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Abstract. Search engine click-through data is a valuable source of implicit user
feedback for relevance. However, not all user clicks are good indication of rel-
evance. The clicks from search experts, who are more successful searching a
query, tend to be more reliable in indicating document relevance than those of
the non-experts. Therefore, knowing the expertise of search users is helpful to
better understand their clicks. In this paper, we propose two probabilistic mod-
elings of user expertise in the environment of web search. Inspired by the idea
of evaluation metrics in classification, search users are treated as classifiers and
result documents are viewed as the data samples to classify in our models. A
click implies that the document is classified as relevant by the user. Therefore,
the expertise of a user can be measured by how well he/she classifies the docu-
ments. We carry out experiments on a real-world click-through data of a Chinese
search engine. The results show that modeling user expertise helps the click mod-
els with relevance inference, which also implies that our models are effective in
identifying the user expertise.
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1 Introduction

Search engines collect a large amount of user interaction logs everyday when people
search the Web. Among these logs, click-through data has drawn a lot of attention be-
cause of the relevance information embedded in it. Although the click data might be
noisy, it can still reflect users’ relevance judgments towards the documents to certain
extent. Previous studies [8, 1] have presented that the relevance preferences can be ex-
tracted from the click-through data and the quality of the extracted result is even com-
parable to human annotations. Such implicit relevance information in click logs can be
used to evaluate and improve the search engine performance. A big advantage of using
user clicks for relevance is that they can be collected at low costs and the scale is far
big than that the human annotation can do. Therefore, a lot of methods are proposed in
an attempt to mine relevance from clicks [5—7, 2]. The core idea of these methods is to
use the wisdom of the crowd in the clicks.
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However, not every click is equally informative to indicate relevance for various
reasons. During a search, some users may used to click multiple documents at a time
without careful selection; some users are bad at making relevance judgment so their
clicked documents may not be as relevant as they thought. Generally, the experienced
search users are more likely to accomplish a successful search while the novices may
have trouble finding the relevant documents. White et al. [13] investigated the behav-
ioral variability among search users. The results showed that the users had considerable
differences in some key aspects of search, such as querying, browsing and clicking. It
is also reported that the users with domain knowledge have larger percentage of suc-
cessful in-domain search sessions [14]. Being aware of the diversity of search users, it
is essential to take user expertise into consideration to better understand the clicks.

It is a big challenge to characterize the expertise of a search user because it is hard
to define an expert in the Web search scenario. The previous studies used some simple
ways to identify search experts. For example, White et al. [12] considered advanced
users in Web search to be those who had issued queries with advanced syntax. As to
domain search experts, the proportion of expert sites (assessed by domain experts) that
a user visited was used to approximate the expertise [14]. However, these methods are
neither accurate nor formal enough to be widely adopted.

In this paper, we propose two probabilistic methods to define and model the search
expertise for search users. Our models assume that a click event depends on both the
document relevance and the user’s expertise, which most click models usually ignore.
The process that a user makes relevance judgment documents is viewed as a classifi-
cation task. User is the classifier and the documents are data samples to classify. The
expertise of a search user can be then measured by the classifying performance. In our
experiment, the parameters of expertise and relevance are estimated with a large-scale
click log from a Chinese search engine. We also carry out a series of experiments to
evaluate the effectiveness of the proposed models.

2 Related work

Previous studies have shown that the click-through data are useful but meanwhile noisy.
Clicks from different search users may not be equally informative in relevance indica-
tion. Search users who issued queries with advanced syntax were reported to be more
successful in their search sessions by [12]. In that study, the expertise of a user is viewed
as the percentage of his/her queries that include advanced syntax. The experiment re-
sults showed that the average relevance of the clicked documents by the advanced users
(i.e. users that issued queries with advanced syntax) are higher than that of the non-
advanced users. And the more advanced syntax one uses, the more successful his/her
searches are. Although this definition for user expertise was simple, it revealed the con-
nection between user expertise and quality of the clicks.

Besides search expertise, it was reported that domain expertise also has impact on
user clicks [14]. In their work, the affection of domain expertise to users’ search behav-
ior was studied in four specific domains (medicine, finance, law and computer science).
In each domain, the users were separated into experts and non-experts based on whether
they had visited one or more of the pre-defined expert sites. The results showed notable



difference between domain experts and non-experts with respect to search behavior.
More concretely, domain experts were found to be more successful when searching in-
domain queries; the pages visited by domain experts had deeper technical depth than
those visited by non-experts and so on. Building upon the analysis, a classifier was
trained to predict whether a user is domain expert using his/her search interaction fea-
tures. In their work, domain expertise was defined to be binary and it did not study how
the expertise is related to the relevance of clicks.

There are also studies on personalized click model that treat users differently when
inferring document relevance. For example, Shen et al. [10] used collaborative filtering
technique to capture users’ interested domains. In their personalized click model, it
was assumed that the users have different domains of interests and latent factors were
used to represent one’s interests. The better the topics of a document match a user’s
interested domains, the higher the click probability. Another noise-aware click model
[3] was proposed to measure the probability of a click being noisy by using both user
class features and context class features. A variable N was introduced into the model,
indicating whether the context is noisy. Then they made different click assumptions for
different value of N. These two studies have considered the user level features when
modeling clicks, but the influence of search expertise was still not taken into account.

3 Models

Our aim of introducing search expertise into click modeling is to help improve the
relevance inference. Thus, the search expertise of a user should be able to reflect how
well the user can make the right relevance judgment of a given document. When a user
searches a query, a click indicates that he/she thinks the document is relevant and a skip
(no click after examination) indicates an irrelevant judgment. If we view the this process
of user making relevance judgments as a classification task, then the documents are the
data samples to classify and the user is the classifier. Relevant documents correspond
to positive samples and irrelevant documents correspond to negative samples. The click
on a document indicates that the user classifies this document as relevant. Therefore,
the expertise of a user is actually the performance of the classifier. There are many
evaluation metrics for classifiers and we use accuracy and confusion matrix to measure
the expertise in this paper.

3.1 Accuracy Model

Accuracy is a widely used evaluation metric in classification. It is calculated as the
proportion of the correctly classified samples. In our application scenario, let a,, be
the accuracy of user v making the right relevance judgment, which is a real-valued
parameter ranging from O to 1. For the i*" document in the search result page, u will
make the right relevance judgment with probability a,,. It can be formally denoted as:

where C;, R;, and E; are binary variables. C; indicates whether the document is clicked;
R; indicates whether the document is relevant; and F; indicates whether the document



is examined by u. Thus, if u has examined the i** document, the probability of the
document being clicked can be written as:

= > P(R)P(C;=1|R;, E; =1,u)
quG{O,l}
=ria, + (1 —7)(1 —ay)
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where r; is the probability that the i*” document is relevant. It means that a click hap-
pens under two situations: (1) the document is relevant and the user makes right rel-
evance judgment; (2) the document is irrelevant and the user makes wrong relevance
judgment. We call this model the accuracy model and a,, is the expertise of user w.

3.2 Confusion Matrix Model

Confusion matrix is another popular evaluation metric in classification. Unlike accu-
racy, it measures the classification accuracy for positive samples and negative samples
separately. It is presented in the form of a matrix called the confusion matrix, as shown
in Eq. 3. The element p;; in the matrix is the probability that class i being classified as
class j by the classifier. In our problem setting, p1; denotes the probability that a rel-
evant document being classified as relevant (clicked) and pgq is the probability that an
irrelevant document being classified as irrelevant(skipped). Therefore, in this confusion
matrix model, the expertise of user u is represented by the matrix M. The larger the
values on the diagonal, the higher the user’s expertise.

_ | Poo Po1 }
M, = 3)
" {Plfo P11
The values in each row of the matrix sum up to 1. Therefore, one’s expertise can be

represented by the following two parameters instead of the whole matrix.

P}y =P(C;=1R;=1,E; =1,u)

Pl = P(C; = O[R; = 0, E; = 1,u) @)
For user v, the click probability of the i*"* document after examination becomes
s 17
P(Ci‘Ei:]-au)T: |:1_Zr,:| M, )

As there are two expertise parameters, pg, and pf;, for each user. This confusion matrix
model is more flexible than the accuracy model. And it can degenerate to the accuracy
model if we let p11 = pgo.

3.3 Baseline model

To evaluate the performance of the above two proposed models, we use a baseline
model for comparison. Like most of the existing click models, this baseline model does
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Fig. 1. The graphical representations of the models. (a) is the baseline model; (b) is the accuracy
model and (c) is the confusion matrix model. R is the hidden variable for relevance; E is the
hidden variable for examination; A is the hidden variable for expertise and C' denotes click.

not take user expertise into consideration. Thus the click probability of a document after
examination only depends on the document relevance.

P(C; =1|E; =1,u) = P(R; = 1) (6)

This assumption is widely used in click models such as [5, 7, 6]. It treats all the clicks
as relevance indication.

3.4 Graphical representations

In the baseline model, R and F are the hidden variables and C' can be observed from the
data. The difference between our models and the baseline model is the hidden variable
A which indicates whether the user made the right relevance judgment. Our models
treat a click as relevance indication only when the user made the right judgment on
this document. We can demonstrate the idea of the three models more clearly with the
graphical representation in Figure 1. Figure 1(a) is the baseline model with the depen-
dencies of a regular click model. (b) represents the accuracy model in which A is added
as a dependent factor of C'. (c) denotes the confusion matrix model in which another
dependency is added from A to R, indicating that users behave differently on the rel-
evant documents and the irrelevant documents. All these models are in probabilistic
framework and can be solved in an efficient way.

4 Parameter Estimation

Having the different search expertise modelings proposed above, we now introduce how
the parameters are estimated in these models. As the probability P(C;|E;, u) has been
derived for each model, we can compute the likelihood of the observed click-through
data. For a search session!, the commonly used linear traversal hypothesis in click
models assume that users examine the documents one by one from top to bottom of a

! Here a session is defined as the activities of a user searching a query in a short period of time.
In this paper, we set the interaction timeout to 30 minutes.



search result page. The examination hypothesis [4] assumes that users have to examine
a document before clicking on it. These two hypotheses together implies that all the
documents before a click have been examined. But for the documents after the last
click in a session, we do not know whether they have been examined or not. Some
click modes, such as [5, 6], use more complex assumptions to model the examination
probabilities of the documents in all positions. However, considering that the focus of
this paper is the influence of user expertise in modeling clicks, we decide to use the
simplest examination hypothesis to reduce the influence of the other affecting factors.
Therefore, we assume that in a search session, the user examined all the documents
that ranked before the last clicked position. The likelihood of a search session s is then
calculated as:

N
L(s) = [[ P(Ci = 1|E; = 1,u)" x P(C; = 0|E; = 1,u,)' = 7)
i=1

where Nj is the last clicked position in session s and u, is the user that conducted the
session. The log-likelihood of the whole session observations is:

1(S) =) log L(s) (8)

ses

where S is the set of all sessions. To estimate the unknown parameters, we maximize
the log-likelihood in Eq. 8 for each model.

Baseline model: The baseline model has no expertise parameters. The only param-
eters to estimate are the relevance parameter {r}. By maximizing Eq. 8, the relevance
of document d can be estimated as:

B #Click on d
~ #Impression of d before position [

®)

T

where [ is the position of the last click of each session that includes document d. The
denominator calculates how many times d has appeared before a clicked document in all
related sessions. 4 can be computed very efficiently by scanning the click-through data
only once. In fact, this estimated relevance is exactly the same as that in the dependent
click model proposed by Guo et al.[7], which was reported to be a very effective and
efficient model in estimating relevance.

Accuracy model: In the accuracy model, C' is dependent on two hidden variables A
and R. The click probability P(C; = 1|E; = 1,u) becomes a sum of several parts and
the MLE method can no longer lead to closed form solution in parameter estimation.
Therefore, the expectation-maximization algorithm (EM) is used here. In order to have
a better control on the value of the estimated expertise parameters, beta distribution is
used as conjugate prior for the expertise parameters. In an EM iteration, the parameters



are updated in the following way:
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where S is the set of sessions that include document d; S, is the set of sessions of

user v and N, is the number of the examined documents in session s; I is the indicator

function; o and 3 are the parameters of the beta prior. When o = 1, 8 = 1, the pdf of
beta distribution becomes a constant value (i.e. equal to using no prior).

Confusion matrix model: For the confusion matrix model, the capacity of a user
making the right relevance judgment is represented by two parameters p11 and pgo,
while in the accuracy model we only use one parameter. p1; and pgg are independent
from each other. The estimation of the parameters using EM algorithm is similar to that
in the accuracy model so the details are not listed here due to the space limitation. For
simplicity, we let p11 and pgg share the same beta prior.

During the training of accuracy model and confusion matrix model, we run the EM
algorithm for a fixed number of 20 iterations. The EM algorithm has a fast convergency
speed so that after 20 iterations, the change ratio of the objective function is smaller
than 0.1%, which is regarded as a signal of convergence.

S Experiments

5.1 Experimental settings

A sampled click log of a commercial Chinese search engine in November 2011 is used
for our experiments. The click log records the interaction information of users with the
search engine, such as user’s cookie ID, session ID, query string, presented documents,
clicked documents and timestamps. For the protection of users’ privacy, all sensitive
attributes are processed into numbers. A user is identified by cookie ID. As some users
might have cleaned the cookie during the period that the data was collected, we removed
the users who have fewer than 10 distinct queries to avoid noise when estimating the
parameters of user expertise. After that, we finally obtain 23,534 unique users, 253,045
unique queries, 1,034,598 query sessions, 1,173,426 clicks and 476,737 skips. For each
user, all his/her sessions are sorted by timestamp and we split them into two parts at the
ratio of 4:1 for training and testing respectively.

For the prior, « and 3 together control the shape of beta distribution. In the training
phase, we try different combinations of « and /3 and the best performance is obtained
when a = 2, 8 = 2 with respect to the estimated relevance. Therefore, we only use the
results of @ = 2, 8 = 2 for demonstration in this section.



5.2 Perplexity

Perplexity is an evaluation metric often used by click models [4]. It measures how well
the predicted probabilities fit the real data. Smaller perplexity means better performance
and the ideal value for perplexity is 1. We calculate the perplexity for all models on both
training set and test set. Table 1 shows the results. The accuracy model (AM) without
prior and the confusion matrix model (CMM) without prior have close perplexity to-
gether with the baseline model on test set. We notice that the models with prior have
worse perplexity. The reason is that perplexity is very similar to likelihood, which is
the optimization objective of the models without prior. When the posterior becomes the
optimization objective for the models with prior, the perplexity is no longer optimized.
Therefore, it is not surprising that CMM without prior obtains the best perplexity given
that CMM has greater flexibility than AM. Although the models without prior perform
better in perplexity, it does not mean they are better in inferring relevance. In fact, per-
plexity can not directly reflect the quality of the estimated relevance. Wang et al. have
pointed out that perplexity might not be a trustable metric for click models because it is
defined based on the absolute value of the predicted probabilities and thus is sensitive to
scaling [11]. Therefore, we use perplexity as a reference but it is not the main evaluation
metric in this paper. For the evaluation, we will focus on the quality of the estimated
relevance, which is the aim of modeling the clicks.

Table 1. Perplexity of different models.

Training set Test set
all click | skip all click | skip
1,339,9121950,934(388,978|222,275(165,758|56,517

Baseline 1.203 1.934 | 1.380 | 1.302 | 2.779 | 1.579
AM(no prior) 1.206 | 1911 | 1.379 | 1.304 | 2.795 | 1.583
AM(a=2,8=2) 1.760 | 2.044 | 1.838 | 1.752 | 2.085 | 1.831
CMM(no prior) 1.201 1.900 | 1.372 | 1.299 | 2.795 | 1.576

CMM(a =2,5=2)| 1.710 | 2.141 | 1.825 | 1.703 | 2.208 | 1.820

5.3 Effectiveness of the estimated relevance

To evaluate the effectiveness of the estimated relevance, we use the manually labeled
relevance as ground truth. To create the relevance labels, we first divide all queries
into seven groups according to log-frequency of the query and randomly select 30
queries from each group. For the 210 selected queries, the related documents (clicked
or skipped in a session) are then extracted from the click log, which gives us 1,133
unique query-document pairs. We manually label all the query-document pairs with
three relevance scales: 2=very relevant, 1=relevant, O=irrelevant.

As the estimated relevance is supposed to help improve the search engine ranking
performance, the relative order of relevance of document pair can be used to evaluate
the effectiveness of the estimated relevance [1]. The idea is that for a document pair



(di,d;) under a query, if d; is more relevant than d;, the estimated relevance of d;
should be higher than the estimated relevance of d; as well. With the relevance labels,
we investigate the agreement between the estimated relevance preference pairs and the
labeled relevance preference pairs. Let r; be the estimated relevance of d; and I; be the
labeled relevance of d;. A concordant pair means that r; > r;,1; > I orry < rj,l; <
Ui Ifry >r;,l; <ljorr; <rj,l; > 1, itis adiscordant pair. Otherwise, it is neither a
concordant nor a discordant pair. The more concordant pairs a model obtains, the better
the model is in estimating relevance.

Table 2. Relevance preference pairs

#concordant|#discordant|precision| %improve over
pair pair baseline
baseline 780 449 63.5% -
AM(no prior) 778 451 63.3% -0.3%
AM(a = 2,5 =2) 862 367 70.1% 10.5%
CMM(no prior) 767 462 62.5% -1.6%
CMM(a =2,8 =2) 817 412 66.5% 4.74%

Table 2 shows the number of concordant and discordant relevance preference pairs
obtained by each model. Precision is defined as the proportion of concordant pairs. We
observe that without prior, AM and CMM are even worse than the baseline model which
does not consider user expertise at all. It indicates the necessity of introducing prior.
With a proper beta prior o = 2, 5 = 2, both AM and CMM gain good precision. The
precision of the accuracy model even reaches 70.1%, which improves the baseline by
10%. The confusion matrix model also improves the baseline by 4.7%. This fact verifies
the effectiveness of our models in estimating relevance. We notice that the confusion
matrix model, which has more modeling flexibility, fails to outperform the accuracy
model. We will analyze the reason in next section by investigating the estimated user
expertise parameters.

The inferred relevance preference pairs are useful in improving the search engine
ranking performance. They can either be used as training samples in the pairwise learn-
ing algorithms, or they can be used directly to re-rank the search results. When used as
training samples, the automatically generated preference pairs are of particular advan-
tage because they are faster and easier to get compared to manual relevance labeling.

5.4 Effectiveness of the estimated user expertise

Besides document relevance, our models estimate the expertise of users as well. In
this section, we evaluate how close the estimated expertise parameters are to the ground
truth. Before the evaluation, we first need to obtain the ground truth of a user’s expertise.
With the labeled relevance in the previous section, we can calculate the ground truth
of the expertise parameters using their definitions. Let L be the set of labeled query-
document pairs, for a user u, the ground truth of a,, in the accuracy model is calculated
as the proportion of correct click/skip decisions made by u on the all documents in



L; the ground truth of p;; and pgg are also calculated in L according to their own
definitions. To avoid noise, we do not evaluate the users with fewer than ten query-
document pairs in L. We note that the calculated ground truth will be unavoidably
biased to certain extent because of the limited size of L . However, this has been the
best ground truth we can obtain with the data we have.

For each user u, we now have the estimated a,,, pjy, g and the calculated ground
truth. We use multiple metrics to measure the gap between the estimated value and the
ground truth, such as correlation, Kendall’s 7, mean absolute error (MAE) and rooted
mean square error (RMSE). Table 3 shows the results.

Table 3. Comparing the estimated expertise parameters with the ground truth

Kendall’s 7|correlation] MAE | RMSE
AM-a,(a = 2,8 = 2) 0.425 0.609 0.277 0.298
AM-a,, (no prior) 0.413 0.407 0.129 0.201
CMM-p11(a=2,8=2)| 0.395 0.591 0.280 0.299
CMM-p11(no prior) 0.419 0.512 0.113 0.182
CMM-poo(a = 2,5 =2)| 0.272 0.540 0.162 0.201
CMM-pgo(no prior) 0.321 -0.077 0.516 0.556

Kendall’s 7 [9] measures the similarity of the orderings of the data ranked by two
quantities. We find that all the models obtain a positive 7. The correlation coefficient
measures the dependence between two variables. Except for pgy in CMM without
prior, all the estimated parameters have a relatively high correlation coefficient with
the ground truth, especially for the models with prior. For the accuracy model with
prior « = 2,8 = 2, which is the best performing model in relevance estimation, the
estimated parameter a,, obtains the largest 7 and correlation coefficient with the ground
truth among all the models. MAE and RMSE reflect the distance of the absolute values.
It is not surprising to find that for a,, and p;1, the models with prior have larger MAE
and RMSE than the models without prior, which is not consistent with the result of 7
and correlation. One explanation is that adding prior helps the models do better with
the relative order of the estimate parameters rather than the absolute value, which we
care more in the evaluation. We notice that the result of pyg in Table 3 is quite noisy.
After investigation, we find that the number of users who have ground truth calculated
for pgg is much smaller than that for a,, and py; (i.e. the relevant query-document pairs
in L are more accessed than the irrelevant pairs by users).

Since the calculated ground truth of expertise for individual users can be noisy due
to the lack of data. We now evaluate the expertise of user groups. In this evaluation, we
first divide users into ten user groups according to estimated expertise in descending
order such that each user group has the same number of users. Then we treat each user
group as a single unit and compute its ground truth of expertise on set L. As a user
group is supposed to have sufficient amount of data, the calculated ground truth is more
reliable than that calculated for individual users. Figure 2 shows the performance of
different user groups.
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Fig. 2. The ground truth of expertise for different user groups. (a) shows the ground truth of a,,
in the accuracy model. (b) shows the ground truth of p11 and poo in the confusion matrix model.
Smaller group number indicates higher estimated expertise.

From Figure 2(a) we see that for the accuracy model with prior, the ground truth of
a,, strictly decreases as the group number increases. It indicates that the estimated a,,
is very effective in ordering the users such that the group expertise reflects the ground
truth very well. If we let the estimated expertise of user group ¢ be (1 — i/10), the
group level correlation coefficient between the estimated expertise and the ground truth
reaches as high as 0.949, which is much higher than the values reported in Table 3 for
individual users. And the Kendall’s 7 even reaches the optimal value 1, which means
perfect ranking for the user groups. This result validates the effectiveness of estimated
expertise in the accuracy model. For the confusion matrix model with prior, we also
observe the similar trend for p;; in Figure 2(b); the trend for pgg is basically consistent
but not as clear as that of py1. It indicates that the estimated pgg in the confusion matrix
model does not reflect the ground truth well as p;;. And this may be the reason that the
confusion matrix model failed to outperform the accuracy model in relevance estima-
tion. In Figure 2, we also plot the result for the models without prior, which shows more
inconsistency and weaker correlation with the ground truth. This fact again verifies the
advantage of using prior in our models.

To conclude, we find that the accuracy model with beta prior achieves the best per-
formance in inferring relevance and user expertise. It implies that the assumption of the



accuracy model is more suitable to the real situation. We also find that the estimated
expertise can better reflect the ground truth when used in level of user groups.

6 Conclusion and Future Work

Clicks from different search users in Web search are not equally informative in indicat-
ing relevance. Search experts are supposed to be more likely to find relevant documents
than the others so their clicks are more reliable in inferring relevance. In this paper, we
propose two probabilistic modelings for users’ search expertise which are inspired by
the evaluation metrics of classification. The experimental results on a real-world click-
through data show that our models are effective in estimating both the relevance and the
user expertise. Our best performing model improves the baseline by 10% in inferring
relevance preference pairs. And the estimated expertise is highly consistent with the
ground truth, especially when used in group level. The user expertise information can
be useful in helping the search engine improve personal search experience, which is the
direction of our future work.
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