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Relevance Feedback with Brain Signals

ZIYI YE, XIAOHUI XIE, QINGYAO AI, YIQUN LIU, ZHIHONG WANG, WEIHANG SU,
and MIN ZHANG, Quan Cheng Lab, DCST, Tsinghua University, Zhongguancun Lab, China

The Relevance Feedback (RF) process relies on accurate and real-time relevance estimation of feedback doc-
uments to improve retrieval performance. Since collecting explicit relevance annotations imposes an extra
burden on the user, extensive studies have explored using pseudo-relevance signals and implicit feedback sig-
nals as substitutes. However, such signals are indirect indicators of relevance and suffer from complex search
scenarios where user interactions are absent or biased.

Recently, the advances in portable and high-precision brain-computer interface (BCI) devices have shown
the possibility to monitor user’s brain activities during search process. Brain signals can directly reflect user’s
psychological responses to search results and thus it can act as additional and unbiased RF signals. To explore
the effectiveness of brain signals in the context of RF, we propose a novel RF framework that combines BCI-
based RF with pseudo-relevance signals and implicit signals to improve the performance of document re-
ranking. The experimental results on the user study dataset show that incorporating brain signals leads to
significant performance improvement in our RF framework. Besides, we observe that brain signals perform
particularly well in several hard search scenarios, especially when implicit signals as feedback are missing or
noisy. This reveals when and how to exploit brain signals in the context of RF.
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1 INTRODUCTION

The application of Relevance Feedback (RF) is crucial to elicit additional information beyond
the initial query, since queries submitted to the search engine are usually short, vague, and some-
times ambiguous [4]. RF [29, 69] method is widely applied to improve retrieval accuracy by ac-
quiring feedback information in addition to the submitted query. In a standard RF process, users
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should provide explicit relevance judgments on a given collection of documents. The search sys-
tem then automatically re-ranks the search results with information extracted from the documents
annotated as relevant or irrelevant by the user. RF paradigms effectively improve retrieval perfor-
mance [29, 50, 59, 69], especially in the cases where users do not have a thorough idea of what infor-
mation they are searching for or have difficulty transforming their search intents into queries [64].

Given that the standard RF process frequently places an additional cognitive burden on users, as
it necessitates explicit relevance indications, prior research has explored a range of alternative sig-
nals to estimate the relevance of search results. These signals can be broadly categorized into two
groups: pseudo-relevance signals and implicit signals. The basic idea of pseudo-relevance signals
is simply treating the top-ranked documents as relevant and utilizing their terms for query rewrit-
ing, which is often applied to alleviate the problem of termmismatching [40, 43]. Pseudo-relevance
signals do not necessarily require any user signals, making them easy to deploy and widely used.
However, the quality of pseudo-relevance signals highly depends on the effectiveness of the initial
retrieval [41] and is particularly unstable when the submitted query is vague or ambiguous.

Implicit signals (e.g., click and dwell time), on the other hand, are usually considered more re-
liable than pseudo-relevance signals, especially in interactive Information Retrieval (IR) sce-
narios [8, 59]. Nevertheless, implicit signals are indirect probes of relevance inferred from user’s
behaviors and thus are often biased and inaccurate [45]. While existing research attempts to
mitigate these biases by utilizing additional signals such as eye-tracking and mouse movement,
practical experience has revealed that these indirect signals still bring biases. For instance, the
credibility of eye-tracking signals is limited as gazing at a document can not necessarily guar-
antee that its content is genuinely relevant [49]. Due to the inaccuracy and inheriting bias of
pseudo-relevance/implicit signals, the effectiveness of RF is often limited [41]. Hence, the poten-
tial advancement of RF lies in acquiring more accurate and unbiased signals.
Recently, the emergence of neurological techniques has attracted researchers to explore inter-

active information systems with brain signals [19, 78]. As neurological devices become portable
and affordable, it is possible to capture user’s brain signals in realtime and build a practical search
system with brain–computer interface (BCI) [12]. Beyond applying BCI to control search en-
gines, existing studies [61, 79] have revealed underlying differences between brain responses to
relevant and irrelevant search results. These differences indicate that brain signals can be acquired
as novel alternative signals to measure relevance. In contrast to existing signals, brain signals di-
rectly reflect a user’s psychological activities and, as a result, are less susceptible to the inherent
biases associated with user behaviors. Yet, to the best of our knowledge, the potential benefits of
brain signals in improving RF performance remain mostly unknown, especially when combined
with existing signals.

In this article, we propose a novel RF framework combining brain signals with pseudo-relevance
signals and click signals to improve RF performance. The proposed framework can be employed
in two distinct RF settings, that is, iterative RF (IRF) and retrospective RF (RRF). IRF [1] dy-
namically re-ranks upcoming documents as more search results are presented to the user, which
is preferable in situations where user signals are collected incrementally [8]. We are interested in
analyzing how brain signals could improve the quality of RF while the search is ongoing. In con-
trast, the RRF setting focuses on re-estimating the relevance of historically examined documents
after the search process ends. RRF cannot directly facilitate the ongoing search process, but it can
help the potential search process with a similar search intent for other users [33]. In both IRF and
RRF, our objective is to investigate whether brain signals can function as unbiased indicators of
relevance. Additionally, we examine search scenarios where conventional user signals are biased,
highlighting potential applications for BCI within IR.

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 93. Publication date: February 2024.



Relevance Feedback with Brain Signals 93:3

To verify the effectiveness of IRF and RRF with brain signals, we conduct a lab-basedWeb search
study and collect corresponding pseudo-relevance signals, click signals, and brain signals during
the search process. Based on the collected dataset, we conduct document re-ranking tasks in the
context of IRF and RRF, respectively.With extensive experiments, we demonstrate the effectiveness
of the proposed framework, especially the benefits brought by brain signals. We observe that brain
signals lead to an additional improvement of 8.8% and 7.4% in terms of NDCG@10 (Normalized
Discounted Cumulative Gain) for IRF and RRF, respectively. Furthermore, we delve into search
scenarios in which brain signals are more effective than pseudo-relevance and click signals. We
observe that brain signals are particularly helpful in the cases where “bad click” happens, which
may alleviate the “clickbait” issue (i.e., documents with misleading headlines attract bad click [46]).
Besides, we have observed that brain signals can offer valuable relevance guidance for extracting
information from non-clicks, a particularly advantageous feature for initiating RF before any click
occurs. Drawing from these findings, we propose using a method that can boost RF performance
by adaptively adjusting the combination weight of brain signals and other signals based on specific
search scenarios.
In summary, our contributions are three-fold. (1)We devise a novel RF framework that combines

pseudo-relevance signals, click signals, and brain signals to improve the performance of document
re-ranking tasks. (2) We conduct a user study in Web search scenario to explore the improvement
brought by brain signals in the proposed framework. (3) We investigate the possible search scenar-
ios in which brain signals are more effective than existing signals. This reveals when and how we
can bring the benefit of BCI into search systems.
The rest of this article is organized as follows. In the next section, we review related work in

RF and neuroscientific approach. In Section 3, we introduce the Web search study and the data
collection procedures. Then in Section 4, the preliminaries about the RF tasks (IRF and RRF) and
the proposed RF framework are elaborated. Next, we present the experimental results and corre-
sponding analyses to explore the impact of brain signals in the context of RF in Section 5. Finally,
we conclude this work and discuss its applications and limitations in Section 6.

2 RELATEDWORK

2.1 Relevance Feedback Signals

The standard RF process was based on explicit signals that would impose additional manual efforts
and hurt the search experience. Hence, pseudo-relevance signals [43, 66] were often applied by
simply assuming the top-ranked documents as relevant. However, Li et al. [41] observed that the
performance of pseudo-relevance signals is often limited if the initial retrieval performance is weak.
In addition to pseudo-relevance signals, implicit signals were also widely studied, in which a user’s
behaviors (e.g., click [69], dwell time [51], and eye-tracking [2]) are used to infer their preference.
Among all the implicit signals, click signals were the most widely used and were thought to be an
indication of relevance [69]. However, click signals are indirect probes of relevance [45] and may
be biased in several search scenarios [23, 42, 71].

Traditionally, RF is based on only one type of signals (e.g., pseudo-relevance signals [43, 66, 81]
or implicit signals [15, 68]), which limited their performance due to the inaccuracy and inheriting
bias of existing RF signals [41]. To address this biased problem, prior literature has devised several
robust architectures [11, 47, 80] to deal with biased signals. For example, Lv and Zhai [47] proposed
to learn an adaptive coefficient that can avoid overvaluing RF information when RF signals may be
unreliable. Besides, there existed a series of studies on click models [13, 84] have been conducted
in an effort to estimate relevance from biased click signals.
Nevertheless, such approaches are still limited since user interactions are extremely varied and

hard to probe [82]. Hence, potential advancement lies in acquiring more accurate RF signals. This
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paper explores brain signals, which directly capture the user’s thoughts and thus are unbiased and
accurate. With empirical experiments, we verify that brain signals can bring additional improve-
ment on top of existing signals, especially in situations where implicit signals are biased.

2.2 Relevance Feedback Techniques

Standard RF techniques required relevance assessments on a fixed batch of documents. Since
pseudo-relevance signals are the most commonly used signals in standard RF, this kind of RF
is also named as top-k RF. There were two main streams of top-k RF techniques, that is, vector
space model (VSM)- based (e.g., Rocchio [63]) and language model (LM)-based (e.g., RM3 [40]).
The VSM-based method refines the query vector to be closer to the relevant documents [63], while
the LM-based method expands the query by selecting relevant terms [40]. Recently, with the de-
velopments of neural retrieval methods [58, 75], researchers have attempted to explore the effec-
tiveness of RF with BERT-based ranker [43, 66, 67, 81]. For example, Wang et al. [66], Zheng et al.
[85]adopted a VSM-based design to fuse BERT-based query embeddings with document embed-
dings. Zheng et al. [85] proposed BERT-QE which treats the top-ranked documents as additional
queries to retrieve documents with a BERT-based re-ranker.
In addition to top-k RF, alternative RF techniques are devised in different settings. For example,

Aalbersberg [1] propose IRF, which re-ranks upcoming documents after each user interaction in
an incremental manner. This approach is particularly advantageous in practical search processes,
especially when user signals are collected incrementally [8]. Besides transforming top-k RF tech-
niques into IRF settings [1], recent works also devise novel IRF techniques for various scenarios,
for example, conversational search [8] and product search [9]. In this paper, we first explore IRF
as brain signals can provide real-time guidance for RF. In addition to up-coming documents, we
also supplement the relevance re-estimation for historical documents, namely RRF in this article.
RRF helps potential search processes with similar intents in the future by directly re-ranking the
search results or constructing learning-to-rank models [33] with the estimated relevance signals.
Conventionally, RRF relies on probing user behaviors (especially clicks) and strongly suffers from
biased user behaviors [13, 33]. Hence, exploring alternative unbiased signals, that is, brain signals
in RRF is valuable. The construction of IRF and RRF tasks are elaborated in Section 4.1.

2.3 Neuroscientific Approach for IR

There is increasing literature that adopts neuroscientificmethods into IR scenarios [3, 12, 26, 28, 56].
These studies involved a variety of neuroimaging techniques, such as functional magnetic

resonance imaging (fMRI) [54, 55], magnetoencephalogram (MEG) [34], and electroen-

cephalogram (EEG) [19, 61, 79]. Amon]g these techniques, fMRI has the highest spatial reso-
lution, which can help identify the topological distribution of cognitive functions during IR. For
example, Moshfeghi et al. [55] examined the emergence of Information Need (IN) and identified
activated brain regions. Their further study predicted the realization of an IN using fMRI voxels
from a generalized set of brain regions (GM) and a unique set of regions for each individual (PM),
respectively. Compared to fMRI, MEG, and EEG have higher temporal resolutions, which can help
us understand the temporal dynamics of brain activity and construct real-time BCI applications.
MEG produces better spatial resolution than EEG, but it is rather expensive and has strict require-
ments on the experimental environment where external magnetic signals should be shielded. On
the other hand, EEG ismore frequently used to construct real-time BCI applications due to its porta-
bility and affordability [35, 38]. For example, Chen et al. [12] propose an EEG-based demonstra-
tion search system that can obtain dictates in the steady-state visual evoked potential (SSVEP)
for controlling search engines. Allegretti et al. [3] studied the time frame to distinguish human’s
brain response to relevant and irrelevant items. In their subsequent research [61], the graded
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phenomenon of relevance was further investigated, that is, a search item could be partially rel-
evant to the user.
Among these works, a common finding demonstrated by Allegretti et al. [3], Eugster et al. [26]

is that brain signals can play as an indicator of relevance. For example, Eugster et al. [26] adopted
brain signals to predict term relevance, and their further research utilized this prediction to in-
teractively recommend other relevant information [25]. Allegretti et al. [3], Golenia et al. [27],
on the other hand, predicts user’s preference to image stimuli with brain signals. A more recent
work Ye et al. [79] explored relevance in a more practical Web search scenario and observed that
brain signals could detect the phenomenon of “good abandonment”. However, their studies lacked
applications for Web retrieval and limited user interactions (e.g., allowing interactions on Search

Engine Result Page (SERP) to some degree.
What we add on top of existing work is that we explore whether brain signals can guide the

RF process and improve document re-ranking. Recently, BCI applications have served as a new
medium for human-system interaction in various real-life information systems, such as educa-
tion [21], entertainment [20], virtual reality [65]. Therefore, understanding how BCI can enhance
search performance, as it represents a typical channel for information acquisition, holds significant
importance, particularlywhen considering research that indicates a BCI-enhanced search system is
becoming realistic [12]. Our findings shed light on the specific scenarios and mechanisms through
which BCI can elevate the search experience via RF.

3 DATA COLLECTION

To verify the effectiveness of brain signals and the proposed RF framework, we conducted a user
study that simulates a practical search process. The participants were required to perform search
tasks by interacting with Web pages, and their brain signals were collected during this process.
The user study adheres to the ethical procedures approved by the ethics committee of the School
of Psychology at Tsinghua University. In compliance with established ethical guidelines, we have
taken multiple measures to safeguard the privacy of the participants, including anonymizing the
collected data, obtaining informed consent from participants before the study, and allowing the
participants to interrupt the experiment at any time.

3.1 Participants

We recruited 21 participants (8 females and 13 males) aged from 19 to 27 (M1 = 23.85, SD2 = 2.28)
from a Chinese public university. The amount of participants is analogous to prior EEG-based
studies (e.g., 18 in [79] and 23 in [61]) and the estimated sample size for the feature analysis in
Section 5.1 is 18 (statistical power = 0.8, α = 0.05). All participants are native Chinese speakers
and self-reported that they are familiar with the usage of search engines. The experimental pro-
cedures encompass a one-hour neurological experiment, resting periods totaling thirty minutes,
a thirty-minute session for hair shampooing (before and after the main experiment), a thirty-
minute duration for questionnaires, experimental instructions, and wearing the EEG cap. The
participants were compensated 15.0$ per hour, amounting to a total payment of approximately
37.5–45.0 dollars.

3.2 Stimuli Preparation

For the lab study, we constructed a dataset containing 100 queries and their corresponding docu-
ments (an average of 39.5 documents for each query). The dataset is publicly available.3

1Mean value.
2Standard deviation.
3https://github.com/THUIR/Brain-Relevance-Feedback

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 93. Publication date: February 2024.

https://github.com/THUIR/Brain-Relevance-Feedback


93:6 Z. Ye et al.

Table 1. Examples of the user StudyQueries (Translated into English)

Query Source Task descriptions
prophet iMine 0001 (i) find information about “prophet” in Islam; (ii) explore the

concepts of “prophet” in the general domain; (iii) search for
a movie named “prophet” with high-quality audio source.

Persian cat iMine 0002 (i) learn about the concept and characteristics of Persian
cat;(ii) download pictures of Persian cat; (iii) learn about the
market price of Persian cat;(iV) read books with Persian cat
themes.

multiplication
tables

iMine 0042 (i) downloadmultiplication tables; (ii) learn the tips formem-
orizing multiplication tables.

pen TREC 20582 (i) learn about fountain pens and their origins; (ii) check the
brand and price of fountain pen.

tea TREC 20906 (i) learn about the benefits of tea, such as nutritional com-
ponents and efficacy; (ii) learn about the varieties of tea for
a course presentation; (iii) explore the preparation methods
of tea; (iv) exploring different commercial brands of tea.

milk experi-
ments

TREC 21092 (i) learn information related to chemical reactions between
litmus and milk; (ii) learn information related to sensory ex-
periment on milk or yogurt.; (iii) learn about general science
experiments related to milk.

Query and document set construction. We selected queries from NTCIR-11 IMine [44] and
TREC-2009 Million Query Track [14]. We chose these datasets for the following reasons: (1) The
datasets are independent of one another. (2) Most of their queries are short and on a broad topic,
which means that the potential benefits of RF could be easily observable. Hundred candidate
queries are selected from these datasets, 50 from NTCIR-11 IMine and 50 from TREC-2009 Million
Query Track. For NTCIR-11 IMine, all Chinese queries (a total of 50) are included. For TREC-2009
Million Query Track, we selected 50 queries with familiar topics among Chinese users (e.g., “tea”,
and “pen”), and translated them into Chinese. However, we did not include queries with specific
entities that may not be familiar to all Chinese users, for example, “Kansas City”, “Vonage”, and
“Chicago Defender”. Table 1 displays sample queries, while the complete query dataset is publicly
accessible.3

After that, we utilized a popular Chinese search engine Sogou4 to retrieve the corresponding
documents for each query. Note that we can not reuse Sogou’s datasets (e.g., SRR [83]) since they
only contain plain text of documents. This limitation extends to the absence of images in land-
ing pages and SERP, which are required to construct the user study system. To address this gap,
we crawl the top five SERPs by submitting these queries to Sogou. Then, for each document, we
extracted its snippet (document abstraction in the SERP) and crawled its landing page (the Web
page that a user is directed to after clicking the document). The crawling process proceeded with
the Python package “selenium”. All web pages were manually checked, and we dropped docu-
ments whose landing pages were invalid or failed in crawling. This process generates an average
of 39.5 documents for each query, and each document consists of snippet content and landing page
content.

4www.sogou.com.
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Task description construction. As most of the queries are short and broad, we generated 2–5
possible task descriptions for different subtopics regarding the query, as shown in Table 1. For ex-
ample, for the query “prophet”, the task descriptions include: (i) find information about “prophet”
in Islam, (ii) explore the concepts of “prophet” in the general domain, and (iii) search for a movie
named “prophet” with high-quality audio source. To generate the task descriptions, we adopted a
similar procedure as Liu et al. [44] proposed in the subtopic mining subtask. Two Ph.D. students
majoring in IR are recruited as domain experts to generate the subtopics for each query with the
following steps: first, they independently clustered the documents into at most five groups and
generated a task description for each group according to the common subtopic of the documents.
Second, they were required to compare their clustering documents and the corresponding task de-
scriptions. After the comparison, similar task descriptions were preserved andmerged, while some
dissident task descriptions were discarded. Finally, they discussed and modified each task descrip-
tion to reach an agreement. As a result, the construction process averagely generated 2.6 (SD2 =
1.0) task descriptions for each query.

Snippet Annotation. To evaluate the RF performance, we recruited nine additional annota-
tors with experience in search engine usage from a Chinese public university. They are required
to judge the relevance of each document’s snippet regarding the task descriptions given by the
experts. The judgment is binary, that is, relevant or irrelevant. Each snippet was judged by three
annotators, and the majority vote decided whether it was relevant. The Fleiss’s κ of relevance judg-
ment from the annotators is 0.76, reaching a substantial agreement. Note that we did not judge the
relevance of the landing pages in advance due to the prohibitive cost. Instead, the participants
were required to judge the relevance of their examined landing pages after the search process.

3.3 Experimental Procedure

Overall pipeline. The user study began with a questionnaire to collect demographic informa-
tion (e.g., age and major) and search habits (e.g., how often do you use search engines?). Then,
participants were instructed on the main task procedure and were informed that they could ter-
minate the experiment and receive payment according to the time duration (13$ per hour). Next,
participants were required to finish a training process, which included two search tasks to get
familiar with the search process. After that, the main task began, in which the participants were
supposed to accomplish as many search tasks as possible in 1.5 hours. During the main task, they
were allowed to rest after every five tasks. Averagely, one participant will accomplish 36.8 (SD2 =
10.3) search tasks in one hour. Finally, the participants need to fill in a post-questionnaire about
their search experience.
Main task procedure. Figure 1 delineates the sequential procedures, spanning S1 to S4, of a

main task. The interface of the user study system is expounded in Section 3.4 and visually repre-
sented in Figure 2. The system can be deployed using our publicly available code.3

(S1) The participants view a query and one of its corresponding task descriptions. To mitigate
the incidental effect related to the search task, we randomized the selection process of the queries,
the task descriptions, and the displaying sequence of documents. Examples of task descriptions
are shown in Table 1.
(S2) A fixation cross is presented for 0.5 seconds to indicate the location of the forthcoming stim-

ulus. Then a document’s snippet extracted from the SERP (a snippet includes a title, an abstract,
and an optional image, as shown in Figure 1) is shown to the participant. The document’s snippet
is set unclickable in the first 2 seconds, and then it will be wrapped by a highlighted border, in-
dicating that it becomes clickable. This procedure, following existing works [55, 79], ensures that
brain activity related to the motor response of clicking would not be contained during the first 2
seconds. The screenshots of the snippet page are presented in Figure 2(c) and Figure 2(d), respec-
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Fig. 1. The structure of the main task exemplified by the query “Prophet” (iMine 0001). (zoom in for details
of example snippet and landing page).

tively. Note that there is some strictness in this step to ensure the presented information aligns
with the participant’s perception. Similar restrictions also apply to previous studies [5, 19, 26].
If the participant clicks the document, they will enter the document’s landing page (jump to
S3). Otherwise, they can continue the examination (stay in S2 with the next document’s snippet
presented) or end the search process (jump to S4). To be consistent with the realistic search pro-
cess, we allow the participants to revisit or click prior documents at any time in S2. However, we
only collect brain responses to each document during the first examination for further analysis.
(S3) The landing page crawled from the corresponding document’s link is presented, which

generally contains more specific information than the snippet on the SERP (as shown in Figure 1).
Similar to S2, the examination will last for at least 2 seconds, and the participant can choose to
continue the examination (jump to S2 with the next document’s snippet presented) or end the
search (jump to S4).
(S4) The documents examined by the participant will reappear to collect the participant’s rele-

vance judgment. The judgment is conducted with a four-point Likert scale (ranging from 1 (“totally
irrelevant”) to 4 (“perfectly relevant”). The participants are required to annotate the relevance of
the landing pages (in S3) and the snippets (in S4) independently since sometimes the relevance of a
document’s snippet may not be aligned with its landing page. For instance, there may be occasions
where the snippet appears enticing, yet the corresponding landing page fails to meet the user’s ac-
tual needs [46]. For example, when the snippet relevance is 4, the landing page relevance of the
same document can be judged as 1 if the landing page does not satisfy the participant (i.e., “bad
click” happens).

3.4 Interface of the Lab Study

Figure 2 showcases the interface of the Web search lab study using an example query “tea” (TREC
20582). On all pages, the background color is set to black, a common practice in neurological ex-
periments to minimize interference from irrelevant factors [57].

In Figure 2(a), the login page is displayed, where participants enter their student ID (or a ran-
domly generated ID if they are not students) along with a randomly assigned user ID. Post login,
search tasks are sequentially presented to the participants. To complete each search task, partici-
pants undertake four steps, elaborated in Section 3 and Figure 1.

Figures 2(b)–2(f) provide illustrations and screenshots for steps S1-S4 (as detailed in Section 3).
Figure 2(b) portrays the search task description page where participants are instructed to thor-

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 93. Publication date: February 2024.
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Fig. 2. Interface of the lab study. Figure 2(a) depicts the login page. Figure 2(b) illustrates the search task
description page corresponding to step S1 in the main task (detailed in Section 3). Meanwhile, Figures 2(c)
and 2(d) correspond to step S2, Figure 2(e) corresponds to step S3, and Figure 2(f) corresponds to step S4.

oughly read the query term (e.g., “tea”) at the top, followed by the task descriptions (e.g., “explor-
ing the varieties of tea for a course presentation, seeking information from two or more related
websites”). Subsequently, participants can click “start to search” to proceed to step S2. Figures 2(c)
and 2(d) depict the document snippets page in step S3. Initially, for the first two seconds, the doc-
ument’s snippet is rendered unclickable (as demonstrated in Figure 2(c)) to ensure the exclusion
of brain activity related to the motor response of clicking [55, 79]. Post this period, participants
are provided with four optional actions, illustrated in Figure 2(d): (1) click the document to access
the corresponding landing page, (2) click “Next document” to examine the following document,
(3) click “End the search” to proceed to the annotation page, (4) examine and interact (e.g., click)
with previous documents displayed on the right side of the screen. Figure 2(e) demonstrates the
landing page interface where participants can scroll to inspect all content on the landing page.
Upon examination, participants may annotate a relevance score for the landing page and return
to S2 by clicking “Back to SERP”. If participants end the search in S2 or S3, they are directed to the
annotation page as illustrated in Figure 2(f). On this page, participants are supposed to verbalize a
concise answer to the search tasks, following which they are required to annotate each document
snippet with a relevance score.

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 93. Publication date: February 2024.
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Fig. 3. Box plot of participants’ evaluations on their search experience. The orange diamond represents the
mean value.

3.5 Apparatus and EEG Preprocessing

The user study proceeded with a desktop computer (monitor size: 27-inch, resolution: 2,560 ×
1,440) and the Google Chrome browser. A Scan NuAmps Express system (Compumedics Ltd.,
VIC, Australia) and a 64-channel Quik-Cap (Compumedical NeuroScan) are deployed based on
the International 10âĂŞ20 system to capture the participant’s EEG data (electrical activity of the
brain). The impedance of the channels was calibrated under 25 kΩ and the sampling rate was set at
1,000 Hz.

To standardize the preprocessing process, we segmented 2,000 ms of EEG data upon the stim-
ulus (i.e., snippet or landing page) presented to the participant. After that, we processed the EEG
data with the following steps: re-referencing to averaged mastoids, baseline correlation with pre-
stimulus periods (500 ms), low-pass of 50 Hz and high-pass of 0.5 Hz filtering, and down-sampling
to 500 Hz. The preprocessing process is analogous to prior literature [61, 79] excepting that time-
wasting artifacts removal techniques such as parametric noise covariance model [30] and Inde-

pendent Component Analysis (ICA) [70] were not adopted. This is because we aim to assess
the possibility of building a real-time RF method with brain signals while maintaining acceptable
preprocessing time.

3.6 Questionnaire Analyses

We investigate the participant’s user study experiencewith a post-questionnaire.We ask the partic-
ipants to report their perceptual difference between the user study procedure and their daily search
procedure using a five-level Likert scale (very small, small, neither small nor big, big, and very big).
Most participants (57.1%) feel the difference is small, followed by neither small nor big (23.8%),
big (14.3%), and very small (4.8%). This indicates that our user study design is close to reality. We
also asked the participants about the major differences they felt, of which not allowing query refor-
mulation is reported most often. As the first step to explore RF with brain signals, we limited the
user study to an ad-hoc search scenario and left the study of multi-turn retrieval as future work.
Besides, we collect participants’ evaluations on their search experience by asking “The search

tasks in the user study is [comfortable/stressful/clear/familiar/interesting/difficult]” with a 100-
grade scale where 100 indicates “strongly agree” and 0 indicates “strongly disagree”. Figure 3
presents the box plot of the participants’ evaluation gathered from the questionnaires. These re-
sults indicate that participants found the tasks comfortable, clear, familiar, and interesting but
neither stressful nor difficult.

3.7 Statistics of the Collected Data

The dataset consists of 979 search tasks collected from 21 participants. The participants averagely
accomplished 46.6 (SD2 = 16.6) search tasks. Within a search task, they averagely examined 10.9
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Table 2. Notations of the Relevance Feedback Framework

Notation Definition
q,D the query, the documents regarding the query
Dh ,Du the historical documents, the up-coming documents
Rp ,Rc Dh ’s pseudo-relevance scores, click-based relevance scores
Xs ,Xl , brain responses to Dh ’s snippet, landing page
Rs ,Rl Dh ’s brain-based relevance scores for its snippet, landing page
Rbs Dh ’s brain-based relevance scores for the document

Rit,h ,Rr e Dh ’s combined relevance scores in IRF, RRF
Rit Du ’s estimated relevance scores in IRF

θ it ,θ r e combination parameters in IRF, RRF
Rдu ,Rдh the ground truth relevance scores of Du , Dh

documents (10,670 documents in total) and clicked 1.9 of them (1,820 clicks in total). According
to the participants’ annotations, the average relevance of the document’s snippets is 1.72, while
that of landing pages is 2.67 (note that only clicked documents get landing page annotations).
The annotations made by the participants for the 10,670 document snippets show a correlation
with the third-party annotation at Kendall’s τ of 0.66 (p <1e−3). This demonstrates that there is
a high level of consistency between participants and third-party annotators in their judgment
of the relevance of a document. Besides, the datasets contain the participants’ brain responses,
amounting to 10,670 and 1,820 EEG segments collected during their examination on snippets and
landing pages, respectively.

4 METHOD

This section elaborates the RF problem definition, the steps of the proposed RF framework (as
visualized in Figure 4), and the training and evaluation pipeline of RF. Table 1 presents the notations
used within the RF framework.

4.1 Problem Definition

We assume a user issues a query q, and the documents list associated with the query q is D =
{d1,d2, . . . ,dn }. Suppose the user examined hmax documents under the query q before they end
the search. At a certain state during the process, h (from 1 to hmax ) historical documents Dh =

{d1,d2, . . . ,dh } have already been examined, and there still exist n−h up-coming documentsDu =

{dh+1,dh+2, . . . ,dn } have not been examined.
With the feedback signals acquired from the interactions on historical documents Dh , the pro-

posed framework aims to facilitate two RF tasks, that is, IRF and RRF. IRF re-ranks upcoming
documents Du by re-estimating their relevance Rit = {r it

h+1
, . . . , r itn }. It can be adopted in real-

time search scenarios: as the number of examined documents h increases, IRF iteratively re-ranks
Du to benefit the current search process. On the other hand, RRF re-ranks historical documents
Dh by re-estimating their relevance Rr e = {r r e1 , . . . , r r eh }. It does not aim at re-ranking documents
for the current search process, but it can be utilized to provide a better ranking list in prospective
search processes with similar intents.
To evaluate IRF and RRF, we apply ranking-based metric Π (e.g., Normalized Discounted Cu-

mulative Gain (NDCG) [32]). Suppose the ground truth relevance for Du and Dh are Rдu =

{rдu
h+1
, . . . , r

дu
n } and Rдh = {rдh1 , . . . , rдhh }, respectively, where r

дu
i (i > h) or r

дh
i (i ≤ h) is the

ground truth relevance of the ith document. The performance of IRF and RRF can be measured as
Π(Rдu ,Rit ) and Π(Rдh ,Rr e ), respectively.
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Fig. 4. During the search process, the user’s brain signals and click signals are collected in addition to the
pseudo-relevance signals provided by the system. These signals are then combined into two relevance scores
for IRF and RRF tasks, respectively. Then the combined relevance score for RRF is directly applied to re-
estimating the relevance of the historical documents. Besides, the upcoming documents can be re-ranked
with a query expansion module which extracts useful contents in historical documents with the combined
relevance score for IRF.

4.2 RF Framework

The proposed RF framework includes the following steps: (1) Pseudo-relevance signals, click sig-
nals and brain signals are independently transformed into base relevance scores Rp , Rc , and Rbs ,
respectively. The brain-based relevance score Rbs is chosen from the brain-based relevance scores
of the document’s snippet Rs and the document’s landing page Rl . (2) For the ith historical docu-
ment di ∈ Dh , the feedback signals r

p
i ∈ Rp , r ci ∈ Rc , and rbsi ∈ Rbs , are combined into relevance

scores r it,hi ∈ Rit,h and r r ei ∈ Rr e for IRF and RRF, respectively. For simplicity, we utilize Fθ to
denote the combination using parameter θ , e.g., Rit = Fθ it (Rbs ,Rc ,Rp ). (3) In RRF, the historical
documents Dh ) are directly re-ranked according to the combined relevance score Rr e . (4) In IRF,
we generate the relevance score for upcoming documents by a query expansion moduleQE, which
can be formulated as Rit = QE (Rit,h ,q,Dh ,Du ), where the combined relevance score for histori-
cal documents Rit,h are applied to balance the importance of each document for query expansion
module QE.

4.2.1 Signals Preparation. To generate high-quality RF, we acquire and combine base relevance
scores independently estimated from pseudo-relevance signals, click signals, and brain signals,
which are detailed as follows:

Pseudo-relevance score. By measuring the semantic similarity between q and each document
di ∈ Dh , we generate the pseudo-relevance scores Rp = {rp1 , rp2 , . . . , rph }, where r

p
i ∈ [0, 1] is

the ranking score of di . For a query q and a document d , we adopt a BERT re-ranker [58, 77] to
measure their semantic similarity, denoted as BERT (q,d ). The BERT re-ranker is initialized by fine-
tuning BERT-Chinese5 onT 2Rankinд dataset6 with the same procedures and available codes in the
dataset’s original paper [72]. The dataset contains human annotations on queries and documents
extracted from Sogou’s search log, which is similar to the dataset constructed for our user study.
Besides, we use the snippet content to represent the document d’s for estimating the semantic

5https://github.com/ymcui/Chinese-BERT-wwm
6https://github.com/THUIR/T2Ranking
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similarity, as it reflects what users typically observe on SERPs. This choice effectively captures the
primary theme of the landing page while filtering out extraneous or irrelevant details.
Click-based relevance score. The click-based relevance score Rc = {r c1 , r c2 , . . . , r ch } is gener-

ated from user’s clicks behaviors, where r ci = 0 (or 1) indicates the user abandons (or clicks) the
ith document.

Brain-based relevance score. With EEG devices, the user’s brain responses to snippet con-
tent and landing page content are collected as Xs = {xs1 ,xs2 , . . . ,xsh } and Xl = {x l1,x l2, . . . ,x lh },
respectively, where xsi and x li are the brain responses to the ith document’s snippet and land-
ing page, respectively. A sample of the brain signals, denoted as x ∈ {xsi ,x li }, can be presented
as a vector in the space Rt , with t denoting the length of EEG features. With a brain decoding
model G (elaborated in Section 5.1), X s and X l are then transformed into brain-based relevance
Rs = {r s1 , r s2 , . . . , r sh } and Rl = {r l1, r l2, . . . , r lh }, respectively, where r si and r li are real numbers in
[0, 1] indicating the brain-based relevance score for the snippet and landing page, respectively. As
the user’s brain responses to the landing page content, represented by x li , cannot be acquired when
they do not click the document and enter the landing page, the corresponding value of r li is masked
and considered as unavailable in such situations.
Based on Rl and Rs , we generate Rbs = {rbs1 , . . . , rbsh }, which presents the brain-based relevance

scores of the documents Dh . We use different principles to generate Rbs for IRF and RRF, respec-
tively. The reasons and details are as follows:

(i) In IRF, we extract information from Dh in the query expansion procedure. As the snippet
usually presents the documentmore briefly and contains less noise than the landing page, we
utilize the snippet content rather than the landing page content to represent the document.
Hence, we can simply assign rbsi = r

s
i .

(ii) In RRF, we aim to re-rank the documents Dh themselves. If a document di has an attractive
snippet but a landing page of low quality, it often leads to a poor user experience [46] and
should not be evaluated as a satisfying document. Therefore, if r li is available (not a masked
value), rbsi is assigned the value of r li ; otherwise, we assign rbsi as r si .

4.2.2 Relevance Score Combination. For the ith document, its combined relevance scores r iti
and r r ei are combined with various relevance scores from pseudo-relevance signals (rpi ), click sig-
nals (r ci ), and brain signals (rbsi ), which can be formulated as:

r it,hi = θ it,bs · rbsi + θ it,c · r ci + θ it,p · rpi (1)

r r ei = θ
r e,bs · rbsi + θ r e,c · r ci + θ r e,p · r ti , (2)

where Θit = {θ it,bs ,θ it,c ,θ it,p } and Θr e = {θ r e,bs ,θ r e,c ,θ r e,p } are the combination parameters.
It is critical to understand that we use different combination parameters for IRF and RRF for the
following reasons:

(i) We utilize different principles to generateRbs for IRF andRbs for RRF, hence the combination
weights should be different.

(ii) Rit,h is applied as an indication to extract text information from Dh ’s snippet while Rr e is
directly applied to re-estimate the relevance ofDh . Hence inherent differences exist between
them, for example, Rit,h emphasizes whether the document’s snippet content is relevant
while Rr e should also reflect the document’s quality beyond the text.

Besides, it is also important to note thatRit,h andRr e can be either fixed or adjustable to different
search scenarios, which are detailed in Section 5.2.1 and Section 5.4, respectively.
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Fig. 5. The query expansion module.

4.2.3 Query Expansion. This section elaborates on the query expansionmoduleQE, as depicted
in Figure 5. The query expansion module utilizes the combined relevance score Rit,h and the his-
torical documentsDh to re-rank upcoming documentsDu . As BERT has become a prevalent base
ranker for RF [43, 81, 85], we adopt a BERT-based query expansion module into our RF framework
with the following extensions: (i) We extend this module into an interactive setting for IRF. (ii) We
bring in the estimated relevance score combined from various signals. The details of the query
expansion module are as follows:
First, we select amaximumofk (a fixed value set as 10) documents from the historical documents
Dh , denoted asDs = {ds1 , . . . ,dsk }, based on their combined relevance scores r it,hi (i ∈ 1, 2, . . . ,h),
which surpass those of other documents. Second, for each upcoming document dh+i , we calculate
the BERT score BERT (ds ,dh+i ) for each document ds inDs . Third, the calculated BERT scores are

weighted sum based on the combined relevance score Rit,h to acquire the relevance score r f
h+i

for

the (h + i )th document:

r
f

h+i
=

k∑

j=1

er
it,h
sk

∑k
l=1 e

r
sl
it,h

· BERT(dsj ,dh+i ). (3)

Fourth, the relevance score for the ith upcoming document dh+i is trade-offed by its BERT score

with the initial query q and the feedback information r
f

h+i
:

i
f
t = rh+i · c + BERT(q,dh+i ) · (1 − c ), (4)

where c is a coefficient (set as 0.1) to balance the influence of feedback documents and the initial
query, which is widely applied in existing RF methods [7, 63]. Finally, the upcoming documents
Du are re-ranked with Rit = {r it

h+1
, . . . , r itn } to facilitate the search process.

4.3 RF training and evaluation

Algorithm 1 presents the training and evaluating pipelines of the RF experiments. Unlike existing
literature [26, 79] that splits the dataset without considering the natural sequence of data samples,
we adopt a split-by-timepoint protocol to train and evaluate the RF model. When a new search task
is presented to a participant u, we first prepare the brain decoding model (shown in Algorithm 1
lines 3–4) using the brain data collected from previous search tasks of the same participants (the
personalized modelGp ) or other participants (the global modelGд). Training a personalized model
Gp for each participant is necessary as brain signals vary across different individuals, as indicated
by previous studies [39, 86]. However, a participant’s data may be insufficient for trainingGp at the
beginning of his or her search process. Hence, we adopt a generalizedmodelGд trained using other
participant’s data as a substitute until his or her collected data size reaches a minimum required
size (set as 100 data samples).
After that, experiments involving IRF and RRF are executed, as delineated in lines 5–13 and 14–

18 of Algorithm 1, respectively. For IRF, valuable RF signals are gathered from historical document
Dh , enabling the generation of relevance scores for the unseen documents Du utilizing the RF
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ALGORITHM 1: Overall RF Pipeline and Experimental Setup

Input: A user u, a series of search tasks consist of a query set Q and document set D for each query
q ∈ Q, a generalized brain decoding model Gд trained from other participants’ brain recordings,
a base ranker BERT.

Data: A personalized brain encoding model Gp share the same structure withGд but initialized with

random parameters, hyper-parameters Θit = {θ it
bs
,θ itc ,θ

it
p } and Θr e = {θr e

bs
,θr ec ,θ

r e
p }, all

collected brain data samples Xglobal = [], all collected user annotations Rglobal = [].
Output: The averaged document re-ranking performance SI RF and SRRF for IRF and RRF, respectively.

1 Initialize the brain decoding model G as Gд , and initialize both SI RF and SRRF as empty lists [].

2 for each q ∈ Q do

3 TrainGp with Xдlobal and Rдlobal .
4 TransformG to Gp if the size of collected brain data samples X attains a total of 100 .

// Evaluating IRF performance by re-ranking unseen documents as the search proceeds.

5 for each h ∈ {1, . . . ,hmax }// hmax is the number of documents user u has interacted with in total.

6 do

7 Collect user u’s brain responses X corresponding to document d ∈ {d1, . . . ,dh }.
8 Generate Rbs with X and the brain decoding model G.

9 Generate Rc according to user u’s click behaviors, calculate Rp base on the text-based ranking
scores BERT(q,D).

10 Rit = QEFΘit (R
bs ,Rc ,Rp ) . // Generate combination relevance score for IRF.

11 Utilize third-party relevance annotations for d ∈ {dh+1, . . . ,dn } as Rдu .
12 SI RF .append(Π(R

дu ,Rit )). // Calculate ranking-based metrics for IRF.

13 end

// Evaluating RRF performance by re-ranking historical documents after the search ends.

14 Collect user u’s brain responses X corresponding to document d ∈ {d1, . . . ,dhmax
}.

15 Generate Rbs , Rc , and Rp for document d ∈ {d1, . . . ,dhmax
}.

16 Rr e = FΘr e (R
bs ,Rc ,Rp ). // Generate combination relevance score for RRF.

17 Collect third-party relevance annotations for d ∈ {d1, . . . ,dhmax
} as Rдh .

18 SRRF .append(Π(R
дh ,Rr e )). // Calculate ranking-based metrics for RRF.

// Extend Xдlobal and Rдlobal for the split-by-timepoint training of brain decoding model.

19 Xдlobal .append(X), Rдlobal .append(Rдh ).
20 end

21 SI RF = Averaдe (SI RF ), SRRF = Averaдe (SRRF )

22 return SI RF , SRRF ;

method ( detailed in Section 4). Given the absence of user annotations for all unseen documents,
IRF performance is evaluated using third-party annotations Rдu , incrementally as the number of
historical document h increases. Consequently, hmax ranking-based metrics, Π(Rдu ,Rit ), are cal-
culated for a query q. In contrast, RRF performance evaluation is deferred until the end of the
current search query due to its retrospective nature. The re-ranking performance for Dhmax

is
calculated by Π(Rдh ,Rr e ), where Rr e is the relevance score generated with the RF framework and
Rдh indicates the user’s annotation.

5 EXPERIMENTS AND RESULTS

We conduct empirical experiments (all implementation codes and datasets are available3) to ad-
dress the following research questions:

—RQ1: Can brain signals provide guidance for RF?
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—RQ2: To what extent can we improve RF with the proposed framework and brain signals?
—RQ3: How do brain signals improve RF performance in different search scenarios?
—RQ4: Can we further improve RF by adaptively adjusting the combination weight of brain
signals and other RF signals?

To addressRQ1, we explore the effectiveness of the brain decodingmodel, which aims to predict
brain-based relevance scores Rbs . Then, we analyze the document re-ranking performance of the
proposed RF framework in IRF and RRF, respectively, to answer RQ2. Furthermore, we analyze
the performance gain brought by brain signals in different search scenarios, especially in two par-
ticular cases, that is, bad click identification and non-click relevance estimation to answer RQ3. We
observe that the benefit brought by brain signals varies with different search scenarios. Therefore,
the potential advancement of RF relies on designing a better combination strategy of brain signals
and other RF signals. Hence, we then explore an adaptive method to combine RF signals depending
on the search scenarios, which answers RQ4.

5.1 Brain Decoding Experiment (RQ1)

This section elaborates on the experiments that decode brain responses to the snippet and landing
page content into brain-based relevance scores. We first explain our experimental setup process,
including feature extraction, decoding model selection, and evaluation protocols. Then, we show
the difference between brain responses to relevant and irrelevant items with statistical analyses on
the extracted features. Afterward, a decoding experiment is performed to evaluate the performance
of relevance estimation based on brain signals.

5.1.1 Experimental Setup. Feature Extraction: We extract differential entropy (DE) [31]
features for the brain decoding task. DE is a popular frequency-based feature in EEG-based pre-
diction [24], which has shown superior performance in emotion recognition [24] and satisfaction
detection [78]. The DE features are calculated in five bands, that is, δ (0.5–4 Hz), θ (4–8 Hz), α (8–
13 Hz), β (13–30 Hz), and γ (30–50 Hz), on 62 EEG channels. As a result, a sample of EEG data is
preprocessed into a vector of size 62 × 5 for each brain response upon the stimulus.
Decoding Model Selection: We adopt a support vector machine (SVM) with the Gaussian

kernel as the base brain decodingmodel since it is prevalent and effective for brain decoding [6, 24].
Besides, it requires less computing effort than neural networks [78, 86], and can meet the demand
of online training and inferencing in realistic systems. Specifically, we observe that the computing
time for brain decoding with an SVM is negligible compared to (less than one-thousandth of) the
BERT-based re-ranking algorithm. Hence, the proposed RF process could be conducted in realtime.
Evaluation: We evaluate the performance of the brain decoding model G (Gp or Gд) in terms

of its classification abilities for relevant and irrelevant items. Since relevance annotation 1 makes
up 68.2% data samples, relevance annotation 1 is regarded as a negative sample (irrelevant) and an-
notation 2–4 as positive samples (relevant). Hence, the classification problem is transformed into
a binary classification problem, and we measure its performance withArea Under Curve (AUC).
Note that we use the same classification modelG (Gp orGд) for the classification of brain response
to snippet and landing page since we observe that its performance is better than training indepen-
dent models.

5.1.2 Feature Analyses. Frequency-based EEG analyses are widely applied in relevance judg-
ment [79], emotion recognition [37], and other domains. We calculate the mean value for each
channel obtained by averaging DE features extracted from each participant’s brain responses to
web pages (both snippets and landing pages) and over two conditions: relevant and irrelevant stim-
uli. Figure 6 presents the F-value for 62 EEG channels by performing an ANOVA test, where the

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 93. Publication date: February 2024.



Relevance Feedback with Brain Signals 93:17

Fig. 6. Topography which shows the significance of difference (F-value) between brain response to rele-
vant/irrelevant Web pages. Highlighted channels indicate the differences are significant at p < 1 × 10−3
level.

highlighted channels indicate the difference is significant at p < 1×10−3 level. We observe various
significant channels in δ , θ , α , and β bands. Among these channels, the most significant difference
appears in the FPz in α band (F [1, 20] = 39.03, p = 4.2× 10−6,Mdif f = −0.40 ln(Hz)). This finding
indicates that brain responses to relevant and irrelevant stimuli are distinguishable.
Additionally, we observe that in δ , θ , and α bands, the most significant differences appear in

the frontal region, which is inconsistent with prior literature [79]. The frontal region is related to
executive functions such as judgment and problem-solving [76]. Ye et al. [79] suggests that this
difference is a consequence of cognitive function andworkingmemory executing during relevance
judgment. On the other hand, we also observe significant neural differences in the central region,
especially in the β and α bands. Allegretti et al. [3], Pinkosova et al. [61], Yang et al. [74] also
have similar observations in the central region. Despite the different settings among these stud-
ies (stimuli based on visual [3], text [61]) and ours (stimuli with multimedia content), the common
finding in the central region indicates a potential link between brain functions in this region and
the concept of relevance. A partial explanation of this potential link is the memory processing
during relevance judgment [61], for example, recognizing whether an item is relevant by recalling
knowledge from memory.
Besides these common observations, there are also several findings in contrast with prior re-

search. For instance, Ye et al. [79] find the most significant differences in the β band while we
observe more differences in the α band than in the β band. A likely reason for this difference is
the design of the search tasks: Ye et al. [79] use factoid questions, hence the participant’s alert
levels (reflected in β band Pfurtscheller and Da Silva [60]) will have big changes if they find the
direct answer (one or two words). Unlike their study, the questions in our study are non-factoid
and need the participants to judge the document’s relevance with more specific content. Therefore,
another major neurological phenomenon, that is, valence, may play a major role in our settings,
which is also revealed in existing research [52].

5.1.3 Brain Decoding Performance. The averaged AUC performance for brain responses to land-
ing page contents (Xl ) is 0.701 (SD = 0.059), slightly better than that to snippet content (Xs ), that
is, 0.690 (SD = 0.060). Besides, we observe that the overall performance of the personalized model
Gp (AUC=0.691, 0.681 for Xl , Xs ) significantly outperforms the generalized model Gд (AUC =
0.670, 0.603 for Xl , Xs ). This verifies the assumption that Gp outperforms Gд and training a per-
sonalized model for each participant is helpful for the classification performance. However, when
the collected personalized data size is insufficient (for the first 100 samples), the performance of
Gp (AUC = 0.584) performs worse than the general model Gд (AUC = 0.627). Hence, in the split-
by-timepoint splitting protocol, it is reasonable to transform G from the generalized model Gд

to the personalized model Gp . Unlike randomized data splitting, our split-by-timepoint splitting
protocol closely resembles real-world scenarios to simulate the cold start situation that new users
experience when they begin using our system. The results of our experiment illustrate that using a
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Fig. 7. AUC performance for relevance annotations of snippets and landing pages across different lengths
of time, down-sampling rate, and number of personalized data samples for training. The shaded regions
indicate the standard error.

general model during the cold start phase and training a subject-specific model during the search
process can yield practicable results. But if some users are unwilling to provide their data for model
training, utilizing general models and employing techniques like edge computing to prevent user
data from being exposed can still yield satisfactory results.
As EEG data commonly contain noises, the brain decoding performance is not perfect [28, 79].

However, unlike explicit annotations, the collection of EEG signals is real-time and does not in-
terfere with the user’s search process, which makes it preferable in practice. Furthermore, there
is also room for improvement in designing a sophisticated strategy to deal with the data variation
problem across different individuals and devising more effective classification models. Since this
is not the focus of this article, we leave the study of constructing EEG classification models in
interactive search scenarios as future work.

5.1.4 Sensitivity Analysis. In Section 3.5, we elaborate on the data preprocessing protocols
adopted in our study, which follows a common setting with existing neuroscientific studies [61, 79].
To explore and understand how these settings will affect the relevance prediction performance, we
conduct a sensitivity analysis regarding the data-preprocessing protocols, especially the length of
time segmentation and down-sampling rate, as shown in Figure 7(a) and Figure 7(b), respectively.
From Figure 7(a), we can observe that the relevance estimation performance improves with the
time duration increases and stabilizes between 1,600 ms to 2,000 ms. Existing literature ([3] and
[79]) reported that differences in users’ brain signals begin to emerge at 800 ms for relevant and ir-
relevant documents. However, we find there is still room for improvement with data collected over
a longer length of time. On the other hand, we find that the relevance estimation performance im-
proves if we do not down-sample too much, as shown in Figure 7(b). To reduce computational com-
plexity, especially in real-time scenarios pertinent to RF, we adopted a consistent down-sampling
rate of 500 Hz. This ensures comparable performance to scenarios without down-sampling, yet
with fewer computational demands.

Additionally, we also conducted a sensitivity analysis regarding the number of training person-
alized data samples. In this analysis, we train the brain decoding model Gp with different sizes of
collected brain data samples X, and evaluate it with the additional 100 data samples. Furthermore,
we undertake a sensitivity analysis pertaining to the number of training personalized data samples.
For each participant, we train the brain decoding modelGp , using varying sizes of collected brain
data samplesmathcalX , and subsequently assess its performance using an additional 100 data sam-
ples. Figure 7(c) depicts the classification performance in terms of AUC. As shown in Figure 7(c),
we observe that our model trained with cross-subject data (Gд) also exhibits good performance,
which means that, we may be able to avoid using user’s personal data by training and deploying
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Table 3. The Statistical Results of the Mixed Linear Mode

Effects Coef. Std z p>z
Word number 0.000 0.000 1.247 0.106
Document rank –0.007 0.004 –2.320 0.010
Task rank –0.001 0.000 –1.542 0.062
Image size 0.001 0.000 0.099 0.921
Document relevance 0.041 0.005 8.921 0.000
Coef. and z indicate the coefficient variable and the statistic corresponding
to the effect measured by brain activities, respectively.

a global brain signal model for everyone while keeping a reasonable retrieval performance. Addi-
tionally,Gp trained with a small amount of training data still performs well in the experiments (i.e.,
100 data samples), which means that, in practice, we just need to collect a limited amount of user
data to train the model, and then deploy the model to user’s device to avoid further collection of
user’s personal data. These observations illustrate that we could reduce the risk of privacy-related
issues in practice by using cross-subject modeling and limited sample modeling when applying
BCI devices in IR scenarios.

5.1.5 Mixed Effects Analyses. In the data collection procedures, we randomized the task order
and the order of the search documents, minimizing the risk of potential confounders. Despite these
precautions, it remains implausible to entirely eliminate the influence of all confounding variables.
Here we deliberate upon various confounding factors that could potentially influence the statisti-
cal robustness and validity of our analytical observations. Following existing literature [79], the
confounding factors we considered include: individual difference (I ), the task rank (Ot ), the docu-
ments rank (Od ), and the word number in the documents (W ), and the image size of the displayed
document (S). A linear mixed model is used for modeling the dependence of brain activities (X )
measured by EEG spectral powers and the ground truth relevance of documents (Rдh ), which can
be specified as follows:

X = (βu + iu )R
дh + βwW + βtO

t + βdO
d + βsS + I + β0 + e, (5)

where e represents the global residual error, β0 denotes the global intercept, βu , βw , βt , βd , βs
denote coefficients corresponding to the effects of the confounding factors we list above. I is the
individual difference effect and iu is the coefficient for participantu. The brain activityX , estimated
via spectral power as elaborated in Section 5.1, and the document relevance, Rдh , which spans a
range from 1 to 4.
Table 3 illustrates the coefficient variables and significance of the fixed effect (i.e., the document

relevance), and the random effects (i.e., word number, document rank, task rank, and image size).
From Table 3, we observed that the document relevance exerted a significant effect on the brain
response. This effect stood out prominently when compared to the confounding variables. Among
the confounding factors, only the document rank demonstrated a significant influence on the out-
come, which is reasonably attributable to the position bias effect [5, 33], where users typically
perceive documents at the top of the list as more relevant. Conversely, the remaining confound-
ing factors showed minimal effects that were not statistically significant. This suggests that while
there are multiple factors influencing the brain response, the relevance of the document plays a
predominant role.

Answer to RQ1. We observe that the relevance of web pages can be inferred by decoding brain
signals. This demonstrates the potential of using brain signals as an additional relevance indication
to supplement existing relevance signals.
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5.2 IRF and RRF Experiment (RQ2)

5.2.1 Experimental Setup. Evaluating Protocols: In IRF, we evaluate the re-ranking perfor-
mance of the upcoming documents Du = {dh+1,dh+2, . . . ,dn } in an interactive manner: calculate
and average the metric Π(Rдu ,Rit ) as h increases from 1 to hmax . As we do not require the par-
ticipants to annotate the relevance for unseen documents Du , we use the external annotations
as the ground truth relevance Rдu . In RRF, we calculate the metric Π(Rдe ,Rr e ) of the historical
documents Dh = {d1,d2, . . . ,dh } for h = hmax and adopt the user’s annotation to obtain Rдe .
Since the landing page contains more content about the document than the snippet content, the
document’s ground truth relevance is assigned as the landing page’s annotation if the document is
clicked. Otherwise, if the document is non-clicked, we simply use the annotation of the snippet as
a substitution. For ranking-based evaluation metric Π, we adoptMeanAverage Precision (MAP)
and NDCG at different cutoffs: 1, 3, 5, and 10 [16]. A two-tailed t-test is then applied to measure
the significance of the re-ranking performance achieved by different methods and signals.
Baselines: For IRF, the baselines include three re-ranking strategies without any user signals:

BM25 [62], BERT(Rp ) [58] (re-rank according to the BERT re-ranker, equivalent to re-ranking
by Rp ), and Sogou (using the original ranking in the Sogou search engines). Besides, we report

the performance of our proposed BERT-based query expansion method QEFθ it (R
bs ,Rc ,Rp ) and its

ablations (QER
p
, QEFθ it (R

c ,Rp ) , and QEFθ it (R
bs ,Rp )). In addition to the proposed RF method, we

also report the performance of a traditional RF method RM3 [40]. The implementation of RM3
inherits parameters from Lavrenko and Croft [40] and selects the number of rewriting terms from
{3, 5, 10}. For RRF, the baselines also include three re-ranking strategies without user signals: BM25,
BERT, and Sogou. In addition to the proposed framework, which combines relevance scores from
all signals (Fθ r e (Rbs ,Rc ,Rp )), we also report its ablations Fθ r e (Rc ,Rp ) (without brain signals) and
Fθ r e (R

bs ,Rp ) (without click signals).
Selection of Combination Parameters: Each combination parameter θ ∗,† (∗ ∈ {it , re}, † ∈
{bs, c,p}) is selected from {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. In our experiments, we first explore the overall
document re-ranking performance of our framework with fixed values ofΘit andΘr e . To initialize
the fixed parameters, we randomly sample a subset consisting of 200 search tasks and test the
document re-ranking performance in terms of NDCG@10. Then the optimal parameters among all
the combinations (Θit in IRF, Θr e in RRF) on this subset are selected, which are θ it,bs :c :p = 3 : 1 : 1
in IRF, and θ r e,bs :c :p = 5 : 2 : 0 in RRF. We observe that the chosen parameters also achieve the
best performance in the whole dataset in comparison with other parameters, which indicates that
the chosen parameters are robust. Note that similar to most existing RF frameworks [63, 64, 81],
our experiment does not involve a large number of training parameters. Instead, we only tune the
combination parameters to merge different RF signals and use a pre-trained retrieval model for
document re-ranking.
As θ r e,p is 0 in the selection of parameters for RRF, we further search in the 0–0.2 range and eval-

uate the performance in the whole dataset. We observe that the performance of FΘr e (Rbs ,Rc ,Rp )
yields no significant difference in the range of 0–0.14 (peaks at 0.06). However, the performance of
BERT (Rp ) is significantly higher than chance (i.e., rank the documents randomly) with p < 0.001.
This indicates that pseudo relevance is effective for RRF, but when compared to the user signals (Rc

and Rbs ), the effect is very small. As the documents in our experiment are selected from top docu-
ments while submitting the query to Sogou’s search engine, as explained in Section 3.2. Therefore,
most of them are already semantically related to the query term and their semantic relevance to
the query is similar, which is pseudo-relevance measures. Therefore, knowing what topics the user
needs is more important than the little differences in semantic relevance, given that the queries
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Table 4. The Document Re-Ranking Performance in IRF

Method1 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

BM25 0.2031∗ 0.2265∗ 0.2449∗ 0.3031∗ 0.3048∗
Sogou 0.2085∗ 0.2284∗ 0.2481∗ 0.3065∗ 0.3214∗
BERT (Rp ) 0.2060∗ 0.2326∗ 0.2579∗ 0.3221∗ 0.3033∗
QEFΘit (R

p ) 0.2306∗ 0.2361∗ 0.2582∗ 0.3205∗ 0.3279∗

QEFΘit (R
bs ,Rp ) 0.2477∗ 0.2569∗ 0.2774∗ 0.3374∗ 0.3235∗

QEFΘit (R
c ,Rp ) 0.2842∗ 0.2952∗ 0.3124∗ 0.3690∗ 0.3708∗

RM3FΘit (R
bs ,Rc ,Rp ) 0.2332∗ 0.2523∗ 0.2717∗ 0.3289∗ 0.3337∗

QEFΘit (R
bs ,Rc ,Rp ) 0.2948 0.3024 0.3191 0.3747 0.3744

∗indicates a significant difference in performance when compared to QEFΘit (R
bs ,Rc ,Rp ) , significant at a level of

p < 1 × 10−3.
1R† indicates relevance score based on signals †. bs , c , and p indicate brain signals, click signals, and pseudo-
relevance signals, respectively.
Results in boldface denote the winning performance for each column.

in our tasks are short and with broad topics. We acknowledge the limitation of this selection of
queries and further discuss it in Section 6.3.
In addition, we also explore the performance of different combination parameters in Section 5.3

to showhowwe should re-weight the importance of various RF signals regarding the search scenar-
ios. Motivated by the findings in Section 5.3, we further explore an adaptive RF signals combination
method in Section 5.4 which combines the importance of RF signals depending on the search sce-
nario. The adaptive signals combination method achieves better performance improvement than
using fixed parameters in the IRF task.

5.2.2 Overall Results. IRF Performance. Table 4 presents the document re-ranking perfor-
mance in IRF. From Table 4, we have the following observations: (1) Methods using feedback in-

formation gathered from user interactions (i.e.,QEFθ it (R
bs ,Rp ) ,QEFθ it (R

c ,Rp ) , andQEFθ it (R
bs ,Rc ,Rp ))

outperform methods without regard to user signals (i.e., BM25,BERT(Rp ), Sogou, and QER
p
). Al-

though existing research underscores the superior performance of BERT over BM25 [58], the di-
vergence in their performance becomes notably minimal when juxtaposed with the impact of
integrating additional feedback information, especially brain signals. This indicates that per-
sonal factors extracted from user interactions are helpful for improving document re-ranking
performance. (2) With additional relevance score Rbs extracted from brain signals, the query
expansion (QE) method receives a significant performance boost. The difference between the

performance (in terms of NDCG@10) ofQEFθ it (R
bs ,Rp ) (QEFθ it (R

bs ,Rc ,Rp )) andQER
p
(QEFθ it (R

c ,Rp ))
is 5.3% (1.5%), which is significant at p = 7.8×10−16 (1.5×10−6) with a pairwise t-test. This demon-
strates that brain signals can provide additional information to existing signals (pseudo-relevance
signals or a combination of pseudo-relevance signals and click signals). (3) The proposed BERT-
based query expansion method is more effective than the conventional method RM3. This may
suggest that BERT is better at capturing a document’s semantic representation than statistical LM.
RRF Performance. Table 5 presents the document re-ranking performance in RRF. We ob-

serve similar findings as we have discussed in IRF. First, models that use user signals (i.e.,
Fθ r e (R

bs ,Rp ), Fθ r e (Rc ,Rp ), and Fθ r e (R
bs ,Rc ,Rp )) often have better performance than those that

do not (i.e., BM25, BERT and Sogou). Second, brain signals can boost RF performance, for exam-
ple, Fθ r e (Rbs ,Rc ,Rp ) leads to a performance gain of 7.4% in terms of NDCG@10 over Fθ r e (Rc ,Rp ).
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Table 5. The Document Re-Ranking Performance in RRF

Method1 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

BM25 0.3113∗ 0.3831∗ 0.4703∗ 0.5587∗ 0.5477∗
BERT (Rp ) 0.3218∗ 0.3846∗ 0.4626∗ 0.5605∗ 0.5534∗
Sogou 0.3313∗ 0.4046∗ 0.4940∗ 0.5848∗ 0.5633∗
FΘr e (R

bs ,Rp ) 0.5074∗ 0.5494∗ 0.6254∗ 0.6973∗ 0.6744∗
FΘr e (R

c ,Rp ) 0.5426∗ 0.5936∗ 0.6578∗ 0.7161∗ 0.6694∗
FΘr e (R

bs ,Rc ,Rp ) 0.6350 0.6617 0.7171 0.7693 0.8009
∗indicates the difference in performance, when compared to FΘr e (R

bs , Rc , Rp ), is significant at a level of
p < 1 × 10−3.
1R† indicates relevance score based on signals †. bs , c , and p indicate brain signals, click signals, and pseudo-
relevance signals, respectively.
Results in boldface denote the winning performance for each column.

These similar findings indicate that in both IRF and RRF, brain signals can be utilized to improve
document re-ranking performance.
Except for the similarities, we also notice differences between IRF and RRF. For example, we

observe that the performance gain achieved by adding user signals (i.e., brain signals or click sig-
nals or their combination) is larger in RRF than in IRF. Especially, in RRF, the performance gain
between Fθ r e (R

bs ,Rc ,Rp ) and F r e
θ
(Rc ,Rp ) (Fθ r e (Rbs ,Rc ,Rp ) and Rp ) is 7.4% (37.3%) in terms of

NDCG@10. However, in IRF, the performance gain between QEFθ it (R
bs ,Rc ,Rp ) and QEFθ it (R

c ,Rp )

(QEFθ it (R
bs ,Rc ,Rp ) and QER

p
) is smaller, that is, 1.5% (16.9%) in terms of NDCG@10. One possible

reason is the fact that ranking unseen documents is much more difficult than ranking historical
documents. With accurate RF signals, we can easily create the best ranking of historical docu-
ments, but may still struggle in estimating the relevance of new documents because there is no
guarantee that the new relevant documents would be similar to the historical relevant documents
we observed. However, in Section 5.3, we compare the potential improvements brought by ide-
ally combining different RF signals and observe a larger potential in IRF. Then in Section 5.4, we
propose a combination method that helps IRF exhibit comparable performance to RRF.

Answer to RQ2. We verify that the RF performance can be significantly improved when adding
brain signals into the proposed framework, that is, a performance gain of 7.4% and 1.5% in terms
of NDCG@10 in IRF and RRF, respectively.

5.3 In-Depth Analyses (RQ3)

This section explores the RF framework based on combination parameter analyses and search
scenario analyses. The combination parameter analyses utilize an ideal experiment to examine
the potential of improving RF performance by selecting ideal combination parameters in different
scenarios. It is observed that potential advancement lies in designing better combination weights
for RF signals, especially in IRF. On the other hand, the search scenario analyses present the gain
of brain signals on RF performance in several specific search scenarios. The analyses further show
that it is necessary to increase the combination weight of brain signals in those search scenarios.
The analyses in these two aspects reveal that RF performance improvement lies in designing better
combination protocols, which is elaborated in Section 5.4.

5.3.1 Combination Parameter Analyses. In the above experiment, we used a fixed selection
of combination parameters Θit and Θr e which has averagely the best performance (detailed in
Section 5.2.1). However, there is still potential for improvement in using different parameters to
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Fig. 8. The RF performance with fixed and ideal combination parameter Θ. ∗∗ indicates significant differ-
ences between RF methods using fixed and ideal combination parameters at p < 0.01 level using a pair-wise
t-test.

combine RF signals for each data sample. Hence, we conduct an ideal experiment, which adaptively
selects the ideal combination parametersΘit andΘr e to achieve the best document re-ranking per-
formance. For every data sample, corresponding to each computation in Algorithm 1 (line 10 uti-
lizing Θit and line 16 employing Θr e ), we search values for θ ,†, where ∈ it , re and † ∈ bs, c,p, from
the set 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. Subsequently, we determine the optimal combination of parameters
Θit and Θr e based on the NDCG@10 for each distinct data sample. Note that the performance of
the ideal experiment is not achievable in reality. This ideal experiment aims to compare the differ-
ence between the practical experiment results and the ideal results, which indicates the potential
of the RF framework and brain signals.
Figure 8 presents the RF performance with fixed and ideal combination parameter Θ. From

Figure 8, we observe that RF with the ideal combination parameters outperforms RF with the
fixed combination parameters in all methods in both IRF and RRF tasks. This is obvious since the
selection of the ideal combination parameter is directly based on the RF performance. Besides,
we observe that the performance difference of RF with the fixed/ideal combination parameters is
larger in IRF than in RRF. Especially, the performance improvement in IRF achieves 19.1% (0.4463

in comparison with 0.3747 in terms of NDCG@10) with the method of QEFθ it (R
bs ,Rc ,Rp ) , which

is significant at p < 1 × 10−2. This indicates that IRF exhibits greater potential than RRF when
effectively combining brain signals, click signals, and pseudo-relevance signals.
A potential explanation for this difference between IRF and RRF is their different task formula-

tion and measurements. In RRF, the combination score is directly applied to re-rank the feedback
documents (denoted as Dh in the task formulation). Hence, the combination score only needs to
reflect the differences between each other and can be used for ranking purposes. However, in IRF,
the combination score is applied to a query expansionmodule. Therefore, it is not only necessary to
maintain the ranking of documents’ relevance, but also to have reasonable values determine their
weight in query rewriting. For example, we assume that d1 and d2 are two feedback documents
and d1 is more relevant to the user’s intent. In RRF, it is no problem to assign any relevance score
to d1 and d2 which only needs to maintain that the score of d1 is higher than that of d2. However, in
IRF, relevance scores of d1 and d2 directly reflect the importance of d1 and d2 in query expansion.
Hence, setting proper relevance scores for them is much more important to avoid possible bad
cases, for example, d2 may even be harmful to query expansion.

5.3.2 Search Scenario Analyses. The RF performance in search scenarios where click signals
are missing or biased is explored in this section. It is observed that brain signals are particularly
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Fig. 9. The RF performance with & without brain signals in different search scenarios. + denotes the im-
provement (IMP.) is significant (p < 0.05) using a pairwise t-test.

beneficial when clicks are missing (analyzed in IRF as kicking off RF before any click happens is
significant in an interactive process) by estimating non-click relevance. Besides, brain signals help
cases where bad clicks happened (analyzed in RRF so that we can re-rank bad clicks for potential
search processes in the future).
Non-click Scenarios. There are good reasons not to treat all non-clicks equally, for example,

some non-clicks may contain useful information [79] and even attract revisiting behaviors [73].
In our user study, we also observe that the non-click documents are annotated with different rele-
vance scores (1 (77.6%), 2 (7.4%), 3 (4.6%), and 4 (10.2%)). Based on the above observation, we aim
to explore whether brain signals can estimate non-click relevance and kick off IRF before any click
happens. In the brain decoding experiment, we observe that the AUC performance for non-click
data samples achieves 0.675, which presents a slight decrease compared to that measured in all data
samples but is still significantly better than random. This motivates us to further explore whether
brain signals can improve RF performance when click signals are missing.
Figure 9(a) presents the IRF performance in search scenarios with different numbers of clicks.

From Figure 9(a), we observe that the performance gain between QEFθ it (R
bs ,Rc ,Rp ) and its abla-

tion QEFθ it (R
c ,Rp ) is largest in a non-click search scenario (an improvement of 3.7% in terms of

NDCG@10). In contrast, their performance differences are not significant in search scenarios with
not less than one click. As IRF is an interactive process, the number of clicks increases as the
number of examined documents increases (Pearson’s r = 0.45 (p < 1 × 10−3)). Hence, we also

observe that the performance difference between QEFθ it (R
bs ,Rc ,Rp ) and QEFθ it (R

c ,Rp ) is larger at
the beginning of the search process (an improvement of 3.3% in terms of NDCG@10 for session
length h ≤ 4) than the subsequent search process (an improvement of 0.6% in terms of NDCG@10
for session length h > 4). As the non-click search scenario accounts for a large proportion (51.5%)
and it is usually more important to quickly improve retrieval performance at the beginning of the
search process, we argue that brain signals have great potential in IRF.
Furthermore, we analyze how the IRF performances vary with the selections of combination

parameter Θit . We select θ it,bs :c :p from {3:1:1, 5:1:1, 1:5:1}, where 3:1:1 is the averagely optimal
parameter among all data samples while 5:1:1 and 1:1:5 are combinations that emphasize the im-
portance of brain signals and click signals, respectively. As shown in Figure 10(a), in a non-click
search scenario, combining brain signals with a higherweight (Θit,bs :c :p = 5:1:1) outperforms other
combination parametersΘit,bs :c :p = 3:1:1 (1:5:1) significantly at p = 2.6×10−10 (6.3×10−17) using a
pair-wise t-test. Besides, if we simply set the parameterΘit as 5:1:1 in a non-click scenario, and 3:1:1
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Fig. 10. The RF performance with different combination parameter Θ in various search scenarios. + denotes
the improvement (IMP.) is significant (p < 0.05).

in others, the IRF performance in terms of NDCG@10 can achieve 0.3781, significantly performing
better than the performance achieved by using fixed combination parameters (p = 2.7×10−10). This
reveals the potential benefit if we adaptively integrate brain signals regarding the search context.
Bad Click scenarios. Bad click indicates a document clicked by the user is irrelevant and may

lead to a poor search experience. This usually happens if the document’s snippet is attractive, but
its landing page content is unsatisfactory [46]. In our experiment, we define a “bad click” if the
relevance annotation of the landing page is 1 (“totally irrelevant”) or 2 (“irrelevant”) for a clicked
document, andwe observe that a proportion of 21.8% clicks are grouped into “bad click”. Since brain
signals are effective in inferring the relevance of the landing pages (with a binary classification
AUC = 0.703), it is interesting to further explore whether brain signals can boost RRF performance
in cases where a bad click happens.
As presented in Figure 9(b), we observe that the performance difference between

Fθ r e (R
bs ,Rc ,Rp ) and Fθ r e (R

c ,Rp ) is larger as the number of bad clicks increase. This indicates
brain signals can bring more benefits in scenarios where bad clicks often happen. Furthermore,
we explore combination parameters Θr e that averagely performs best (θ r e,bs :c :p = 5:2:0) and em-
phasize the importance of brain signals (θ r e,bs :c :p = 5:1:0) and click signals (θ r e,bs :c :p = 1:5:0), re-
spectively. From Figure 10(b), we observe that combination with θ r e,bs :c :p = 5:1:0 performs much
better than using the averagely optimal parameter θ r e,bs :c :p = 5:2:0. This emphasizes the need to
prioritize brain signals in cases where there may be negative or improper clicks. If we simply adopt
parameter θ r e,bs :c :p = 5:1:0 in search scenarios where at least one bad click happens and 5:2:0 in
others, the RRF performance in terms of NDCG@10 can achieve 0.7756 (significantly better than
using fixed parameters at p = 1.0 × 10−3 using a pair-wise t-test). Although the number of bad
clicks is actually not available in practice, this observation reveals a possibility to better combine
brain signals into RF. The studies of detecting search scenarios that potentially lead to bad click
and designing adaptable combination strategies are left as future work.

5.3.3 Case Study. Table 6 presents an example of IRF and RRF results for participant ID 1
and query “The Prophet” with task description “explore the concepts of prophet in the general
domain”. In this scenario, the participant goes through historical documents ranging from d1
to d6. For the IRF task, the objective is to re-rank the unseen documents (Du ), d7 through d12,
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Table 6. Example of IRF and RRF Results for Participant ID 1 andQuery “The Prophet” with Task Description
“Explore the Concepts of Prophet in the General Domain”

(a) The titles (translated into English) for historical docu-

ments (Dh ) and unseen documents (Du ).

Query: The Prophet

Historical documents
(Dh )

Unseen documents
(Du )

d1: The Prophet -
French, rough, crime

d7: Analysis and trans-
lation of the Prophet’s
poem

d2: Miracles of the Mo-
hammed Prophet

d8: What does the
prophet mean in the
Bible? - Sogou ask

d3: The Prophet poem
by Gibran

d9: The Prophet movie:
free online resource

d4: The Prophet - So-
gou encyclopedia

d10: The Prophet :
Gibran

d5: Fifth personality
- introduction of the
Prophet

d11: The Prophet in dif-
ferent cultures

d6: General concepts of
”Prophet”

d12: The Prophet - Chi-
nese dictionary

(b) The Estimated Base Relevance Scores for

Historical DocumentDh ,Rc , Rp , and Rbs Rep-
resent Click-Based, Pseudo-Relevance Based,
and Brain-Based Scores, Respectively

Dh Rc Rp Rbs

d1 0 0.6 0.3
d2 0 0.3 0.6
d3 0 0.4 0.3
d4 1 0.4 0.7
d5 0 0.3 0.2
d6 1 0.5 0.6

(c) The Re-Ranked Documents List for IRF &
RRF Tasks Across RF Models with and With-
out Brain Signals (w Rbs and w/o Rbs )

IRF
w Rbs d11,d12,d8,d7,d9,d10
w/o Rbs d12,d11,d8,d7,d9,d10

RRF
w Rbs d4,d6,d2,d1,d3,d5
w/o Rbs d6,d4,d1,d3,d2,d5

Documents with relevance annotations of 4 and 2-3 are highlighted in purple and light purple, respectively.
Documents with annotations of 1 are presented in black.

whereas the RRF task focuses on re-ranking the historical documents(Dh ) from d1 to d6. Table 6a
presents the document titles. Under the task description, document d4, d6, and d11 are highly
relevant (with relevance annotation 4). On the other hand, documents d2 and d8 are partially rel-
evant since they are related to the prophet in Islam and Christian, respectively. Both are subsets
of the broader concept of the prophet. Documents d12 is also partially relevant since the dictio-
nary explanation of “Prophet” may provide some useful information, though it is not concrete
enough.
Table 6b presents the estimated base relevance scores for historical documents Dh . From

Table 6b, we can observe that Rp does not align with the ground truth relevance very well, as
it is only based on the query terms encompassing broad topics. On the other hand, Rc and Rbs are
aligned with the ground truth relevance. Additionally, Rbs can provide additional information es-
pecially when two documents are both non-click or clicked. As shown in Table 6c, in the RRF task,
d1,d2,d3, and d5 are non-clicks. But RF with Rbs accurately ranks d2 at the top of them because the
user’s brain response provides additional information of non-clicks. On the other hand, the user’s
brain response provides information that the user is more satisfied with d6 regarding the clicked
documents d4 and d6. Hence, in the IRF task, RF with Rbs ranks d11 ahead of d12 because d11 is
semantically more close to the most satisfied historical document (i.e., d6) than d12.

Answer to RQ3. We demonstrate that brain signals are particularly helpful in search scenarios
involving non-click relevance estimation (in IRF) and bad click identification (in RRF). Therefore,
it is imperative to prioritize brain signals in search scenarios where click signals may be biased.
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Fig. 11. T-SNE plot of BERT embeddings of queries and their corresponding documents with different in-
tents (painted in different colors). The IRF process utilizes a query expansion module to bring the query
representation closer to the user’s current search intent.

5.4 Adaptive Combination of RF Signals (RQ4)

In Section 5.3, we have demonstrated that the importance of different RF signals varies with the
search scenarios. This indicates the potential for an adaptive RF signal combination strategy. Par-
ticularly, as shown in Figure 8, IRF has a larger improvement space than RRF since the performance
difference between the fixed signal weighting and the ideal signal weighting is huge. Motivated by
these observations, we propose and experiment with an adaptive RF signals combination method
by synthesizing user signals to learn adaptive combination weights in different search scenarios.

5.4.1 Modeling Motivation. We illustrate and summarize the modeling motivation of the adap-
tive RF signals combination method. To facilitate ease of understanding, this section inherits the
notations presented in Table 2.
As discussed in Section 5.3, setting proper combination parameters is more significant in IRF

than in RRF. Hence, we focus on applying the adaptive RF signals combination method in IRF in
this section. Before introducing the motivation of the adaptive RF signals combination method, we
present an illustration of the IRF task in Figure 11. The IRF process is designed to bring the query
representation closer to the user’s current search intent, as queries submitted to the search engine
are usually broad andmay be related to different subtopics. For instance, as depicted in Figure 11(a),
the documents corresponding to the query “prophet” are categorized into four clusters C1, C2, C3,
and C4, each representing a different subtopic. Suppose the user’s search intent is linked to the
documents in cluster C2 and shows a high RF score on document dp1. In that case, the IRF will
bring the original query representation closer to dp1. Thus, other documents (e.g., dp2) in cluster
C2 would acquire higher relevance scores than documents in other clusters.
We denote a possible search scenario as Sc = {q,Dh ,Du ,nh } in which the user has examined

h documents under query q, and the number of user’s clicks is nh (nh ∈ {1, 2, . . . ,h}). Then, we
explainwhy the combination parameterΘit,Sc = {θ it,bs,Sc ,θ it,c,Sc ,θ it,p,Sc } should be specially se-
lected for different search scenariosSc . First, to effectively utilize the documents inDh as feedback
signals, the documents’ representativeness within their respective clusters should be considered.
For example, as shown in Figure 11(a), both document dp1 and document dp2 belong to the same
document cluster C2. However, dp1 is more representative than dp2 as it is closer to the average
representation of documents in C2. Hence, the feedback information of dp1 is more valuable than
dp2 as it is more representative among documents in C2. To boost RF performance, when dp1 (dp2)
belongs to the feedback documents Dh , Θit,Sc should be assigned with a higher (lower) weight.
Second, the click probability of a document is influenced not only by its relevance but also by

ACM Transactions on Information Systems, Vol. 42, No. 4, Article 93. Publication date: February 2024.



93:28 Z. Ye et al.

ALGORITHM 2: Adaptive RF Signals Combination

Input: A search scenario Sc = {q,Dh ,Du ,nh }, where nh is selected from {1, 2, . . . ,h}; Documents
clustering D = {C1,C2, . . . ,Cqm }. Synthesis times T .

Data: All candidate combination parameters Θit = {θ it,bs ,θ it,c ,θ it,p }, where θ it,bs , θ it,c , θ it,p are
selected from {0, 0.2, 0.4, 0.6, 0.8, 1.0}; Best combination parameter Θit,Sc for search scenario Sc ,
initialized as {0, 0, 0}; Best synthesized performance Π̂ = 0.

Output: The adaptive RF combination parameters Θit,Sc .
1 for each Θit do

2 Sum of performance Π = 0;

3 for each Cj ∈ {C1,C2, . . . ,Cqm } do
4 Synthesize T possible click-based and brain-based relevance scores {Rc,Sc ,Rbs,Sc } in Sc when

assuming documents in Cj as relevant.
5 Calculate the averaged RF performance ΠCj with the synthesized relevance scores

{Rc,Sc ,Rbs,Sc } and candidate combination parameter Θit .
6 Π = Π + ΠCj

;

7 end

8 if Π > Π̂ then

9 Θit,Sc = Θit ; Π̂ = Π;

10 end

11 end

12 Return Θit,Sc ;

other independent factors, for example, some irrelevant documents may attract users’ clicks due
to the “clickbait” issue. Hence, whether the click signals are reliable and how should we balance the
combination weights of click signals and brain signals (i.e., balance θ it,bs,Sc and θ it,c,Sc ) should
depend on the search scenario Sc . Finally, the distance between documents inDh and the original
query q varies with different documents. For example, as shown in Figure 11(c), dy is more simi-
lar to the original q than dд . Hence, the weight of θ it,p,Sc should be set differently depending on
the representation difference between the documents in feedback documents Dh and the original
query q.

5.4.2 Overall Pipeline. As shown in Algorithm 2, the adaptive RF signals combination
method generates adaptive combination parameters Θit,Sc for a possible search scenario Sc =
{q,Dh ,Du ,nh }. The method includes the following process: First, we cluster the documents D
corresponding to the query q into qm clusters {C1,C2, . . . ,Cqm }. Second, for each document clus-
ter N , we assume that documents within this cluster are related to the user’s search intent and
synthesize the user’s possible click-based and brain-based relevance scores {Rc,Sc ,Rbs,Sc } under
this assumption. Finally, with the synthesized user signals {Rc,Sc ,Rbs,Sc }, we search for the com-
bination parametersΘit with the averagely best RF performance, which is denoted asΘit,Sc . With
the above process, we generate the adaptive RF combination parametersΘit,Sc that can be applied
to combine the actual user signals during the search process.

5.4.3 Preparation. We cluster the documents D corresponding to the query q into qm clusters
{C1,C2, . . . ,Cqm } following Liu et al. [43]’s method. Liu et al. [43] assume that a query may contain
several subtopics and adopt a multi-step procedure to generate the subtopics and classify each doc-
ument into one of the subtopics with manual effort. Examples of the document clustering results
are presented in Figure 11, in which each document is visualized with its BERT embeddings. As the
document clustering method is not the concentration of this article, we leave the exploration of
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other automatic subtopic mining baselines with competitive performance or unsupervised settings
as future work.

5.4.4 Click-Based and Brain-Based Relevance Score Synthesis. For a search scenario Sc =
{q,Dh ,Du ,nh }, we synthesize the user’s possible click-based and brain-based relevance scores
Rc,Sc and Rbs,Sc for each document in Dh . We assume that query q is related to qm search in-
tents {Si1, . . . , Siqm } in which Si j is related to one of the cluster Cj (j ∈ {1, . . . ,qm }). Then we
iterate over every cluster Cj and synthesize N (set as 20) user behaviors on each iteration. The
synthesis will generate click-based relevance scores Rc,Sc and brain-based relevance scores Rbs,Sc

for each scenario Sc . Note that we simply assume that all search intents Si j corresponding to a
given query have uniform possibilities. Hence, the synthesis times are set to the same number N
for each document cluster Cj . This could be changed if we have more prior information regarding
the distribution of different search intents.
When iterating on the jth cluster Cj , the click-based relevance score for the ith document, de-

noted as r c,Sci , is synthesized following the Bernoulli distribution with a constraint of their sum is
nh :

∀i, r ci , Sc ∼
⎧⎪⎨
⎪
⎩

Bernoulli (pc,r el ), if di ∈ Cj
Bernoulli (pc,ir el ), if di � Cj subject to

h∑

i

r c,sci = Cih , (6)

where pc,r el (pc,ir r el ) is a parameter inferred from the distribution of the brain-based relevance
scores in the user study’s relevant (irrelevant) documents with an interval estimation, that is,pc,r el
(pc,ir r el ) indicates the possibility that a relevant (irrelevant) document is clicked. The synthesis
ensures that each r c,Sci follows the Bernoulli distribution, and the synthesized total number of
clicks in Dh is nh . This constraint is due to the number of total clicks being nh in a given search
scenario Sc . To solve this constrained distribution in practice, we simply keep synthesizing a series
of r c,Sci (i ∈ {1, . . . ,h}) following the Bernoulli distributions until their sum is nh .
On the other hand, the ith document di ’s brain-based relevance score rbsi is synthesized follow-

ing a normal distribution:

rbsi ∼
⎧⎪⎨
⎪
⎩

Normal (μbs,r el ,σbs,r el ), if di ∈ Cj
Normal (μbs,ir el ,σbs,ir el ), if di � Cj , (7)

where μbs,r el and σbs,r el (μbs,r el and σbs,ir el ) are parameters inferred from the distribution of the
brain-based relevance scores in the user study’s relevant (irrelevant) documents with an interval
estimation.

5.4.5 Optimal Combination Parameters Searching. After the synthesis process, for a search sce-
nario Sc = {q,Dh ,Du ,nh }, we synthesize N corresponding Rc and Rbs for every document cluster
Cj (j ∈ {1, . . . ,qm }). Then we search for the optimal combination parameters Θit,Sc and Θr e,Sc ,
respectively. For all selections of parameters, that is, θ it,bs,Sc , θ it,c,Sc , and θ it,p,Sc selected from
{0, 0.2, 0.4, 0.6, 0.8, 1.0}, we compute the ranking-based evaluation metrics Π(Rдu ,Rit ), where Rдu

is evaluated by assuming documents belong to Cj (j ∈ {1, . . . ,qm }) as relevant:

r
дu
i =

⎧⎪⎨
⎪
⎩

1, if di ∈ Cj
0, if di � Cj . (8)

Then we select the optimal combination parameters which achieve the averagely best RF per-
formance (Π is set as NDCG@10 in our experiment) among all N · qm synthesized user signals Rc

and Rbs for all document clusters Cj (j ∈ {1, . . . ,qm }). Note that we could not acknowledge what
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Table 7. The Document Re-Ranking Performance in IRF, where Θit and Θit,Sc Indicate Fixed and
Adaptable Combination Parameters, Respectively

Method1 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

QEFΘit (R
c ,Rp ) 0.2842∗ 0.2952∗ 0.3124∗ 0.3690∗ 0.3708∗

QEFΘit (R
bs ,Rc ,Rp ) 0.3056∗ 0.3124∗ 0.3285∗ 0.3845∗ 0.3826∗

QEFΘit,Sc (R
c ,Rp ) 0.2948∗ 0.3024∗ 0.3191∗ 0.3747∗ 0.3744∗

QEFΘit,Sc (R
bs ,Rc ,Rp ) 0.3126 0.3258 0.3505 0.4183 0.4061

1R†indicates relevance score based on signals †. bs , c , and p indicate brain signals, click signals, and pseudo-

relevance signals, respectively. ∗ indicates a significant performance difference when comparing QEFΘit (R
bs ,Rc ,Rp )

to QE
F
Θit,Sc

(Rbs ,Rc ,Rp ) , with a significance level of p < 1 × 10−3.
Results in boldface denote the winning performance for each column.

Table 8. The Document Re-Ranking Performance in RRF, where Θit and Θit,Sc Indicate Fixed and
Adaptable Combination Parameters, Respectively

Method1 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

QEFΘit (R
bs ,Rc ,Rp ) 0.6350 0.6617 0.7171 0.7693 0.8009

QEFΘit,Sc (R
bs ,Rc ,Rp ) 0.6350 0.6622 0.7170 0.7694 0.8004

1R†indicates relevance score based on signals †. bs , c , and p indicate brain signals, click signals, and pseudo-
relevance signals, respectively.The utilization of adaptable combination parameters Θr e,Sc instead of fixed
combination parameters Θr e does not yield any significant differences.
Results in boldface denote the winning performance for each column.

subtopic a search engine user is interested in advance when they submit the query. Hence, the op-
timal combination parameters that have average best performances for all subtopics are selected
by the proposed method.

5.4.6 Experimental Results. Table 7 presents the experimental results of IRF using adaptive RF
signals combination methods and fixed combination methods. From Table 7, we observe that us-
ing adaptive RF combination methods is beneficial to IRF performance. This finding verifies our
analyses and findings in Section 5.3. Furthermore, we observe that the performance improve-
ment brought by brain signals differs depending on whether applying the adaptive RF signals
combination method or not. Specifically, the additional improvement brought by brain signals is

1.5% (QEFθ it (R
bs ,Rc ,Rp ) in comparison withQEFθ it (R

c ,Rp )) in terms of NDCG@10 when using fixed

combination parameters. On the other hand, the performance difference ofQEF
it,Sc
θ

(Rbs ,Rc ,Rp ) and

QEF
it,Sc
θ

(Rc ,Rp ) is 8.8% in terms of NDCG@10. This indicates that the adaptive RF signals combina-
tion method can further exploit the benefits brought by brain signals in the context of RF.
However, we observe that adopting the same adaptive RF signals combination method in RRF

leads to no significant performance difference, as shown in Table 8. For example, the performance
difference between F it,ScΘ (Rbs ,Rc ,Rp ) and F itΘ (Rbs ,Rc ,Rp ) is not significant in terms of NDCG@10,
whereΘit,Sc is the adaptive combination parameter for RRF. This is due to the potential of the adap-
tive RF signals combination method is limited in RRF, as detailed in Section 5.3.1. The exploration
on how to better utilize multiple RF signals in RRF is left as future work.
Moreover, the experimental results show the possibility of improving RF performance by adap-

tively adjusting the combination weight of different RF signals. However, the proposed algorithm
requires document clustering for each query. In our experiment, the selected queries are broad and
sometimes ambiguous, and the document clusters are usually related to the user’s different search
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intents. Therefore, whether this algorithm is suitable for other types of real-world queries remains
unknown. The exploration of designing more general algorithms to improve RF performance is
left as future work.

Answer to RQ4. We devise an adaptive RF signals combination method to re-weight the impor-
tance of various RF signals (brain signals, click signals, and pseudo-relevance signals) according to
the search scenarios. We observe significant performance improvement with the proposed method.
This verifies the analyses in Section 5.3 and illustrates that brain signals can boost IRF performance
with an improvement of 8.8% in terms of NDCG@10.

6 CONCLUSIONS AND DISCUSSIONS

6.1 Summary of Contributions

In this article, we propose a novel RF framework that combines pseudo-relevance signals, click
signals, and brain signals for document re-ranking. Based on the proposed framework, we explore
and verify the effectiveness of brain signals in the context of RF with different settings, that is, IRF
and RRF. In addition to analyzing the overall performance improvement brought by brain signals,
we also dive into several search scenarios where click signals are missing or biased. We observe
that brain signals are more helpful to IRF at the beginning of the search process before any clicks
are received. We also demonstrate that brain signals can be applied to identify “bad click” and
improve the performance of RRF. Besides, we further analyze how the RF performance varies with
the combination weights across different search scenarios. We demonstrate that the importance
of brain signals and click signals could vary in different scenarios. Based on this observation, we
then propose to adaptively combine different RF relevance signals based on search scenarios, which
leads to additional performance improvement.

6.2 Discussions and Applications

With the development of neurological devices, several applications have emerged to improve the
performance of interactive information systems with BCI, for example, personalized image edit-
ing [17], crowdsourcing [18, 22]. In IR, researchers also explore the possibility of establishing a
pure BCI-based search system (which does not require mouse or keyboard). This opens up new
avenues for understanding user intentions and enhancing search quality, while also highlighting
potential challenges and concerns associated with brain-based RF.

6.2.1 Privacy Considerations. The potential of leveraging brain responses in information sys-
tems is accompanied by significant privacy concerns, particularly regarding the possible abuse of
data gathered from BCIs. While the capabilities of anonymous technology in the field of brain sig-
nal processing are a cause for concern [10], recent advancements have tried to mitigate this issue
by edge computing, where users have the right to decidewhether to upload data to the cloud.While
our research does not delve into the intricacies of these technologies, it provides key insights into
the privacy landscape: On the one hand, our findings underscore that non-deep brain decoding
models with rapid inferencing ability can yield substantial results, thus accentuating the viability
of edge computing. Additionally, even without user-specific data for model training, cross-subject
models can adequately support RF, particularly in cold-start situations. On the other hand, we ob-
serve that not every search scenario requires brain-based RF, but the importance of brain signals
becomes paramount in specific search contexts. As such, users can opt to employ it selectively for
tasks of higher difficulty.
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6.2.2 EEG Availability. Currently, wearable EEG devices are applied in tandem with VR tech-
nologies [65] and in services catering to the differently-abled [12]. In IR-related research, functional
information systems utilizing BCI have been developed. A notable instance is the work by Chen
et al. [12], who crafted a fully operational BCI-integrated search system that eliminates the need
for traditional input devices such as keyboard and mouse. The decrease in cost and increase in
portability of BCIs have been recognized as significant factors when applying BCI to IR research
and daily applications. Recently, Maiseli et al. [48] addresses the affordability and portability of
BCIs, specifically mentioning the emergence of low-cost BCIs for everyday use, highlighting the
progress towards making these technologies more accessible to the general public. This research
elucidates the ongoing efforts to reduce the cost and enhance the portability of BCIs, which in turn,
is expected to significantly broaden the spectrum of their application scenarios, including in the
field of IR. What we add on top of existing BCI research is that we reveal another benefit of BCI
for information systems, that is, RF, besides directly controlling information systems. The closed
loop between the user and the system can be built since the system can better understand the user
with RF model.

6.2.3 Comparison with Conventional User Signals. Since traditional interaction paradigms can
only capture indirect user feedback, biases in these behaviors have been long-standing IR research
problems. To address these challenges, we propose utilizing brain signals as a unique form of
“explicit feedback”. Concurrently, we identify specific search scenarios in which biases in clicks
may adversely affect RF performance, highlighting search scenarios where brain signals can offer
significant advantages.

6.2.4 Recommended Practices for EEG-Based Human Study. In our study, we aimed to imple-
ment settings that closely resemble real-world scenarios. For instance, instead of using random
data splitting as done in prior research, we adopted a split-by-timepoint splitting to simulate the
cold start situation that new users experience when they begin using our system. Furthermore,
we conducted sensitivity analyses to demonstrate the impact of EEG pre-processing methods on
relevance prediction performance. Our study provides reliable evidence for the practical use of
EEG signal processing in IR scenarios.

6.2.5 Application Scenarios. Interactive IR: We reveal the possibility of establishing more in-
teractive IR systems with brain signals by devising a novel RF framework. This gives insights into
existing BCI-based search systems, in which users can not only search with their thoughts (with-
out hand-based interactions) but also improve their search quality with a novel human-machine
loop based on RF.
Human research for IR: It has been widely recognized that RF is not only a potentially use-

ful technique for improving search quality but also an effective tool to investigate how people
search [64]. The combined relevance score can not only be utilized for document re-ranking (IRF
and RRF), but also help us understand how people actually interact with systems. Especially in
search scenarios in which conventional RF signals may be biased, where brain signals are verified
as a helpful substitute to infer relevance.
Human-Computer Interaction (HCI) applications: In addition toWeb search scenarios, our

RF framework can provide inspiration to several vertical applications related to IR. For example,
a conversational chatbot may benefit from RF, especially in cases where users have difficulty ex-
pressing their thoughts in plain text but have ideas about the returned content [36]. Note that our
proposed method for combining various RF signals is not restricted to combining brain signals
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with click signals and pseudo-relevance signals in Web search scenarios. Hence this RF method
can combine with other types of user signals and broader search applications and HCI products.

6.3 Limitations and Future Work

We evaluate the feasibility of combining brain signals and conventional feedback signals for two
typical RF tasks, that is, IRF and RRF, for the first time. The experiments and analyses not only
demonstrate that brain signals are feasible sources for RF, but also illustrate several search scenar-
ios in which brain signals are more helpful to existing RF. Nonetheless, our research is not without
its limitations, which may guide future work as follows:

6.3.1 Selection of Search Tasks. We derived our search tasks from TREC and iMine, character-
ized by their typically short and broad-topic queries. Given that RF does not universally benefit
all queries and search scenarios [4], we prioritized these queries due to their heightened poten-
tial for RF advancements compared to more specific ones. This makes them a reasonable starting
point to investigate the impact of brain signals on such standard queries. Future work may delve
into a wider variety of query types and their synergy with brain signals in RF. Additionally, our
approach extends beyond conventional query-based searches. The potential of our proposed RF
framework also lies in its applicability to emerging search systems, like conversational systems,
where traditional documents transition into diverse system response formats.

6.3.2 User Study Settings. First, our user study adopted a relatively strict design to mitigate po-
tential confounders affecting brain signal collection. For example, complex search behaviors in real
life such as revisit [73], and comparison [84] are not considered in our study to avoid uncontrolled
bias. This constraint is not unique to our approach but is inherent in any behavioral signals [5]
used for search performance evaluation. Nevertheless, our work pioneers the integration of brain
signals in RF within web search contexts. Contrasted with existing NeuraSearch literature [53, 61],
our study employs more authentic queries and Web pages sourced from prevalent commercial
search engines. The challenge of navigating intricate scenarios with unfettered user behaviors
remains a prospect for subsequent studies.

6.3.3 Comparation with More User Signals. In IR research, apart from click signals and brain
signals, there are also user signals such as eye-tracking and mouse movements. However, exist-
ing research has shown that eye-tracking and mouse movements are not accurate enough since
they are also indirect probes of user signals [49]. The main difference between brain signals and
conventional signals is that brain signals provide direct feedback on a person’s consciousness and
thoughts. The only concern lies in the noise introduced during brain signal collection and decod-
ing, which can be further mitigated through improved equipment and data quality. In our study,
we only compare brain signals with pseudo-relevance signals and click signals since they are the
most commonly used signals in RF. However, the idea of integrating eye movement data and more
modalities in a future investigation is intriguing and holds merit.
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