) to the data space Qgjmulate conditioned
on SERP information fserp as G(z| fserp, 04), Where 0, represents the parameters of G. The discrimi-
nator D(x| fserp, 04) outputs a single scalar to represent the probability that data point x came from
Qgenuine rather than Qgimylate, Which is also conditioned on SERP information fierp. G and D are
trained simultaneously until the Nash equilibrium of the minimax two-player game is achieved.
The standard objective function of the conditional GAN in the work of Mirza and Osindero [53] is
defined as follows:

mci;n mgx V(D,G) = B~ Qgenine (x) (log D(x| ferp) 1+
Ez~pz(z) [log(l - D(G(z|f;erp)))]' (27)

However, this objective function may lead to the vanishing gradients problem during the learn-
ing process. To overcome this problem, LSGAN [51] proposed the use of the least squares loss
function for the discriminator, which has shown a more stable learning process. We adapt the
original objective function in LSGAN to be conditioned on auxiliary information as follows:

1

-£D = EEx~Qgenuine(x)[(D(x|fserp) - b)2]+
%E2~pz<z>[<D<G(z|ﬁerp)> ~a)?], (28)
Lo = §E2~pz<z>[(D(G(z|ﬁerp)> — o), (29)

where a, b, and ¢ are hyperparameters.
The simulator learns from Qgenuine and generates simulated carrier waves of user behavior:

Vearrier = Simulator(z, f;erp|Qgenuine), (30)
Z’”Pz(z)
= Gz~pz(z) (zlfserpa Gg) (31)

Compared to Equation (12), here the carrier wave that samples A from the real environment is
Qgenuine> and the condition information ¢ for Conditional GAN includes both the SERP feature
fserp and the random noise z.

Generation based on specific SERP. The Conditional GAN can simulate user behavior conditioned
on the specific SERP information. However, it is difficult for the generator and the discriminator
to learn how a user should behave on a specific SERP because GAN generates data samples based
on random noise. As a result, the two players pay more attention on learning how users behave
in general when they are searching. To help the generator and the discriminator learn more SERP-
specific user behavior, we guide the generator to produce the user behavior that is more similar to
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the real one through L2 normalization.

Ls= Ez~pz(z)[ [|Vearrier — Acarrier”% ] (32)
Thus, the objective of the simulator is to minimize the overall loss £ as follows:
L=2pLp +AcLs +AsLs, (33)

where Ap, Ag, and Ag are the weights of Lp, L, and Lg, respectively.

3.24 Demodulator: Constrained Optimization. For the simulated carrier wave ‘Zar,ier, the pa-
rameters 7, 1, &, p in Equation (25) need to be solved to recover the original multidimensional
spatio-temporal signal of the user’s behavior. Because n = {n; = i,i =1,2,...,N} and o = {a; =
1,i = 1,2,..., N} are fixed parameters, we only need to find the optimal z* and p* to make the
curve ¢(x|z*, p*, n, @) fit \Zamer best. As the click probability is limited to p; € [0,1] and the
click time is limited to 7; € [Tmin, Tmax], finding the optimal fitting curve can be formulated as a
constrained optimization problem. The demodulator is thus defined as follows:

§mst = DemOdUIator(,‘}carrier) =1, P*~ (34)
Assuming that the Gaussian distribution for search results on the SERP have little overlap, the
generated carrier wave \Zamer can be split into slices corresponding to each search result. For the
ith search result on the SERP, the corresponding carrier wave interval is v; = Acarrier,(i—1)><5f+1:i><5p
where s¢ (set to 100 in this work) is the sample frequency for the Gaussian distribution of a single
search result, and nsamples = N X s7, N is the number of search results on the SERP.
According to Equation (25) and the assumptions stated previously, for the ith search result,

fi pi _(x_(i_(]g))zd (35)
p* ~ —— ¢ 2(pri) X, 35
' i-1 friV2r
iXSf
= s ll)n_goo Z Vearrier, k - (36)
! k=(i-1)Xsp+1

To solve the parameter 7; while reducing the computation complexity, we limit the candidate
values of T to Teandidate = {Te = €' |tc = [0g(Tmin) + 0.1 X ¢, tc < 10g(Tmax), ¢ € N}. Thus, Tcandidate
is more sensitive on small values. As a result, for the early clicks with small click time values, the
solved 7; is more accurate. However, for the late clicks, a larger calculation error is acceptable. The
candidate Gaussian distribution ¢, is then defined as follows:

(x=0.5))?

1 )
Pr(x) = ———=e W)’ (37)
i PreV2m

The final click time parameter 7; is calculated as follows:

H . Ui
7] = arg . erfr;ﬁxidate 1) ((p,c (x), P_f) s (38)
where
v 1 Sf Vik 2
i,
3000 2 = 23" (g - ) (59
Pi Sf = Pi

where x. represents the uniformly sampled points from the interval [0, 1] with frequency sy and
;. is the kth point in v;.
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4 UBS4RL: RANKING AGENT

To model the interactions among search results, we recast the ranking problem as a sequential
filling game (as shown in Figure 1). At the initial timestep, the result list is empty, whereas all of
the results are in the candidate set. Based on the query information, one search result is chosen
for the first position. Regarding the results already placed in the ranking list, we compare the
candidate results and choose the most proper one for the next position iteratively.

The ranking problem can be formulated as an MDP, which is described by a tuple {S, A, T, R, v }.
S denotes the state space, and A denotes the action space. 7 : & X A — § is the transition
function 7 (s;+1lss, a;) to generate the next state s, from the current state s; and action a;. R :
S XA — Ris the reward function, whereas the reward at the tth timestep r, = R(s;, a;).y € [0, 1]
is the discounting factor for future rewards. Formally, the MDP components are specified with the
following definitions:

State s is the global information of the search results already ranked in the list. At step ¢, s; =
{q, 0i; i =1,2,...,t — 1}, where 0;, is the search result ranked at position j by the policy. At the
initial time, sy = {q} is the query information.

Action a is a search result that the ranking agent chooses for the next position in the ranking
list. At step t, a; = 0;,, where o;, is the search result ranked at position ¢ by the policy.

Transition 7~ changes the state of the ranking list, adding one search result to the end of the list
at each step.

Reward R is the reward function that can be the online users’ feedback. In this work, the reward
is given by the simulation environment based on simulated user feedback. The reward function is
introduced in Section 4.2 in detail.

In this article, the MDP problem is solved with the policy gradient algorithm of REINFORCE [68].
Ateachstep t, the policy 7(a;|s;) defines the probability of the sampling action a, € A in state s; €
S. The sampling strategy can be either choosing an action randomly or the one with the highest
probability. These two strategies are denoted as “RandomSample” and “MaxSample,” respectively.
The aim of RL is to learn an optimal policy 7" by maximizing the expected cumulative reward
Re = B[S, ¥

Formally, let S = (q,01,03,...,0n) denote a query session, where g is the query and o; is
the jth search result in the original ranking list of the search engine, and N is the number
of results in the session. The ranking agent re-ranks the result list to S = (g, 04y, 04y, - - .01y ),
where (i1, iz,...,iN) is a permutation of (1,2,...,N). The user simulator samples interaction
feedback U = (uj,,u,, ..., u;,) on the re-ranked list S. For CCS, u; = {c;}, whereas for User-
GAN, u; = {c;, 7}, where ¢; is the click behavior of the ith search result (1 for click and 0 for skip)
and 7; is the click time of the ith search result. The time starts from the moment the user enters
the session. The reward at each step is given by reward = R(U).

4.1 Policy Network

The structure of the policy network is shown in Figure 5. The deep neural network architecture can
learn policies from high-dimensional raw input data in a complex RL environment. Specifically,
the state feature is extracted by a single-direction GRU. The search results that have been placed
at proper positions are input to the GRU sequentially according to their rankings. The last hidden
state of the GRU is adopted as the state feature for RL. The state feature is then concatenated with
the candidate result features and input to a multi-layer perceptron (MLP) to assess the proba-
bility of each candidate action that be chosen at this step. Then, the action is sampled according to
different strategies (RandomSample or MaxSample) as the next result that is added to the ranking

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 5. Publication date: January 2023.



5:16 J. Zhang et al.

State Feature

1
1

Filled Feature

- 0000000000

. 0000000000
—[ooooolooooo]

— Candidate Feature

[ Multi-Layer Perceptron
!
Next Result

Fig. 5. The policy network for the ranking agent.

list. At step ¢, there are t and N —t results in the ranking list and candidate set, respectively, where
N is the number of results in the query session. The policy network can be formulated as follows:

hie = GRU(hg-1, fo,i,.), k =1,2,...,t, (40)

fstate,t = hy, (41)

fi; = MLP([ fstate.t> fo.i;])sj =t + 1,t +2,..., N, (42)

7y = softmax(fi,,,, fi,rps - - s fin)s (43)

a; = sample(r;), (44)

where {iy,iy,...,iN} is a permutation of {1,2,..., N}, MLP denotes the multi-layer perceptron,

the sampling strategy can be RandomSample or MaxSample as described earlier, a; is the chosen
action in timestep ¢, and hj is the query feature f.

4.2 Reward Design

The user simulator serves as the simulation environment for the ranking agent. Given the re-
ranked list of search results, the user simulator predicts user interaction feedback, such as clicks
and click times. Numerous online evaluation metrics can be designed as the rewards based on the
user feedback. In this work, for user clicks, we adopt a typical online metric (CTR) and two kinds
of typical offline evaluation metrics (MRR and DCG (discounted cumulative gain)) [64] for reward
design. All of these metrics are modified to utilize the sequential clicks as reward signals and are
capable to give rewards at each RL step. The rewards used in the experiments include CTR@3,
CTR@5, CTR@10, DCG@3, DCG@5, DCG@10, and MRR. The rewards based on user clicks at
timestep ¢ are defined as follows:

& ift <K,

CTR@K: CTR@K(t) = {K nE= (45)
0 else.
—t— ift <K,

DCG@K: DCG@K(t) = { Poeott+) (46)
0 else.
% if the first clicked result is o;,

MRR: MRR® =1 ' (47)

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 5. Publication date: January 2023.



User Behavior Simulation for Search Result Re-ranking 5:17

For user click times, we adopt FCT (time to first click), LCT (time to last click), and ACT (average
click time) [18] as the rewards. The rewards based on user click times at timestep ¢ are defined as
follows:

L ift = N, and the first clicked result is o;,
FCT: FCT()={"% (48)
0 else.
L ift = N, and the last clicked result is o;
LCT: LCT(H={"© (49)
0 else.
N I(c;=
ACT:  ACT(t) = ZzﬁilTi?:l;)ﬂ if t = N, and user clicks at least one result, (50)
0 else.
Here, N is the number of results in a query session, I(c; = 1) = 1if ¢; = 1 else 0.
4.3 RL Training
A trajectory T = sg, 4o, 1, a1, - - - » SN, an 18 sampled according to the policy 7 in each episode. The

episode terminates when the ranking list is filled with results. The objective of the training process
is to maximize J(0).

J(0) = Ex, [R(7)] (51)
VoJ(0) = Exy[Vologme(r)R(7)] (52)
Equation (52) can be approximated by a Monte Carlo estimator [41]:
LM
VoJ(6) « - Z jz Vologno(si . ai ;)Rs (53)

where 6 represents the parameters of the policy network, M is the number of samples, and N is
the number of results in a session.

Pretraining of the policy network. It is known that training an RL model from scratch is not
effective. As the original ranking list has already achieved a generally satisfactory performance,
we pretrain the policy network to output the original rankings. At step t, s; = {o;]i = 1,2,...,t —
1}, a; = o;. The training objective is to maximum gy (s;, a;). The policy network is trained in the
form of supervised learning.

When training the ranking agent, the parameters of the feature extractor and the user simulator
are all fixed to provide a stable environment. In this manner, we can make sure that the training of
the ranking agent does not change the simulation environment or the result representations. This
is important because if we do not fix the simulation environment, the performance improvement
may be caused by the user simulator rather than the ranking agent.

5 EXPERIMENT SETUP
5.1 Datasets

The datasets used in our experiments are sampled from SRR' [80]. Each query has corresponding
top 10 search results. Each search result is represented by the parse tree and annotated with a
4-graded relevance label. The parse tree of the search result incorporates the images and texts into
the HTML codes.

Thttp://www.thuir.cn/data-srr/.
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Table 2. Statistics of Real and Simulated Datasets

Dataset Real Data Simulation Data
Real 2017 Real 2018 | Seen  Unseen

#Queries 1,971 1,239 1,569 402
Training 1,352,425 - 940,745 241,164
#Logs | Validation 451,028 - 315,285 80,806
Testing 452,864 491,429 312,970 80,030

The two datasets, Real 2017 and Real 2018, were constructed in September 2017 and December
2018, respectively, with search logs recorded by a popular commercial search engine Sogou® in
China. The queries of Real 2018 are a subset of Real 2017. Search results of the same query in the
two datasets are not exactly the same, as time has changed. There are 3.24 results that are the
same for each query in the two datasets on average. Real 2018 is used to verify the robustness of
different models, so there is only the testing set. Search sessions with click time less than 1 second
or more than 600 seconds are discarded, as they are more likely to be from the crawler robot or the
noisy behavior, thus 7, = 1 and 7ax = 600. Search logs are split into training, validation, and
testing sets at a ratio of 3:1:1 on Real 2017. Some statistics about the datasets are shown in Table 2.

For the simulation experiments in Section 6.2, we sample synthetic search logs according to the
simulation rules in Equations (59) and (60). The queries and results in the Simulation dataset are
the same as the Real 2017 dataset. One thousand search sessions are produced by the synthetic
user for each query, resulting in 1,971,000 sessions. We split the 1,971 queries and corresponding
results as well as synthetic search logs in the Simulation dataset into two parts at a ratio of 4:1
(1,569:402). The two sets are denoted as the Seen Set and the Unseen Set.

5.2 Evaluation Metrics

To measure the approximation accuracy between the predicted clicks and actual clicks, the user
simulators are evaluated in terms of perplexity and log-likelihood as in most click model works [13,
21, 25, 32, 50]. Lower perplexity and higher log-likelihood values indicate better approximations.
The definitions of the two metrics are as follows:

Perplexity; = 2—ﬁ S (e 10gpji+(1—0ji)10g(1—Pji))’ (54)
L MN

LL= 5% '21 '21 (cji log pji + (1 = cji) log (1 = pji))s (55)
j=i=

where cj; and pj; refer to the binary click in the search log and the predicted click probability p*
in Equation (34) or Equation (36) of the ith result in the jth search session, respectively. N is the
number of results in the session, and M is the number of sessions in the dataset.

The click-related online evaluation metrics used in our experiments include CTR, DCG, and
MRR [18]. DCG and MRR are typical offline evaluation metrics and use relevance annotations
for computation. We adapt them to utilize the sequential clicks as the relevance signals (click for
relevant and skip for irrelevant). The click time related online evaluation metrics include FCT, LCT,
and ACT [18]. We use NDCG [64] for offline evaluation.

5.3 Baselines

e Click Models: We compare the simulation performance of the user simulators as well as the
ranking performance of the UBS4RL framework with six existing click models, including

Zhttps://www.sogou.com/.
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five PGM-based click models and one NCM [6]. The five PGM-based click models can be
divided into two categories. DCM [32], UBM [25], and DBN [13] do not take the vertical
bias into account, whereas UBM-Layout [21] and MCM [50] incorporate the influence of
heterogeneous verticals on users’ click behavior into the assumptions. The estimated query-
document relevance scores (default to 0.5 for unseen query-document pairs) are utilized to
rank results.

CATM: CATM [5] is a context-aware time model proposed to predict times between user
actions. The authors choose Exponential, Gamma, and Weibull probability density function
to describe the time distribution. Different attributes of general interactions, query actions,
and click actions are used to represent the search context.

Counterfactual LTR: We compare our proposed UBS4RL framework with three widely
adopted counterfactual LTR methods: IPW [37, 73], the REM algorithm [74], and DLA [2].
IPW is one of the first counterfactual LTR methods, which estimates the propensity weight
to modify the ranking loss. REM can debias click feedback without relying on randomiza-
tion. DLA jointly learns an unbiased ranker and an unbiased propensity model. We adopt
the implementation of the three counterfactual LTR methods in ULTRA_pytorch.® A total of
33 features are extracted as the input to the CLTR methods based on the texts of the landing
page corresponding to each search result. We refer the reader to the work of Qin et al. [62]
for detailed descriptions of the ranking features.

JRE: JRE [80] is the state-of-the-art neural ranking method on the SRR dataset. However,
JRE is trained based on human-annotated relevances. In this work, we only consider user
search logs as the available information source for ranking. Thus, we adopt click models as
the weak supervision for training JRE. As UBM-Layout performs well on both the Real 2017
and Real 2018 datasets for user feedback simulation as shown later in Table 8, the estimated
query-document relevance scores on Real 2017 by UBM-Layout are used as weak labels for
training with JRE.

5.4 Experiment Settings

We adopt TreeNN [48] as the feature extractor to represent the heterogeneous search result. The
user simulator and the ranking agent both use the result representation extracted by TreeNN.
In TreeNN, each search result is represented as a parse tree containing text phrases and images.
The parse tree is processed with a recursive neural network. We refer the readers to the work
of Liu et al. [48] for more details. The dimension of result features extracted by TreeNN is set
to 1,000 in our experiments. For CCS, the dimensions of hidden states in the session level and
the result level are all set to 100. For UserGAN, the generator is implemented as a four-layer
MLP, whereas the discriminator is a two-layer MLP. The noise vector z € R:%? is randomly
sampled from the standard Gaussian distribution. We uniformly sample 1,000 data points from the
carrier wave for a vectorized representation, as the Gaussian distribution cannot be used directly.
Correspondingly, ngample =1,000 and s¢ = 100. In Equations (28) and (29), a, b, ¢ are set to 0, 1,1,
respectively. Ap,Ag, As are set to 1.0, 1.0, 20.0, respectively in Equation (33). In Equation (25),
the hyperparameter f controls the sensitivity of the carrier wave to the click time 7. Intuitively,
smaller values of f# make the carrier wave steeper, whereas bigger values of f make it gentler. In
the experiments, we set f to 0.01,0.02,0.03 and find that UserGAN is not very sensitive to f; it
achieves relatively better performance when f = 0.02. In the following experiments, f is set to
0.02. The initial learning rates for the generator and discriminator are 10™* and 107>, respectively.
UserGAN is trained up to 10° iterations with a batch size setting to 1,000 until convergence.

Shttps://github.com/ULTR-Community/ULTRA_pytorch.
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For the ranking agent, the dimension of the hidden states of the policy network is 1,000. The
discounting factor y is set to 0.9. The ranking agent under each reward function is trained up
to 500 epochs until convergence. When training the ranking agent, we adopt the RandomSample
strategy for 7y, whereas MaxSample is adopted for the evaluation as we fully trust the learned
policy.

The training process of UBS4RL can be divided into three steps. In step 1, the feature extractor is
pretrained to learn dense representations of heterogeneous search results as described in the work
of Liu et al. [48]. The parameters of the feature extractor are then fixed in subsequent training
and testing. In step 2, user simulators are trained with the practical search logs to mimic practical
users’ behavior. The parameters of the user simulator are then also fixed. In step 3, the ranking
agent is trained with the rewards (e.g., clicks and click times) given by the user simulator. The user
simulator works as the simulation environment. The training process simulates practical online
learning. All of the baselines are trained to achieve the best performance on the validation set.

6 EXPERIMENTS

The proposed UBS4RL framework aims to improve the ranking performance by adopting a user
simulator as the simulation environment for the ranking agent. To demonstrate the effectiveness
of this framework, we conduct a series of experiments to address the following research questions:

e RQTI: Can user simulators capture the important properties of practical search engine users?

e RQ2: Can the ranking framework optimize online evaluation metrics effectively in the sim-
ulation environment?

e RQ3: How does the ranking framework perform on a practical data environment?

6.1 Evaluating User Simulators (RQ1)

6.1.1  Click Simulation Performance.

Click probability prediction. To evaluate how different models can predict user click probabilities,
we compare them in terms of perplexity and log-likelihood as in most click model work [13, 21,
25, 32, 50]. A lower perplexity and a higher log-likelihood indicate that the user simulator can
predict users’ click behavior more accurately. The click models and the two user simulators (CCS
and UserGAN) are trained using the training set of Real 2017 and tested using the testing set of
Real 2017 and Real 2018, respectively. From the results in Table 3, we can note the following.

First, conventional click models perform well in click probability prediction. However, for newly
emerging search requests in Real 2018, there is sharp decline in performance, because they can only
deal with repeated query-document pairs. This limits the practical application of click models for
commercial search engines, because there are millions of emerging search requests conducted
every day. It is not practical to train the click models on large-scale search logs frequently.

Second, CCS can achieve comparable performance with click models. CCS predicts user click
probabilities based on the context information and previous click as well as result contents. For
emerging query-document pairs in Real 2018, CCS can predict the click probability based on
the multimodal content information of the search results, which makes its generalization ability
stronger.

Third, UserGAN learns the implicit click pattern distribution of users from search logs and ex-
hibits strong generalization ability. Because the click pattern distribution of users is consistent on
different queries and documents, UserGAN can perform well on emerging query-document pairs
in Real 2018 with just slight performance decline. We can also see that UserGAN cannot outper-
form the click models for predicting click probabilities. This may be because UserGAN learns both
the temporal and spatial signals of click events, which is much more difficult than just learning
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Table 3. Click Probability Prediction

Model Real 2017 Real 2018
LL Perplexity LL Perplexity

DCM -0.1327 1.1528 -0.2255 1.2711
UBM -0.1282 1.1478 -0.1808 1.2209
DBN -0.1264 1.1455 -0.1688 1.2071
UBM-Layout || —0.1280 1.1476 -0.1808 1.2209
MCM —-0.1255 1.1448 -0.1689 1.2069
NCM -0.1250 1.1442 -0.1725 1.2291
CCS -0.1289 1.1489 -0.1717 1.2140
UserGAN -0.1550 1.1811 -0.1865 1.2351

The perplexity score is the average of Perplexity; over all positions (top 10).
The improvement of the best model (NCM on Real 2017 and DBN/MCM on
Real 2018) compared to the others is not significant with a p-value < 0.01.

Table 4. Click Sequence Prediction

Model CTR@3 CTR@5 CTR@10 | DCG@3 DCG@5 DCG@10 | MRR
DCM 0.1305  0.0871  0.0524 | 0.3347° 0.3346"°  0.3438 | 0.2973
UBM 0.1425  0.1042  0.0734 | 03571 03740  0.4118 | 0.3103
DBN 0.1543  0.1143  0.0684 | 03738 04003  0.4231 | 0.3089
UBM-Layout || 0.1455  0.1055  0.0739 | 03605 03776 04126 | 0.3091
MCM 02183  0.1682  0.1092 | 05101 05762  0.6443 | 0.3429
NCM 0.1661  0.1029  0.0540 | 04319 04357  0.4400 | 0.4131
CCS 0.1503  0.1085  0.0696 | 0.3803 04118  0.4489 | 0.2956
UserGAN || 0.1295 0.0841 0.0469° | 03481  0.3529  0.3579 | 0.3049

The RMSE of the predicted click-related online metrics compared with the logs are shown in the table. Lower
RMSE values indicate better performance. The metrics are computed with click sequences generated by practical
search engine users (“Log”), different click models, and the two user simulators (CCS and UserGAN). The asterisk
(*) denotes the significant improvement compared to the other methods with a p-value < 0.01.

users’ click/skip behavior. It needs to not only predict how likely a user is going to click a search
result but also when they will click it. As the temporal, spatial, and click probability information
are modulated in a single carrier wave using Equation (25), mistakes on the click time prediction
also affect the click probability prediction and vice versa.

Click sequence prediction. As revealed in previous studies [18], online evaluation metrics align
well with user satisfaction in today’s heterogeneous search scenarios. To measure how closely
different click models and the two user simulators can simulate users’ actual clicks, we evaluate
them in terms of online evaluation metrics such as CTR, DCG, and MRR. We train the models on
Real 2017 and evaluate them on Real 2018. For each session in the search logs, we sample a click
sequence with click models or the user simulator, then compute the online metrics. The root mean
squared error (RMSE) of the predicted click-related online metrics compared with the search logs
are shown in Table 4. Lower RMSE values indicate better performance. From the results, we can
note the following.

First, performance of click models varies a lot. Some models, such as DCM and UBM, perform
well on click sequence prediction. Others, like MCM and NCM, have large differences with search
logs. Second, CCS performs the best on MRR and achieves comparable performance with the click
models on the other online metrics, like CTR or DCG. Third, UserGAN performs the best in terms
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Table 5. Click Time Prediction

Real 2017 Real 2018
FCT LCT ACT FCT LCT ACT
CATM 42.2040 44.2649 42.7967 40.8261 41.3245 40.8754
UserGAN || 20.2716" 24.7261* 19.7227* | 19.1097* 21.2440° 17.9735"

The RMSE of the predicted click time-related online metrics compared with the logs are shown in the
table. Lower RMSE values indicate better performance. The asterisk (*) denotes significant
improvement compared to the baseline model CATM with a p-value < 0.01.

Model

of CTR@3,5,10, which are among the most widely used online metrics. On DCG@3,5,10, although
UserGAN dose not make the best prediction, it achieves very close performance with the best click
model DCM and performs secondarily among all of the baselines. On MRR, UserGAN also achieves
close performance with the best models, CCS and DCM.

Overall, the online metrics predicted by UserGAN are close with search logs, which indicates its
capability in simulating user click behavior. As we use different online metrics as the rewards to
train the ranking agent, we will adopt UserGAN as the user simulator in the following experiments.

6.1.2 Time Simulation Performance. Click time is an important aspect to characterize users’
fine-grained behaviors as described in the work of Chen et al. [18]. Among all of the click models
and the two user simulators, UserGAN is the only one that can simulate user click time corre-
sponding to each click event. We compare UserGAN with CATM (a context-aware time model) [5]
(see brief introduction in Section 5.3). As Weibull probability density function performs the best to
describe time distributions according to Borisov et al. [5], we adopt Weibull distribution in CATM.

The performance of click time simulation is evaluated in terms of three click time related online
metrics: FCT, LCT, and ACT [18]. The RMSE of the predicted click time related online metrics com-
pared with the search logs are shown in Table 5. Lower RMSE values indicate better performance.
From the results, we can note that the click time simulated by UserGAN is close to that of search
logs. On both Real 2017 and Real 2018 datasets, UserGAN outperforms CATM in terms of FCT,
LCT, and ACT. The results show that besides click prediction, UserGAN can also predict the time
corresponding to each click event accurately. We will show in the following experiments that the
predicted time information will help a lot in both ranking evaluation and optimization.

6.1.3 Online Evaluation with Click Time. For the online evaluation, the user simulator should be
able to judge which ranking of search results is better to guide the ranking algorithm optimization.
In this section, we analyze whether the click time can help to provide a more accurate online
evaluation.

Five click models and UserGAN are trained on Real 2017 and tested on Real 2018. There are a
total of 1,239 queries in Real 2018. For each query and the corresponding result list in Real 2018, we
try to assess three different ranking strategies: the original ranking of search engine (“Original”),
the reversed ranking (“Reverse”), and the randomly shuffled ranking (“Random”). For each query,
we compare three pairs of ranking lists: Original with Reverse, Original with Random, and Random
with Reverse. Preferences with regard to ranking list pairs are assessed through a commercial
crowdsourcing company. Given two different ranking lists (with the same search results) of a query
side by side, the assessors need to grade the ranking pair with a five-level preference criterion
(from -2 to +2, a higher absolute value indicates stronger preference). For the sake of fairness,
result lists are randomly positioned on the two sides. Each ranking list pair has three assessments.
The average score is regarded as the final preference (a positive score indicates the right ranking
list is better, whereas a negative score indicates the left one is preferred, and zero means the same).
The Cohen’s k [23] of preference assessments is 0.6281.
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We sample 100 click sequences with UserGAN or click models for each ranking list and compute
different online evaluation metrics, including CTR@3,5,10, DCG@3,5,10, and MRR based on the
predicted clicks. For UserGAN, each click has a corresponding click time signal. Clicks that occur
early may be more valuable to indicate user preference. Thus, click time is adopted as a threshold
to filter out less important clicks for UserGAN. The ranking list with a higher predicted online
evaluation metric is regarded as the better one. The accuracy of the predicted preference relative
to the annotated one is shown in Figure 6. From the results, we can note the following.

First, UserGAN outperforms the click models on Original with Reverse, Original with Random,
and Random with Reverse ranking pairs by a large margin in most cases. UserGAN is sensitive
to different ranking strategies and can well predict which one users prefer. The click behavior
simulated by UserGAN is more differentiated compared to the other click models and thus gives
stronger evidence for preference judgment in online evaluation.

Second, the difficulty of judging different ranking strategy pairs is different. The highest accu-
racy achieved by UserGAN on Original with Reverse is nearly 0.6, whereas it is between 0.56 and
0.58 for Original with Random. The accuracy on Random with Reverse is the lowest, which is
approximately 0.45 to 0.48. This shows that it is easier to judge which ranking is better for Origi-
nal with Reverse pairs because there exists a greater difference. However, the preference between
Random with Reverse pairs is not very easy to predict, which may be because both of the rankings
have lower quality.

Third, UserGAN is more stable on different evaluation metrics for preference judgments. Click
models that perform well based on one evaluation metric may perform poorly on others. For exam-
ple, UBM-Layout performs the best on CTR@10 among click models. However, it does not achieve
the best performance on the other metrics. In contrast, UserGAN is reliable on all metrics in most
cases.

Fourth, by jointly considering click/skip behavior and click time, the performance of UserGAN
can be improved substantially. For CTR@3,5,10, the accuracy achieved by using an appropriate
time threshold compared to using all clicks (click time threshold = 600 seconds) can be improved
by 2.88% to 15.50%. For MRR, the best performance is achieved when all the clicks are consid-
ered. Different online evaluation metrics have different sensitivity to the click time threshold. This
verifies that user clicks are not equally important for online metric evaluation. With click time
information, fine-grained user behavior can better indicate user preferences, which has great po-
tential for more accurate online evaluation.

6.1.4 Qualitative Analysis of UserGAN. We randomly sample 10,000 carrier waves from the orig-
inal search logs and the simulated carrier waves generated by UserGAN of the same search sessions.
The distributions of carrier waves are shown in Figure 7. The genuine and simulated carrier waves
show similar characteristics. First, the Gaussian distributions are steeper in the top positions of
the SERP and gentler toward the bottom. In Equation (25), a smaller click time 7 makes the wave
steeper, whereas a bigger click time makes it gentler. The distribution indicates that users prefer
to click the top-ranked search results at early times; they prefer to click the bottom ones later. This
is consistent with previous findings that there exists position bias [29, 30] in the user browsing
process. Second, the height of the wave crest decreases by position, which indicates descending
click probabilities.

The consistency in click times and click probabilities between the genuine and simulated carrier
waves shows that UserGAN has effectively captured the hidden click pattern in the user behavior
and can generate similar user behavior based on specific SERP information.

6.1.5 Discussion about Click Models. The traditional click models, such as UBM, DCM, and
DBN, have some major limitations. First, traditional click models are mainly based on the PGM
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Fig. 6. The accuracy of preference judgments based on different online evaluation metrics, including
CTR@3,5,10, DCG@3,5,10, and MRR. Each column of subgraphs shows the comparison between two ranking
strategies out of Original, Reverse, and Random. The Y axis indicates accuracy, whereas the X axis indicates
the click time threshold (in seconds).

framework and search behavior hypotheses. They use a binary random variable to indicate
whether the user clicks or skips a search result and can only predict user click behavior. It is
a non-trivial task to incorporate additional random variables to indicate other user behaviors,
such as the click time predicted by UserGAN, the viewport time, and user scroll action. Second,
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Fig. 7. A total of 10,000 carrier waves sampled from search logs and UserGAN. The X axis indicates the
ranking position. A steeper wave shows smaller click time, whereas a gentler wave shows larger one. The
higher the wave crest, the larger the click probability.

traditional click models can only deal with repeated query-result pairs. For an unseen query-result
pair, they will use default values for prediction. For example, the relevance is set to 0.5 (ranging
from 0 to 1) for search results that never appear in historical logs. This makes the traditional
click models not applicable in practical search systems, as there are emerging search results every
moment on the Web. For a large amount of new search results, the traditional click models will
lose efficacy. Third, the contents of search results have changed from pure texts to multimodal
information sources in modern search engines, such as texts, images, videos, and applications.
The multimodal contents will largely affect user behavior on SERPs. To predict user clicks or click
times, it is important to take result contents into consideration. However, the PGM-based click
models are incapable of adopting result contents for prediction. In contrast, neural models can
deal with multimodal contents of search results well.

6.1.6  Summary for Research Question 1. From the preceding experiments, we can see that the
proposed user simulators UserGAN and CCS can capture the important properties of practical
search engine users in the following ways:

e For click simulation, UserGAN and CCS can achieve comparable performance in click prob-
ability prediction compared with click models. UserGAN achieves superior performance to
simulate click sequences, which has close values with search logs on different click-related
online evaluation metrics.

e For time simulation, UserGAN can simulate user click times along with clicks at the same
time. The simulated click time can help to more accurately distinguish between valuable and
noisy click events. By considering time information, we can better judge different ranking
strategies, which substantially helps ranking evaluation and optimization.

o By exploiting the consistent distribution of user behaviors from search logs, UserGAN shows
strong generalization ability on emerging search requests. This is valuable for search engines
dealing with ever-changing information on the Web.

6.2 Evaluation with a Synthetic Dataset (RQ2)

To verify that the proposed UBS4RL framework can optimize a range of online evaluation metrics,
we conduct a simulation study with synthetic users, which is similar to those conducted in other
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words [2, 75]. A simulation rule is designed according to some prior knowledge and assumptions
to generate simulated user feedback based on relevance annotations, vertical types, and statistics
of historical search logs. In this way, we create a synthetic user that can (1) generate simulation
search logs for original ranking lists and (2) produce ground truth user feedback on re-ranked
lists to evaluate the effectiveness of the ranking policy.

6.2.1 Simulation Rule. In this work, we extend the simulation rule in the work of Ai et al. [2]
to simulate user clicks as well as click times at the same time for heterogeneous search scenarios.
The extended rule consists of two parts: click simulation and click time simulation.

Click simulation. As the vertical bias substantially affects the users’ browsing process, we in-
corporate it into the click simulation rule presented in the work of Ai et al. [2]. The extended
assumption is that users click a search result o belonging to query g (¢ = 1) only when it is both
estimated (e; = 1) and perceived as relevant (rg = 1). At the same time, the vertical type is pre-
ferred by users to click (v; =1). ef]’, re, vg, and c; are all Bernoulli random variables, and we sample
these variables by the following formulations.

eg- The position bias 7, estimated through eye-tracking experiments presented in the work of
Joachims et al. [36], is adopted to sample eg. a € [0, +c0) controls the severity of the position
biases; it is set to 2.0 in our experiment. i denotes the ranking position of the search result.

P(eg=1) =1 (56)

rg- The relevance annotations are utilized to sample rg. y € [0,3] is the four-level relevance
label for result o, and ymax is 3 in our dataset. The parameter € introduces click noise into the
click decision process. A search result not very relevant to the query also has a small but positive
probability to be clicked. € is set to 0.2 in our experiment.
2Y -1

Prg=1)=e+(1-¢€) — .

vg- The vertical bias w is estimated on a large number of practical search logs. There are 19 differ-
ent result types in SRR. The average CTR for each result type is computed as v = AverageCTR(v),
where v denotes the vertical type of the search result. The statistical results show that the variances
of CTR values belonging to the same type across different queries are small (most of them are less
than 0.01). This indicates that the vertical bias holds for a wide variety of searches. p € [0, +0)
controls the severity of the vertical bias, which is set to 0.5 in our experiment.
P(vg =1) = v} (58)
cg- The final clicks are sampled according to the multiplication of the probabilities of eg, rg, vg.
To control the severity of position bias and vertical bias, we need to adjust the hyperparameters «
and p, which can cause small values for P(eg = 1) and P(vg = 1). Thus, P(eg = 1) and P(vg = 1)
are linearly mapped to [0.3, 1] in our experiment. The click probability of result o is given by

P(CZ = 1) = P(ES = l)P(r; = 1)P(’U; = ]) (59)

Time simulation. To simulate the click time for each click event, we first analyze click time
distributions in historical search logs. For each ranking position, click times 7 in search logs are first

mapped to 7/ € [0,1] by 7/ = %. Then, they are fitted with a Beta distribution [3].

The Beta distribution for ranking position i is denoted as $;, which is shown in Figure 8. For a

search result o ranked at position i, if ¢y = 1, we then randomly sample a click time from 8; as 7.
T; ~ Bi (60)
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Fig. 8. The Beta distributions fitting click times at each position (from the 1st to the 10th) in search logs. The
black dots indicate data points in search logs, whereas the blue line indicates the fitted Beta distribution.
The left Y axis shows the probability density of the Beta distribution, whereas the right Y axis shows the
statistical probability of different click times.

With Equations (59) and (60), we can sample clicks and corresponding click times at the same
time for any given result list. The simulation rule is regarded as a synthetic user, who can give
feedback on result lists and generate synthetic search logs.

6.2.2  Online Click Metric Optimization. As the search engine needs to handle both repeated
queries and emerging queries that have never appeared in search logs, we train the ranking frame-
work UBS4RL on the Seen Set and subsequently evaluate it on both the previously seen queries
(Seen Set) and unseen queries (Unseen Set) as described in Section 5.1. The rule-based synthetic
user introduced in Section 6.2.1 is regarded as the practical search engine user. The synthetic user
interacts with the re-ranked result list and evaluates the ranking performance in terms of a collec-
tion of online metrics to simulate actual online testing.

We also adopt the synthetic user as the simulation environment to simulate actual online
training. The UBS4RL ranking framework using the synthetic user for training is denoted as
UBS4RLoyacle- The experiment results of UBS4RLoyqcle indicate the upper bound of ranking perfor-
mance using all possible environments (actual online environment and simulation environment)
under the adopted RL algorithm. In addition, the number of different rankings of a result list con-
taining N search results is N! By traversing all possible rankings for a result list and comparing
the feedback (online evaluation metrics) provided by the synthetic user, we can find the optimal
ranking of the search results. The optimal ranking performance is denoted as Oracle. The Oracle
result indicates the upper bound of ranking performance achieved by all possible methods.

Table 6 shows the performance of the ranking framework that optimize online metrics on
the Seen and Unseen datasets. The first row (denoted as Log) shows the performance of the
original ranking lists while the clicks are sampled by the synthetic user (the click labels of the
Simulation datasets). UBS4RL¢cs denotes the ranking performance using CCS as the simulation
environment, whereas UBS4RLse;can denotes the same for UserGAN. From the results, we can
note the following.

First, UBS4RLccs and UBS4RLysergan can all improve the online evaluation metrics over the orig-
inal rankings by using the objective online metric as the reward, including CTR@3,5,10, DCG3,5,10,
and MRR. This shows the potential capability of the UBS4RL ranking framework to optimize a
wide range of objectives for commercial search engines as long as a proper reward is designed.
UBS4RLysercan is slightly better than UBS4RL¢cs on Seen Set and much superior on Unseen Set.
The results shows that UserGAN has a stronger generalization ability than CCS. This is because
UserGAN directly exploits the click pattern distribution of user behaviors, which is quite consis-
tent in different search scenarios.
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Table 6. Performance of Optimizing Click-related Online Metrics
CTR DCG

Dataset Model @3 o5 @10 @3 @5 @10 MRR
Log 0.3191 0.2463 0.1703 | 0.7458 0.8584 1.0094 | 0.5896
UBS4RLccs 0.3420" 0.2614 0.1750 | 0.7789 0.8994 1.0411 |0.5968*

Seen |UBS4RLysergan || 0.3415 0.2623* 0.1751% | 0.7855" 0.9001" 1.0466" | 0.5967
UBS4RLoyacle 0.3392 0.2610 0.1744 | 0.7896 0.9086 1.0473 | 0.6050

Oracle 0.3996 0.2968 0.1864 | 0.9307 1.0480 1.1712 | 0.6800

Log 0.3227 0.2500 0.1730 | 0.7524 0.8682 1.0218 | 0.5911

UBS4RLccs 0.3336  0.2522 0.1724 | 0.7734 0.8859 1.0242 | 0.5914
Unseen | UBS4RL ysergan || 0.3505° 0.2683° 0.1785° | 0.8079* 0.9234" 1.0708" | 0.6033*
UBS4RLoracle 0.3519 0.2670 0.1774 | 0.8103 0.9267 1.0743 | 0.6137

Oracle 0.4088 0.3034 0.1905 | 0.9516 1.0711 1.1968 | 0.6898

Results in bold font indicate the better performance between UBS4RLccs and UBS4RLysergan- The asterisk (*)
denotes the significant improvement compared to the original ranking (Log) with a p-value < 0.01. The
experiments are conducted on the simulation datasets “Seen Set” and “Unseen Set” as described in Section 5.1.

Second, UBS4RLccs and UBS4RLysergan can achieve a close performance compared to
UBS4RLoyacle- The results show that training the ranking agent with the user simulator is com-
parable with practical online users. This verifies the effectiveness of the proposed user simulators
serving as the simulation environment for RL agent training. We also note that the performance of
UBS4RLysercan and UBS4RL¢cs sometimes outperforms UBS4RLoyacle. Although UBS4RLoyacle iS
better than UBS4RLysergan and UBS4RLccs in theory, the variability in the training and prediction
processes introduces some uncertainty.

Third, the Oracle value is much better than UBS4RLoace as well as UBS4RLccs and
UBS4RLysercan- As the user simulator can already compare favorably with practical users for RL
training, the results show that there is still large room for improvement of the RL algorithm. This
is left for future work to explore more effective RL algorithms into the ranking framework.

6.2.3  Online Time Metric Optimization. UserGAN can simulate user clicks as well as click times.
In this section, we optimize some click time related online evaluation metrics, including FCT, LCT,
and ACT. The performance is also evaluated by the synthetic user. Figure 9 shows that the click
time metrics can be decreased steadily during training on both Seen Set and Unseen Set. Table 7
shows the performance of optimizing FCT, LCT, and ACT. We can see that on Seen Set and Unseen
Set, the metrics can all be decreased by approximately 1 second. Smaller FCT values indicate that
users tend to make the first click earlier, as they can find the most desired search result more easily.
Smaller LCT values indicate that users spend less time on the SERP, as they can obtain the useful
information in a relatively short time. Smaller ACT values also show that the browsing process is
accelerated, which makes information seeking more efficient. The results show that by optimizing
click time related online metrics, the ranking performance is indeed improved.

6.2.4 Summary for Research Question 2. The preceding experiments show that the proposed
UBS4RL framework can optimize different online evaluation metrics effectively in the simulation
environment:

e UBS4RL can significantly improve click related online evaluation metrics over the original
rankings by using the objective evaluation metric as the reward. This shows the potential
capability of the UBS4RL ranking framework to optimize a wide range of objectives for com-
mercial search engines as long as a proper reward is designed.
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Table 7. Performance of Optimizing Click Time Related Online Metrics (in Seconds)

Model Seen Unseen
FCT LCT ACT FCT LCT ACT
Log 19.4252 68.3609 40.3843 19.1232 69.0774 40.4708
UBS4RLysergan 18.7213" 67.2422* 39.3981" | 18.2153* 67.6186" 39.2869"

Lower values indicate better performance. The asterisk (*) denotes the significant improvement compared to
the original ranking (Log) with a p-value < 0.01. The experiments are conducted on the simulation
datasetsSeen Set and Unseen Set as described in Section 5.1.

20.0 — Seen Set 40.8 — Seen Set — Seen Set
19.8 — Unseen Set 20.6 — Unseen Set 69.0 — Unseen Set
19.6 40.4
68.5)
— 19.4 5 40.2 —
8}
L 19.2 < 40.0 2
68.0
19.0] 39.8
18.8] 39.6 67.5
18.6| 39.4
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch epoch

Fig. 9. The performance curves when optimizing the click time related online metrics (in seconds). The ex-
periments are conducted on the simulation datasets Seen Set and Unseen Set as described in Section 5.1.

o By adopting UserGAN as the simulation environment, we can directly optimize click time
related online evaluation metrics, such as FCT, LCT, and ACT. The click time metrics can be
decreased steadily during training, which makes the user information seeking process more
efficient and effective.

e Optimizing UBS4RL in the simulation environment can achieve close performance to that of
training with the synthetic user that can be regarded as practical online learning. This shows
the effectiveness of the simulation approach for offline training. However, there still exists
a gap between UBS4RL and the oracle performance, which is upper bound of all possible
ranking methods. This indicates that RL algorithms that are more effective and efficient
than REINFORCE can be explored to further improve the performance of UBS4RL.

6.3 Evaluation with a Practical Dataset (RQ3)

As we have demonstrated that the proposed UBS4RL framework works well to optimize online
evaluation metrics in the simulation study, we further investigate how it performs in practical
data environments, and whether the ranking framework trained in the simulation environment
actually helps to improve the offline evaluation metrics. We evaluate the ranking framework on
datasets constructed at different times to show its generalizability, which is an important concern
for online search systems. The experimental results on the Real 2017 and Real 2018 datasets are
shown in Table 8. From the results, we can note the following.

First, click models that directly utilize the debiased query-result relevance for ranking perform
the best among the baselines. The counterfactual LTR methods REM, DLA, and IPW, which learn
a propensity weight to remove the bias in click logs, can hardly surpass the click models’ perfor-
mance. JRE achieves a performance that is close to UBM-Layout from which the weak relevance
labels are obtained.

Second, although UBS4RL aims to optimize the online evaluation metrics, the learned pol-
icy also performs well on offline metrics. Under all of the reward functions (including CTR@3,
CTR@5, CTR@10, DCG@3, DCG@5, DCG@10, MRR), UBS4RL(cs and UBS4RLysergan achieve
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superior performance than all baselines in terms of NDCG@3,5,10. This shows the robustness
of the ranking framework with respect to optimization objectives. The versatility of the ranking
framework is potentially important in supporting the heterogeneous search scenarios. UBS4RLccs
and UBS4RLysrgan achieve close performance when optimizing click-related online metrics,
whereas UBS4RLysergaN is slightly better on Real 2018. This also verifies that learning the implicit
user behavior distribution from search logs makes the user simulator more generalizable.

Third, UserGAN is the only user simulator that can mimic user click times. From the results,
we can see that optimizing click time related online metrics (FCT, LCT, ACT) can achieve superior
performance than optimizing click-related online metrics (CTR, DCG, MRR). Optimizing the FCT
metric can achieve the best performance on Real 2017; optimizing the ACT metric can achieve
the best performance for Real 2018. This shows that the user click time is an important signal for
ranking evaluation, which is usually ignored by previous works. UserGAN simulates fine-grained
user behavior including clicks and click times; it performs the best as the simulation environment.

Fourth, UBS4RL has stronger generalization ability than other methods based on search logs. As
shown in Table 8, UBS4RL performs much better than DLA, JRE, and click models on Real 2018. The
ranking framework trained on historical data performs well on emerging queries and documents,
whereas a sharp decline in performance is exhibited for the baselines. Generalization ability is
an important concern for search engines as a large amount of Web documents or multimedia
contents become available online every moment. It is infeasible to train the model constantly for
new contents. The proposed ranking framework UBS4RL is more adaptable for practical search
engines.

The overall experiment results show that the simulation environment captures important prop-
erties of practical users. It serves as a reliable reward provider and performance judger for the
ranking agent. The UBS4RL framework can effectively leverage the implicit relevance signals in
search logs, even without making any explicit assumptions on user behavior. UBS4RL can substan-
tially improve the ranking performance by optimizing a wide range of online metrics, including
click-related and click time related metrics. The click time information is more effective for ranking
evaluation and optimization.

6.3.1 Summary for Research Question 3. By training the user simulators on practical search
logs, the proposed UBS4RL framework can effectively improve ranking performance in terms of
offline evaluation metrics:

e Although the UBS4RL framework is trained to optimize online evaluation metrics, it also
performs well on offline evaluation. UBS4RL achieves superior performance than all of the
baselines, including click models, the neural ranking model, and the counterfactual LTR
methods.

e When adopting UserGAN as the simulation environment, UBS4RL can achieve stronger gen-
eralization ability than the baselines. This verifies that the learned implicit user behavior dis-
tribution is consistent over time; thus, they can be transferred to emerging search requests.

e By optimizing click time related online metrics, the UBS4RL framework can achieve even
better ranking performance than optimizing click-related online metrics. This shows that
the click time information within users’ searching process is vital for ranking evaluation
and optimization. This time information is usually ignored by previous works.

7 CONCLUSION

Ranking heterogeneous search results with complex interactions is an emerging and critical prob-
lem for modern search engines. In this work, we propose a ranking framework UBS4RL based on
user simulation to optimize online evaluation metrics. The framework consists of three modules:
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Table 8. Offline Performance of Different Models on Real 2017 and Real 2018 Datasets

Model Real 2017 Real 2018
NDCG@3 NDCG@5 NDCG@10 | NDCG@3 NDCG@5 NDCG@10
REM 0.7205 0.7849 0.8943 0.6383 0.6870 0.8443
DLA 0.7279 0.7819 0.8951 0.6206 0.6925 0.8416
IPW 0.7382 0.7768 0.8932 0.6542 0.7016 0.8514
JRE 0.7596 0.8046 0.9073 0.6808 0.7275 0.8648
DCM 0.7937 0.8329 0.9223 0.6998 0.7365 0.8762
UBM 0.7883 0.8265 0.9196 0.7006 0.7385 0.8756
DBN 0.7836 0.8208 0.9168 0.6900 0.7292 0.8715
UBM-Layout 0.7883 0.8265 0.9196 0.7025 0.7389 0.8768
MCM 0.7760 0.8170 0.9135 0.6994 0.7354 0.8749
NCM 0.7414 0.7883 0.8992 0.6298 0.6819 0.8434
CTR@3 0.8171 0.8566 0.9291 0.7465 0.7851 0.8930
CTR@5 0.8209 0.8587 0.9301 0.7504 0.7860 0.8934
CTR@10 0.8280" 0.8607" 0.9315" 0.7556" 0.7877* 0.8945*
UBS4RLccs DCG@3 0.8128 0.8556 0.9283 0.7462 0.7848 0.8931

DCG@5 0.8166 0.8569 0.9290 0.7485 0.7852 0.8934
DCG@10 0.8141 0.8553 0.9284 0.7449 0.7831 0.8924

MRR 0.8155 0.8567 0.9288 0.7466 0.7839 0.8927
CTR@3 0.8203 0.8544 0.9286 0.7723 0.7942 0.8979
CTR@5 0.8214 0.8552 0.9287 0.7723 0.7936 0.8976
CTR@10 || 0.8237"  0.8573* 0.9299* 0.7736" 0.7942 0.8982"

DCG@s3 0.8215 0.8552 0.9291 0.7644 0.7930 0.8965

UBSARLUserGAN DCG@5 0.8226 0.8567 0.9295 0.7645 0.7922 0.8961
DCG@10 0.8217 0.8562 0.9292 0.7637 0.7927 0.8965

MRR 0.8209 0.8539 0.9285 0.7698 0.7953" 0.8979

LCT 0.8058 0.8323 0.9233 0.7904 0.8069 0.9072

ACT 0.8244 0.8553 0.9311 0.7935"  0.8104* 0.9088"*

FCT 0.8333*  0.8641" 0.9345" 0.7923 0.8092 0.9083

The second column shows the optimization reward (CTR, DCG, MRR, FCT, ACT, LCT) for UBS4RL. The asterisk (*)
denotes the significant improvement of UBS4RL under different simulation environments (CCS and UserGAN) and
reward functions compared to the baselines with a p-value < 0.01.

feature extractor, user simulator, and ranking agent. Different user simulators are constructed to
mimic fine-grained user feedback as the simulation environment for the offline training of the RL
agent. Offline training avoids the time and resource consumption issues inherent in online training
methods for practical search engines. The online training can also be built upon the policy learned
offline with search logs and the simulation environment, which is more efficient and brings lit-
tle harm to the online system. By extensive experiments on both synthetic and practical data, we
demonstrate the effectiveness of the framework in improving ranking performance in terms of on-
line as well as offline evaluation metrics. We also find that the click time information during users’
search process is vital for the ranking evaluation and optimization, which is usually ignored by
previous works. The ranking framework has a strong generalizability over time, which is valuable
for search engines dealing with ever-changing information on the Web.

The framework has the potential to be extended to a wide range of optimization tasks for differ-
ent information systems, such as mobile search, product search, image search, and recommenda-
tion systems. It can be further improved from three aspects. First, the feature extractor can incorpo-
rate the information of landing pages, which contain more detailed information of search results,
into the multimedia contents of SERPs. Meanwhile, the components of the ranking framework
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can utilize different feature extractors in practical applications. For example, the user simulator
can be trained offline with highly computational deep neural features to achieve better perfor-
mance, whereas the ranking agent, which is used to rank the results online, can utilize more cost-
efficient handcrafted features. Second, the user simulator can adopt other generative models such
as flow-based generative models and VAEs for user feedback simulation. Additional fine-grained
spatial and temporal signals of user behavior can also be explored, such as fixations and mouse
movements during the users’ information seeking process. Third, the ranking agent can leverage
a wide range of RL algorithms to improve the ranking performance, which have shown effective-
ness and efficiency in other research fields like games and robotics. In addition, different online
metrics can be jointly optimized. User satisfaction can also be directly improved through tailored
reward designs. The list-wise ranking framework also has the potential to be extended to the two-
dimensional whole-page optimization problem, which takes the results on the right side of SERPs
into consideration, such as knowledge cards and related searches.
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