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ABSTRACT
Click-through behaviors are treated as invaluable sources of
user feedback and they have been leveraged in several com-
mercial search engines in recent years. However, estimating
unbiased relevance is always a challenging task because of
position bias. To solve this problem, many researchers have
proposed a variety of assumptions to model click-through
behaviors. Most of these models share the sequential ex-
amination hypothesis, which is that users examine search
results from the top to the bottom. Nevertheless, this mod-
el cannot draw a complete picture of information-seeking
behaviors. Many eye-tracking studies find that user inter-
actions are not sequential but contain revisiting patterns.
If a user clicks on a higher ranked document after having
clicked on a lower-ranked one, we call this scenario a re-
visiting pattern, and we believe that the revisiting patterns
are important signals regarding a user’s click preferences.
This paper incorporates revisiting behaviors into click mod-
els and introduces a novel click model named Temporal Hid-
den Click Model (THCM). This model dynamically models
users’ click behaviors with a temporal order. In our ex-
periment, we collect over 115 million query sessions from a
widely-used commercial search engine and then conduct a
comparative analysis between our model and several state-
of-the-art click models. The experimental results show that
the THCM model achieves a significant improvement in the
Normalized Discounted Cumulative Gain (NDCG), the click
perplexity and click distributions metrics.
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1. INTRODUCTION
With the explosive growth of information on the Web,

search engines have become indispensable information ac-
quisition tools for users. How to obtain an ideal ranking is
always a challenging task with respect to search engines.
Previous studies [5, 10, 20] have developed a number of
ranking optimization algorithms for manually labeled data.
However, the manual labeling process is both expensive and
time-consuming, especially for updating some labels. Up-
dating these labels is a necessary yet difficult job because
some queries require the up-to-date results. For example,
if a user submits “WSDM” as a query, results related to
WSDM2012 are more likely to be expected documents than
results related to WSDM2011. Click-through logs record
user interactions with search engines and can be collected
at a low cost. In addition, click-through data is treated as
an important signal of users’ click preferences [1, 2] because
click-through data can provide fresh and timely information.
As a result, click-through logs are widely adopted in both
sponsored searches [6, 21] and Web searches [5, 7, 8, 9, 12,
13, 18].

Previous studies [5, 7, 8, 9, 12, 13, 18] show that click logs
are informative but biased. This phenomenon is represented
as follows: a higher ranked document has a higher probabil-
ity to be examined and clicked even if it is not as relevant as
lower ones. Based on position bias problem, researchers have
proposed many click models to obtain an unbiased estima-
tion of document relevance. The cascade model [8] assumes
that each user examines the results from top to bottom se-
quentially. A strong assumption is that a user will end the
current search session as soon as he clicks a document; there-
fore, this model is only suitable for single-click situations
and cannot draw a whole picture of multi-click sessions. To
solve this problem, the DCM model [13] proposes the fol-
lowing assumption: a user who clicks a document has a λ
probability of continuing and 1-λ of abandoning the search.
Here λ depends on the rank of this document. Thus, the
DCM model [13] extends the cascade model to multi-click
situation. Guo et al. [12] introduce the skipping behavior
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into the CCM model by assuming that user can choose to
click or skip according to the current relevance.
Eye-tracking studies [11, 17, 19] are used as direct mi-

crocosmic evidences for user behaviors. According to [17],
the eye-tracking processing is categorized into two parts:
the depth-first strategy and the breadth-first strategy. The
depth-first model assumes that the user examines the result
list from top to bottom and decides immediately whether
to click. The breadth-first strategy is described as follows:
the user looks ahead at a series of results and then revisits
the most relevant results to click on. Most of previous click
models [7, 8, 9, 12, 13] are rooted in the depth-first model.
Lorigo et al. [19] performed a series of eye-tracking exper-
iments and used scan path to characterize users’ browsing
behaviors. They found that only 34 percent of the scan
paths are linear while over 50 percent of sessions contain re-
visiting (also named as regression behaviors in [19]) or skip-
ping behaviors which cannot be covered by the depth-first
model. Their experimental results indicated that a majority
of users may not, in general, follow the presentation order.
According to their findings, empirical seeking behavior is
very complex, and the depth-first model is a simplification.
The revisiting behaviors are acceptable supplements to the
depth-first model. However, little work has been done for
incorporating revisiting behavior into recent click models.
According to our analysis of click-through data contain-

ing over 115 million user sessions (described in Section 3.1),
we discover that 24.1% of multi-click sessions contain revis-
iting behaviors. This result coincides with the eye-tracking
study performed by [19]. Based on these findings, we can see
that the revisiting behaviors cover a large number of search
sessions and should not be ignored in the construction of a
practical click model. As a result, we will introduce revisit-
ing behaviors to solve the position bias problem. To the best
of our knowledge, this study is the first attempt to incorpo-
rate revisiting behaviors into click models. For each position
on a search engine results page (SERP), a user may move
down for lower results, may stop and abandon the search
or may review the higher ranked results. Previous models
only estimate the probability of going down for lower results
and the probability of stopping or abandoning the search.
In our model, we will determine the probability of revisiting
higher results. Thus, our model provides a more complete
simulation of a user’s information-seeking behaviors. Giv-
en M results in a SERP, the i-th result is accessed from two
perspectives: going down from the higher ranked results and
revisiting from the lower ones. In other words, the probabil-
ity of being examined is estimated based on both the higher
ranked (from 1 to i-1) and the lower-ranked (from i+1 to M)
results. To make our model generative, we build up a new
model with a dynamic temporal order. Our model is named
Temporal Hidden Click Model (THCM), and it differs from
previous models in two respects: 1. revisiting behaviors are
taken into consideration; 2. user interaction is organized in
a temporal order instead of ranking order.
The main contributions of our work are as follows:

i. A novel click model THCM is proposed to incorporate re-
visiting behaviors in the whole search process and improves
the performance of the click models.
ii. The users’ interactions are organized in a temporal or-
der. This order is more reasonable than the ranking order
because users do not always follow the ranking order.
iii. A practical method based on the THCM model is al-

so proposed to solve the relevance inference and parameter
estimation problems with an acceptable scalability in both
time and space.

The remainder of this paper is organized as follows. We
first present some important hypotheses and existing click
models in Section 2. After providing a detailed description
of our model in Section 3, the process of relevance inference
and parameter estimation are represented in Section 4. In
Section 5, we conduct experimental studies and evaluation,
and we discuss and conclude our work in Section 6.

2. PRELIMINARIES
Algichtein et al. [2] were among the first researchers to

utilize click-through logs to improve Web search rankings.
They aggregated useful implicit feedback from the “noisy”
user behaviors and found that incorporating the implicit
feedback can help improve Web search performance. Baeza-
Yates et al. [3] analyzed into users’ Web searching process
and modeled users’ behaviors on user clicks, query formula-
tions and page visited and other related features. Their ex-
perimental results showed that the aggregation of these fea-
tures provided a valuable indicator of relevance preference.
Joachims et al. [16] conducted eye-tracking experiments to
track users’ information-seeking behaviors. Their studies
showed that clicks are informative but biased. In addition,
to address the position bias problem, many researchers at-
tempted to model the relationship between document rele-
vance and click-through behaviors. In this section, we first
give a general description of some important hypotheses and
click models.

Basic Hypothesis: A document being clicked (Ci = 1)
accords with(→) two conditions: it is examined (Ei = 1)
and it is relevant (Ri = 1), and these two conditions are
independent of each other.

Ci = 1 → Ei = 1, Ri = 1 (1)

Ei = 0 → Ci = 0 (2)

Ri = 0 → Ci = 0 (3)

Therefore,

P (Ci = 1) = P (Ei = 1)P (Ri = 1) (4)

Examination Hypothesis: Each document at a given po-
sition has a certain probability of being examined, and this
probability depends on its ranking position. A higher rank
usually leads to a bigger examination probability. Taking
this factor into the basic hypothesis, Equation 4 is rewritten
as follows:

p(c|p, u, q) = p(e|p)p(r|u, q) (5)

where p(c|p,u,q) represents the click probability of document
u at position p for a query q, p(e|p) stands for the exami-
nation probability of the ranking position p and p(r|u,q) is
the probability of this (query,document) pair being relevant.
Hence, if the result is relevant, a higher examination proba-
bility will bring more clicks. For click-through logs, only the
click events are observed, while examination and relevance
events are not. Therefore, estimating the examination prob-
ability is usually an important step for most click models to
obtain unbiased document relevance estimations.

The cascade model [8] assumes that the first document
is always examined and a user will end the search when he
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clicks on a result. The corresponding examination hypothe-
sis is as follows.

P (E1) = 1 (6)

P (Ei+1 = 1|Ei = 1, Ci) = 1− Ci (7)

Here the (i+1)-th result being examined indicates the i-th
result being examined yet not clicked. Although the cas-
cade model has a good performance in predicting the click-
through rates, this model is only suited for a single-click
scenario.
Grounded in the cascade model, the DCM model [13] ex-

tends to model user interactions with multi-click sessions.
Compared to the cascade model [8], the DCM model [13]
assumes that a user may have a certain probability of exam-
ining the next one even if the current document is already
clicked, and this probability is associated with the ranking
position of the result. The DCM model is characterized as
follows:

P (Ei+1 = 1|Ei = 1, Ci = 0) = 1 (8)

P (Ei+1 = 1|Ei = 1, Ci = 1) = λi (9)

where λi represents the preservation probability1 of the po-
sition i and can be obtained through Equation 10 as follows.

λi = 1− #Query sessionswhen (last clicked position = i)

#Query sessionswhen position i is clicked
(10)

Subsequently, the UBM model [9] makes further effort on
the examination hypothesis. It is modified as Equation 11,
where the event of the current document being examined
depends on both the preceding click position and their cor-
responding distance.

P (Ei = 1|C1...i−1) = λri,di (11)

where ri represents the preceding click position and di is
the distance between the current rank and ri. A total of
M ∗ (M + 1)/2(There exist M document in a SERP) global
parameters need to be estimated, which makes the UBM
model unfeasible for large-scale data. The BBM model [18]
inherits the assumptions proposed by the UBM model and
makes this model fit at the scalability of terabyte-scale data.
This model is designed to estimate global parameters with
a single pass of the large-scale data.
In contrast to the above models, the DBM model [7] is

the first model to take presentation bias2 into consideration.
This model distinguishes the actual relevance(Si) from the
perceived relevance(Ri), where the perceived relevance in-
dicates the relevance represented by abstracts or snippets
in SERPs and the actual relevance is the relevance of the
landing page. The user satisfaction is determined by the ac-
tual relevance, but the click events depend on its perceived
relevance. The DBM model can be represented as follows:

Ri = 1, Ei = 1 → Ci = 1 (12)

P (Ri = 1) = ru (13)

1The probability of the (i+1)-th result being examined when
the i-th document is clicked
2Different from the position bias, the presentation bias is a
bias caused by the presentation form of the results list, such
as the abstract, the snippet and so on

P (Si = 1|Ci = 1) = su (14)

P (Ei+1|Ei = 1, Si = 0) = λ (15)

where Si represents that whether or not the user is satisfied
with the i-th document, su is the probability of this event,
ru is the probability of the perceived relevance(Ri), and λ
represents the preservation probability.

Subsequently, the CCM model [12] presents a Bayesian in-
ference to obtain the posterior distribution of the relevance.
In contrast to other existing models, this model introduces
skipping behaviors. According to [12], the CCM model is
scalable for large scale click-through data. Moreover, the
experimental results show that the CCM model is effective
for low frequency(also known as long-tail) queries. Both the
DBM model and the CCM model are two present common
click models, and we analyze the performance of our model
compared to these two ones in our experiments.

3. TEMPORAL HIDDEN CLICK MODEL

3.1 Revisiting Behaviors
Lorigo et al. [19] point out that different user groups have

different information-seeking behaviors and that the major-
ity of users have skipping or revisiting behaviors. In this
section, we perform an experiment to analyze revisiting be-
haviors. First, a revisiting pattern can be defined as follows:
a user clicks on another higher ranked result after having
clicked on a lower result. With the help of a widely-used
commercial Chinese search engine, we collect click-through
logs from November 1st, 2010 to November 10th, 2010. The
data set contains over 115 million query sessions. A query
session is initialized when a user submits a query to a search
engine, and query reformulations, re-submissions or a session
lasting over 30 minutes will be regarded as a new session. For
simplicity, we only record user interactions in Web organic
results lists; other actions, such as ad clicks, are discarded
in our experiments.

To have clearer statistics on revisiting behaviors, click-
through logs were divided into 5 groups in terms to their
own query frequencies. The statistics on revisiting behaviors
of different query frequencies are shown in Table 1. The
proportions of multi-click sessions are roughly equal among
different query frequencies. On average, 24.1% of multi-
click sessions contain the revisiting behaviors. This result
is in accordance with the eye-tracking studies in [19], and
indicates that revisiting behaviors are important parts of
user interactions. Users may not follow the ranking order of
a SERP in some cases.

In addition, we conduct a position-based analysis of revis-
iting behaviors. For each position, the corresponding docu-
ment may be revisited from the lower ranked results and also
has a certain probability of being skipped from the higher
ranked ones. Conducted on the collected click-through data,
the revisiting behaviors related probabilities on different po-
sitions are shown in Figure 1. The result shows that the top
positions have a higher probability of being revisited, while
the lower positions are more likely to be revisited from. In
Figure 1, the first ranked documents are revisited from the
lower ranked ones in 60.2% of all multi-click sessions, and
the users who have clicked on the 10th result will perform
revisiting behaviors in 34.7% multi-click sessions.

To examine the relevance influence from the revisited re-
sults, according to the time-series click events, we extract
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Table 1: Revisiting Features over Different Query Frequencies
Query Frequency [1,9] [10,30] [31,99] [100,499] [500,∞)

Total query sessions 40,036,796 9,369,628 9,619,008 13,520,812 42,835,848
Single-click sessions 31,024,348 8,021,876 8,301,504 11,766,600 36,976,904

Multi-click sessions without revisiting behaviors 6,859,335 1,030,918 1,017,741 1,304,911 4,402,210
Multi-click sessions with revisiting behaviors 2,153,113 316,834 299,763 449,301 1,456,734

The proportion of sessions with revisiting behaviors 0.239 0.235 0.228 0.256 0.249

Figure 1: Revisiting behaviors related probabilities
on different positions in a SERP

10,450 revisited items from the collected click-through data.
Each item is presented in the form: (query, URL, relevance),
where the relevance is manually labeled by three professional
assessors. The details of labeling rules are available in Sec-
tion 5.1. These relevance labels are divided into 5 levels(bad,
fair, good, excellent, perfect). Through our statistics, 50.2%
of these revisited items have a high relevance(excellent or
perfect) with the original query, and only 14.5% items show
bad performance in relevance(bad).
Summarizing the above studies, we find that revisiting be-

haviors are relatively common, and have a strong correlation
with the relevance. As a result, revisiting behaviors may be
important signals of click preferences. Based on this fact, we
will incorporate revisiting behaviors into our click models.

3.2 Model Specification
We first introduce some definitions and notations. Here a

session is treated as a unit in our model, and it records the
whole user interaction with top-M results (usually M=10).
In our model, all of our variable sets can be represented
as the sequences. The presented results are represented
as an impression sequence: A =< a1, a2, ..., ai, ..., aM >,
i corresponds to the ranking position and ai is ranked high-
er than aj if i < j. According to the timestamps, click-
s can also be re-organized as a temporal click sequence:
C =< C1, C2, ..., Ct, ..., CT >, where t is a discrete time
variable and Ct represents the corresponding ranking of the
result being clicked at time t. In addition, we introduce
another variable sequence: U =< U1, U2, ..., Ut, ..., UT >,
where Ut represents the ranking position of the preceding
click, i.e, Ut = Ct−1. The examination sequence E =<

Figure 2: The graphical model by introducing re-
visiting behaviors. Here the solid line represents
the forward event and the dotted line stands for the
backward event(revisit). Observed click variables Ci

are shaded.

E1, E2, ..., Et, ..., ET >, where Et is an M dimensional vec-
tor. Et = (Et1, Et2, ..., Eti, ..., EtM ) is used to represent ex-
amination events at time t.

Figure 2 shows the graphic model by incorporating revis-
iting behaviors. The whole user interactions are no longer
strictly from top to bottom. In a SERP, a user examines
the i-th document, followed by examining the j-th docu-
ment. If i < j, we will define this event as the forward
event; otherwise, we call it as the backward event. In Fig-
ure 2, both forward examination probability and backward
examination probability constitute the whole examination
probability. Given a position i, it may be examined from
the (i-1)-th document, and also be revisited from lower doc-
uments. We can see that there can be some loops in Figure
2, and previous approaches will be difficult for solving gen-
erative process. Hence we need to provide a temporal gen-
erative process which is illustrated in Figure 3. We call it
Temporal Hidden Click Model(THCM) and the correspond-
ing hypotheses are as follows.

p(Et(i+1) = 1|Eti = 1) = α (16)

p(Et(i−1) = 1|Eti = 1) = γ (17)

0 ≤ α+ γ ≤ 1, α ≥ 0, γ ≥ 0 (18)

p(Ct|C1, C2, ..., Ct−1) = p(Ct|Ct−1) (19)

p(Ct = i) = p(Eti = 1).p(Ri = 1) (20)

For the THCM model, if a user examines a document, then
he will have a α probability to examines the next one( Equa-
tion 16). Different from previous models, we introduce the
revisiting probability γ: if the user examines a result, he may
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Figure 3: The graphical model on the temporal or-
der. Ci represents the observed click events at time
t, while Et implies the examination vector for M re-
sults at time t, and Ut represents the rank of the
click events at time t− 1.

also have a γ probability of revisiting the preceding rank re-
sult( Equation 17). The relationship between α and γ needs
to satisfy Equation 18. To make our model simple, we intro-
duce the First-order Click Hypothesis: the click event
at time t are determined by that at time t−1(Equation 19).
Similar with previous models, if a result is both examined
and relevant, the user will click this result(Equation 20).
Thus, the probability of the event that the results ranked
lower than Ct−1 is examined can be calculated as follows:

p(Eti = 1|Ct−1 < i)

=

i−1∏
j=Ut

p(Et(j+1) = 1|Etj = 1) = αi−Ct−1
(21)

In Equation 21, the probability of a lower result being ex-
amined is determined by both the forward probability α
and the distance between current rank and the previous
clicked position. In our model, we assume that the rele-
vance event(Ri) is a binary variable. If there exist follow-up
clicks for a clicked result am, the user may not be satisfied
with this result, i.e., Ram = 0. Thus, given a position i
at time t, if the preceding clicked position Ct−1 is ranked
higher than i, this document is clicked by forward exami-
nation events(Equation 22); otherwise, the i-th document is
revisited by backwards examination events(Equation 23).

p(Ct = i|Ct−1 < i)

= p(RCt−1 = 0). p(Ct = i|Eti = 1)︸ ︷︷ ︸
Ri

. p(Eti = 1|Ct−1 < i)︸ ︷︷ ︸
α
i−Ct−1

= (1−RCt−1).Ri.α
i−Ct−1

(22)

p(Ct = i|Ct−1 >= i)

= p(RCt−1 = 0). p(Ct = i|Eti = 1)︸ ︷︷ ︸
Ri

. p(Eti = 1|Ct−1 >= i)︸ ︷︷ ︸
γ
Ct−1−i

= (1−RCt−1).Ri.γ
Ct−1−i

(23)

In our model, α and γ are global parameters for each query
session, and represent the forward and backward examina-
tion probabilities, respectively. In the next section, we will
assume that the document relevance R and the click events
of different sessions are independent of each other. Based
on this assumption, we will discuss the inference of docu-
ment relevance and introduce a feasible algorithm that has
a acceptable scalability with using a large volume of click
logs.

4. ALGORITHMS

4.1 Relevance Inference
The goal of the click models is to obtain an unbiased esti-

mation of the relevance for each query-document pair. Pre-
vious click models all require the following assumption: users
examine a document and decide to click or skip, but they
cannot revisit previous documents. According to our statis-
tics on revisiting behaviors in Section 3.1, revisiting behav-
iors may be an important feedback for Web search perfor-
mance. Given the click-through data C1...n, incorporating
revisiting behaviors into previous models will increase the
computational complexity of the posterior probability over
R. To address this problem, our THCM model re-organizes
the click sequences into a dynamical temporal order.

Given a query with N sessions, A =< A1, A2, ..., AN >
and C =< C1, C2, ..., CN > represent the corresponding
impression and temporal click sequences, respectively. We
assume that the click sequences of different sessions are in-
dependent of each other. Thus, according to the Bayes prin-
ciple, the posterior probability is calculated as follows.

p(R|C1,...,N ) ∝ p(R)p(C1,...,N |R) (24)

Because p(R) is a known prior, we assume that p(R) fol-
lows the prior beta distribution, thus we need to compute
p(C1,...,N |R). Since click sequences of different sessions are
treated as conditionally independent variables for each query
session given R, we obtain the following equation:

p(C1,...,N |R) ∝
N∏

n=1

p(Cn|R) (25)

where Cn represents the click sequence of the n-th session.
In the following steps, we assume that the user clicks the
m-th document at time t, i.e, Ct = am. According to
the First-order Click Hypothesis, the relevance of the t-th
clicked document is related to both the preceding clicked
document(Ct−1) and next clicked document(Ct+1), and is
independent of the remaining documents. Therefore, we ob-
tain Equation 26 as follows.

p(Cn =< C1, C2, ..., Ct, ..., CT > |Rm, An)

= p(Cn =< C1, C2, ..., Ct = am, ..., CT > |Rm, An)

=

T−1∏
t=1

p(< Ct−1, Ct = am, Ct+1 >)|Rm, An)

(26)

Here we will use the symbol � to represent no click and
the symbol × to represent any click. According to the rank-
ings of different times, a click sequence C =< Ct−1, Ct =
am, Ct+1 > can be categorized into different behavior pat-
terns. Table 2 lists the set of these behavior patterns, and
we only present the derivation of Cases 1-3 due to space
limitations.
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Table 2: Different Cases for Computing p(C|Rm, A)
on Different Click Sequences
Cases Sequences Results

1 < �, am,� > Rmαm

2 < �, am, aj >, j > m Rm.(1−Rm)(αm+1−αM+1)
2(1−α)

3 < �, am, aj >, j < m Rm.(1−Rm)(γ−γm)
2(1−γ)

4 < aj , am,× >, j < m Rm.(α−αm)
6(1−α)

5 < aj , am,× >, j > m Rm.(γ−γM−m+1)
6(1−γ)

Case 1: t = 1, T = 1, C =< �, am,� >, C0 = 0, that is,
the m-th document is the first and only click in this session.
C1 = am, According to Equations 22, p(C =< �, am,� >
) = p(C1 = am|C0 = 0), and the document am is examined
through the forward event.

p(C =< �, am,� > |Rm, A)

= p(C1 = m|E1m = 1)p(E1m = 1|U1 = C0 = 0) = Rmαm

(27)

Case 2: t = 1, T > 1, C =< �, am, aj >, j > m, C0 = 0,
that is, the m-th document is the first click and the next
clicked document is ranked lower than m. This event can
be explained by Equations 19 and 22, C1 = am, C2 = aj .
This sequence is divided into two parts: < �, am > and
< am, aj >. The probability of this case can be described
as follows:

p(C =< �, am, aj > |Rm, A)

= p(< �, am > |Rm, A)︸ ︷︷ ︸
Rm.αm

p(< am, aj > |Rm, A)︸ ︷︷ ︸
(1−Rm)Rjαj−m

= Rm(1−Rm)Rjα
mαj−m = Rm(1−Rm)Rjα

j

(28)

To calculate p(C|Rm, A), other hidden random variables,
such as Rj , need to be integrated out in Equation 29.

p(C =< �, am, aj >, j > m|Rm, A)

=
M∑

j=m+1

p(C =< �, am, aj > |Rm, A)

=

M∑
j=m+1

∫ 1

Rj=0

Rm(1−Rm)Rjα
j

=
Rm(1−Rm)(αm+1 − αM+1)

2(1− α)

(29)

Case 3: t = 1, T > 1, C =< �, am, aj >, j < m, that
is, the m-th document is the first click and the next clicked
document is ranked higher than m. This click event comes
from the revisiting events. According to Equations 19,22
and 23, this sequence can also be divided into two parts:
< �, am > and < am, aj >.

p(C =< �, am, aj > |Rm, A)

= p(< �, am > |Rm, A)︸ ︷︷ ︸
Rmαm

p(< am, aj > |Rm, A)︸ ︷︷ ︸
(1−Rm)Rjγm−j

= Rm(1−Rm)Rjα
mγm−j

(30)

By integrating and summing the hidden random variable

Rj , the probability can be represented as follows.

p(C =< �, am, aj >, j < m|Rm, A)

=

m−1∑
j=1

p(C =< �, am, aj > |Rm, A)

= Rm(1−Rm)αm
m−1∑
j=1

∫ 1

Rj=0

Rjγ
m−j

=
Rm(1−Rm)(γ − γm)

2(1− γ)

(31)

Cases 4 and 5 are also obtained by taking a summing and
integrating over the corresponding hidden random variables.
In addition, different sessions of a given query are indepen-
dent of each other. Thus, the posterior of Rm has the fol-
lowing un-normalized form:

p(Rm|C,A) ∝
5∏

i=1

Oi(Rm)N
m
i (32)

where Oi is the closed form of p(C|Rm, A) for i-th kind of
click sequence in Table 2.

4.2 Parameter Estimation
In this section, we adopt the maximum-likelihood (ML)

algorithm to estimate the global parameters α and γ. By
integrating the hidden random variable Rm and summing
the log likelihood of all of the click sequences, the whole
log-likelihood function is illustrated in Equation 33.

L(α, γ) =

M∑
m=1

{Nm
1 log[

αm

2
] +Nm

2 log[
αm+1 − αM+1

12(1− α)
]

+Nm
3 log[

γ − γm

12(1− γ)
] +Nm

4 log[
α− αm

12(1− α)
]

+Nm
5 log[

γ − γM−m+1

1
]}

(33)

Through taking the derivation of the above likelihood func-
tion on α, we get the following equation:

Nm
1

2m

α
+ (Nm

2 +Nm
4 )

1

1− α
+Nm

4
1−mαm−1

α− αm

+Nm
2

(m+ 1)αm − (M + 1)αM

αm+1 − αM+1
= 0

(34)

The equation about γ can be obtained through the same
approach. However, we find that there exists no closed form
for our global parameters α and γ. Thus, we need to seek
for an approximate solution. According to Equation 18, the
feasible zone is convex and the log likelihood is a concave
function; hence, solving for the parameters is a convex op-
timization problem. In our experiment, we use the primal-
dual interior-point method [4] to obtain approximate values
for parameters α and γ.

5. EXPERIMENTS

5.1 Experiment Setup
As described in Section 3.1, we collect click-through logs

from November 1, 2010 to November 10, 2010, including 93
million queries with 115 million query sessions. Taking the
users’ privacy into consideration, we only collect the follow-
ing information for each session: the original query, the top
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10 documents in the first SERP, the timestamps and the list
of which documents are clicked. In our experiments, 2,000
queries and 47,891 related documents are randomly sam-
pled as our data set. 10,450 items are revisited among these
query-document pairs, and they are selected as the data set
of revisiting behaviors in Section 3.1. The frequency distri-
bution of these randomly selected queries is shown in Figure
4. The frequency range is from 1 to 62,688, indicating that
our data set contains different queries of high, middle and
low frequencies. Three professional assessors took two week-
s to label the relevance of these sampled query-document
pairs. Each of them labeled 1,335 queries and their corre-
sponding results, and the average Kappa coefficient is 0.68.

Figure 4: Frequency distribution of randomly sam-
pled queries

According to our statistics in Section 3.1, revisiting behav-
iors may be important signals to reflect click preferences.
Previous models usually discard sessions that contain re-
visiting behaviors because these sessions cannot satisfy the
depth-first examination hypotheses. However, these sessions
are preserved in our experiments, and our model can explain
revisiting behaviors well. What’s more, the method of 5-fold
cross-validation is used in our experiments. Compared to the
DBM model [7] and the CCM model [12], the performance
of our model is evaluated in different aspects, including the
NDCG values, the click perplexity and the click distribution
of position-bias.

5.2 Evaluation on NDCG
The Normalized Discounted Cumulative Gain (NDCG,

[15]) is always an important metric to measure the relevance
of ranking functions. The NDCG at position p(NDCGp) is
computed as:

DCGp =

p∑
i=1

2reli − 1

log2(1 + i)
(35)

NDCGp =
DCGp

IDCGp
(36)

where reli is the manual label of the i-th document, and
IDCGp represents an ideal DCG value obtained when sort-
ing the documents by relevance. The NDCG metric indi-
cates that the rankings of higher relevance results play more
important roles than that of the lower relevance ones. For

Table 3: P-values on Different Positions
NDCGpos THCM over DBM THCM over CCM

NDCG1 1.30 ∗ 10−2 5.20 ∗ 10−3

NDCG3 4.00 ∗ 10−4 7.00 ∗ 10−4

NDCG5 8.00 ∗ 10−4 2.30 ∗ 10−3

NDCG10 1.02 ∗ 10−2 4.00 ∗ 10−3

Table 4: P-values on Different Query Frequencies
frequencyq THCM over DBM THCM over CCM

[1,9] 9.00 ∗ 10−6 4.00 ∗ 10−3

[10,30] 5.00 ∗ 10−2 2.70 ∗ 10−2

[31,100] 2.00 ∗ 10−2 1.20 ∗ 10−2

[100,499] 8.90 ∗ 10−1 5.00 ∗ 10−3

[500,∞) 3.30 ∗ 10−1 3.00 ∗ 10−5

example, if a high relevance document is ranked low, the
NDCG value becomes relatively small and then the perfor-
mance of this ranking function will become relatively poor.
The NDCG value measures the distance between the cur-
rent ranking and an ideal ranking, and this value of an ideal
ranking is 1.0. First, we report on the changes of the NDCG
values of the THCM, DBM and CCM models.

Given each query, we estimate the relevances of all cor-
responding documents based on these three models. For
the THCM model, on the training set, we learn the model
parameters by the method of Section 4.2, and then obtain
estimated relevances on the test set. The implementations of
the DBM and CCM models are available in [7, 12]. Figures
5 and 6 show the performance on the NDCG values of dif-
ferent positions and different query frequencies, respectively.
Figure 5 shows that all of NDCG1, NDCG3, NDCG5 and
NDCG10 of our model show more improvement than that
of the other two models. The NDCG1 value of our model is
0.841, with 8.52% and 25.0% improvement over DBM and
CCM, respectively. Figure 6 shows that our model improves
the performance on long-tail queries. As described in [12],
the CCM model has a commendable performance on the tail
queries, which can also be seen in Figure 6. Compared to
the CCM model, our model attains a 1.50% improvement of
NDCG5. For tail queries, related click-through behaviors
are also sparse, and the user interaction may be fairly com-
plex. Thus, revisiting behaviors may provide a key evidence
for predicting click preference for long-tail queries. Howev-
er, our model shows relatively poor performance for high
frequency queries. For high frequency queries, compared to
enough click-through data, different types of revisiting be-
haviors may be “noisy” for estimating document relevance.

In addition, we use the t-test to quantify whether our
model is better than the others. Having no significant dif-
ference is denoted as the null hypothesis, with a significant
difference as the alternative hypothesis. If the p-value is less
than 5.0 ∗ 10−2(5.0 ∗ 10−2 is usually set as the critical lev-
el), the null hypothesis will be rejected and the alternative
hypothesis will suffice. The testing values for NDCGs on
different positions and query frequencies are illustrated in
Tables 3 and 4. The result shows that our model may be no
significant improvement for high frequency queries, but the
improvement is relatively sharp for moderate frequency and
rare frequency queries.
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Figure 5: Performance comparison of THCM, DBM
and CCM with NDCGn

Figure 6: Performance comparison of THCM, DBM
and CCM for queries with different frequencies

5.3 Evaluation on Click Perplexity
In addition to the NDCG value, the click perplexity [12] is

another metric to evaluate the performance of each position.
A smaller perplexity value indicates a better performance,
and the value reaches 1 in an ideal case. In our experiment,
the click-through logs are organized into a temporal order for
each query session. The click perplexity at a given position
is computed as the following equation.

CPi = 2−
1
U

.
∑U

u=1 (CU
i .log2p

u
i +(1−CU

i .log2(1−pui ))) (37)

where CPi is the click perplexity of position i, U is the to-
tal number of sessions for a given query. CU

i represents the
click event of the i-th document, and pui is the corresponding
probability. The improvement of click perplexity CP1 over
CP2 is calculated through CP2−CP1

CP2−1
∗ 100%, and the aver-

age click perplexity is obtained using the arithmetic mean.
Based on our experimental data, the average perplexities on
different positions are illustrated in Figure 7.
In Figure 7, we can see that our THCM model performs

Figure 7: Performance comparison of THCM, DBM
and CCM with click perplexity of different positions

best for all of the positions. The average perplexity of all
positions is 1.1402 for THCM, 1.28 for DBM and 1.237 for
CCM. What’s more, the perplexities have a varying degree
of improvement, with an 18% improvement over the DBM
model and a 7.8% improvement over the CCM model for
the first position. The click perplexity of the THCM model
indicates that temporal click sequences will obtain a better
click prediction.

5.4 Results on Position Bias
To address the position bias problem, the click distribu-

tions of different positions are also introduced to evaluate
the effect of click models [12]. Given a position, the click
distribution metric is quantified as follows: collect all of the
sessions on the test set, calculate the click events (which doc-
uments will be clicked) according to learned model parame-
ters in Section 4 and count the total number of the document
at the given position being clicked. The click probabilities of
a given position can be estimated through the total number
of the position being clicked divided by the total number of
the test set. Different click models can estimate different
click distributions, and empirical click distributions can be
obtained using actual click behaviors. Thus, the distance be-
tween the estimated click distributions of click models and
that of empirical clicks can measure the prediction effect,
and the smaller distance indicates more accurate click pre-
dictions.

Figure 8 illustrates that the click distributions derived
from THCM, DBM and empirical click on the test set. We
can see that all of the click distributions have a position
bias, with a document that is ranked higher having a high-
er click probability compared to the lower documents. In
Figure 8, the THCM model has a closer match with empir-
ical clicks than the DBM model has on different positions,
and their correlation coefficient reaches 0.99. The THCM
model provides a temporal perspective on users interactions,
which is closer to actual user’s information-seeking behav-
iors. The results on the click distribution of position-bias
further verifies that the THCM model may produce a better
click prediction.
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Figure 8: Click probability distribution of THCM
and DBM on the top 10 positions

6. CONCLUSIONS AND DISCUSSIONS
In this paper, a statistical investigation on large-scale click-

through data was presented, indicating that revisiting be-
haviors are important aspects of user interaction. Based on
this finding, we proposed the novel THCM model, which
models the temporal click sequences and incorporates revis-
iting behaviors. This paper also provides a solution to the es-
timation of document relevance and other relevant parame-
ters. The experimental results on huge-volume click-through
data show that our model outperforms existing models in a
number metrics, including the NDCG value, the click per-
plexity and the click distributions of different positions.
Despite these successes, several assumptions of the THCM

model need to be further discussed. In our experiment, we
introduce the First-order Click Hypothesis, which indicates
that the current state only depends on the preceding state.
However, empirical click events may not be independent of
each other. To facilitate describing and solving problems, we
simplify this process to a first-order model. In the future,
we will move forward to multi-order models.
According to [14], information needs are classified into

three categories: navigational, informational and transac-
tional. Different informational needs tend to generate dif-
ferent types of user interactions. For a navigational query,
the information demand is relatively concentrated, so the
corresponding behaviors may be simple. However, for infor-
mational queries, the relatively dispersed resources may lead
to more clicks, and it is more likely that revisiting behaviors
occur. In our model, the method for calculating the global
parameters α and γ is a globally optimal solution, but it
may be not efficient for all individual users. In the future,
we will distinguish the global parameters from different cat-
egorizations of user behaviors; this development will be a
new direction that we will explore in the future.
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