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ABSTRACT
Click-through information is considered as a valuable
source of users’ implicit relevance feedback. As user
behavior is usually influenced by a number of factors such
as position, presentation style and site reputation,
researchers have proposed a variety of assumptions
(i.e. click models) to generate a reasonable estimation of
result relevance. The construction of click models usually
follow some hypotheses. For example, most existing click
models follow the sequential examination hypothesis in
which users examine results from top to bottom in a linear
fashion. While these click models have been successful,
many recent studies showed that there is a large proportion
of non-sequential browsing (both examination and click)
behaviors in Web search, which the previous models fail to
cope with. In this paper, we investigate the problem of
properly incorporating non-sequential behavior into click
models. We firstly carry out a laboratory eye-tracking
study to analyze user’s non-sequential examination
behavior and then propose a novel click model named
Partially Sequential Click Model (PSCM) that captures
the practical behavior of users. We compare PSCM with a
number of existing click models using two real-world search
engine logs. Experimental results show that PSCM
outperforms other click models in terms of both predicting
click behavior (perplexity) and estimating result relevance
(NDCG and user preference test).

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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Modern search engines record user interactions and use
them to improve search quality. In particular, user’s
click-through has been successfully used to improve
click-through rate (CTR) prediction, Web search ranking,
query recommendation and suggestion, and so on.

Although click-through logs can provide implicit
feedback of users’ click preferences [1], it is difficult to
derive accurate absolute relevance judgments due to the
existence of click noises and behavior biases. Joachims et
al. [19] worked on extracting reliable implicit feedback from
user behaviors, and concluded that click logs are
informative yet biased. Previous studies show that users’
clicking behaviors are biased towards many aspects such as
“position” [8, 19] (user’s attention decreases from top to
bottom), “trust” [32] (Web site reputations will affect user’s
judgment), “presentation” [27] (different search results’
display styles will influence users’ attention allocation
strategies) and so on. To address these problems,
researchers have proposed a number of click models to
describe user’s practical browsing behavior and to obtain
an unbiased estimation of result relevance [4, 11,13].

In [20], users’ examination behavior patterns are
grouped into two categories according to the findings in
eye-tracking studies: the depth-first strategy and the
breadth-first strategy. The depth-first model assumes that
a user examines result list from top to bottom and decides
whether to click immediately after examining a result. The
breadth-first strategy, however, draws a different picture: a
user will look ahead at a series of results before clicking on
the favorite results among them. Since the position bias
can be easily incorporated into click models with the
depth-first assumption, most existing click models [4,11,13]
follow this assumption and assume that the user examines
search results in a top-to-bottom fashion.

However, recent eye-tracking experiments [22] show that
only 34 percent of search users’ scan paths are linear while
over 50 percent of sessions contain revisiting behaviors (i.e.
given a search engine result page (SERP), the user first
clicks the result at position i and then clicks the one at
position j, j ≤ i) or skipping behaviors. Table 1 shows the
non-sequential click proportion of multi-click query sessions
(user clicked two or more results on one SERP) from two
commercial search engine logs. We can see that nearly
one-third of multi-click sessions contain non-sequential
click actions. While most existing click models are based
on ranking positions rather than action sequences, the click



Table 1: Non-sequential click proportions of multi-
click query sessions in two different search behavior
data sets (See data sets’ detail in Sec. 5.1.2).

Search Engine Sogou Yandex
Percentages 27.9% 30.4%

sequence information is usually ignored and non-sequential
clicking behaviors are not considered either. [10,14] already
showed that the last click in a search session may be more
reliable than other clicks. However, the last click
performed by a user is not necessarily the one at the lowest
position, but the last one in the sequence of clicks. It is
thus necessary to take the temporal sequential information
into account.

Some existing click models [28–30] have tried to take
non-sequential browsing behavior into account. These
models relax the restrictions of user’s examination
sequence (e.g. [28] assumes that examination sequence can
be arbitrary) to increase model’s descriptive power.
However, most of these methods actually abandon the
prior knowledge of user browsing preference generated from
other user behavior studies, which has been found useful.
In practice, these models cannot achieve as good
performance as other popular click models according to our
experimental results in Section 6.

To better understand user’s click and examination
sequences, we design a laboratory study to analyze into
users’ practical examination patterns. Our observations
confirm clearly that the click behavior of users are
non-sequential. On the other hand, the examinations of
documents between two clicks usually follow one direction,
but with possible skips. This observation shows that some
of the assumptions used in the previous position-based
models (e.g. the sequential examination assumption) are
reasonable in local contexts (i.e. between two clicks). It is
thus possible to build a new model upon the existing
position-based models by adding new hypotheses. By this
means, we not only inherit the framework which has
already proved to be effective, but also combine sequential
information to better capture user’s preference on different
search results.

Our contributions in this paper are four-fold:
• An eye-tracking experiment is carried out to analyze

user’s non-sequential examination and click behavior
on search engine result pages (SERPs).

• A novel click model named Partially Sequential Click
Model (PSCM) is proposed to incorporate
non-sequential behavior.

• We show experimentally that the proposed PSCM
model outperforms the existing models on two
real-world commercial search engine datasets (one of
which is publicly available).

• An open source project, which contains the
implementation of our proposed model and other
existing models, will be made publicly available (after
the paper review process).

The paper is organized as follows. Various click models
are reviewed in Sec. 2. In Sec. 3, we outline insights of eye-
tracking study on non-sequential behavior. In Sec. 4, we
formally introduce PSCM. We report the experiments on
PSCM and compare it with existing click models in Sec. 5.
Finally, conclusions and future work are discussed in Sec. 6.

2. RELATED WORK
In this section, we review a number of important click

models and introduce some preliminary assumptions
shared by these models and PSCM. As this paper mainly
focuses on the influence of click sequence, we separate
existing click models into two classes: models following the
depth-first assumption (i.e. position-based click models)
which cannot take non-sequential click actions into account
(Sec. 2.1); other models which are able to consider
non-sequential click actions (Sec. 2.2).

Note that most click models follow the examination
hypothesis [8]: a document being clicked (Ci = 1) should
satisfy (→) two conditions: it is examined (Ei = 1) and it
is relevant (Ri = 1) (most click models assume
P (Ri = 1) = ru, which is the probability of the perceived
relevance), and these two conditions are independent of
each other.

Ci = 1→ Ei = 1, Ri = 1 (1)

Ei = 0→ Ci = 0 (2)

Ri = 0→ Ci = 0 (3)

Following this assumption, the probability of a document
being clicked is determined as follows:

P (Ci = 1) = P (Ei = 1)P (Ri = 1) (4)

2.1 Position-based Click Models
As this class of click models does not take click sequence

into account, the click action is simply mapped to each
search result’s ranking position. Based on the assumption
that a user examines from top position to bottom position,
this kind of click models naturally takes position bias into
account.

Craswell et al. [8] proposed the cascade model, which
assumes that while a user examines the results from top to
bottom sequentially, he/she immediately decides whether
to click on a result. The cascade model is mostly suitable
for single-click sessions. A number of succeeding models
were proposed to improve both its applicability and
performance. Based on the cascade hypothesis, the
Dependency Click Model (DCM) [13] extends the cascade
model in order to model user interactions within
multi-click sessions. Compared to the cascade model, DCM
assumes that a user may have a certain probability of
examining the next document after clicking the current
document, and this probability is influenced by the ranking
position of the result.

Subsequently, the User Browsing Model (UBM) [11]
further refines the examination hypothesis by assuming
that the event of a document being examined depends on
both the preceding click position and the distance between
the preceding click position and the current one.

P (Ei = 1|C1...i−1) = λri,di (5)

where ri represents the preceding click position and di is the
distance between the current rank and ri.

The Dynamic Bayesian Network model (DBN) [4] is the
first model to consider presentation bias due to snippet
(rather than ranking position). This model distinguishes
the actual relevance from the perceived relevance, where
the perceived relevance indicates the relevance represented



by titles or snippets in SERPs and the actual relevance is
the relevance of the landing page.

P (Ri = 1) = ru (6)

P (Si = 1|Ci = 1) = su (7)

P (Ei+1|Ei = 1, Si = 0) = λ (8)

where Si represents whether the user is satisfied with the
i-th document, su is the probability of this event, ru is the
probability of the perceived relevance, and λ represents the
probability of continuing the search process.

Although some of these models have achieved great
success in interpreting clicks and in predicting relevance,
compared to our proposed PSCM, they cannot explain the
situation where a user does not follow top-down click
sequence and they ignore revisiting or duplicated clicks.

2.2 Click-sequence-based Click Models
To the best of our knowledge, only a few studies [28–30]

have tried to take non-sequential behavior into
consideration. Xu et al. first proposed a Temporal Click
Model (TCM) [30] to model user click behavior for
sponsored search. This model can only handle two
results/ads in an SERP. The only non-sequential click
action in this model is: the user first clicks the second
result and then goes back to click the first result. This
makes it impossible to cope with the whole ranked result
list like other click models.

Wang et al. introduced the partially observable Markov
Model (POM) [28] to model arbitrary examination orders.
The POM model treats the user examination events as a
partially observable stochastic process. Although POM can
model non-sequential behaviors, it only considers the
examination transition at each position (i.e. different users
and different queries share the same examination sequence
parameters). Therefore, this model cannot predict the click
probability or relevance for a specific query and thus can
hardly be used in a practical search environment. Due to
this limitation, it cannot be compared with other
state-of-art click models such as UBM and DBN which
need to predict click probability and relevance for a specific
query-URL pair. It also makes the first order examination
assumption that the current examination behavior only
depends on its previous examination step, which might not
align with the real user behavior.

Xu et al. proposed a Temporal Hidden Click Model
(THCM) [29] to take non-sequential click actions into
account. They focused on the revisiting behavior and
assumed that after clicking a search result, user has a
probability to go back to examine previous results (from
bottom to top). However, their model is also based on
one-order Markov examination assumption and supposes
that users examine results one by one in both top-down
and bottom-up examination process, which does not
necessarily correspond to practical user behavior (see
Sec. 3).

While the above three click models have the potential to
take click sequence information into consideration,
compared to our proposed PSCM model, their adopted
methodology are less suitable to deal with practical search
behavior of modern commercial search engines.1 In
1We actually adapt TCM and POM in Sec. 5.1 to enable
them making click and relevance predictions. They will be

comparison, our PSCM is inspired by the eye-tracking
study on real users’ non-sequential SERP behavior and
therefore conforms better to real-world user behavior.

3. NON-SEQUENTIAL USER BEHAVIOR
To investigate user’s examination sequence during the

search process, we carried out a laboratory study with 37
undergraduate students recruited from a university in
China (18 males and 19 females with various self-reported
Web search expertise). The number of subjects is similar
to other Web search eye-tracking studies such as [9, 12].

Subjects were provided with a list of 25 search tasks.
Each task was accompanied by a fixed query (with an
explanation of the information need to avoid ambiguity)
and a Chinese commercial search engine’s first result page.
We crawled and stored the corresponding SERP to ensure
that all subjects saw the same page for each query. With
this setup, each search task (query session) corresponds to
one specific SERP. The queries for the search tasks were
sampled from the NTCIR IMine task2. As different types
of information need [2] may also affect the browsing
behavior [12], the selected search tasks cover different types
of search intent. In the query set, 5 of the queries are
“Navigational” (e.g. “Meizu’s official website”), 10 are
“Informational” (e.g. “What is the sound card”) and 10 are
“Transactional” (e.g. “Web browser download”).

With an eye-tracking device (Tobii X2-30), we recorded
each subject’s eye movement information on each result for
each search task. For quality control purposes, each subject
was asked to make an eye-tracking calibration before the
experiment. The precision threshold of calibration was less
than 1◦ for both vertical and horizontal directions. Subjects
may perform the calibration several times before they meet
the precision requriement. Behavior data from several query
sessions were removed due to subjects’ operation errors or
software crashes. After removing data from these sessions,
we finally collected 890 (out of 925) valid query sessions.
When we look at the click-through behavior in the sessions,
we found that there exist many query sessions (22.8%, 203
of 890) that contain non-sequential (revisiting or duplicate)
click actions. This number confirms clearly the necessity of
incorporating non-sequential behaviors into click models.

With the eye-tracking device, we collected two types of
eye movement information: saccades and fixations.
Saccade means fast eye movements from point to point in
jerks, while fixation means that eyes stop for a short period
of time [24]. As for the threshold of fixation, we adopt the
one used in most previous works (200-500 ms as in [23, 25])
and set it to 250 ms. Because new information is mainly
acquired during fixations, most existing studies [3, 16, 23]
assumed that eye fixation is equivalent to user examination
sequence. Although some recent study [21] showed that eye
fixation does not necessary mean examination in many
cases, it would be difficult to collect true examination
information because this requires user’s explicit feedback.
Therefore, we still use the recorded fixation sequences to
approximate subjects’ examination sequences for

used as baselines to compare against our model. In Sec. 5, we
empirically demonstrate that these models cannot achieve
better performance than the popular position-based click
models.
2http://www.thuir.cn/imine/



Figure 1: Distribution of examination direction
change count for two types of adjacent clicks

simplicity. In this way, both click sequences and
examination sequences could be restored.

With the data collected in the experiment, we want to
find the answers to the following two questions about users’
examination behavior on the SERPs.

RQ1 : How often do users change the direction of exami-
nation between clicks?

RQ2 : How far do users’ eye gazes jump after examining
the current clicked result?

By investigating these two questions, we aim to
understand how users behave and to propose
corresponding user behavior assumptions in order to model
users’ examination behavior in a more reasonable way. To
simplify the notation, suppose that the first click is at
position i and the next click is at position j, if i < j, it is a
sequential action according to the depth-first assumption
(this direction is referred to as “↓”). If i ≥ j, it is a
non-sequential click action according to the definition of
revisiting behavior (this direction is referred to as “↑”).

To answer the two research questions, we firstly divide
all examination sequences into adjacent examination
behavior pairs. For a given examination sequence
E =< E1, E2, ..., Et, ..., ET >, it will be divided into T − 1
pairs: (E1, E2), (E2, E3), ..., (ET−1, ET ). For each pair,
similar with the definition of direction in adjacent clicks,
we can define its direction as ↑ or ↓ according to whether
the sequence of the examination pair follows a depth-first
assumption or not.

To investigate RQ1 , we consider the examination
sequence between ↑ and ↓ adjacent clicks separately.
Intuitively, one may believe that the examination sequence
between ↓ adjacent clicks should follow the depth-first
assumption. In other words, the examination sequence
would be consistent with the click sequence. However, it is
also possible that some parts in the examination sequence
follow a non-sequential order. Similarly, the examination
sequence between ↑ adjacent clicks may also contain ↓
adjacent examination pairs. To find out how often the
examination direction change happens between adjacent
clicks, we count the number of examination direction
changes and the distributions are shown in Figure 1.

From this figure, we can see that no matter whether the
click direction is ↑ or ↓, in most cases (72.7% for ↓ and
78.9% for ↑) the whole examination sequences follow the
same direction as click direction without any direction
changes. The percentage of sequences with direction
changes between ↓ clicks is slightly larger than that
between ↑ clicks. This phenomenon corresponds well to the
behavior pattern in which users re-examine some

Figure 2: Average examination transition distance
according to different examination transition start
positions for two types of adjacent clicks.

higher-ranked results before proceeding to the lower-ranked
ones. With this observation, we can formulate the
following behavior assumption:

Locally Unidirectional Examination Assumption :
Between adjacent clicks, users tend to examine search
results in a single direction without changes, and the
direction is usually consistent with that of clicks no matter
it is ↑ or ↓.

To answer RQ2 , we look at the average examination
transition distance within adjacent examination pairs. For
a given adjacent examination pair (Et−1, Et), suppose that
the first examination Et−1 is at position k while the next
examination Et is at position l, the transition distance can
be calculated as |k − l|. Figure 2 shows the distribution of
transition distance in different result positions.

We can see that all transition distances are around 1.5
when user follows top-down (↓) click sequences. While when
user follows bottom-up (↑) click sequences, his/her eyes may
skip several results to find a specific result. In particular,
we observe larger transition distances for bottom ranking
positions, which tend to bring back to the middle positions
(positions 5-6) in the list. As all the transition distances are
statistically significantly larger than 1 (p− value < 0.01 for
each position and each click direction based on t-test), we
can make the following behavior assumption:

Non First-order Examination Assumption :
although the examination behavior between adjacent clicks
can be regarded as locally unidirectional, users may skip a
few results and examine a result at some distance from the
current one following a certain direction.

With the answers to these two research questions, we are
able to draw a relatively clear picture of user’s examination
behavior between adjacent clicks. After a certain user
clicks a result i, he/she may start examining results either
in a ↑ or a ↓ direction. The user seldom changes the
examination direction until he/she clicks another results
located at position j (locally unidirectional examination
assumption) but he/she may not examine all results in the
examination path (non first-order examination
assumption). Compared to existing sequence-based click
models such as POM, which assumes that the examination
sequence within two clicks can be arbitrary, the actual user
behavior shows much simpler patterns. It is thus possible
for us to take advantage of the patterns so as to simplify
model construction. Compared to THCM that assumes
users examine results one by one, the observed user
examination behavior demonstrates that user examination



may include skips quite frequently. It is necessary for a
click model to account for such behaviors.

4. PARTIALLY SEQUENTIAL CLICK
MODEL

As we stated in our discussions, the existing click models
are unable to correctly cope with the non-sequential
behaviors of users we observed. A simple relaxation of the
position bias is insufficient for the model to account for the
observations we made in the previous section. Therefore, in
this paper, we propose to incorporate click sequence
information in a different way. At first, click sequence is
divided into adjacent click pairs. Considering the two
examination behavior assumptions proposed in Sec. 3, the
examination process between adjacent clicks could be
regarded as both unidirectional and non first-order. With
those two assumptions, it is possible for us to employ
traditional position-based models in these click
sub-sequences. By this means, we can combine the findings
in practical user behavior with existing position-based
hypotheses consistently.

4.1 Model and Hypotheses
We first introduce some definitions and notations.

Suppose that there are N sessions, each of which records
certain user interactions with top-M results (M is usually
set to 10 in most existing click model resesarches). The
result list can be represented as an impression sequence:
D =< d1, d2, ..., di, ..., dM >, where i corresponds to the
ranking position (from 1 to M) and di is ranked higher
than dj if i < j. The relevance of each result is represented
by: R =< R1, R2, ..., Ri, ..., RM >. With the timestamp
information recorded in the logs, we organize the click
sequence as C =< C1, C2, ..., Ct, ..., CT >, where t is the
relative temporal order of a click and Ct records the result
position of the t-th click (1 ≤ Ct ≤M).

The First-order Click Hypothesis is usually accepted in
most click models such as DBN and UBM. We do the same
in this work. It supposes that the click event at time t + 1
is only determined by the click event at time t. According
to this hypothesis, user’s click action
C =< C1, C2, ..., Ct, ..., CT > can be independently
separated to T + 1 adjacent click pairs:
< C0, C1 >, ..., < Ct−1, Ct >, ..., < CT , CT+1 > (C0

represents the begining of search process and CT+1

represents the end of search process). This makes it
possible for us to divide a click sequence into sub-sequences
(adjacent click pairs).

According to the Locally Unidirectional Examination
Assumption, given an observation of adjacent clicks at time
t: O = {< Ct−1 = m,Ct = n >}, users tend to examine the
results on the path from m to n without any direction
changes. Then the examination and click sequence between
Ct−1 and Ct can be noted as < Ēm, ..., Ēj , ..., Ēn > and
< C̄m, ..., C̄j , ..., C̄n >, respectively. Note that different
from Ct which is used to record the position of click event,
Ēj and C̄j (m ≤ j ≤ n or n ≤ j ≤ m) are all binary
variables representing whether examination or click
behavior happens (=1) or not (=0) on the corresponding
result position. In addition, we can also deduce that in the
click sequence, only C̄m and C̄n have value 1 and the other
positions on the path have value 0.

The proposed Partially Sequential Click Model (PSCM)
adopt these two assumptions. It is then described as follows:

P (Ct|Ct−1, ..., C1) = P (Ct|Ct−1) (9)

P (Ct = n|Ct−1 = m) =

P (C̄m = 1, ..., C̄i = 0, ..., C̄n = 1)
(10)

P (Ēi = 1|Ct−1 = m,Ct = n) ={
γimn,m ≤ i ≤ n or n ≤ i ≤ m
0, other

(11)

C̄i = 1⇔ Ēi = 1, Ri = 1 (12)

P (Ri = 1) = αuq (13)

Equation (9) encodes the first-order click hypothesis
while Equation (10) encodes the locally unidirectional
examination assumption by restricting the examination
process to one-way from m to n. We define the
examination probability of Ēi as Equation (11) because
according to Figure 2, the examination behavior between
adjacent clicks may not follow cascade assumptions (non
first-order examination assumption). The probability of
examination depends on the positions of the clicks. This is
similar to UBM, which also allow skips, but only within
sequential behaviors. PSCM also follows examination
hypothesis described in Equation (12) as in most existing
click models. αuq corresponds to the relevance of the
document URL u at position i to the specific query q.

Figure 3 shows the framework of the PSCM model.
Unlike previous position-based models (such as UBM or
DBN) which suppose user examine results top-down
sequentially, PSCM allows non-sequential interactions. A
user may click on a lower position (m) and then a higher
position (n > m), with all the documents between them
having some probability to be examined. Such a behavior
is models by Equation (10) and Equation (11). Compared
to the existing click-sequence-based models, PSCM is more
flexible than THCM as it no longer makes first-order
examination assumption, and is more controlled than POM
as it does not allow arbitrary examination. Such a
compromised position is justified by the observations we
made on user behaviors. A too rigid model such as THCM
would be unable to account for the non-sequential
behaviors, while a too flexible model such as POM would
give the model too much freedom to be correctly
parameterized in practice.

Our model uses two groups of parameters: {αuq}
represents the probability of being relevant for each
query-result pair, {γimn} represents the examination
transition probability in either ↓ and ↑ directions. Note
that γ are global parameters just as those in UBM.
Although setting this parameter as query (or user)
dependent may be helpful, we do not do it in this paper in
order to simplify the model. This is a problem we will
investigate in the future.

As in most existing studies, we assume that the document
relevance {αuq} and the click events of different sessions are
independent of each other. Based on this assumption, we
discuss the inference of document relevance.

4.2 Model Inference for PSCM
In our model, two groups of parameters ({αuq} and
{γimn}) need to be inferred from click logs. The



Figure 3: Sketch of Partially Sequential Click
Model. Click actions are listed according to their
click timestamps. For each adjacent click pair, a
position-based framework is constructed based on
their click positions.
Table 2: Conditional probability for C̄i, Ēi, Ri given
parameter θ(v) and Ct (use Λ as the abbreviation of

(θ(v), Ct−1 = m,Ct = n)).
Conditional probability value

P (C̄i = 0, Ri = 0, Ēi = 0|Λ) = (1− α(v)
uq )(1− γ(v)

imn)

P (C̄i = 0, Ri = 0, Ēi = 1|Λ) = (1− α(v)
uq )γ

(v)
imn

P (C̄i = 0, Ri = 1, Ēi = 0|Λ) = α
(v)
uq (1− γ(v)

imn)
P (C̄i = 0, Ri = 1, Ēi = 1|Λ) = 0
P (C̄i = 1, Ri = 0, Ēi = 0|Λ) = 0
P (C̄i = 1, Ri = 0, Ēi = 1|Λ) = 0
P (C̄i = 1, Ri = 1, Ēi = 0|Λ) = 0

P (C̄i = 1, Ri = 1, Ēi = 1|Λ) = α
(v)
uq γ

(v)
imn

Expectaction-Maximization (EM) algorithm [15] is used to
find the maximum likelihood estimate of the variables
{αuq} and {γimn}.

The observation of our model is click sequence
(Y = {C}), the hidden variables are query-result relevance
and user examination information (Z = {R,E}), and the
parameters are θ = {αuq, γimn}. Therefore, given one
specific query-session, the marginal likelihood is:

P (Y,Z|θ) = P (C,E,R|θ) =

T∏
t=1

P (Ct,E,R|Ct−1, θ) (14)

According to Equation (10) and Equation (12) (omit θ for
conciseness):

P (Ct = n,E,R|Ct−1 = m) =

{
n−1∏

i=m+1

P (C̄i = 0|Ēi, Ri)P (Ri)P (Ēi|Ct−1 = m,Ct = n)}

· {P (C̄n = 1|Rn, Ēn)P (Rn)P (Ēn|Ct−1 = m,Ct = n)}
(15)

The conditional expected log-likelihood (Q-function) can
be written as (suppose that the parameter at iteration v is

θ(v)):
Q = EE,R|C,θ(v) [logP (C,E,R|θ)] (16)

The values of the required conditional probabilities are
given in Table 2. Based on these values, the posterior
distributions of Ēi, Ri can be easily calculated. Given N
query session and M results for each query, in iteration
round v, the formulation of parameter αuq corresponding
to a specific query q and result u in Q-function is:

Qαuq =

N∑
j=1

T j∑
t̄

{Imn · [I6= ·
1− α(v)

uq

1− α(v)
uq γ

(v)
imn

· log(1− αuq)

+ I6= ·
α

(v)
uq (1− γ(v)

imn)

1− α(v)
uq γ

(v)
imn

· log(αuq) + I= · 1 · log(αuq)]}

(17)

where j is the j-th session in N , T j is is the click
sequence length in this session, t̄ is corresponding to the
t-th adjacent click pair {t, Ct−1 = m,Ct = n}, I(·)
represents the indicator function, Imn is the abbreviation
of I(m ≤ i ≤ n or n ≤ i ≤ m), I= is the abbreviation of
I(dji = u, qj = q, i = n) and I6= is the abbreviation of

I(dji = u, qj = q, i 6= n)).
The formulation of parameter γimn corresponding to a

specific position i (the adjacent clicks are m and n) in Q-
function is:

Qγimn =

N∑
j=1

T j∑
t̄

{Imn · [I6= ·
1− γ(v)

imn

1− α(v)
uq γ

(v)
imn

· log(1− γimn)

+ I 6= ·
γ

(v)
imn(1− α(v)

uq )

1− α(v)
uq γ

(v)
imn

· log(γimn) + I= · 1 · log(γimn)]}

(18)

By separately taking derivation of αuq on Equation (17)
and γimn on Equation (18), we can generate the

corresponding updating formulation for α
(v+1)
uq and γ

(v+1)
imn

in iteration round (v):

A
(v)
1 =

N∑
j=1

T j∑
t̄

{Imn · I6= ·
1− α(v)

imn

1− α(v)
uq γ

(v)
imn

}

A
(v)
2 =

N∑
j=1

T j∑
t̄

{Imn · I6= ·
α

(v)
imn(1− γ(v)

uq )

1− α(v)
uq γ

(v)
imn

}

A
(v)
3 =

N∑
j=1

T j∑
t̄

{Imn · I=}

α(v+1)
uq =

A
(v)
2 +A

(v)
3

A
(v)
1 +A

(v)
2 +A

(v)
3

(19)

G
(v)
1 =

N∑
j=1

T j∑
t̄

{Imn · I 6= ·
1− γ(v)

imn

1− α(v)
uq γ

(v)
imn

}

G
(v)
2 =

N∑
j=1

T j∑
t̄

{Imn · I 6= ·
γ

(v)
imn(1− α(v)

uq )

1− α(v)
uq γ

(v)
imn

}

G
(v)
3 =

N∑
j=1

T j∑
t̄

{Imn · I=}

γ
(v+1)
imn =

G
(v)
2 +G

(v)
3

G
(v)
1 +G

(v)
2 +G

(v)
3

(20)

5. EXPERIMENTS AND DISCUSSIONS
To test the effectiveness of the proposed PSCM model,

we compare its performance with a number of existing click
models for click prediction and relevance estimation. We
choose two of the most popular position-based click models
(UBM [11] and DBN [4]) as our first baselines. As discussed
in Section 2.2, there exists a number of sequence-based click



Table 3: Two large-scale commercial search logs (dif-
ferent languages) used to evaluate click models (“#”
represents “number of”).

Data Data-C Data-Y
Description Sogou’s logs Yandex’s logs
#Distinct Queries 406,345 20,588,928
#Sessions 11,813,260 65,172,853
#Click Sessions 7,951,495 38,288,389
#Multi-click Sessions 2,358,648 11,383,886

Experiments
Click Perplexity

NDCG
User Preference

Click Perplexity

models (POM [28], THCM [29] and TCM [30]) which can
also take non-sequential behavior into consideration. These
models are also used as as our baselines.

Three types of experiments are performed to validate our
model. First we evaluate the click model in terms of
predicting click probabilities (click perplexity) from search
logs, which is a widely adopted metric to evaluate click
models’ performances [4, 11, 29]. After that, we use the
predicted relevance as a signal for document ranking and
evaluate each click model’s ranking performance with
traditional IR metrics (in this paper we use NDCG
metric [17]). Finally, since professional assessors’ relevance
annotation may not always agree with users’ actual
judgments [6], we also conduct a user preference test [26] in
which participants are asked to label their preferences on
parellaled result lists generated by different models.

5.1 Experimental Setups
As discussed in Sec. 2, TCM and POM are not directly

comparable to other click models due to different behavior
assumptions. Therefore, we first describe how we address
the limitations and adapt them for performance
comparison. As for other baseline models, we refer to the
implementations from [7]. Our code implementations and
evaluation data set are publicly available at
https://github.com/THUIR/PSCMModel.

5.1.1 Baseline Model Adaptation
(TCM) As we have mentioned in Sec. 2.2, this model

can only handle result lists containing exactly two results.
As this model enumerates all possible click sequences for a
specific ranking list (5 possible situation for two
results [30]), it faces the exponential explosion problem
when the number of results becomes large. Therefore, we
cannot expand this model to M results in one SERP (M
equals to 10 in our data set). In order to compare this
model with other existing click models which can handle
arbitrary number of results in an SERP, we made an trivial
expansion of TCM model: we separate these results into
M/2 pairs (< 1, 2 >,< 3, 4 >, ..., < M − 1,M >) and
implement TCM model for each pair separately. Then,
from each pair we can deduce two results’ relevance and
click probability. We thus combine M/2 pairs together to
generate click prediction and relevance prediction for the
whole result list.

(POM) Although POM can model non-sequential
behaviors in user interactions, this model is not designed to
predict the click probability or result relevance for a
specific query, as we discussed in Sec. 2. It is unfair to
compare POM with other models. To make POM more

suitable for the click and relevance prediction tasks, we
modify the original POM model by setting a relevance
score for each specific document-query pair.

According to search logs, clicks can be re-organized as a
temporal sequence of behaviors by record timestamps:
E =< E1, E2, ..., Et, ..., ET > and
C =< C1, C2, ..., Ct, ..., CT >, where t represents the
events’ relative order, Et represents the corresponding
ranking of the result being examined at time t and Ct
represents the corresponding result is clicked or not. From
search logs, we can only observe which results are clicked
by users. Based on the assumption that user must examine
a result before clicking on it (examination hypothesis [8]),
we can infer that the clicked results must be examined.
Therefore, given an observation
O = {(E1 = e1, C1 = 1), ..., (ET = eT , CT = 1)}, the user
may examine some results in his/her browsing process but
not click them. So an arbitrary
O′ = {(E′1, C′1), ..., (E′k, C

′
k), ...(E′K , C

′
K)} can be generated

based on the original observation O where O ⊆ O′. The
POM model assumes that the probability of original
observation is the summation of the probabilities of all
compatible examination sequences. Furthermore the POM
model makes first order assumption that current examining
result only depends on previous examination. So the POM
model can be represented as follows:

P (O) =
∑
O′

P (O′) =
∑
O′

K∏
i=1

P (Ci|Ei)P (Ei|Ei−1) (21)

P (Ci = 1|Ei = m) = cm (22)

P (Ei = n|Ei−1 = m) = emn (23)

where E0 represents the submitted query received at the
begining of a search session, cm is the click probability of
rank m, emn is the examination transition probability.
According to the formulations above, POM model can
model arbitrary examination orders. As a matter of fact, it
can describe the non-sequential click behavior during
search process.

However, in the original POM model, given the
examination of a result, the click probability is only
dependent on the result position (Equation (22)).
Therefore, we simply adopt the examination hypothesis
that given the examination of a result, the click probability
is dependent on the result’s relevance. Therefore, the
Equation (22) is revised as:

P (Ci = 1|Ei = m) = αuq (24)

where αuq is the relevance of query-document pair. So the
click probability no longer depends on the rank position
but depends on the search query. Once we get αuq, we can
compare POM with other click models in terms of click
perplexity and NDCG. The parameter estimation
formulation is similar to the original model [28] by using
Expectation-Maximization (EM) algorithm.

5.1.2 Data Sets
To evaluate the click models, we utilize two real-world

large-scale data sets collected by Sogou from China and



Figure 4: Click perplexities of different positions on
Data-C and Data-Y.

Table 4: Overall click perplexity of each model on
Data-C and Data-Y (all improvements are statisti-
cally significant according to t-test with p − value <
10−5).

Model Data-C PSCM Impr. Data-Y PSCM Impr.
PSCM 1.232 - 1.192 -
UBM 1.332 30.1% 1.265 27.4%
DBN 1.339 31.6% 1.267 27.9%
POM 1.782 70.4% 1.826 76.7%
THCM 1.583 60.3% 1.545 64.7%
TCM 2.435 83.8% 2.691 88.6%

Yandex3 from Russia. The detailed statistics of the two
datasets can be found in Table 3. Specifically, we evaluate
the click models on click perplexity for both of the whole
datasets. Then for evaluating relevance prediction of click
models (with respect to either NDCG or user preference),
we use a subset of Data-C for testing relevance prediction
because relevance annotation is not available for the
Yandex set.

5.2 Evaluation of Click Prediction
We use two search logs (see Table 3) to compute the click

perplexity of each model. For each dataset, we split all query
sessions into the training and testing sets at a ratio of 70%
: 30% as previous studies do [5, 27].

Click perplexity [27] measures the probability of the
actual click events occurring for each session and each
position. It indicates how well a model can predict the
clicks. A smaller perplexity value indicates a better
modeling performance, and the value reaches 1 in the ideal
case. The improvement of click perplexity CP1 over CP2 is
calculated through CP2−CP1

CP2−1
∗ 100% [5,27].

Table 4 illustrates the overall perplexity of each model
and Figure 4 shows perplexities in different positions. We
can see that PSCM achieves the best overall results among
all click models. According to Table 4, existing

3The Yandex dataset is publicly available at
https://www.kaggle.com/c/yandex-personalized-web-
search-challenge/data.

sequence-based models (POM, THCM and TCM) cannot
achieve as good performance as position-based models
(UBM and DBN). This suggests that the assumptions on
the examination and click sequences are either too strict
(e.g. restrict one-by-one examination in THCM) or too
flexible (e.g. allowed at any position in POM). As we
observed, user behaviors basically follow the same
direction, but with occasional changes of direction and
jumps. Our model is built on these observations. As we
can see in Table 4, our model can better predict clicks than
all the other models. This is a strong indication that the
sequence of user behaviors is better coped with in our
model.

From Figure 4 we can also see that PSCM generates very
good results in the top positions (1-5). However, it
achieves slightly worse performance than position-based
models (UBM and DBN) in the bottom positions (8-10).
This phenomenon can be explained by the fact that PSCM
has taken more possible examination sequences (compared
to position-based models) into account and thus it gives
slightly higher click probability in bottom positions. While
in most query sessions, a user usually skips results in
bottom positions. Therefore, PSCM will receive more
penalties in perplexity than UBM and DBN. However,
these degradations on bottom positions are much less
significant than the improvements on top positions because
1) the scale of the degradations are far less than that of the
improvements; and 2) users often care more about the top
positions than bottom positions.

5.3 Evaluation of Relevance Estimation
As a click model also provides a prediction on the

relevance of a document for a query - αuq, we can rank
documents according to this value. The ranking results can
be measured using NDCG (Normalized Discounted
Cumulative Gain [17], an important and popular metric for
measuring the performance of ranking algorithms). This
evaluation is performed only on Data-C for which human
evaluators can be recruited to judge document relevance.
The same evaluation cannot be done on Data-Y because
the data has been encoded to unreadable codes, and no
relevance information is available.

For a random sample of 1,187 queries in Data-C, several
professional assessors (from Sogou.com, without knowing
any information about this work) annotated a number of
results’ relevance scores for each query. The annotation is
performed with 5 grades (“Perfect”, “Excellent”, “Good”,
“Fair” and “Bad”) as in most existing studies such as [31].
Majority voting is adopted to decide the relevance score if
there are conflicts (at least 3 assessors were involved in
each query-result pair annotation). Due to limited human
resources, top five results for 460 queries were annotated
while only top 3 results are annotated for the other 727
queries. With the annotation results, we calculated the
NDCG@N (N=3,5) scores for different click models and
the results are shown in Figure 5.

We can see that PSCM achieves statistically significant
improvement over the other click models. We can also see
that position-based click models (UBM and DBN) still
achieve better relevance prediction than sequence-based
click models (POM, THCM and TCM) as in click
prediction. This confirms our assumption in Sec. 2 that
existing click-sequence-based click models are less suitable
to cope with sequences of user interactions.



Figure 5: Relevance estimation performances in
terms of NDCG@3 (1,187 queries) and NDCG@5
(460 queries) for Data-C. The Improvements of
PSCM compared with other models are all signif-
icant (paired t-test p − values are also shown in the
figure)

Figure 6: Distribution of all evaluators’ labels (“+1 ∼
+4” represents user prefers PSCM, “−1 ∼ −4” rep-
resents user prefers DBN and “0” represents tie).

5.4 User Preference Test
Besides the evaluation in relevance estimation, we also

want to find out whether the ranking lists provided by
PSCM are preferred by real users than other click models.
Therefore, we conducted a Side-by-Side user preference test
of PSCM against the ranking list provided by DBN (second
best performance according to NDCG) as is done in [18].

We randomly sampled 200 queries and recruited 22
human evaluators (all university students with a variety of
majors and self-reported search expertise) to label their
preferences. For each query, the evaluators were shown two
result lists produced by PSCM and DBN separately. They
were required to label a preference degree after reviewing
the two lists with 9 levels: “Left results list is better {+4,
+3, +2, +1}”, “Tie {0}” and “Right results list is better
{+1, +2, +3, +4}”. The evaluators did not know which
list was generated from one specific model as the display
side was randomly chosen. Each evaluator annotated at
least 50 result list pairs to make sure that each pair was
labeled by at least 5 different evaluators.

Figure 6 shows the label distribution of all evaluators.
We can see that most of them prefer PSCM (46.5%), and

Figure 7: Editorial evaluation for PSCM and DBN
in the user preference test.

only 27.5% labels prefer DBN. To summarize the user
preference for each query, we also use the majority voting
method to merge labels from different evaluators. The
experimental results are illustrated in Figure 7. We can
also see that evaluators show clear preferences to PSCM in
nearly half of all queries (47.5%). The proportion of
“PSCM better” is statistically significantly larger than the
proportion of “Tie” and “DBN better” according to
Pearson’s chi-squared test (p − value < 0.001). This result
is consistent with the distribution of labels, which indicates
that PSCM can produce better ranking lists than DBN.

With the evaluation results in click perplexity, NDCG
and user preference test, we can conclude that our model
can better describe user’s actual examining and clicking
behavior. In addition, this model can also provide more
accurate estimations in query-result relevance, and thus
generate better result ranking lists.

6. CONCLUSIONS
In this paper, we address the problem of properly

incorporating click sequence information into click models.
First, we carried out a laboratory eye-tracking experiment
to analyze search users’ examination behaviors. From the
observations, we formulated two assumptions: the locally
unidrectional assumption and non-first-order examination
assumption. Based on these findings, we proposed a new
click model named PSCM, which incorporates
non-sequential click behaviors into click models while
following the two assumption on examinations between two
clicks. The experimental results on large-scale
click-through data showed that our model outperforms
existing models in click prediction. We also conducted
tests on query-result relevance estimation and user
preference of ranking lists. The experimental results show
that PSCM outperform existing models in both relevance
evaluation (NDCG) and user preference test. This study
shows the importance for a click model to correct cope
with user’s interaction sequences. Compared to the
previous models, the assumptions made in our model are
more realistic and correspond better to the observations in
practice. The proposed model can be further improved on
several aspects. For example, as click dwell time has been
proved to be a very useful signal for relevance prediction,
we plan to combine click dwell time information with click
sequence information together to better model users’
search behaviors in future work.
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