
Explicit Factor Models for Explainable Recommendation
based on Phrase-level Sentiment Analysis

Yongfeng Zhang†,Guokun Lai†,Min Zhang†,Yi Zhang‡,Yiqun Liu†,Shaoping Ma†
†State Key Laboratory of Intelligent Technology and Systems

†Department of Computer Science & Technology, Tsinghua University, Beijing, 100084, China
‡School of Engineering, University of California, Santa Cruz, CA 95060, USA

{zhangyf07,laiguokun}@gmail.com,{z-m,yiqunliu,msp}@tsinghua.edu.cn,yiz@soe.ucsc.edu

ABSTRACT
Collaborative Filtering(CF)-based recommendation algorithms,
such as Latent Factor Models (LFM), work well in terms of
prediction accuracy. However, the latent features make it
difficulty to explain the recommendation results to the users.

Fortunately, with the continuous growth of online user re-
views, the information available for training a recommender
system is no longer limited to just numerical star ratings
or user/item features. By extracting explicit user opinions
about various aspects of a product from the reviews, it is
possible to learn more details about what aspects a user
cares, which further sheds light on the possibility to make
explainable recommendations.

In this work, we propose the Explicit Factor Model (EFM)
to generate explainable recommendations, meanwhile keep
a high prediction accuracy. We first extract explicit product
features (i.e. aspects) and user opinions by phrase-level sen-
timent analysis on user reviews, then generate both recom-
mendations and disrecommendations according to the spe-
cific product features to the user’s interests and the hid-
den features learned. Besides, intuitional feature-level ex-
planations about why an item is or is not recommended are
generated from the model. Offline experimental results on
several real-world datasets demonstrate the advantages of
our framework over competitive baseline algorithms on both
rating prediction and top-K recommendation tasks. Online
experiments show that the detailed explanations make the
recommendations and disrecommendations more influential
on user’s purchasing behavior.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Filtering; I.2.7 [Artificial Intelligence]: Natural Language
Processing; H.3.5 [Online Information Services]: Web-
based services

Keywords
Recommender Systems; Sentiment Analysis; Collaborative
Filtering; Recommendation Explanation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.
Copyright 2014 ACM 978-1-4503-2257-7/14/07 ...$15.00.
.

1. INTRODUCTION
In the last few years, researchers have found or argued

that explanations in recommendation systems could be very
beneficial. By explaining how the system works and/or why
a product is recommended, the system becomes more trans-
parent and has the potential to allow users to tell when the
system is wrong (scrutability), increase users’ confidence or
trust in the system, help users make better (effectiveness)
and faster (efficiency) decisions, convince users to try or buy
(persuasiveness), or increase the ease of the user enjoyment
(satisfaction). A variety of techniques have been proposed
to generate explanations, mainly for content based recom-
mendation algorithms, neighbor based algorithms, or simple
statistics analysis based algorithms.

Meanwhile, Latent Factor Models (LFM) such as Matrix
Factorization (MF) [12] techniques have gained much at-
tention from the research community and industry due to
their good prediction accuracy on some benchmark datasets.
However, recommender systems based on these algorithms
encounter some important problems in practical applica-
tions. First, it is difficult to know how users compose their
judgement of the various attributes of an item into a single
rating, which makes it difficult to make recommendations
according to the specific needs of the users. Second, it is
usually difficult to give intuitional explanations of why an
item is recommended, and even more difficult to explain why
an item is not recommended given other alternatives. Lack
of explainability weakens the ability to persuade users and
help users make better decisions in practical systems [38].

A dilemma practitioners often face is whether to choose an
understandable/explainable simple algorithm while sacrific-
ing prediction accuracy, or choose an accurate latent factor-
ization modeling approach while sacrificing explainability.
A major research question is: can we have a solution that is
both highly accurate and easily explainable?

Fortunately, the advance detailed sentiment analysis and
the ever increasing popularity of online user textual reviews
shed some light on this question. Most e-commerce and re-
view service websites like Amazon and Yelp allow users to
write free-text reviews along with a numerical star rating.
The text reviews contain rich information about user senti-
ments, attitudes and preferences towards product features,
which sheds light on new approaches for explainable recom-
mendation. For example, from the review text “The service
rendered from the seller is excellent, but the battery life is
short”, the entries (service, excellent, +1) and (battery life,
short, −1) of the form (F,O, S) could be extracted to con-
struct a sentiment lexicon by phrase-level sentiment analysis
[18], where F is for Feature word or phrase that reveals some

product aspect, O is for Opinion word or phrase that the user
chose to express the attitude towards the feature, and S is
the Sentiment of the opinion word when commenting on the
feature word, which could be positive or negative.

Different users might care about different product aspects.
We found that users tend to comment on different features
in textual reviews, e.g., one would mostly care about the
screen size of a mobile phone, while another might focus on
its battery life, although they might even make the same star
rating on the product. Extracting the explicit product fea-
tures and the corresponding user opinions from reviews not
only helps to understand the different preferences of users
and make better recommendations, but also helps to know
why and how a particular item is or is not recommended,
thus to present intuitional explanations. In this way, we
could not only recommend to users about which to buy, but
also presenting disrecommendations by telling the users why
they would better not buy.

Based on our preliminary analysis, we propose a new Ex-
plicit Factor Model (EFM) to achieve both high accuracy
and explainability. Figure 1 illustrates the overview of the
proposed solution with an example. First, phrase-level sen-
timent analysis over textual review corpus generates a sen-
timent lexicon, where each entry is an (F,O, S) triplet, and
the feature words together serve as the explicit feature space.
Then, user attentions and item qualities on these features
are integrated into a unified factorization model (i.e. EFM),
which are later used to generate personalized recommenda-
tions and explanations. In this example, the system iden-
tified that a user might care about memory, earphone and
service, thus a product that performs especially well on these
features would be a promising recommendation for him.

In the rest of this paper, we first review some related work
(Section 2) and provide detailed expositions of our approach,
including the algorithm for model learning (Section 3). Then
we describe the offline experimental settings and results for
verifying the performance of the proposed approach in terms
of rating prediction and top-K recommendation (Section 4),
as well as online experiments for testing the effect of in-
tuitional explanations (Section 5). Finally, we conclude the
work, discuss the limitations of the work and point out some
of the future research directions in Section 6.

2. RELATED WORK
With the ability to take advantage of the wisdom of crowds,

Collaborative Filtering (CF) [32] techniques have achieved
great success in Personalized Recommender Systems [17],
especially in rating prediction tasks. Recently, Latent Fac-
tor Models (LFM) based on Matrix Factorization (MF) [12]
techniques have gained great popularity as they usually out-
perform traditional methods and have achieved state-of-the-
art performance in some benchmark datasets [32]. Various
MF algorithms have been proposed in different problem set-
tings, such as Singular Value Decomposition (SVD) [12, 31],
Non-negative Matrix Factorization (NMF) [13], Max-Margin
Matrix Factorization (MMMF) [28], Probabilistic Matrix
Factorization (PMF) [29], and Localized Matrix Factoriza-
tion (LMF) [43, 42]. They aim at learning latent factors from
user-item rating matrices to make rating predictions, based
on which to generate personalized recommendations. How-
ever, their latent characteristic makes it difficult to make
recommendations in situations where we know a user cares
about certain particular product features. Further more, it

Review	

Corpus	
 Screen	

Earphone	

Ba4ery	
 OS	

Memory	

Price	

Color	

Service	

Brand	
 Re

co
m
m
en

d	

Sen<ment	

Lexicon	

Users	
 pay	
 a4en<on	
 to	

different	
 features	

Items	
 perform	
 well	
 on	

different	
 features	

Figure 1: The product feature word and user opin-
ion word pairs are extracted from user review corpus
to construct the sentiment lexicon, and the feature
word set further serves as the explicit feature space.
An item would be recommended if it performs well
on the features that a user cares.

is also difficult to generate intuitional explanations for the
recommendation results. Besides, the frequently used met-
rics such as RMSE and MAE do not necessarily have direct
relationship with the performance in practical top-K recom-
mendation scenarios [4].

It is important to notice that the increasingly growing
amount of user generated textual reviews contain rich infor-
mation about product features and user preferences, which
can be extracted, summarized and structured by Sentiment
Analysis (SA) [16, 23]. Sentiment analysis can be conducted
on three different levels: review/document-level, sentence-
level and phrase-level. Review- [24, 41] and sentence-level
[39, 21] analysis attempt to classify the sentiment of a whole
review or sentence to one of the predefined sentiment po-
larities, including positive, negative and sometimes neutral,
while phrase-level analysis [40, 18, 6] attempts to extract ex-
plicit features of the products, and further analyze the senti-
ment orientations that users express on these features based
on opinion words that the users use to express the attitude
towards the features [9]. The core task in phrase-level senti-
ment analysis is the construction of Sentiment Lexicon [33,
15, 6, 18], where each entry is a (Feature,Opinion,Sentiment)
triplet. This is generated by extracting feature-opinion word
pairs and determining their sentiments from text reviews.
The lexicon could be used in various sentiment related tasks.
It is necessary to note that the sentiment lexicon could be
contextual [40]. For example, the opinion word high has a
positive sentiment when modifying the feature word quality,
yet has a negative sentiment when accompanied by noise.

With the continuous growth of such information-rich sources,
how to use textual reviews in recommender systems has re-
ceived increasing attention over the last few years [1, 19,
20, 25, 35, 10, 11, 7, 26]. The most early approach con-
structs manually defined ontologies to structure the free-text
reviews [1]. However, constructing ontologies is domain-
dependent and time consuming, and it is also not nicely
integrated with the wisdom of crowds as in CF. More recent
work leverages review- or sentence-level sentiment analysis
to boost the performance of rating prediction [10, 11, 7, 26,
25]. However, rating prediction accuracy is not necessar-
ily related to the performance in practical applications [4].
Besides, the sentence- or review-level analysis does not of-
fer rich finer-grained sentiment information, which can be
better utilized in recommendation and explanation.

In an attempt to address the problems, some recent work
conducted topic discovery from the reviews to estimate user
preferences for personalized recommendations [19, 20, 35].

However, as a user could in fact be criticizing rather than
appreciating the product on a mentioned topic, simple topic
level analysis without more detailed natural language pro-
cessing makes such approaches biased and limited. In con-
trast, we leverage phrase-level sentiment analysis to model
user preferences and item performances on an explicit fea-
ture/aspect for more detailed user preference modeling, more
accurate predicting, and more intuitional explanations.

Researchers have shown that providing appropriate expla-
nations could improve user acceptance of the recommended
items [8, 36], as well as benefit user experience in various
other aspects, including system transparency, user trust, ef-
fectiveness, efficiency, satisfaction and scrutability [37, 3, 2].
However, the underlying recommendation algorithm may in-
fluence the types of explanations that can be constructed.
In general, the computationally complex algorithms within
various latent factor models make the explanations difficult
to be generated automatically [37].

Many meticulously designed strategies have been investi-
gated to tackle the problem, ranging from the simple ‘peo-
ple also viewed’ explanations in e-commerce websites [37] to
the more recent social friends or social tags based explana-
tions [30, 38]. However, such explanations are either over
simplification of the true reasons, or difficult to generate in
non-social scenarios. Nevertheless, an important advantage
of utilizing explicit features for recommendation is its ability
to provide intuitional and reasonable explanations for both
recommended and disrecommended items. Besides, the pro-
posed model can also integrate social or statistical features,
and thus generalizes the existing explanation solutions.

3. THE FRAMEWORK
This section describes the major components of the pro-

posed framework (Figure 1). The major notations used in
the rest of the paper are summarized in Table 1. L is gener-
ated by phrase-level sentiment analysis on user reviews. A is
the numerical user-item rating matrix. The matrices X and
Y are constructed by mapping the reviews of each user and
item onto the lexicon L. The following sub-sections describe
more details about the framework.

3.1 Sentiment Lexicon Construction
In the first stage, the contextual sentiment lexicon L is

constructed from textual user reviews based on the state-of-
the-art optimization approach described in [18]. This pro-
cess mainly consists of three steps. First, the feature word
set F are extracted from the text review corpus using gram-
matical and morphological analysis tools. Then, the opinion
word set O is extracted and further paired up with the fea-
ture words where possible. This leads to the feature-opinion
pairs (F,O). Finally, sentiment polarity labelling of these
pairs are conducted based on an optimization framework,

Table 1: Table of notations in the framework.
L The contextual sentiment lexicon

(F,O,S) A lexicon entry of L, where S ∈ [−1, 1]
F The feature word set of L, where |F| = p
O The opinion word set of L, where |O| = q

A ∈ Rm×n+ The user-item numerical rating matrix

m,n The number of users and items, respectively

X ∈ Rm×p+ The user-feature attention matrix

Y ∈ Rn×p+ The item-feature quality matrix

N The non-zeros in A,X, Y are in the range of [1, N]

Star	
 Ra'ng:	
 4	
 stars	

Review	
 Text:	
 Screen	
 is	
 perfect,	

but	
 earphone	
 is	
 not	
 that	
 good.	

(screen,	
 perfect,	
 1)	
 [normal]	

(earphone,	
 good,	
 1)	
 [reversed]	

(screen,	
 1),	
 (earphone,	
 -­‐1)	

Figure 2: An example of user-item review matrix,
where each shaded block is a review made by a user
towards an item; the entries included in the review
are extracted, and further transformed to feature
scores while considering the negation words.

and each pair is assigned a sentiment value S, and this leads
to the final entries (F,O, S) in L.

Since the lexicon construction procedure is not the focus
of this paper, we refer the readers to the related literature
such as [18] for more details. The quality of the constructed
lexicon will be reported later in the experimental section.

3.2 Feature-Opinion Pair Mapping
Given the sentiment lexicon L and a piece of text review,

we generate a set of feature-sentiment (F, S′) pairs to repre-
sent the review, where S′ is the reviewer’s sentiment on the
particular product feature as expressed in the review text.

To illustrate the idea, we consider a toy example shown in
Figure 2. Each shaded block is a user’s review about an item,
which includes a numerical rating and a piece of review text.
Based on that, we need to identify which lexicon entries are
mentioned by the user in the review text, and whether the
sentiment polarity of the entry is reversed by negation words
like ‘not’ or ‘hardly’. Then we can generate a set of feature-
sentiment pairs to represent a piece of review text. In this
example, the set includes (screen, +1) and (earphone, -1).

Without lose of generality, we adopt the approachs in [18]
and [34]. The algorithm analyzes the review text on clause
level by parsing sentences into syntactic tree structures, with
which a rule-based finite state matching machine approach
is conducted for feature-opinion pair mapping, and the en-
tries such as (screen, perfect, +1) and (earphone, good, +1)
in L are matched in the review. Then, negation words de-
tection is conducted to check whether the sentiment of each
matched entry is reversed. For example, the sentiment of en-
try (earphone, good, +1) is reversed because of the presence
of the negation word ‘not’. Then we have:

S′ =

{
S, if O is not reversed by negation words

−S, if O is reversed by negation words
(1)

3.3 User-Feature Attention Matrix
We assume that different users might care about differ-

ent features, and they tend to comment more frequently on
those features that he or she particularly cares. Thus we
construct a user-feature attention matrix X, where each el-
ement measures to what an extent a user cares about the
corresponding product feature/aspect.

Let F = {F1, F2, · · · , Fp} be the set of explicit product
features/aspects, and let U = {u1, u2, · · · , um} denote the
m users. To generate the matrix, we consider all the text
reviews written by a user ui, then extract all (F, S′) entries
in the collection. Suppose feature Fj is mentioned by user

ui for tij times, we define each element in the user-feature
attention matrix X as follows:

Xij =


0, if user ui did not mention feature Fj

1 + (N − 1)
(2

1 + e−tij
− 1
)
, else

(2)

The major goal of (2) is to rescale tij into the same range
[1, N] as the rating matrix A by reformulating the sigmoid
function. The choice of N is 5 in many real-world five stars
based reviewing systems, such as Amazon and Yelp.

3.4 Item-Feature Quality Matrix
We also construct item-feature quality matrix Y , where

each element measures the quality of an item for the corre-
sponding product feature/aspect.

Let P = {p1, p2, · · · , pn} denote the n items/products.
For each of the items pi, we use all of its corresponding re-
views, and extract the corresponding (F, S′) pairs. Suppose
feature Fj is mentioned for k times on item pi, and the av-
erage of sentiment of feature Fj in those k mentions are sij .
We define the item-feature measure Yij as:

Yij =


0, if item pi is not reviewed on feature Fj

1 +
N − 1

1 + e−k·sij
, else

(3)

This measure captures both the sentiment orientation (through
sij) and the popularity (through k) of feature Fj for product
pi. It is also rescaled into the range of [1, N].

3.5 Integrating Explicit and Implicit Features
The non-zeros in matrices X and Y indicate the observed

relations between users, items and explicit features. Now we
exposit how to integrate these into a factorization model for
both accurate prediction and explainable recommendations.

Similar to factorization models over user-item rating ma-
trix A, we can build a factorization model over user-feature
attention matrixX and item-feature quality matrix Y , which
means estimating hidden representations of users, features,
and items based on the observed user-feature and item-
feature relations. This can be done as follows:

minimize
U1,U2,V

{
λx‖U1V

T −X‖2F + λy‖U2V
T − Y ‖2F

}
s.t. U1 ∈ Rm×r+ , U2 ∈ Rn×r+ , V ∈ Rp×r+

(4)

where λx and λy are regularization coefficients, and the
number of explicit factors r represents the number of factors.

We assume a user’s overall star ratings about an item (i.e.
an element in matrix A) is based on her underlying opinions
over various product aspects. Based on this assumption, we
estimate the rating matrix using the latent representations
U1 and U2, which captures the user attentions and item
qualities on the explicit product features. However, we also
acknowledge that the explicit features might not be able to
fully explain a rating and a user might consider some other
hidden factors when making a decision (i.e. rating) about
a product. As a result, we also introduce r′ latent factors

H1 ∈ Rm×r
′

+ and H2 ∈ Rn×r
′

+ , and use P = [U1 H1] and
Q = [U2 H2] to model the overall rating matrix A as follows:

minimize
P,Q

{
‖PQT −A‖2F

}
(5)

To put Eq.(4) and Eq.(5) together, we have a factorization
model that integrates explicit and implicit features. The un-
derlying relationships of product features, partially observed

Screen	
 Earphone	
 Ba-ery	
 OS	
 Memory	
 ……	

X Y

V U1 U2 H1 H2

A

Explicit	

Features	

Implicit	
 Features	

Ground	
 truth	

Figure 3: The relationships of product features, par-
tially observed matrices, and hidden factors in the
EFM framework.

matrices, and hidden factors are illustrated in Figure 3. The
hidden factors can be estimated through the following opti-
mization task:

minimize
U1,U2,V,H1,H2

{
‖PQT −A‖2F + λx‖U1V

T −X‖2F + λy‖U2V
T − Y ‖2F

+λu(‖U1‖2F + ‖U2‖2F) + λh(‖H1‖2F + ‖H2‖2F) + λv‖V ‖2F
}

s.t. U1 ∈ Rm×r+ , U2 ∈ Rn×r+ , V ∈ Rp×r+ , H1 ∈ Rm×r
′

+ ,

H2 ∈ Rn×r
′

+ and P = [U1 H1], Q = [U2 H2]

(6)

When r = 0, this model reduces to a traditional latent fac-
torization model on user-item rating matrix A, which means
that the explicit features are not used for recommendations.
The optimal solution of Eq.(6) can be further used for mak-
ing recommendations and explanations.

3.6 Model Learning for EFM
There is no closed-form solution for Eq.(6). Motivated

by [5], we introduce an alternative minimization algorithm
(Algorithm 1) to find the optimal solutions for the five pa-
rameters U1, U2, V,H1, H2. The key idea is to optimize the
objective function with respect to one parameter, while fix-
ing the other four. The algorithm keeps updating the param-
eters repeatedly until convergence or reaching the maximum

Algorithm 1: Explicit Factor Model

Input: A,X, Y,m, n, p, r, r′, λx, λy, λu, λh, λv, T
Output: U1, U2, V,H1, H2

U1 ← Rm×r+ , U2 ← Rn×r+ , V ← Rp×r+ ;

H1 ← Rm×r
′

+ , H2 ← Rn×r
′

+ ; //initialize randomly
t← 0;
repeat

t← t+ 1;

Update: Vij ← Vij

√
[λxXTU1+λyY TU2]ij

[V (λxU
T
1 U1+λyU

T
2 U2+λvI)]ij

Update:

U1ij ← U1ij

√
[AU2+λxXV]ij

[(U1U
T
2 +H1H

T
2)U2+U1(λxV T V+λuI)]ij

Update:

U2ij ← U2ij

√
[ATU1+λyY V]ij

[(U2U
T
1 +H2H

T
1)U1+U2(λyV T V+λuI)]ij

Update: H1ij ← H1ij

√
[AH2]ij

[(U1U
T
2 +H1H

T
2)H2+λhH1]ij

Update: H2ij ← H2ij

√
[ATH1]ij

[(U2U
T
1 +H2H

T
1)H1+λhH2]ij

until Convergence or t > T ;
return U1, U2, V,H1, H2;

number of iterations. Due to the limited space, we sketch the
derivations of the updating rules in the Appendix. Similar
to [13], the correctness and convergence of Algorithm 1 can
be proved with the standard auxiliary function approach.

3.7 Personalized Recommendation
Given the optimal solution of the factorization model, we

can estimate any missing element in the user-feature at-
tention matrix X, item-feature quality matrix Y and user-
item rating matrix A, as X̃ = U1V

T , Ỹ = U2V
T , and

Ã = U1U
T
2 + H1H

T
2 . Based on that, we can generate per-

sonalized top-K recommendations and provide feature-level
explanations, as described in the following subsections.

3.7.1 Top-K Recommendation
We assume that a user’s decision about whether to make

a purchase is based on several important product features to
him or her, rather than considering all hundreds of possible
features. Thus we use the most cared k features of a user
when generating the recommendation list for him/her. For
user ui(1 ≤ i ≤ m), let the column indices of the k largest

values in row vector X̃i· be Ci = {ci1, ci2, · · · , cik}. We set
the ranking score of item pj(1 ≤ j ≤ n) for user ui as follows:

Rij = α ·
∑
c∈Ci X̃ic · Ỹjc

kN
+ (1− α)Ãij (7)

where N = max(Aij) is used to rescale the first part and
N = 5 in most rating systems. The first part is a user-
item similarity score based on the k most important product
features that user ui cares. 0 ≤ α ≤ 1 is a scale that controls
the trade off between feature based score and direct user-
item ratings. The top-K recommendation list for user ui
can be constructed by ranking the items based on Rij .

3.7.2 Personalized Feature-Level Explanation
Traditional factorization models are usually difficulty to

understand and it is hard to automatically generate explana-
tions about why or why not an item is recommended through
the hidden factors. An important advantage of our EFM
framework is its ability to analyze which of the various fea-
tures play a key role in pushing an item to the top-K. Besides
recommending products, we also study an uncommon usage
scenario of our framework: disrecommending an item that
the system considers “does not worth buying” when a user
is viewing it. We believe that this is an important usage
of a filtering/recommendation system, and that explaining
why the system “thinks” the user should not buy a product
might gain user trust and help user make a more informed
purchasing decision.

There could be many different ways to construct effective
explanations with the explicit features. However, due to the
limited experimental resources, we designed a straightfor-
ward template based explanation and an intuitional word
cloud based explanation for the recommended and disrec-
ommended items. The templates are shown as follows:

You might be interested in [feature],
on which this product performs well.

You might be interested in [feature],
on which this product performs poorly.

For each user ui and a recommended item pj , the feature

used for explanation construction is Fc, where:

c = argmaxc∈Ci Ỹjc (8)

While for each disrecommended item pj , the feature Fc is:

c = argminc∈Ci Ỹjc (9)

We focus on the persuasiveness of the explanation. Among
the user’s most cared features, we select the one that has the
best or worst performance on the corresponding product.

The word cloud based explanation further attempts to val-
idate the textual explanations by listing the feature-opinion
pairs that are matched on the reviews of a (dis)recommended
item. The recommendation interface, word cloud as well as
the practical effects regarding user acceptance of the recom-
mendations will be discussed in details later.

4. OFFLINE EXPERIMENTS
In this section, we conduct extensive experiments to evalu-

ate the EFM framework in offline settings. We mainly focus
on the following research questions: 1) How do users care
about the various explicit product features extracted from
reviews, and 2) What is the performance of the EFM frame-
work in both the task of rating prediction and the more
practical task of top-K recommendation.

We begin by introducing the experimental setup, and re-
port the quality evaluation of the constructed sentiment lex-
icon, then we report and analyze the experimental results to
attempt to answer the research questions.

4.1 Experimental Setup
We choose the Yelp1 and Dianping2 datasets (Table 2)

for experimentations. The Yelp dataset consists of user re-
views on the businesses located in the Phoenix City of the
US, and the Dianping dataset consists of the reviews on the
restaurants located in several main cities of China, where
each user made 20 or more reviews.

Table 2: Statistics of Yelp and Dianping datasets.
Dataset #users #items #reviews #reviews

#users

Yelp 45,981 11,537 229,907 5.00
Dianping 11,857 22,365 510,551 43.06
Yelp10 4,393 10,801 138,301 31.48

These datasets are of two different languages, which are
English on Yelp, and Chinese on Dianping. As a kind of nat-
ural language processing techniques, phrase-level sentiment
analysis could be language dependent. By these completely
different language settings we would like to verify whether
our framework works in different language environments.

It is necessary to note that the Yelp dataset includes those
users that made very few reviews. In fact, 49% of the users
made only one review, which makes it difficult to evaluate
the performance of top-K recommendation. As a result, we
selected the users with 10 or more reviews for the experi-
mentation of top-K recommendation, which constitutes the
dataset ‘Yelp10’, as shown at the bottom line of Table 2.

The maximum number of iterations T in Algorithm 1 is set
to 100 to ensure convergence. We conducted grid search for
the hyper-parameters one-by-one in the range of (0, 1] with
a step size of 0.05, and 5-fold cross-validation was conducted
in performance evaluation for all methods.

1http://www.yelp.com/dataset_challenge
2http://www.dianping.com

4.2 Sentiment Lexicon Constructed
We shall note that, the task of phrase-level sentiment lex-

icon construction is inherently difficult. One always need to
trade off between precision and recall. As a primary step to-
wards using sentiment lexicon for EFM, we focus on the pre-
cision as we will only use the top features in our framework,
primarily to avoid the negative effects of wrong features as
much as possible. We expect as the research in sentiment
analysis advances, the performance of our framework will
further improve as well.

Similar to [18], manual labellings from three human an-
notators are used to evaluate the lexicon quality. A feature
word or opinion word is considered to be proper if it is ap-
proved by at least two annotators. We found that the aver-
age agreement among annotators is 85.63%. To evaluate the
sentiments, we transform each polarity value S ∈ [−1, 1] into
a binary value (positive or negative). There is no neutral
as S = 0 does not exist. The annotators were asked to label
the sentiment correctness for each entry, and the average
agreement is 82.26%. The statistics and evaluation results
of the lexicons are shown in Table 3.

Table 3: Some statistics and evaluation results of
the sentiment lexicons, where ‘F,O,S’ are for feature
word, opinion word and sentiment respectively, and
‘Prec’ stands for ‘Precision’.

Dataset #F #O #entries Prec(F) Prec(O) Prec(S)
Yelp 96 155 845 92.71% 91.61% 94.91%
Dianping 113 284 1,129 89.38% 89.79% 91.41%

The lexicon construction process gives us around 100 high
quality product features in both datasets.Some sampled en-
tries on Yelp are presented in Table 4, showing how the
sentiment lexicon looks in different contextual text reviews.

Table 4: Sampled entries from the Yelp dataset.
Feature Dependent Opinion Dependent
(decor, cool, +) (price, fire, +)
(service, cool, -) (price, high, -)
(price, high, -) (parking space, plenty, +)
(service quality, high, +) (parking space, limit, -)

To verify the assumption that users might care about dif-
ferent features, we construct the user-feature attention ma-
trixX on ‘Yelp’ dataset, and conduct a simple fuzzy k-means
clustering to map the users into 5 fuzzy clusters within the
Euclidean distance space. The reason to choose fuzzy clus-
tering is due to the fact that a users might be interested
in two or more product aspects. For the k-th (k = 1 · · · 5)
cluster, we rank the features according to the weighted sum
frequency Freq(Fj) =

∑m
i=1 wiktij , where wik is the degree

that user ui belongs to the k-th cluster, and tij is the fre-
quency that user ui mentioned feature Fj . We then select
the top-5 frequent features from each cluster and rank them
in descending order of term frequency, as listed in Table 5.

Table 5: Top-5 frequent features of the 5 clusters.
cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

food service place price beer
lunch menu area order drink

service food location food bar
meal order restaurant service order

experience staff bar menu wine

We see that the users in each cluster care about a different
subset of features, and each subset mainly reveals a different
product aspect. The modularity (measures the quality of a

division of a network into communities, which is commonly
used in community detection [22]) among the clusters is Q =
0.605, exhibiting a high inner-cluster relationship against
inter-cluster relationship of the users. The results indicate
that users do comment on different features, which matches
our assumption that users care about different aspects. In
the following experiments, we will continue to investigate
the effect of explicit features in various conditions.

We use the original sentiment lexicon and do not use any
human annotation information in the following experiments,
so as to avoid any manual effort in our framework.

4.3 Rating Prediction
We investigate the performance in approximating the rat-

ing matrix A. Three popular and state-of-the-art latent fac-
tor models are chosen for comparison, which are Nonnega-
tive Matrix Factorization (NMF) [13], Probabilistic Matrix
Factorization (PMF) [29] and Max-Margin Matrix Factor-
ization (MMMF) [28]. The hyper-parameters are selected
by grid search in 5-fold cross-validation. We also compared
with the Hidden Factors as Topics (HFT) model in [19],
which achieved the state-of-the-art performance in terms of
leveraging text reviews by extracting hidden topics. We set
the number of topics as 5 in HFT as reported in [19], and
assigning more topics does not further improve the perfor-
mance. We evaluate by Root Mean Square Error (RMSE).

4.3.1 Ratio of Explicit and Latent Factors
The number of explicit factor r and latent factors r′ are

important because they capture two different types of fea-
tures in the factorization process. In this subsection, we
investigate the effect of explicit and latent factors by fixing
their total number r + r′ = 100, and tuning their ratio. We
also use 100 latent factors for NMF, PMF and MMMF to
ensure equal model complexity3. The experimental results
of RMSE vs the number of explicit factors r are shown in
Figure 4. The standard deviations in 5-fold cross-validation
of each baseline algorithm and on each experimental point
of our EFM framework are ≤ 0.002.

1.20	

1.21	

1.22	

1.23	

1.24	

1.25	

1.26	

1.27	

1.28	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

RM
SE
	

Number	
 of	
 Explicit	
 Factors	
 r	

MMMF,	
 1.268	

PMF,	
 1.253	

NMF,	
 1.248	

HFT,	
 1.221	

EFM	
 1.212	

(a) Yelp dataset

0.91	

0.92	

0.93	

0.94	

0.95	

0.96	

0.97	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

RM
SE
	

Number	
 of	
 Explicit	
 Factors	
 r	

MMMF,	
 0.953	

PMF,	
 0.961	

NMF,	
 0.937	

EFM	

HFT,	
 0.928	

0.922	

(b) Dianping dataset

Figure 4: RMSE vs Number of Explicit Factors r.

We see that when using a small number of explicit fac-
tors and keeping the majority to be latent, the performance
of EFM is comparable to that of HFT or NMF. This is as
expected, because the EFM algorithm simplifies into a kind
of nonnegative matrix factorization when r = 0. However,
when an appropriate percentage of explicit factors (around
30% ∼ 80%) are used, EFM is statistically significantly
better than the baselines. The best prediction accuracy
RMSE=1.212 is achieved on Yelp when r = 35, and the best
RMSE=0.922 when r = 50 on Dianping. We also found that
too many explicit factors hurts the performance. This sug-

3Besides, increasing the number of factors beyond 100 would
not affect the performance much.

gests that although incorporating explicit factors improves
the prediction accuracy, keeping a moderate amount of la-
tent factors is necessary to ensure model flexibility, as the ex-
plicit factors might not capture all user criteria completely.

4.3.2 Total Number of Factors
We further investigate the total number of factors r+r′ to

verify the performance under different model complexities.
We fix the percentage of explicit factors to 40%, which gives
near optimal performances on both datasets in the previ-
ous experiment. For comparison, we experiment with HFT,
which achieved the best performance among baseline algo-
rithms, and NMF, which is the best among three of the LFM
models. The results are shown in Figure 5.

HFT,	
 1.221	

1.18	

1.20	

1.22	

1.24	

1.26	

1.28	

1.30	

1.32	

1.34	

1.36	

1.38	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

RM
SE
	

Total	
 Number	
 of	
 Factors	
 r+r'	

NMF	

EFM	

(a) Yelp dataset

HFT,	
 0.928	

0.90	

0.92	

0.94	

0.96	

0.98	

1.00	

1.02	

1.04	

1.06	

1.08	

10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

RM
SE
	

Total	
 Number	
 of	
 Factors	
 r+r'	

NMF	

EFM	

(b) Dianping dataset

Figure 5: RMSE vs total number of factors r+r ′.

For both the NMF algorithm and EFM framework, RMSE
tends to drop as r+ r′ increases. However, the performance
of EFM would not surpass NMF or HFT until r + r′ is big
enough. This suggests that we need enough latent factors in
order to make EFM framework work effectively. Neverthe-
less, as long as the number of latent factors are big enough
to capture the underlying user rating patterns, the existence
of explicit factors further improves rating prediction.

4.4 Top-K Recommendation
In this set of experiment, we study the EFM framework

in the top-K recommendation task. We did further analysis
of the framework to find whether and how the performance
is affected by some specific features, and which features are
of key importance to the users in the task.

We still set the percentage of explicit factors to be 40%.
We set the total number of factors r+r′ as 65, a number that
is big enough on both datasets, because assigning more fac-
tors would not affect the performance much. We compared
EFM with the following baseline algorithms:

MostPopular: Non-personalized recommendation where
the items are ranked by the number of ratings given by users.

SlopeOne: A neighborhood-based CF algorithm with
easy implementation and comparable or better performance
than user- or item-based approaches [14].

NMF: Nonnegative Matrix Factorization algorithm that
is among the best latent factor models in the previous ex-
periment.

BPRMF: Bayesian Regularized Ranking (BPR) optimiza-
tion for MF [27], which is the state-of-the-art algorithm for
top-K recommendation with numerical ratings.

HFT: The state-of-the-art algorithm in terms of making
rating prediction with textual reviews [19].

We conduct top-5 (K=5) and top-10 (K=10) recommen-
dation on Yelp10 and Dianping correspondingly, as the min-
imum number of reviews per user is 10 on Yelp10 and 20 on
Dianping. We holdout the latest K reviewed items from each
user for testing, assuming they are the only relevant items.

Table 6: Top-K recommendation results on Dian-
ping dataset, where the result listed for EFM is the
best performance with the corresponding k.

Method MP SO NMF BPRMF HFT EFM
NDCG 0.244 0.212 0.216 0.238 0.261 k = 50 0.284
AUC 0.837 0.785 0.832 0.856 0.873 k = 50 0.884

The other reviews are used for training. Five-fold cross-
validation is used for parameter tuning and performance
evaluation. Following [27], we used Normalized Discounted
Cumulative Gain (NDCG) and Area Under the ROC Curve
(AUC) to help evaluate the performance of different models.

4.4.1 Number of Most Cared Features
We first fix the number of most cared features k = 10 and

found that the optimal value for the weighing scalar α is
0.85 in terms of NDCG. Then we fix α = 0.85 throughout
the following experiments to focus on the key parameter k.

We study how the performance (NDCG and AUC) changes
as k increases from 5 to the maximum value possible (96 for
Yelp10 and 113 for Dianping), and the results on Yelp10 are
shown in Figure 6. It shows that the performance of EFM
continues to rise with the increase of k until around 15, and
tends to be stable before it begins to drop when k = 45. It
outperforms all other algorithms when k ≤ 70, and in the
best case where k = 45, EFM is 12.3% better than the best
baseline algorithm BPRMF. However, the NDCG tends to
drop when k is too high. The results on Dianping are similar,
as shown in Table 6. EFM is statistically significantly bet-
ter than other algorithms on Yelp10 and Dianping datasets.
The standard deviations of both NDCG and AUC in five-
fold cross-validation for each baseline algorithm and on each
experimental point of EFM are ≤ 0.006.

0.18	

0.20	

0.22	

0.24	

0.26	

0.28	

0.30	

5	
 15	
 25	
 35	
 45	
 55	
 65	
 75	
 85	
 96	

N
DC

G	

Number	
 of	
 Most	
 Cared	
 Features	
 k	

SlopeOne,	
 0.195	

MostPopular,	
 0.214	

NMF,	
 0.239	
 HFT,	
 0.245	

BPRMF,	
 0.253	
 EFM	

0.284	

(a) NDCG vs k

0.76	

0.78	

0.80	

0.82	

0.84	

0.86	

0.88	

5	
 15	
 25	
 35	
 45	
 55	
 65	
 75	
 85	
 96	

AU
C	

Number	
 of	
 Most	
 Cared	
 Features	
 k	

…
	

…
	

0.70	

0.60	

SlopeOne,	
 0.682	

MostPopular,	
 0.805	
 NMF,	
 0.812	

BPRMF,	
 0.833	
 HFT,	
 0.838	

EFM	

0.866	

(b) AUC vs k

Figure 6: NDCG and AUC vs the number of most
cared features k on the Yelp10 dataset.

This observation confirms the hypothesis that incorporat-
ing too many features would introduce noise into the rec-
ommendation procedure, which is consistent with the ob-
servations in a recent work HFT [19]. However, the results
on AUC show that the EFM framework is better than the
comparative algorithms consistently. As AUC evaluates only
the pairwise rankings rather than the positions, this obser-
vation suggests that incorporating irrelevant features affects
the position rankings of relevant items more than their pair-
wise rankings.

4.4.2 Further Analysis of Explicit Features
Although the results show that the performance on NDCG

begins to keep stable when k ≥ 15, it is still surprising for
us, as we do not expect that users would consider tens of
features when making decisions. To further analyze the
user-feature relationships and learn the impact of explicit
features, we calculate the averaged coverage of the k most
cared features in term frequency, against all the features in

the reviews of a user:

Coverage@k =
1

|U |

|U|∑
i=1

∑
j∈Ci tij∑p
j=1 tij

(10)

where tij is the term frequency of feature Fj in the reviews
of user ui. The relationship of Coverage vs k is shown in
Figure 7 below.

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1.0	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Co
ve
ra
ge
	

Number	
 of	
 Most	
 Cared	
 Features	
 k	

Yelp	
 Dataset	

Dianping	
 Dataset	

Figure 7: Coverage of term frequency vs the number
of most cared features k on both of the datasets.

We notice that a small number of the most cared features
dominate the coverage of term frequency in user reviews. For
example, about 24 out of 96 features cover up to 80% of the
feature occurrences on Yelp. This implies that users usually
put most of the attentions on several most cared features,
which verifies our motivation to adopt the top k features for
recommendation, because incorporating more features could
bring about negative effects as they might be irrelevant to
users’ preferences.

However, it needs 46 features to achieve the same 80% cov-
erage on Dianping dataset, which is nearly twice the number
of Yelp10. To understand the reason, we group the feature
words into synonym clusters using WordNet4 on Yelp10, and
HowNet5 on Dianping. We find that different feature words
are used to describe the same aspect of the items. For ex-
ample, the features price and cost are grouped into a single
cluster. Some key statistics are shown in Table 7.

Table 7: Key statistics of synonym clusters.
Dataset #Feature #Cluster #F/#C
Yelp10 96 31 3.10
Dianping 113 26 4.35

The results show that on average there are more synonyms
in the Chinese language, and the existence of synonyms di-
lutes the explicit feature space. For example, while there
are two features price and cost grouped into one cluster on
Yelp10, the semantically corresponding cluster on Dianping
contains four feature words. This suggests that the optimal
number of features might be different for different languages.
The top 15 features on Yelp10 are grouped into 7 clusters,
as shown in Table 8, where the top 15 features are bolded
and the clusters are ranked by total term frequency.

Table 8: Word clusters of the top 15 features.

1
place, restaurant,

2
food, menu, lunch,

location, area, way pizza, dinner
3 service, time, staff, order 4 experience, quality
5 room, atmosphere, decor 6 price, cost
7 beer, wine, drink, water, coffee

The observations tell us that while the NDCG continues to
rise when k ≤ 15, the underlying features are still limited to

4http://wordnet.princeton.edu
5http://www.keenage.com

Recommenda)on	
 List	

Whether	
 the	
 current	

browsing	
 item	
 is	

recommended	
 or	
 not	

您可能还喜欢	

	
 	
 	
 	
 	
 	
 	
 推荐购买!	

(a) In browser recommendation (b) Word cloud

Figure 8: Top-4 recommended items are presented
by the browser at right hand side when the user is
browsing an online product, and the feature-opinion
word pair cloud is displayed to assist explanations
when the user hovers on a recommended item.

about 7 key aspects. Besides, we also find that incorporat-
ing the top 15 ∼ 55 features are in fact appending features
into the previously existed clusters. This might explain why
NDCG keeps stable in that range before getting to drop.

The experimental results confirmed our intuition of focus-
ing on the top product features in recommender systems.
More importantly, incorporating explicit features makes it
possible to leverage the many promising natural language
processing techniques in recommender systems, which can
be used to analyze the specific interests of different users,
and thus to develop effective marketing strategies in e-commerce.

5. ONLINE EXPERIMENTS
In this section, we conduct online experiments with real-

world e-commerce users to investigate the effect of automat-
ically generated intuitional feature-level explanations, focus-
ing on how the explains affect users’ acceptance of the rec-
ommendations (i.e. persuasiveness).

5.1 Experimental Setup
We conduct A/B-tests based on a popular commercial web

browser which has more than 100 million users, with 26%
monthly active users. Our experiments attempt to recom-
mend relevant phones when a user is browsing mobile phones
in a very popular online shopping website JingDong6.

Figure 8(a) shows our recommendation interface, where
the recommendations for the current browsing item are dis-
played in the right side popup panel. At the top of the panel
is an ‘Indicator’, which shows whether the current brows-
ing item is recommended or disrecommended, followed by a
‘List’ of top-4 recommendations for the current user. Figure
8(b) shows the word cloud where the positive feature-opinion
pairs are green and negative pairs are blue, and the size is
proportional to the term frequency in the reviews of the rec-
ommended item. For example, the largest pair in Figure
8(b) means “PictureClarity-High”.

We select those users who made ten or more reviews as tar-
get users according to the browser log, and collect their re-
views to employ the EFM framework to generate (dis)recom-
mendations and explanations for these selected users. The
textual explanation and word cloud for the ‘Indicator’ or a
recommended item in the ‘List’ will be displayed in a popup
panel when the mouse is hovered on an item, so that we can
detect whether a user has examined a recommendation and
its explanation.

6http://www.jd.com

5.2 Recommendation List Explanation
To study the explanations in the ‘List’, we randomly as-

signed each subject to one of the following three groups. The
A (experimental group) users receive our feature-level expla-
nations, the B (comparison group) users receive the famous
‘People also viewed’ explanations, and the C (control group)
users receive no explanation. In our result analysis, we only
consider those users who hovered the mouse on the List,
so we know that they have examined the recommendation
explanations. Besides, we only consider the browsing logs
corresponding to those items common to A, B and C, re-
sulting in 44,681 records related to 944 common items. The
results of Click Through Rate (CTR) are shown in Table 9.

Table 9: The number of browsing records, clicks and
click through rate for the three user types.
User Set A B C

Records
#Record #Click #Record #Click #Record #Click

15,933 691 11,483 370 17,265 552
CTR 4.34% 3.22% 3.20%

Based on ten-fold t-test, we found that the CTR of the
experimental group A is significantly higher than that of
the comparison group B and control group C, at p = 0.033
and 0.041, respectively, demonstrating that our feature-level
explanations are more effective in persuading users to exam-
ine the recommended items in terms of click through rate in
e-commerce recommendation scenarios.

5.3 (Dis)Recommendation Explanation
To study how (dis)recommendation explanations affect a

user, we present the Indicator for both user group A (exper-
imental group) and B (control group). The only difference
is that the A users could see the popup explanations when
hovering the mouse over the Indicator, while nothing shows
for the B users. We did not assign a comparison group with
other explanations, because to the best of our knowledge,
there is no previous work on presenting disrecommnedation
explanations. Due to some security reasons, we were unable
to track whether a user paid for an item, so we recorded
whether a user added the current browsing item into his/her
cart as an approximation of user purchasing behavior.

This online experiment resulted in 53,372 browsing records
of 1,328 common items, including 20,735 records from 582
A users and 32,637 records from 733 B users. The over-
all confusion matrix is shown in Table 10, where ‘Recom-
mend’ means that the current item is recommended, and
‘Add’ means that the item is added to the cart. Besides,
AddToCart%= x11+x21

x11+x12+x21+x22
is the total percentage of

adding to cart; Agreement%= x11+x22
x11+x12+x21+x22

is the total

percentage of user agreement with the (dis)recommendation;
RecAgree%= x11

x11+x12
and DisRecAgree%= x22

x21+x22
are the

percentages of user agreement when an item is recommended
or disrecommended, respectively.

Both AddToCart% and Agreement% of the experimental
group A are significantly higher than the control group B,
with the two-tailed p-values being 0.0374 and 0.0068, respec-
tively. This demonstrates that presenting the explanations
improves recommendation persuasiveness, and at the same
time improves the conversion (i.e. adding-to-cart) rate in
real-world online shopping scenarios.

More interestingly, we find that presenting disrecommne-
dation explanations helps to prevent users from adding an
item to cart when the system “thinks” that the item is not

Table 10: The overall confusion matrix correspond-
ing to the 1328 common items of A (with explana-
tions) and B (without explanations) users.

Confusion A B
Matrix Add ¬Add Add ¬Add

Recommend x11 1,261 x12 16,572 x11 1,129 x12 28,218
¬Recommned x21 72 x22 2,830 x21 541 x22 2,749

AddToCart% 6.43% 5.12%
Agreement% 19.73% 11.89%
RecAgree% 7.07% 3.85%

DisRecAgree% 97.5% 83.56%

good enough for him/her. This observation reveals a strong
persuasiveness and flexibility of the feature-level explana-
tions, and it might bring new and promising marketing and
advertising strategies for e-commerce users.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose to leverage phrase-level senti-

ment analysis of user reviews for personalized recommenda-
tion. We extract explicit product features and user opin-
ions from reviews, then incorporate both user-feature and
item-feature relations as well as user-item ratings into a new
unified hybrid matrix factorization framework. Besides gen-
erating personalized recommendations, we designed explicit
feature-level explanations for both recommended and disrec-
ommended items. Our analysis shows that different users
could focus on different product aspects, and our experi-
ments suggest that the size of the underlying feature space
that users care about varies for different users, domains and
countries. Both online and offline experiments show that
our framework compares favourably with baseline methods
in three tasks: rating prediction, top-K recommendation,
and explanation based user persuasion.

This is a first step towards integrating detailed sentiment
analysis for aspect/feature based explainable hybrid factor-
ization models for recommendations, and there are much
room for improvements. Instead of one measure per as-
pect, we can introduce more measures (sentiment, popu-
larity, etc.) or capture more complex interaction between
features in the future. Except for EFM, we can adapt or de-
velop other hybrid factorization models such as tensor fac-
torization or deep learning to integrate phrase-level senti-
ment analysis. Besides, we focused on the persuasiveness in
explanation generation and experimental design, while it is
worth studying other utilities (transparency, user trust, ef-
fectiveness, efficiency, satisfaction, and scrutability, etc.) of
explanations and generating explanations automatically to
optimize one or a combination of the utilities in the future.

7. APPENDIX
The objective function in Eq.(6) with respect to U1 is:

min
U1≥0

{
‖U1U

T
2 +H1H

T
2 −A‖

2
F +λx‖U1V

T −X‖2F +λu‖U1‖2F

}
(11)

Let Λ be the be the Lagrange multiplier for the constraint
U1 ≥ 0, then the Lagrange function is:

L(U1) = ‖U1U
T
2 +H1H

T
2 −A‖

2
F +λx‖U1V

T−X‖2F +λu‖U1‖2F−tr(ΛU1)
(12)

and the corresponding gradient is:

∇U1
= 2(U1U

T
2 +H1H

T
2 −A)U2+2λx(U1V

T−X)V +2λuU1−Λ (13)

By setting ∇U1 = 0 we get:

Λ = 2(U1U
T
2 U2 +H1H

T
2 U2 + λxU1V

T
V + λuU1)− 2(AU2 + λxXV)

(14)

With the KKT complementary condition for the constraint
U1 ≥ 0, we have Λij · U1ij = 0, giving us the following:

[−(AU2+λxXV)+(U1U
T
2 U2+H1H

T
2 U2+λxU1V

T
V+λuU1)]ij ·U1ij = 0

(15)

which further leads to the updating rule of U1:

U1ij ← U1ij

√
[AU2 + λxXV]ij

[(U1UT
2 +H1HT

2)U2 + U1(λxV TV + λuI)]ij
(16)

The updating rules for U2, V,H1, H2 can be derived in a
similar way.

Acknowledgement
The authors thank the reviewers for the constructive sugges-
tions. Part of this work was supported by Chinese Natural
Science Foundation (60903107, 61073071) and National High
Technology Research and Development Program (2011AA01
A205), and the fourth author is sponsored by the National
Science Foundation (IIS-0713111). The opinions, findings or
conclusions expressed in this paper are the authors’, and do
not necessarily reflect those of the sponsors.

8. REFERENCES
[1] S. Aciar, D. Zhang, S. Simoff, and J. Debenham. Informed

Recommender: Basing Recommendations on Consumer
Product Reviews. Intelligent Systems, 22(3):39–47, 2007.

[2] M. Bilgic and R. J. Mooney. Explaining Recommendations:
Satisfaction vs. Promotion. IUI, 2005.

[3] H. Cramer, V. Evers, S. Ramlal, M. van Someren,
L. Rutledge, N. Stash, L. Aroyo, and B. Wielinga. The
Effects of Transparency on Trust in and Acceptance of a
Content-Based Art Recommender. User Modeling and
User-Adapted Interaction, 18(5):455–496, 2008.

[4] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
Recommender Algorithms on Top-N Recommendation
Tasks. RecSys, pages 39–46, 2010.

[5] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal
Nonnegative Matrix Tri-Factorizations for Clustering.
KDD, pages 126–135, 2006.

[6] X. Ding, B. Liu, and P. S. Yu. A Holistic Lexicon Based
Approach to Opinion Mining. WSDM, 2008.

[7] G. Ganu, N. Elhadad, and A. Marian. Beyond the Stars:
Improving Rating Predictions using Review Text Content.
WebDB, 2009.

[8] J. Herlocker, J. Konstan, and J. Riedl. Explaining
collaborative filtering recommendations. CSCW, 2000.

[9] M. Hu and B. Liu. Mining and Summarizing Customer
Reviews. KDD, pages 168–177, 2004.

[10] N. Jakob, S. H. Weber, M. C. Müller, and I. Gurevych.
Beyond the Stars: Exploiting Free-Text User Reviews to
Improve the Accuracy of Movie Recommendations. TSA,
pages 57–64, 2009.

[11] C. W. ki Leung, S. C. fai Chan, and F. lai Chung.
Integrating Collaborative Filtering and Sentiment Analysis:
A Rating Inference Approach. ECAI, 2006.

[12] Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization
Techniques for Recommender Systems. Computer, 2009.

[13] D. D. Lee and H. S. Seung. Algorithms for Non-negative
Matrix Factorization. Proc. NIPS, 2001.

[14] D. Lemire and A. Maclachlan. Slope One Predictors for
Online Rating-Based Collaborative Filtering. SDM, 2005.

[15] B. Liu, M. Hu, and J. Cheng. Opinion Observer: Analyzing
and Comparing Opinions on the Web. WWW, 2005.

[16] B. Liu and L. Zhang. A Survey of Opinion Mining and
Sentiment Analysis. Jour. Mining Text Data, 2012.

[17] J. Liu, M. Z. Q. Chen, J. Chen, F. Deng, H. Zhang,
Z. Zhang, and T. Zhou. Recent Advances in Personal
Recommender Systems. Jour. Info. Sys. Sci., 2009.

[18] Y. Lu, M. Castellanos, U. Dayal, and C. Zhai. Automatic
construction of a context-aware sentiment lexicon: An
optimization approach. WWW, 2011.

[19] J. McAuley and J. Leskovec. Hidden Factors and Hidden
Topics: Understanding Rating Dimensions with Review
Text. RecSys, pages 165–172, 2013.

[20] C. Musat, Y. Liang, and B. Faltings. Recommendation
Using Textual Opinions. IJCAI, 2013.

[21] T. Nakagawa, K. Inui, and S. Kurohashi. Dependency
Tree-based Sentiment Classification using CRFs with
Hidden Variables. NAACL, 2010.

[22] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Phys. Review, 2004.

[23] B. Pang and L. Lee. Opinion Mining and Sentiment
Analysis. Found. & Trends in Info. Retr., 2(1-2), 2008.

[24] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?
Sentiment Classification using Machine Learning
Techniques. EMNLP, pages 79–86, 2002.

[25] N. Pappas and A. P. Belis. Sentiment Analysis of User
Comments for One-Class Collaborative Filtering over TED
Talks. SIGIR, pages 773–776, 2013.

[26] S. Pero and T. Horvath. Opinion-Driven Matrix
Factorization for Rating Prediction. UMAP, 2013.

[27] S. Rendle, C. Freudenthaler, Z. Gantner, and L. S. Thieme.
BPR: Bayesian Personalized Ranking from Implicit
Feedback. UAI, pages 452–461, 2009.

[28] J. Rennie and N. Srebro. Fast Maximum Margin Matrix
Factorization for Collaborative Prediction. ICML, 2005.

[29] R. Salakhutdinov and A. Mnih. Bayesian Probabilistic
Matrix Factorization using Markov Chain Monte Carlo.
Proc. ICML, 2008.

[30] A. Sharma and D. Cosley. Do Social Explanations Work?
Studying and Modeling the Effects of Social Explanations
in Recommender Systems. WWW, 2013.

[31] N. Srebro and T. Jaakkola. Weighted Low-rank
Approximations. Proc. ICML, pages 720–727, 2003.

[32] X. Su and T. M. Khoshgoftaar. A survey of collaborative
filtering techniques. Advanc. in AI, 2009.

[33] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and
M. Stede. Lexicon-Based Methods for Sentiment Analysis.
Computational Linguastics, 37(2), 2011.

[34] Y. Tan, Y. Zhang, M. Zhang, Y. Liu, and S. Ma. A Unified
Framework for Emotional Elements Extraction based on
Finite State Matching Machine. CCIS, 400:60–71, 2013.

[35] M. Terzi, M. A. Ferrario, and J. Whittle. Free text in user
reviews: Their role in recommender systems. RecSys, 2011.

[36] N. Tintarev and J. Masthoff. A Survey of Explanations in
Recommender Systems. ICDE, 2007.

[37] N. Tintarev and J. Masthoff. Designing and Evaluating
Explanations for Recommender Systems. Recommender
Systems Handbook, pages 479–510, 2011.

[38] J. Vig, S. Sen, and J. Riedl. Tagsplanations: Explaining
Recommendations Using Tags. IUI, 2009.

[39] J. Wiebe, T. Wilson, and C. Cardie. Annotating
Expressions of Opinions and Emotions in Language.
Language Resources and Evaluation (LREC), 2005.

[40] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing
Contextual Polarity in Phrase-Level Sentiment Analysis.
EMNLP, pages 347–354, 2005.

[41] A. Yessenalina, Y. Yue, and C. Cardie. Multi-level
Structured Models for Document-level Sentiment
Classification. EMNLP, pages 1046–1056, 2010.

[42] Y. Zhang, M. Zhang, Y. Liu, and S. Ma. Improve
Collaborative Filtering Through Bordered Block Diagonal
Form Matrices. SIGIR, 2013.

[43] Y. Zhang, M. Zhang, Y. Liu, S. Ma, and S. Feng. Localized
Matrix Factorization for Recommendation based on Matrix
Block Diagonal Forms. WWW, 2013.

	Introduction
	Related work
	The Framework
	Sentiment Lexicon Construction
	Feature-Opinion Pair Mapping
	User-Feature Attention Matrix
	Item-Feature Quality Matrix
	Integrating Explicit and Implicit Features
	Model Learning for EFM
	Personalized Recommendation
	Top-K Recommendation
	Personalized Feature-Level Explanation

	Offline Experiments
	Experimental Setup
	Sentiment Lexicon Constructed
	Rating Prediction
	Ratio of Explicit and Latent Factors
	Total Number of Factors

	Top-K Recommendation
	Number of Most Cared Features
	Further Analysis of Explicit Features

	Online Experiments
	Experimental Setup
	Recommendation List Explanation
	(Dis)Recommendation Explanation

	Conclusions and Future Work
	Appendix
	References

