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ABSTRACT 
Combating Web spam is one of the greatest challenges for Web 
search engines. State-of-the-art anti-spam techniques focus 
mainly on detecting varieties of spam strategies, such as content 
spamming and link-based spamming. Although these anti-spam 
approaches have had much success, they encounter problems 
when fighting against a continuous barrage of new types of 
spamming techniques. We attempt to solve the problem from a 
new perspective, by noticing that queries that are more likely to 
lead to spam pages/sites have the following characteristics: 1) 
they are popular or reflect heavy demands for search engine users 
and 2) there are usually few key resources or authoritative results 
for them. From these observations, we propose a novel method 
that is based on click-through data analysis by propagating the 
spamicity score iteratively between queries and URLs from a few 
seed pages/sites. Once we obtain the seed pages/sites, we use the 
link structure of the click-through bipartite graph to discover other 
pages/sites that are likely to be spam. Experiments show that our 
algorithm is both efficient and effective in detecting Web spam. 
Moreover, combining our method with some popular anti-spam 
techniques such as TrustRank achieves improvement compared 
with each technique taken individually.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; H.m [Information SYSTEMS 
APPLICATIONS]: Miscellaneous 

Keywords 
Spam detection, Web search engine, click-through data/bipartite 
graph, semi-supervised algorithm, label propagation 

1. INTRODUCTION 
Spamming refers to the malicious attempt to influence the 
outcome of ranking algorithms, and is usually aimed at obtaining 
an undeservedly high ranking for one or more Web pages [9]. 

Castillo and Davison [3] defined Web spam pages as those that 
benefit from spamming actions, including pages containing 
inappropriate material, pages with malware or viruses and pages 
that acquire undeserved traffic by spamming.  

There are many reasons for Web spamming. The most 
important one is that some Web pages try to attract more user 
visits through search engines without improving content quality 
or search advertising. According to previous research [19], most 
users only look through the top results returned by search engines, 
which means that visitor traffic for a given page or site is highly 
correlated with its ranking in the results list. The incentive to 
drive traffic to Web sites as well as the dominant role of search 
engines is the reason for the ever-increasing amount of Web 
spam. Most Web spam is created for the purpose of making a 
profit. In 2005, Singhal [20] estimated that spammers expected to 
receive a few US dollars per sale for affiliate programs on 
Amazon, approximately $6 per sale of Viagra, and approximately 
$20-40 per new member of pornographic sites.  

Different techniques are designed to fight against Web spam. 
State-of-the-art anti-spam techniques use Web page features [17], 
including both content-based [11] and hyper-link structure-based 
features [4], to construct Web spam classifiers. Other features, 
such as features that are extracted from search logs, and browsing 
logs [4] [5] [12], are also helpful for detecting spam. In fact, we 
can find spam more accurately by combining all of the signals of 
a given Web page/site from its content, links, search log features 
and browsing features [12][17]. In this framework, anti-spam 
engineers must perform additional work to design specific 
features and strategies that identify new types of spam by 
carefully examining characteristics of the spam pages/sites. The 
biggest limitation of this type of approach is that spammers will 
develop new spamming techniques immediately after the old 
tricks are identified. Web spam has evolved from term spamming 
and link spamming to more sophisticated techniques, such as 
JavaScript spamming techniques [6]. 

Existing studies focus mainly on identifying a variety of spam 
strategies. However, to fight against spam, it is useful and 
interesting to see how these spam pages attract traffic and make 
profits. We should notice that spam visiting mainly comes from 
search engines and its purpose is to draw as much traffic as 
possible. In other words, they use different spam techniques to 
cheat search engines, making their pages more “relevant” to 
specific queries, thus gaining traffic from those queries. These 
queries will be selected carefully by spammers. Usually, queries 
with two characteristics are selected. First, they are usually 
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popular queries or reflect a high demand of users because 
spammers can gain much traffic if their strategies work. Popular 
queries are those queries that have high frequencies in search 
logs. Other queries may not be so popular, but they represent a 
common information need and thus have the potential to be 
popular, e.g. “How to lose weight?”, “Are weight-loss pills 
effective?”. Although different queries may be used, they reflect 
the same need for weight-loss strategies, which is interesting for 
many search users. Second, there are usually few key resources or 
authoritative results for these “spam oriented” queries because 
spam pages are unlikely to be ranked high in a search results list if 
there are many relevant and key resources for a given query. For 
example, few spammers will select the query “yahoo” or “nokia” 
as spamming contents because there exist authoritative pages for 
these contents as queries and it is almost impossible for spam 
pages to be ranked high in such result lists. With the second 
characteristic, spam pages may be ranked high in the result list, 
while the first characteristic makes sure the keyword draws much 
attention. Spamming contents with both characteristics help spam 
pages to gain user traffic.  

Therefore, keywords that 1)are hot or reflect a heavy demand 
and 2) lack key recourses or authoritative results (we call these 
keywords spam-oriented queries in this paper) are more likely to 
be used by spammers and thus lead to spam pages. Web 
pages/sites that draw traffic mainly from these “spam” queries are 
more likely to be spam. These two observations indicate that we 
could use click-through logs to find Web spam. We construct a 
click-through bipartite graph with query nodes and URL nodes 
and employ an iterative method to propagate the “spamicity” 
scores based on the two characteristics of possible spamming 
contents. We found that a large number of spam pages can be 
identified by exploiting only the click-through data. This result 
shows that we could improve anti-spam performance by taking 
advantage of search logs. 

The contributions of this paper are: 

1, A label propagation algorithm on click-through bipartite 
graph is proposed to identify possible spam and its 
convergence is proven. 

2, A thorough analysis of the click-through data is 
conducted to demonstrate that much can be 
accomplished with it to identify Web spam. To the best 
of our knowledge, few publications address the issue of 
finding spam by using only click-through data. 

3, An experimental study on large-scale click-through log 
data is performed. Results show that the proposed 
algorithm can identify a variety of spam pages both 
effectively and efficiently.  

The rest of this paper is organized as follows: Section 2 
provides a brief review of related work. Section 3 presents our 
motivation in Web spam detection and formulates the label 
propagation problem. Section 4 discusses our label propagation 
problem in detail and proves convergence of our algorithm. In 
section 5, we perform an experimental validation of our 
techniques and demonstrate that we can detect spam pages in 
click-through data both effectively and efficiently. Section 6 gives 
some conclusion and future work. 

2. RELATED WORK 
2.1 Web Spamming Techniques and 
Detection Algorithms 
Many spam techniques are emerging along with the development 
of search engines. Castillo and Davison [3] grouped spamming 
techniques into two categories: content and link spamming. 

Content spamming, including term spamming and content-
hidden techniques, refers to techniques that deliberately 
manipulate page contents and URL keywords to improve their 
rankings. Gyöngyi et al. [11] provided a list of different types of 
content spam, including term spam techniques such as repetition, 
dumping, weaving and stitching and content-hidden techniques 
such as cloaking [24], redirection spam [6] and visual cloaking 
[15]. Ntoulas et al. [17] introduced several content-based features 
to build spam classifiers, and their work is considered to be one of 
the most influential studies on detecting content spam. They 
found that spam pages contains more popular terms than non-
spam pages. Other studies exploit additional text features to detect 
spam pages. Linguistic features [18] such as part-of-speech (POS) 
n-grams, textual features [2], language model features [14] and 
HTML patterns [22, 23] have been fully studied and were proven 
to be useful in spam detection.  

Link spammers create certain hyper-link structures to boost 
their scores in typical link analysis, such as PageRank and HITS. 
Link farms [25], honey pots [11] and spam link exchange belong 
to this spamming technique. A variety of trust and distrust 
propagation algorithms such as Trustrank [10] and BadRank [21] 
and their variants [16] [26] are utilized and proven to be effective 
in terms of demoting spam. It has also been observed that spam 
sites often form dense sub-graphs and many works [4] [25] use 
link-based features, including the degree and spamicity of 
neighbors to detect them. Recently, Cheng et al. [7] used 
information from SEO forums to find spam site candidates and 
thus link farms. 

2.2 Usage Data 
To detect spam pages more efficiently and effectively, researchers 
usually combine different spam signals from different usage data, 
including browsing logs and search logs, to build classifiers. 

Liu et al. [13] used browsing logs to estimate the importance of 
Web pages by defining a continuous-time Markov process on user 
browsing graph. They showed that their algorithm of BrowseRank 
is effective in demoting spam sites. Liu et al. [12] proposed a user 
behavior-oriented Web spam detection framework that was based 
on browsing logs (captured by a toolbar). They showed that spam 
sites’ traffic relies almost completely on search engine-originated 
visits. Other features include the probability that a given page is a 
source page (i.e. people follow hyper-links on it) and the short-
time navigation time (based on the assumption that most Web 
users would not visit many pages inside a spam Web site). 

Search logs contain valuable information about queries and 
their corresponding URLs. However, there is no detailed analysis 
on how to utilize these data. Previous studies only created 
additional features from them [5] [12] [17] for content-based or 
link-based Web spam detection. 

To sum up, state-of-the-art anti-spam techniques use content-
based, link-based and user behavior features to construct Web 
spam classifiers. Anti-spam engineers must perform additional 
work to design specific features and strategies that can identify 



new types of spam by carefully examining spamming techniques. 
The biggest limitation of these approaches is that spammers will 
develop new Web spam techniques immediately after the old 
tricks are identified. Due  to  the  fact  that  spammers often  
develop  new  Web  spam  techniques  immediately  after  the  old  
tricks  are  identified,  the identification of spam and the resultant 
anti-spam techniques becomes a vicious cycle. 

3. MOTIVATION AND PROBLEM 
FORMULATION 
Traditional anti-spam techniques focus on identifying different 
spam techniques. These techniques fail to exploit how spam pages 
manage to gain traffic, in other words, how the spammers 
carefully select the keywords and boost the ranking of their 
pages/sites in corresponding results lists. The more traffic that 
spam sites receive, the more profit they will make and the more 
frustrated search engine users get. 

Although spammers want to gain as much traffic as possible 
from search engines, it is not likely, as discussed in Section 1, for 
their spam pages/sites to rank high in all of the keywords for 
which they optimize. 

Based on these observations, we design a label propagation 
algorithm on click-through data. Firstly, a small number of seed 
pages are selected and labeled as spam or non-spam. Then their 
labels are propagated on the click-through bipartite graph and 
other possible spam/non-spam pages are identified. The input 
consists of a) a set of labeled URLs (spam or non-spam), b) a set 
of unlabeled URLs and c) a set of constraints between URLs and 
the queries in the log. The goal is to find spam pages/sites from 
the unlabeled data. 

We first give some definitions before formulating our problem. 

Ⅰ. Search engine click-through data C and bipartite graph G.  
The click log consists of triples <q, u, fqu>, where q is a query, 

u is an URL representing a document on the Internet and fqu is the 
number of times that URL u is clicked when query q is issued. 
Define Q = {q | q appears in C} and U = {u | u appears in C}. 
Click-through data C has an equivalent form – a click-through 
bipartite graph G = (Q, U, E). There are two different types of 
nodes, queries and URLs in G. For every record <q, u, fqu> in C, 
there is an edge (q, u) E with weight fqu. 

Each q/u is assigned with a probability pq/pu, which denotes 
how likely this q/u is to be a spam query/page or in other words, 
the spamicity of q/u. 

Note that the click-through bipartite graph can be constructed 
either on page-level or site-level. In the latter form, u is replaced 
by its site but not the URL of itself. For example, <”Nokia”, 
http://product.pcpop.com/Mobile/00283_1.html, 100> is replaced 
by <”Nokia”, http://product.pcpop.com/, 100>. 

Ⅱ. Labeled Seed URL set L. 
L contains all of the pages/sites in C(G) that are manually 

labeled as spam or non-spam. More formally,  

L = {u | u is labeled as a spam page/site or non-spam page/site}. 

We will discuss the construction details of L in Section 5.2. 

Ⅲ. URL result set RU and query result set QU. 
RU and QU contain all the <u, pu> and <q, pq> pairs, 

respectively. After our algorithm ends, each URL u or query q in 
C (or G) will be assigned with a probability pu/pq, which denotes 

the probability that this URL or query is a spam page/site or 
query. More formally, 

RU = {<u, pu> | pu is the spamicity score for u}. 

RQ = {<q, pq> | pq is the spamicity score for q}. 

 

Given G = (Q, U, E) and LU, the goal of the spam 
pages/sites mining problem is to obtain the results set RU and RQ, 
which contain all of the possible spam pages/sites and queries in 
G, respectively. 

4. A LABEL PROPAGATION 
ALGORITHM 
4.1 Algorithm design 
In this paper, we propose a label propagation (LP) algorithm to 
solve the problem that is defined in the previous section. More 
specifically, for every query q, we could calculate the probability 
pq that q is a spam query by incorporating all of the label 
information of its neighbors. Similarly, we could calculate pu for 
every URL u. We describe this procedure more formally as 
follows. 

For q/u, we use lq/lu to denote its label, which is S for spam 
and N for non-spam. Note that P(lu=N) = 1-P(lu=S). Thus every 
URL u in labeled set L would have P(lu=S)=1 or P(lu=S)=0 
initially and every URL u in the set U-L would have P(lu=S)=0. 
Then we have 

( )q qu u
u:(q,u) E

P(l =S)= P l S


  (1) 

where 

:( , )

qu
qu

qu
u q u E

f

f







.            (2) 

qu can be interpreted as the transition probability from query 

q to URL u. It can be drawn from equation (1) and (2) that q’s 
label is determined by all of its neighbors’ labels. The bigger 

qu  is, the more influence its corresponding node has on 

determining the label of q. 

Similarly, for each URL u in U\L, the probability P(lu=S) is 
computed as  

( )u uq q
q:(q,u) E

P(l =S)= P l S


    (3) 

where 

:( , )

qu
uq

qu
q q u E

f

f







       (4) 

is the transition probability from URL u to query q. 

Note that both qu and uq  are not limited to the above form 

but arbitrary. The only requirement for them is they should have a 

probability interpretation, which means 
:( , )

uq
q q u E

1


  and 



:( , )
qu

q q u E

1


 . We can also interpret  qu and uq  as 

functions of features of queries and URLs and thus incorporate 
these features to extend our algorithm. We leave it as our future 
work. 

Using Equation (1) and (3), we can obtain P(lq=S) and P(lu=S) 
recursively for all of the queries and URLs in the click-through 
bipartite graph. We can have a concise representation of this 
iterative process. Suppose that there are |Q| queries: q1，q2…q|Q| 
and |U| URLs: u1，u2…u|U|. Define vectors: 

PQ=(P(lq1=S), P(lq2=S)…P(lq|Q|=S))T, 

PU=(P(lu1=S), P(lu2=S)…P(lu|U|=S))T, 

and the transition probability matrixes: 

Mqu=（ qu ）|Q||U|, and Muq=（
'
uq ）|U||Q. 

Then in the ith iteration, we have 

Pi
Q=Mqu Pi-1

U 

Pi
U= MuqPi

Q 

It should be noted that in each round of iteration, all of the 
URLs in seed set L should be re-assigned their initial labels. In 
this way, the algorithm converges. We will prove the convergence 
in section 4.4. 

4.2 An Example 
Consider a sample portion of a bipartite graph from a search 
engine click log, as shown in Figure 1. 

 

Figure 1. An example to demonstrate how the label 
propagation algorithm works 

Assume that L={u1, u3} and both of the URLs are spam pages, as 
denoted in the shaded circle in Figure 1. Other nodes, including 
all of the query nodes and the remaining URL nodes, initially 
have P(l=S) as 0. Then we have 
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After the first iteration, we get 
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We notice that here both P(lu1=S) and P(lu3=S) are 0.55, which 
should be re-set to 1 before the we apply the next iteration. 

4.3 The Positive Feedback Problem  
Label propagation algorithms or random walks on click-through 
bipartite graphs have the positive feedback problems. Take u5 in 
Figure 1 for example. P(lu5=S) is 0.5 after the first iteration. 
Because u3 is a seed URL which are manually labeled as spam, 
we will set P(lu3=S) to be 1 before the second iteration begins. 
Therefore, it is easy to see that P(lu5=S) is 0.75 after the second 
iteration and converges to 1 if the algorithm continues. The reason 
is that edge e = <q4, u5> is undirected and u5 is a 1-degree node, 
which means that score of u5 will flow back to q4; from this 
process, it obtains its original spam score. We call this effect the 
positive feedback problem which would magnify the noise in the 
click-through bipartite graph and distort the final results. 

Consider an extreme case given in Figure 2. 

 

Figure 2. An extreme case for the positive feedback problem 

Suppose that a non-typical user issues a query q to the search 
engine and then clicks a spam page while most of the other users 
use this query to navigate to high quality sites. All of the spam 
scores of the URLs will converge to 1 after our algorithms is 
applied on the graph, which contradicts the real explanation of the 
pages and this query. 
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It can be concluded from Figure 1 that this problem mainly 
affects those 1-degree nodes, such as u4, u5 and q3. To solve this 
problem, we introduce the concept of confidence. We define the 
confidence of a node in the bipartite graph as a function of its 
degree d. More formally, 

c(q)=f(dq), c(u)=f(du), 

where dq and du are the degrees of node q and u, respectively. 
Then Equations 1 and 3 can be revised as follows. 

( ) ( )q qu u qu u
u:(q,u) E u:(q,u) E

P(l =S)= c(u)P l S P' l S 
 

     

( ) ( )u uq q uq q
q:(q,u) E q:(q,u) E

P(l =S)= c(q)P l S P' l S 
 

    . 

It should be noted that function f here is arbitrary and we have 
many choices for function f. For simplicity, we use the indicator 
function in this paper. 

Define  

,

0   if  d=1
f(d)  

1  else


 


， . 

An intuitive interpretation for the indicator function is that 
before we obtain sufficient information to judge a 1-degree node 
if it is a spam page, we could treat it in the bipartite graph as 
pseudo normal page, forcing its spam score to be 0. Note that this 
constraint only applies to the unlabeled nodes since we need the 
seed-nodes to propagate their spamicity. 

Now, applying the revised algorithm to Figure 2, we obtain 
P(lq3=S) = 2/302 and P(lu3=S) = P(lu4=S) = P(lu5=S) = 2/302, 
which are more reliable than the original algorithm. 

The outline of the Label Propagation algorithm is shown in 
Figure 3. 

The Label Propagation Algorithm: 

Input：labeled seed set L，click-through data C(G) 

Output：P(lu=S) and P(lq=S) for all URLs and queries in G 

Begin 

Do 

for uL, set P(lu=S)=1 or 0 according to their label by 
human assertors. 

 for all qQ do 

  ( )q qu u
u:(q,u) E

P(l =S)= P' l S


  

 end for 

 for all uU\L do 

  ( )u uq q
q:(q,u) E

P(l =S)= P' l S


  

 end for 

until convergence 

 

Output P(lu=S) for every URL u in U and P(lq=S) for every 
query q in Q 

End 

Figure 3. The label propagation algorithm  

4.4 Convergence of the LP Algorithm 
It is evident that Mqu and Muq are right stochastic matrixes, each 
of whose rows consists of nonnegative real numbers, with each 
row summing to 1. Then consider Muu=MuqMqu. For each 

element mij in Muu, we have 'ij ik kj
k

m   in Muu, where 

ik  and 'kj  are elements Muq and Mqu, respectively. Thus we 

have 
'

'

'
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j j k

ik kj
k j

ik kj
k j
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k

m
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
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





 



 



,  

which means that Muu is also a right stochastic matrix. 

Now, if we are only interested in PU, the iteration process can 
be rewritten as  

Pi
U= MuuPi-1

U= MuqMqu Pi-1
U, 

where i denotes the iterations. 

Suppose that there are |L| seed URLs in L, |C| 1-degree nodes 
and thus r = |U|-|L|-|C| remaining URLs in C. More specifically, 
let the probability vector PU=（PT PL） where PT are the top 
|L|+|C| rows of PU(the labeled data and the pseudo labeled data) 
and PL are the remaining r rows of PU(the unlabeled data). We 
split Muu after the (|L|+|C|)th row and the (|L|+|C|)th column into 4 
sub-matrixes 

( )( ) ( )

( )

|L| |C| |L| |C| |L| |C| r

uu
r |L| |C| rr

M    M
M

M          M

  



 
   
 

. 

Note that PT never really changes. It can be shown that in our 
algorithm,

( )L rr L r |L| |C| TP =M P M P , which leads to 

( )[ ]
n

n 0 i-1
L n rr L rr r |L| |C| T

i 1

P lim M P M M P 


   . Zhu and 

Ghahramani [27] proved that PL converges to 

(| | | |)
-1

rr r L C T(I-M ) M P  if Muu is a right stochastic matrix. Thus the 

initial value of PL is inconsequential. 

Using the same approach, we could prove that PQ also 
converges. 

5. EXPERIMENT EVALUATION 
The goal of the experiments is to evaluate how effective our 
algorithm is in detecting spam Web sites. Given a seed set L, the 
LP algorithm returns a list of pages/sites that are sorted according 
to their probability of being spam. Seed page/sites are not 
included in the list. We also obtain a list of queries that are sorted 
according to their probability of being used as a spam-oriented 
query. A detailed discussion of the queries and sites is in Section 
5.6. 

5.1 Bipartite Graph Construction 
We collected query logs from March 1st, 2011 to March 9th, 2011 
with the help of a famous commercial search engine company in 



China. No private information was included in these logs. We 
pruned all of the query-URL pairs with just one click on any day 
in the log since they may contain noise and possible privacy 
information. After that, this click-through log consisted of 
8,443,963 unique queries, with 12,470,865 unique URLs in 
1,055,001 sites. Altogether, 17,660,907 query-URL pairs were 
collected and they were used in constructing the bipartite graph. 
The maximal component of the graph contains 2,111,135 (25.0%) 
unique queries, 3,614,514 (29.0%) URLs and 7,805,300 (44.2%) 
query-URL pairs. An interesting observation is that the second 
largest connected component contains only 326 queries, which is 
a much smaller number compared with the first component. It 
does not make sense to run the propagation process on such small 
connected graph. Therefore, we focus on the maximal component 
of the graph. 

Although our algorithm can be applied on both the site-level 
and the page-level with click-through data, we applied it on the 
former mainly because of the sparsity problem. A single page 
usually has fewer queries or even only one query that is pointing 
to it, which makes it vulnerable to noise. 

5.2 Seed Set Selection 

5.2.1 Spam Seeds Selection 
Seed set contains labeled sites for our LP algorithm. With the help 
of a famous commercial search engine in China, we obtained a 
spam site list. A total of 2,100 of these sites appear in our click-
through data, and we use them as the spam section of seeds for 
our algorithms. 

5.2.2 Non-spam Seeds Selection 
We manually select several ordinary web sites as non-spam seeds 
according to two criteria. Firstly, these web sites should be 
famous. There are two reasons for this requirement: a) the more 
famous the site is, the less likely it will contain spam and b) these 
sites contain numerous key-resources and we need them to judge 
the spamicity of the queries. Secondly, sites that mainly consist of 
user-generated contents are removed because the quality of these 
contents cannot be guaranteed. For example, 
http://news.sina.com/ is a non-spam site because most of the 
pages in it are news articles. The contents will be posted after 
human examination. In contrast, http://bbs.sina.com.cn/ is not 
included in the seed set because it is a forum and its contents are 
not highly reliable. We manually selected 1,153 sites as non-spam 
section of the seeds. 

At last, we constructed the seeds for the algorithm, including 
2,100 spam sites and 1,153 non-spam sites. These two sites lists 
are available at http://www.thuir.cn/weichao/sigir2012/. 

5.3 Performance Comparison 
We have implemented the LP algorithm on the click-through 
bipartite graph constructed from search logs mentioned above, 
and we name it as LP. 

Although the algorithm converges, it is not easy to decide when 
to end the algorithm. We observed that the spam probability 
changed little after 20 iterations. Specifically, in our experiment, 
there was little difference between the results after 20 iterations 
and 40 iterations. Thus, we ran the iteration process 20 times and 
then output the results. 

We use two baselines in the experiment, namely PageRank and 
TrustRank. PageRank is widely used in ranking search engine 
results and TrustRank proves to be effective at detecting Web 
spam. With the help of the same commercial search engine, we 
constructed a Web link graph that contained 258,326,221 sites. 
For each hyperlink in page A that points to page B, we added a 
directed edge from A’s site to B’s site. Thus the link graph 
contains 4,883,760,072 edges. We implement the two methods 
that are completely based on this Web link graph, and they can be 
regarded as a representative of conventional content-independent 
anti-spam methods in a real Web environment. Also, we used the 

common α value of 0.85 in the implementations. We denote the 

above two baselines as PR and TRUST respectively. 

Content-based anti-spam methods were not used in this paper 
because most of them work only for specific spam techniques. We 
can expect that they will not achieve a good performance because 
a variety of spam techniques are used by real spam sites.  

Because our label propagation algorithm adopts a different type 
of information from state-of-the-art anti-spam techniques, it is 
interesting to combine these algorithms together, and we expect 
that this combination will achieve better performance than either 
algorithm. We use the method that is proposed in [1] to combine 
the results of different algorithms. Suppose Lu is the rank of site u 
in test set sorted by spamicity score obtained from the LP method, 
and Ou is the rank obtained from another anti-spam algorithm. 
Both the result lists are sorted in descending order by spamicity. 
Note that PageRank/TrustRank result is sorted by scores in 
ascending order since a lower PageRank/TrustRank score implies 
this site is more likely to be spam. The merged score S is 
calculated as follows: 

u u

1 1
(u, )

L 1 1
S

O
   

 
, 

where   represents the importance of the LP algorithm’s score. 
We set  =1, indicating that both algorithms are equally 
important in the final rank calculation. Then the result list of LP is 
combined with PR and TRUST and we name them LP-PR and 
LP-TRUST respectively.  

We ran the five algorithms and compared their performances 
on the test set with respect to the precision, recall, and AUC value, 
which are all common-used evaluation metrics for spam detection 
in previous studies [5][12]. 

5.4 Test Set and Labeling Criterion 
Human annotators were recruited to label the URLs list that was 
returned by the algorithms. However, such labeling is not a trivial 
task. As discussed in Section 5.1, there are more than 1 million 
sites in the bipartite graph and it is therefore impossible to label 
all of them. Since we concern performance of the LP algorithm 
the most, we selected 3,000 sites uniformly from top half part of 
the LP results list and used them as our test set. The reason to 
focus on the top half of the LP results list is that the cost of 
mislabeling a reputable site as spam is much higher that the 
opposite.  Two experienced human experts were asked to make 
spam judgments for them, according to the labeling criterion of 
Web Spam Challenge [28]. Based on the instructions, assessors 
will have four options for each site they have to tag:  

 NONSPAM - The site does not contain spamming 
aspects.  

 BORDERLINE - The site contains some aspects that 



are suspicious of being spam.  
 SPAM - The site contains spamming aspects.  
 CAN'T CLASSIFY - The assessor could not classify 

the site.  
It should be noted that we adopt a stricter judgment on spam 

sites when “BORDERLINE” and “CAN'T CLASSIFY” sites are 
labeled as NONSPAM. The reason is that the cost of mislabeling 
a normal site as spam is much higher than the opposite.  

Another problem is that some of the sites may disappear from 
the Web for different reasons and could no longer be accessed. 
For these sites we send the URLs to a commercial search engine 
(http://www.sogou.com/) and obtain their snapshots. Then, they 
are labeled as “Spam”, “Non-spam” or “Can’t Access” based on 
these snapshots. Those whose snapshots did not exist were labeled 
as “Can’t Access”. 

Each annotator was asked to label 1500 sites. Moreover, they 
were asked to label another 150 sites to evaluate their agreement.  
The Cohen’s Kappa value is 0.856, which suggests a perfect 
agreement between the annotators.  

Of all of the 3,000 sites, 1,490 are labeled as NONSPAM, 870 
are labeled as SPAM and the remaining 640 sites can’t be 
accessed now. We removed all of the inaccessible sites and used 
the 2,360 labeled sites as our test set (further information about 
these sites is available at http://www.thuir.cn/weichao/sigir2012/). 

5.5 Experiment results 
We performed the five algorithms and compared their 
performances on the test set by precision, recall, and AUC value. 
The experimental results are shown in Figure 4 and 5. 

 

 

Figure 4. AUC value for different spam detection strategies 

 

From the figures, we can see that all of the AUC values of the 
five algorithms are greater than 0.78, which suggests that they are 
effective in detecting Web spam. It is not surprising that 
PageRank performs the worst because spam sites can boost their 
PageRank scores using tricks such as the link-farm. TRUST 
works better than PR, which is consistent with previous research 
[10]. The AUC value of LP is 0.870, which is much better than 
both PR (0.788) and TRUST (0.823). This demonstrates our 
algorithm is effective in detecting Web spam sites. It is 
encouraging to see our LP algorithm performs better than 
TrustRank while the former is also less time-consuming. In our 
experiment, the LP algorithm based on our collected click-
through data converged in less than 20 minutes. However, since 
Trustrank and Pagerank were performed on a complete Web 
graph that usually contains much more nodes than a click-through 

bipartite graph, it took more time for both of them to converge, 
e.g. 10 hours in our experiment. 

LP-PR receives a higher AUC value (0.877) while the LP-
TRUST approach is impressive in boosting the performance of 
Spam detection, which obtains a much higher AUC value (0.902) 
than all of the other algorithms. The precision of this approach 
can achieve as much as 90% with a recall of 50% and as much as 
84.5% with a recall of 70%.  

 

 

Figure 5. Precision-Recall Curve for different spam detection 
algorithms 

 

We also conduct another experiment to see how robust our 
algorithm is. It is known that seed selection is truly important in 
semi-supervised algorithms such as TrustRank. We randomly split 
our Spam sites into 21 subsets (each with 100 seed sites) and then 
add them gradually into the seed set. The experiment results are 
summarized in Figure 6. 

 

 

Figure 6. Algorithm performance with different seeds set 

 

It can be seen that all of our algorithms are very robust. They 
can achieve a relatively high AUC value after only 400 sites are 
added into the seed sets. We also notice that LP performs 
consistently better than PR and TRUST. The AUC value of LP-
PR is slightly smaller than LP when the size of spam seed sites is 
between 400 and 700. However, it consistently outperforms LP 
when more sites are added. LP-TRUST is always the best of all 
the algorithms. 

 One-side paired Wilcoxon-tests shows that LP, LP-PR and LP-
TRUST are significantly better than TRUST and PR. LP-TRUST 
is significantly better than other methods. The detailed result is 
listed in Table 1. 



 

Table 1 One-side paired Wilcoxon-test result (p-value 
indicates whether algorithm in the row is significantly better 

than algorithm in each column.) 

Wilcoxon-
test 

(p-value) 

PR TRUST LP LP-PR 

TRUST 2.525e-06 NA NA NA 

LP 3.206e-05 3.710e-05 NA NA 

LP-PR 3.206e-05 3.206e-05 0.000543 NA 

LP-TRUST 3.206e-05 3.206e-05 3.206e-05 3.206e-05 

 

The experiment shows that our novel algorithm is successful in 
detecting spam sites. Moreover, because we derive this algorithm 
from a totally different perspective from current anti-spam 
techniques, combining it with state-of-the-art techniques will 
result in a more powerful approach for detecting Web spam. 

5.6 Discussions 

5.6.1 Query analysis 
We then conducted several experiments to see how our algorithm 
detects Web spam sites and why combining LP and TrustRank 
results in a significantly better performance. We selected the top 
1,000 spamming queries and classified them into 7 categories 
manually: Porn, Game, Health, Entertainment, Software, Lottery 
and Others. The detailed composition is shown in Figure 7. 

 

 

Figure 7. Composition for top spammy queries 

 

We can see from Figure 7 that 42% of these queries are porn 
terms. Liu et al. [12] find that many of the queries that lead to 
spam site are porn terms. Spammers use these terms for 
optimization usually because they are always popular in search 
engine logs. Moreover, these queries often lack key-resources, 
which are “reputable” porn sites, because porn contents are illegal 
in many countries. This contradiction makes porn terms the first 
choice for spammers. 

We notice that game related queries come at the second place, 
accounting for 16% of all of the 1,000 queries. This can be 
explained by the fact that quite a lot Internet users are relatively 
young and are prone to accessing online games. It is not 
surprising that they use the search engines to find the games. 
However, in contrast to queries that lead to reputable online 
games servers, most of these queries have illegal intents. For 
example, 64.2% of these game-related queries are about “private 
servers” for online games. These servers are illegal because they 

emulate online games without warranty. We find that sites that are 
targeted by these illegal queries usually adopt spam techniques. In 
contrast, ordinary game sites are not willing to take the risk using 
spam techniques because they will be put on the blacklist and thus 
cannot draw any traffic from search engines. Usually, they will 
adopt other strategies, such as sponsor searches, to draw the 
attention of potential users. However, things are different for 
illegal sites because search engines seldom provide services for 
them. For this reason, they turn to spam techniques. For example, 
we issued “私服”, which means “private server” in Chinese to 
Google (http://www.google.com/) on October 28th, 2011 and 
found that almost all of the top 10 sites except for the 5th and the 
10th are employing some spamming techniques. In fact, the 5th 
result is an entity of “私服” in an online encyclopedia site, similar 
to wikipedia.com and the 10th result is a news page of a famous 
Web site. This result suggests that illegal web sites are likely to 
use spam techniques. We list their URLs and spamming 
techniques in Table 2. 

We conducted similar investigations on queries in other 
categories and find a similar conclusion (we do not list them here 
because of the space restrictions) that most of these queries meets 
the two criteria discussed in Section 1. First, they are hot or 
reflect a heavy demand of search engine users, such as online 
games or maintaining fitness. Secondly, they lack key resources 
or authoritative results. Several of these queries are even illegal. 

 

Table 2 Top 10 results for query “私服” 

Rank URL Spam or not 

1 http://www.7774f.com/ 
Spam 

(dumping and weaving) 

2 http://www.52dayu.com/ 
Spam 

(dumping, weaving and 
redirection) 

3 http://www.cnnds.com/ 
Spam 

(repetition and stitching) 

4 http://www.shiqi.cc/ 
Spam 

(link exchange) 

5 
http://baike.baidu.com/vi

ew/6975.htm 

Not a spam 
(an online encyclopedia 

site) 

6 http:// www.20zf.com/ 
Spam 

(link exchange) 

7 http://www.wnlzj.com/ 
Spam 

(weaving and stitching) 
8 http://www.luosisa.com/ Spam (weaving) 

9 http://www.ipput.com/ 
Spam 

(weaving and stitching) 

10 
Vertical search result 

(News) 
Not a spam 

 
Previous research [5] suggests that monetizable queries are 

more likely to be spam keywords. However, we find that popular 
queries, such as porn terms, as well as queries with illegal intents 
are also more likely to be spam keywords. Two reasons can 
explain this. First, many spammers try to attract traffic to their 
sites so that they can increase revenue from advertisers instead of 
making profit directly from users by selling products. The more 
traffic or PageRank score their sites have, the more money the 
advertiser will pay them. Thus they try to gain traffic from 
popular queries and sometimes succeed in queries with little key-



resources. Second, as for the illegal Web sites, they cannot 
improve their ranks in search engines by regular techniques such 
as sponsor search, which leads them to spam techniques. 

5.6.2 Site analysis 
We next examined the characteristics of the spam sites. When 
looking at the top ranked sites by the spam scores given by LP 
algorithm, we found that most of them contained illegal contents, 
such as pornography, private servers and online gambling, and 
that most used different spam techniques to draw traffic. Our 
algorithm can find them successfully because queries leading to 
these sites are more specific, containing porn terms or words such 
as “private server”. Unlike porn sites, which mainly benefit from 
repetition and keywords stuff, private servers or online gambling 
sites often use dumping, weaving and stitching to attract traffic. 
Moreover, these sites often link to each other and hope to benefit 
from link-exchange. For example, http://www.uiop8.com/ uses 
almost all of the spam techniques that are listed above.  

Other spam sites that we detected are more “general”. Most of 
them would select a topic that they want to optimize and try to 
create as much spam content as possible, which appear to be 
relevant to as many queries as possible in this topic. The site 
http://www.hywww8.com/ is an example. 

We also find that spam sites with few queries and clicks are 
more likely to be spam. Most of the top spam sites in the result 
list have only 1 query and 2 clicks (notice that 2 is the minimum 
number of clicks in our pruned click-through logs). This is 
consistent with our intuition. Reputable sites usually cover more 
topics and have more user clicks. As a result, when a site is 
clicked after a spammy query and it seldom appears in the click-
through data which means it has few non-spammy queries, we 
have a bigger confidence that this is a spam site.  

5.6.3   Combining label propagation with TrustRank 
Although our method can discover a variety of spam sites, they have 
its own limitations. It is difficult to label ordinary sites with a rare 
number of queries. The main problem is that there is little 
information about these sites in the click-through data. However, 
other anti-spam techniques, such as TrustRank, could provide us 
with information about how trustworthy a site is, which could be 
used to boost the performance of our algorithms. In contrast, 
TrustRank also has its limitation. http://www.17646.com/, a private 
server for online games, manages to obtain a high TrustRank score, 
ranking the 86,000th of all the 258,326,221 sites. Therefore, 
TrustRank fails to identify it as a spam site. However, it ranks the 
80th for its spam score in our algorithm. By combining its spam rank 
and trust rank, we rank it at the 176th place in the final results list, 
which means that it is likely to be a spam site.  

Because we use a completely different method to detect Web spam, 
we expect to obtain a much better performance by combining it with 
other state-of-the-art algorithms. We leave this promising task for 
our future work. 

6. CONCLUSION AND FUTURE WORK 
In this paper we have proposed a novel label propagation algorithm 
on click-through bipartite graphs to detect Web spam. Different 
from current approaches which focus on identifying predefined 
types of Web spam pages/sites, this algorithm exploits the 
characteristics of spam queries. The spamisity score propagates 
between queries and URLs iteratively on the click-through bipartite 
graph from a seed set that contains both spam and non-spam 

pages/sites. Experiment results show that our algorithm is both 
efficient and effective in detecting Web spam pages/sites. This 
algorithm introduces a novel perspective to fight against Web spam, 
and combining it with some current anti-spam techniques results in 
a much better performance. 

  For future work, we plan to investigate the following aspects. 
Firstly, we will attempt to solve the sparsity problem that was 
discussed in Section 5 by collecting more click-through data. We 
also notice that there are several small connected components 
except for the maximal one in the click-through log. Are there spam 
sites? How many spam sites exist in these components? We will try 
to answer these questions in future work. Secondly, our framework 
will be extended to embody other features, including content, 
hyperlink features and click-through features. For example, we 
found that even for those popular but not spammy queries, sites with 
few clicks are also suspicious. Query “戴尔官方网站” (“DELL 
official Website” in Chinese) appeared  6,159 times in the log and 
39 different sites were clicked after it. Among these sits, spam site 
http://www.buydellonline.cn/ appeared only twice. Moreover, it 
appeared only 4 times in the click-through data. In contrast, 
http://www.dellenglish.com/ which appeared only 3 times after this 
query but had 38 clicks in query “English study”, turned to be an 
ordinary site. This indicates such features can be used to boost the 
LP algorithm performance. Moreover, we notice that while some 
queries are generally more likely to be spam queries, some other 
queries are not likely to be spam queries, such as the name of a 
small company. Query taxonomy information is also a helpful 
feature. We will incorporate such information in our propagation 
process in our future work, too. 
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