
Search Engine Click Spam Detection Based on Bipartite
Graph Propagation

ABSTRACT
Using search engines to retrieve information has become an
important part of people’s daily lives. For most search en-
gines, click information is an important factor in document
ranking. As a result, some websites cheat to obtain a higher
rank by fraudulently increasing clicks to their pages, which
is referred to as “Click Spam”. Based on an analysis of the
features of fraudulent clicks, a novel automatic click spam
detection approach is proposed in this paper, which consists
of 1. modeling user sessions with a triple sequence, which,
for the first time to the best of our knowledge, takes into
account not only the user action but also the action objec-
tive and the time interval between actions; 2. using the
user-session bipartite graph propagation algorithm to take
advantage of cheating users to find more cheating sessions;
and 3. using the pattern-session bipartite graph propaga-
tion algorithm to obtain cheating session patterns to achieve
higher precision and recall of click spam detection. Experi-
mental results based on a Chinese commercial search engine
using real-world log data containing approximately 80 mil-
lion user clicks per day show that 2.6% of all clicks were
detected as spam with a precision of up to 97%.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Experimentation, Algorithms, Performance

Keywords
Click Spam, Label Propagation, User Session Model, Fre-
quent Sequential Patterns

1. INTRODUCTION
Search engines are very important in current network en-

vironment, which have become one of the major channels

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’14, February 24–28,2014,New York City,USA.
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

for people to access information on the Internet in recent
years. After a query is submitted to a search engine, many
relevant Web pages will be found. The search engine will
rank the results based on a series of relevant ranking fea-
tures, including textual information [18], link structure [20]
and so on. According to the tasks of Yahoo! Labs Learn-
ing to Rank Challenge1, hundreds of ranking features are
used in current commercial search engines. Among the fea-
tures, click information and relevant features have drawn
much attention recently. Joachims [13] believes that click
information can be used as a relevance feedback feature to
rank the search results. Click model (such as cascade model
[5], CCM [7], DBM [4] and so on) related works show that
user click information plays an important role in ranking the
search results.

According to the researches on search user behaviors [17],
most users only pay attention to the top search results. So it
is obvious that if a website can obtain a higher rank among
all the related results, users will be more likely to click the
site, and thus, the site traffic will increase. As a result, to
raise the rankings of the results by forging user clicks has
become the main channel for the illegal web page authors to
improve user traffic and gain more economic benefits [6, 15,
24, 3]. Studies on cheating clicks show that various kinds
of bots are used to issue queries and clicks automatically to
search engines, which not only consume a great amount of
capacity for the search engines but also affect the rankings
of search results.

An increasing number of researchers focus on the task
of anti-spam. Gyöngyi et al. [8] propose the algorithm
of TrustRank, which is able to semi-automatically separate
reputable, good pages from spam. They start from selecting
a small set of reputable seed pages, and discover other pages
that are likely to be good with the link structure of the we-
b. Their results show that based on a good seed set of less
than 200 sites, spam from a significant fraction of the web
can be effectively filtered out. Krishnan et al. [16] introduce
the Anti-Trust Rank algorithm. Similar to the Trust Rank
algorithm, they select a manually labeled seed set of pages
and their experiments on the WebGraph dataset show that
their approach is effective at detecting spam pages from a
small seed set.

At present, user behavior information has been introduced
into search engines [1, 17], and thus, search engines will ad-
just the rankings of search results according to user reaction-
s. As a result, new cheating methods, called “click spam”,
that aim to exploit user behavior analysis have arisen. A

1http://learningtorankchallenge.yahoo.com/index.php



typical example of click spam is “Google bombing”2, which
refers to raising the rank of a specific result in a search en-
gine maliciously. Another two examples of click spam are the
user sessions shown in Table 1, which are extracted from
the real-world click logs of a popular Chinese commercial
search engine. In the session shown in (a), after submitting
a query, the user clicks on the same URL repeatedly. In the
session shown in (b), the user submits different queries and
clicks on the web pages with the same domain repeatedly.
Both sessions may raise the rankings of the search results
that the users click, which makes their websites easier to be
clicked by other search engine users fraudulently. Obviously,
click spam not only undermines the fairness among search
results but also degrades user experience. For this reason,
search engines are in urgent need of click spam detection
techniques.

Table 1: Two examples of click spam
user IP query isclick clicked URL

211.143.91.98 9999pp.com 0
211.143.91.98 9999pp.com 1 http://369ii.com/
211.143.91.98 9999pp.com 1 http://369ii.com/
211.143.91.98 9999pp.com 1 http://369ii.com/
211.143.91.98 9999pp.com 1 http://369ii.com/
211.143.91.98 9999pp.com 1 http://369ii.com/

(a)
user IP query isclick clicked URL

219.135.43.71 China 0

219.135.43.71 China 1
http://www.zzyzzy
.cn/html/322.html/

219.135.43.71 Shanghai 0

219.135.43.71 Shanghai 1
http://www.zzyzzy
.cn/html/151.html/

219.135.43.71 software 0

219.135.43.71 software 1
http://www.zzyzzy
.cn/html/188.html/

219.135.43.71 summit 0

219.135.43.71 summit 1
http://www.zzyzzy
.cn/html/56.html/

219.135.43.71 industry 0

219.135.43.71 industry 1
http://www.zzyzzy
.cn/html/220.html/

(b)

Click spam is a new method of cheating search engine
rankings and involves user behavior, so it is difficult to dis-
tinguish normal and abnormal user reactions. In this pa-
per, we propose a novel, automatic, click spam detection ap-
proach, which is, to the best of our knowledge, the first work
to introduce the objective of user actions and time interval
between actions into user session modeling for click spam
detection. The proposed approach shows both effectiveness
and efficiency at detecting click spam in a real commercial
search engine. The approach uses the following procedure:
1. Model user session with a triple sequence; 2. Construc-
t user-session bipartite graph and pattern-session bipartite
graph to describe the relation between users and sessions as
well as the relation between patterns and sessions; 3. Based
on the seed cheating session modes, detect a large amoun-

2http://en.wikipedia.org/wiki/Google bombing

t of click spam with a label propagation algorithm on the
bipartite graph.

The rest of this paper is organized as follows: after a
discussion of the related work in next section, we introduce
the detection of the cheating on single click record in Section
3. The modeling of user sessions is described in Section
4. Section 5 introduces the recognition of session-level click
spam. Section 6 presents the evaluation and discussion of
our approach, and finally, Section 7 concludes the paper.

2. RELATED WORK
Over the last decade, there has been a growing interest

in detecting click fraud. Jansen [11] introduces intentional
clicks on sponsored links with the purpose of gaining undue
monetary returns or harming a particular content provider,
which is called “Click Fraud”. He also presents several coun-
termeasures, such as strengthening the monitoring of click
fraud, improving automated filters to identify and prevent
click fraud, and changing the charging mode from pay-per-
click to pay-per-action. Metwally et al. [19] present three
forms of click fraud and methods to detect it. They find
that several websites can cooperate with each other to create
fraudulent clicks and thus advance their commercial interest-
s. They develop an algorithm, called streaming-rules, to re-
port association rules with tight guarantees on errors, using
limited processing per element and minimal space, in order
to detect fraud in advertising networks. The above previ-
ous work is related to the detection of click fraud. However,
there are many differences between click spam for general
search results and click fraud for sponsored advertisement
links. Click fraud aims to increase the number of clicks on
the advertisement links so as to gain more money from the
websites that display the ads, while the goal of click spam is
to make more clicks on the website to obtain a higher rank
in the search results. And the detection of click fraud only
needs to examine the IPs of the users that click on the ads,
while the detection of click spam requires detailed analysis
of click logs of the search engine. Consequently, the methods
mentioned above cannot be directly applied to our work.

Radlinski [22] analyzes click spam from a utility stand-
point. He finds that click spam plays an important role in
the rankings of search results, which is harmful to search
engines. He addresses malicious noise through partitioning
the user population and suggests that personalizing search
results can improve the robustness to click spam when us-
ing a simple ranking algorithm. Kang et al. [14] propose
a semi-supervised learning algorithm for distinguishing pro-
gram (bot) generated web search traffic from that of genuine
human users. They first use the CAPTCHA technique to ex-
tract a large set of samples from the data logs as training
data, and then develop a semi-supervised learning algorith-
m to take advantage of the unlabeled data to improve the
classification performance. From their evaluation, the semi-
supervised learning approach that they propose performs
significantly better than the supervised learning algorithms.

All of these studies show that analysis of the features of
single click records contribute to the detection of click spam.
Other researchers focus on session-level click spam recogni-
tion. Sadagopan and Li [23] argue that it is important to
identify typical and atypical user sessions in clickstreams.
They model user session with a sequence of user actions.
They classify user actions into 5 categories: page request,
web click, sponsored click, next click and other click. They



then use a Markov chain model to represent user session-
s and compute the transition probability as its likelihood
score. A lower session score indicates a greater likelihood
that the session is atypical. Their results show that their
approach can identify typical and atypical sessions with a
precision of about 89% and that filtering out the atypical
sessions reduces the uncertainty of the mean CTR by about
40%.

To summarize, in the field of click spam detection, most
research focuses on single click spam record detection, while
few studies focus on session-level click spam recognition.
However, click spam is user-level behavior. For example,
if a user session is detected as a fraudulent session, all the
actions of the user during the session should be regarded
as fraudulent as well. Therefore, it is more important to
detect click spam on a session level. Our approach focuses
on session-level click spam recognition and is similar to the
work of Sadagopan and Li; however, we also take into con-
sideration the information about the action objective and
the time interval between actions when modeling user ses-
sions, and we adopt a bipartite graph propagation algorithm
to further detect cheating sessions.

3. SINGLE CLICK SPAM RECORD DETEC-
TION

The data used in our work consists of real click logs from a
popular Chinese commercial search engine. There are about
80 million randomly sampled records in the click log per day
with an anonymous ID and time information as well as sub-
mitted query, click type and clicked URL data. We selected
the click logs from December 2011 for our experiment, which
consist of 2.4 billion records in total.

In the click log, tag represents the type of click. For ex-
ample, tag of “image” indicates that the user clicks on the
“Image Search” tab. For normal users, a tag of the click
should be consistent with the true action of the user. When
confliction is found, click spam can be detected. As an ex-
ample, if the tag is “video”, but the clicked URL comes from
a general search result but not video search result, the spam
is indicated.

In total there are 40,130 different tags from one day sam-
pled log data (2011.12.7), which can be divided into 53 cat-
egories according to the prefix of the tags. For 20 of these
tag categories, the clicked URLs share the same characteris-
tic. Based on the analysis above, for a click record, if its tag
is missing, or the clicked URL does not match the tag, we
believe that this click record is suspicious of cheating. By
this method, experiments have been made and the results
are shown in Table 2.

As shown in the table, in total 443,415 click spam record-
s out of 82,113,889 click records are detected in this way,
which take up 0.54% of all the click records (except for
the above listed 11,716,766 records, there are more clicks
that cannot be recognized by this method). We also run
the experiment on two other days, and the ratio is 0.55%
and 0.52% respectively, which keeps stable by our detection
methods.

The detection of the single click spam is quite precise (with
100% precision), but only handles the simplest spam tech-
niques. Hence it can be used as part of the seeds to find more
complicated click spams in our model (details are shown in
Section 5).

Table 2: Result of single click spam record detection

click type
#cheating

clicks
#total
clicks

spam
ratio

–(missing tag) 285,449 285,449 100%
query

recommendation
32,348 3,330,407 0.97%

next page 3,105 2,209,056 0.14%
page number 21,909 2,068,008 1.06%

sponsored search 12,092 2,200,346 0.55%
Snapshot 22,514 520,956 4.32%

Video 5,051 342,363 1.48%
Picture 4,844 246,900 1.96%

leftcolumn 9,957 122,421 8.13%
Music 4,841 113,434 4.27%
News 5,028 49,622 10.1%
Maps 9,737 33,917 28.7%

knowledge 7,128 33,440 21.3%
previous page 106 25,604 0.41%
searchForm 2,452 11,075 22.1%

web help 2,521 5,285 47.7%
Other 14,333 118,483 12.1%
Total 443,415 11,716,766 3.78%

4. MODELING USER SESSIONS
The general idea of our work is to model user sessions

with action sequences so that we can detect spam by judging
whether the user session matches abnormal sequence modes.
In previous works, generally a symbolic definition of a single
action is given (e.g. [23]) without taking into consideration
the time interval between actions or the semantic meanings
of the action (for example, the action is to submit the same
query as a previous one or to submit a new query). The in-
novation of our work lies in these two points. Consequently,
the key points of modeling the user session are 1. to define
actions with semantic meanings and 2. to introduce time as
a factor into the model.

4.1 Action definitions
We define a user session as the interaction between the

user and the search engine in 30 minutes starting from the
user submitting the first query to the search engine. In the
click log of a single day, more than 50 million user sessions
can be generated by this method. During a user session,
after the user submits a query, he may browse the result
page, click on the search results, click on the tabs and so
on, or he may reform his query and continue his interaction
with the search engine. In our work, we define 6 kinds of
user actions:

• Qi: Submit a query, in which i is used to distinguish
different queries (in a session, each time a new query
is submitted, we assign a new ID)

• Wi: Click on web results, in which i is used to distin-
guish different web clicks

• Oi: Click on sponsored results, in which i is used to
distinguish different sponsored clicks

• N : Load a new page, including clicking on the next
page, the previous page and specific page numbers



• T : Scroll the page

• Ai: Perform other clicks, including clicking on tabs
such as “Video” and “Music”

Thus the user actions in a user session can be divided into
6 categories. Unlike earlier studies, we assign different IDs
for different queries and clicks on different links, which is
able to distinguish action objectives. That is reasonable be-
cause it can be regarded as a normal behavior if a user clicks
on 10 different web results after submitting a query. But if
he clicks on the same web result 10 times after submitting
a query, he is suspicious of cheating. In earlier studies, the
2 sessions are modeled as the same action sequence. While
in our work, we can distinguish them according to the IDs
of the actions.

4.2 Time interval
After defining the possible actions in a user session, we

introduce the time interval information into our model. In
a user session, there should be a reasonable time interval
between actions. For example, after a user submits a query
to the search engine, he takes time to read the search result
page and then makes a click on one of the search result-
s. He also takes time to read the landing page and then
clicks on another search result. As a result, if the actions
in a user session is excessive frequent, it is likely that the
session is performed by a bot (a piece of program) and the
user is suspicious of cheating. So it is important to take
the time interval between actions into consideration when
modeling user sessions. However, if we use the value of the
time interval directly, the data will be too sparse because
each different second of time interval means a different ac-
tion. Instead, we need to segment the time interval. We
analyse the time interval distributions of the 6 actions (the
time interval of an action is the time interval between this
action and the previous action, if this is the first action of
the user session, the time interval is 0), which is shown in
Figure 1.

As shown in Figure 1, the time interval distributions of
the 6 actions are similar, so we apply the same segmentation
strategy to the 6 actions. We segment the timeline into 4
parts with zero point and two inflection points according
to the time interval distribution. To be specific, let t be
the time interval value (in seconds) and T be the ID of the
segment, so when:

• t = 0, T = 0

• 0 < t ≤ 10, T = 1

• 10 < t ≤ 30, T = 2

• t > 30, T = 3

Based on the analysis above, we are able to model user
sessions involving action objective and time interval between
actions. For each event in a session, we represent it with a
triple (S, i, T ), where S ∈ {Q,W,O,N, T,A}, which repre-
sents an action, in which i is used to distinguish different
action objectives, and T ∈ {0, 1, 2, 3}, which represents the
time interval. Thus each session can be represented by a
triple sequence starting with {Q0, 0}, since each session s-
tarts from a user submitting a query to the search engine
with no time interval. Below is an example of a modeled
user session:

Figure 1: Time interval distribution of the 6 actions

(Q0, 0),(T, 1),(Q0, 1),(Q0, 0),(W2, 1),(Q1, 3),(Q1, 1),(Q1, 0),
(W2, 1),(T, 2),(Q1, 1),(Q1, 0),(W2, 1),(Q1, 2),(Q1, 0),(T, 1)

Thus, the user submits a query (Q0, 0), scrolls the page
a short time later (T, 1), re-submits the same query after a
short time (Q0, 1), submits the same query again immedi-
ately (Q0, 0), and clicks on the third web result after a short
time interval (W2, 1)....

5. SESSION-LEVEL CLICK SPAM RECOG-
NITION

5.1 Detection of cheating sessions based on Markov
transition probability

We first use the approach proposed in [23] as a baseline ex-
periment. The main idea behind the approach is that within
a session, the next event is largely affected by the previous
one, which leads to a Markov Chain Model for user sessions.
The state space of the Markov Chain Model consists every
action that occurs in user sessions. The transition probabil-
ity Pr(i, j) from state i to j is estimated as follows:

Pr(i, j) =
Qi,j

Qi

where Qi,j is the number of instances where state i is fol-
lowed by state j, and Qi =

∑
j Qi,j .

Each user session can then be assigned a likelihood score
by multiplying the probability of the individual state tran-
sitions in the session. Thus a session with a high likelihood
score can be associated with normal behavior, while a ses-
sion with a low likelihood score can be associated with rare
behavior. Since the likelihood score is obtained by multiply-



ing the probability of the individual state transitions, a user
session with a longer sequence will get a smaller score. To
avoid that case, they take a log of the likelihood score and
normalize it by the length of the user session sequence to ob-
tain the average Markovian LoglikeHood (MLHavg). Conse-
quently, a lower MLHavg score indicates a greater likelihood
that the session is atypical. Thus cheating sessions can be
detected from the tail of the MLHavg score distribution.

We use the approach of Sadagopan and Li to test our mod-
eled user sessions from one day of click log data (2011.12.7),
which consists of more than 50 million user sessions. We
count the transition probability between states in user ses-
sions and compute the MLHavg score of each session. The
distribution of MLHavg scores is shown in Figure 2.

Figure 2: Distribution of MLHavg scores

From the figure we can see that for 99.6% of the user
sessions, the MLHavg ∈ (−4, 0], which can be regarded as
normal sessions. We detect the user sessions with score lower
than −4 as cheating sessions. The evaluation of precision of
the approach and the comparison with our methods will be
given in Section 6.

5.2 Discovering seed cheating session modes
The main idea of our work is to first find a small set of

seed cheating sessions, and then detect cheating users and
sequential patterns with a label propagation algorithm on
the user-session bipartite graph and pattern-session bipar-
tite graph, which will help detect more cheating sessions and
improve the precision and recall of our work. To find the
seed cheating sessions, we discover the modes used by these
sessions with the detected single click spam records above.
We analyze the sessions that contain these records because
these sessions are more likely to be cheating sessions. We
model these sessions with the method described in Section
4 and discover the modes that many of these sessions share.
We discover 5 cheating session modes in total and repre-
sent them by regular expressions, their characteristics are
described as below.

• (QAi)∗: Submit different queries and click on the web-
sites with the same domain repeatedly (as shown in
Table 1 (b)), where i means the domains of the web-
sites clicked by the user are the same.

• (QiT )∗: Submit the same query and drag the page
repeatedly, where i means the queries submitted by
the user are the same.

• (Qi)∗: Submit the same query repeatedly in order to
increase the frequency of a certain keyword, where i
means the queries submitted by the user are the same.

• Q(Wi)∗: After submitting a query, click on a web page
after a short time interval repeatedly, where i means
the web pages clicked by the user are the same.

• Q(Ai)∗: After submitting a query, click on a website
with the same domain after a short time interval re-
peatedly, where i means the domains of the websites
clicked by the user are the same.

We use one day of click log data (2011.12.7) to evaluate
the precision of the session modes above. We model the us-
er sessions and obtain the sessions that match the 5 modes
like this: if the length of the subsequence of a session that
matches the mode exceeds 50% of the length of the session
(only the actions of which the time interval is 0 or 1 are con-
sidered), we determine that the session matches the cheating
mode. Here we do not consider the actions of which the time
interval is 2 or 3 because we believe the actions in a cheating
session are usually with a shorter time interval so that the
user can perform more cheating sessions during the same
period of time. For each of the 5 modes, we extract 100 ses-
sions that match the mode randomly for manual annotation
and evaluation the precision. The number and precision of
the sessions are shown in Table 3.

Table 3: Click ratio and precision of the 5 seed cheat-
ing modes

mode #session #click %click precision
(QAi)0−1∗ 11,981 143,214 0.226% 100.0%
(QiT )0−1∗ 3,964 36,964 0.058% 98.0%
(Qi)0−1∗ 17,258 14,956 0.024% 95.0%
Q(Wi)0−1∗ 2,069 36,097 0.057% 100.0%
Q(Ai)0−1∗ 4,079 82,843 0.130% 100.0%

total 39,351 314,074 0.495% 98.6%

In Table 3, the first column is the cheating mode, the
second column is the number of the sessions that match the
corresponding mode, the third column shows the number of
actions (queries and clicks) in the sessions and the fourth
column is the ratio between the actions in the sessions and
all the actions in the one day click log, the last column is
the precision of the corresponding mode. From the table
we can see that the precision of the 5 cheating modes are
rather high (98.6%) so that the detected 39,351 sessions can
be used as seed cheating sessions.

5.3 User-session bipartite graph propagation
algorithm

The user-session bipartite graph propagation algorithm is
based on the assumption that if a certain number of a us-
er’s sessions are cheating sessions, the other sessions of this
user are likely to be cheating sessions as well. According to
that assumption, we start from the seed cheating sessions
and find cheating users based on the cheating sessions, and
then find more cheating sessions based on the cheating users
that we have found. We repeat this process several times to
detect a large number of cheating sessions to improve the
precision and recall of our work. In order to complete that
process, we construct the relationship between users and



session sequences. In a search engine, a user may initiate
sessions with different sequences, and the same session se-
quence may be made by different users. Their relationship
forms the user-session bipartite graph, as shown in Figure 3.
In the click log data of one day, there are nearly 40 million
users and 1 million session sequences.

Figure 3: User-session bipartite graph

Based on the assumption and analysis, we propose the
user-session bipartite graph propagation algorithm. First,
we assign a score for each session. Specifically, for the ses-
sions that match the cheating modes identified above, we
assign an initial score of 1, and all other sessions are as-
signed a score of 0. Then, for each user, we update the score
with the weighted average of the scores of the sessions that
the user makes. Then, for each session, we update the s-
core with the weighted average of the scores of users who
make the session to finish the first iteration. This process is
repeated until the scores of the sessions between two itera-
tions change little. A description of the algorithm is shown
in Algorithm 1, where wij is the frequency of user i making
session j.

Algorithm 1 User-session bipartite graph propagation al-
gorithm

Require:
The set of cheating session sequences, C;
The set of users, U ;
The set of session sequences, S;
The user-session weight matrix, W ;
The threshold to end the iteration, ε;

1: for each sj in S do
2: sscore(sj) = 0
3: end for
4: for each sj in C do
5: sscore(sj) = 1
6: end for
7: n = 1
8: while |sscoren − sscoren−1| > ε do
9: for each ui in U do

10: uscore(ui) =
∑

i wij × sscore(sj)
11: end for
12: for each sj in S do
13: if sj in C then
14: sscore(sj) = 1
15: else
16: sscore(sj) =

∑
j wij × uscore(ui)

17: end if
18: end for
19: n = n+ 1
20: end while

5.4 Pattern-session bipartite graph propaga-
tion algorithm

From the user-session bipartite graph propagation algo-
rithm, we can obtain a list of cheating users and cheating
session sequences. However, our goal is to discover all the
cheating sequential patterns so that we can detect the cheat-
ing sessions that match these patterns. The pattern-session
bipartite graph propagation algorithm is based on the as-
sumption that if a certain number of sessions that match a
sequential pattern are cheating sessions, other sessions that
match the sequential pattern are likely to be cheating ses-
sions as well. The main idea of the pattern-session bipartite
graph propagation algorithm is to find frequent sequential
patterns from the modeled user sessions and to diffuse the
cheating score of the seed sessions on the pattern-session bi-
partite graph in order to obtain a list of cheating sequential
patterns.

First, we introduce the definition of frequent sequential
patterns, which is given by [2]. An item set I = {i1, i2, ..., ik}
is the set of all the items. A sequence α = 〈t1, t2, ..., tm〉(ti ⊆
I) is an ordered list of item subsets. A sequence 〈a1, a2, ..., an〉
is contained in another sequence 〈b1, b2, ..., bm〉 if there ex-
ist integers i1 < i2 < ... < in such that a1 ⊆ bi1 , a2 ⊆
bi2 , ..., an ⊆ bin . Given a sequence databaseD = {s1, s2, ..., sn},
the support for a sequence α is defined as the number of se-
quences in D that contain α. If the support for a sequence
α is larger than θ|D| (θ is the user-specified threshold), α is
called the frequent sequential pattern.

A variety of algorithms for finding frequent sequential pat-
terns in very large sequential databases have been develope-
d over the years, such as FreeSpan [9], PrefixSpan [10, 21],
CloSpan [25] and so on. We use the PrefixSpan approach
proposed in [10, 21] to mine frequent sequential patterns
from the modeled user sessions. PrefixSpan works through
divide and conquer. The complete set of sequential pat-
terns is partitioned into different subsets according to dif-
ferent prefixes, and corresponding projected databases are
constructed and frequent sequential patterns are mined re-
cursively. Based on the mined frequent sequential pattern-
s, we construct the pattern-session bipartite graph. Since
each sequential pattern may be matched by different session
sequences and each session sequence may match differen-
t sequential patterns, their relationship forms the pattern-
session bipartite graph. We use the same algorithm with
the user-session bipartite graph propagation algorithm to d-
iffuse the cheating score of the seed sessions and obtain the
cheating sequential patterns, as shown in Algorithm 2.

The frequent sequential patterns do not require the ac-
tions in a session to be continuous, which effectively reduce
the influence of the noise. The high robustness of the algo-
rithm increases the recall of click spam detection.

6. EVALUATIONS AND DISCUSSIONS

6.1 Performance of the user-session bipartite
graph propagation algorithm

We use the user-session bipartite graph propagation algo-
rithm to experiment on the sampled click logs of one week,
which contain about 80 million click records per day. First
we evaluate the performance of the algorithm with the click
log of a single day (2011.12.7). Each session sequence re-
ceives a score after the iteration completes. Obviously the



Algorithm 2 Pattern-session bipartite graph propagation
algorithm

Require:
The set of cheating session sequences, C;
The set of frequent sequential patterns, P ;
The set of session sequences, S;
The pattern-session weight matrix, W ;
The threshold to end the iteration, ε;

1: for each sj in S do
2: sscore(sj) = 0
3: end for
4: for each sj in C do
5: sscore(sj) = 1
6: end for
7: n = 1
8: while |sscoren − sscoren−1| > ε do
9: for each pi in P do

10: pscore(pi) =
∑

i wij × sscore(sj)
11: end for
12: for each sj in S do
13: if sj in C then
14: sscore(sj) = 1
15: else
16: sscore(sj) =

∑
j wij × pscore(pi)

17: end if
18: end for
19: n = n+ 1
20: end while

score of each session sequence is between 0 and 1. We calcu-
late the number and click ratio of the sessions for different
score ranges. Here, the click ratio of the sessions is defined as
the ratio between the number of actions (queries and clicks)
of the sessions in a specific score range and the number of
actions of all the sessions. The click ratios for different score
ranges are shown in Figure 4.

Figure 4: Click ratios for different score ranges on
one day with the user-session bipartite graph prop-
agation algorithm

From the algorithm we know that a higher score indicates
a larger likelihood that the session is cheating. So for the
sessions with a score larger than 0.5, we randomly sample
200 sessions for manual annotation to evaluate the precision,
and the results are shown in Table 4.

From the table we can see that the sessions in a higher
score range get a higher precision to be cheating sessions,

Table 4: Precision in the different score ranges
range #session #correct precision
(0.9,1] 59 57 0.966102

(0.8,0.9] 15 13 0.866667
(0.7,0.8] 22 19 0.863636
(0.6,0.7] 28 22 0.785714
(0.5,0.6] 76 55 0.723684

total 200 166 0.83

which meets our expectation. Since the detection of click
spam requires high precision, we take the sessions within
the score range of (0.9,1] as cheating sessions, which make up
2.1% of the number of queries and clicks in all the sessions.
We define the click ratio of the sessions within the score
range of (0,9,1] as the click spam ratio.

We also run the same experiment on one week’s sampled
data (2011.12.1 - 2011.12.7), containing 550 million click
records. The click ratios for different score ranges on sepa-
rate days are shown in Figure 5.

Figure 5: Click ratios for different score ranges on
separate days in a week with the user-session bipar-
tite graph propagation algorithm

As shown in Figure 5, the number of cheating session-
s detected is larger from Monday to Wednesday than from
Thursday through Sunday. Perhaps it is because the cheat-
ing users or company are more active at the beginning of the
week. So we suggest that the detection of click spam should
be more concentrated at the beginning of each week.

6.2 Performance of the pattern-session bipar-
tite graph propagation algorithm

To select the proper support threshold θ for mining fre-
quent sequential patterns, we use a range of 0.005 to 0.01 for
θ and test the sampled one-day log data using the pattern-
session bipartite graph propagation algorithm and compute
the click spam ratio. From the results for each θ, we ran-
domly sample 100 sessions within the score range of (0.9, 1]
for manual annotation to evaluate the precision. The click
spam ratio and precision for each θ are shown in Table 5.

These results indicate that with the decrease of θ, the
click spam ratio increases while the precision decreases. To
ensure the precision of the detection of click spam, we set θ
to be 0.01. The click ratio in different score ranges is shown
in Figure 6.

The figure shows that the click spam ratio reaches 2.6%,
which is higher than the 2.1% for the user-session bipar-



Table 5: Click spam ratio and precision for each θ
support threshold θ click spam ratio precision

0.01 0.026172068 97%
0.009 0.026976257 92%
0.008 0.027539188 93%
0.007 0.028182539 92%
0.006 0.028665052 91%
0.005 0.028986728 91%

Figure 6: Click ratio in different score ranges with
the pattern-session bipartite graph propagation al-
gorithm

tite graph propagation algorithm, thus proving the high ro-
bustness of the pattern-session bipartite graph propagation
algorithm.

6.3 Comparison of the three approaches
We compare the performance of our algorithm with the

traditional click spam detection approach [23]. For the base-
line approach, we consider sessions with scores lower than -4
to be cheating sessions and randomly sample 100 sessions to
evaluate the precision. The click spam ratio and precision
of the three approaches are shown in Table 6.

Table 6: Comparison of the three approaches
click spam

ratio
precision

Baseline[23] 1.7% 90%
User-session bipartite graph

propagation algorithm
2.1% 97%

Pattern-session bipartite graph
propagation algorithm

2.6% 97%

The table shows that our approaches outperform the base-
line for both precision and recall. While maintaining high
precision, the pattern-session bipartite graph propagation
algorithm is able to detect more cheating sessions than the
user-session bipartite graph propagation algorithm.

6.4 Effects of click spam on search results
The Normalized Discounted Cumulative Gain (NDCG,

[12]) is an important metric to evaluate the relevance of
the search results. The NDCG at position p(NDCG@p) is
computed as:

DCG@p =

p∑
i=1

2reli − 1

log2(1 + i)

NDCG@p =
DCG@p

IDCG@p

where reli is the manual label of the i-th document, and
IDCG@p represents an ideal DCG value obtained when
sorting the documents by relevance. The formula indicates
that the relevance of higher-ranking results is more impor-
tant than that of lower-ranking results. For example, if a
low relevance result is ranked high, the NDCG value will
become relatively small and the ranking results will be less
satisfactory. We filter out the detected cheating sessions and
use NDCG metric to evaluate the changes.

We extract the queries in which the number of clicks is
larger than 1000 and the click spam ratio is higher than 10%
from the sampled one-day log data. These queries involve
large number of click spam records, and we would like to
evaluate whether our approach of click spam detection helps
the search engine perform better. For each query, we rank
the URLs by CTR before and after filtering out the cheating
sessions. Here CTR is computed as:

CTR =
#clicks on the URL when searching the query

#the query is searched

Since the detected cheating sessions involves large number
of clicks on some of the results, these results will rank lower
after we filter out the cheating sessions. We label the top
20 URLs for each query according to their relevance to the
query and compute the NDCG value. We compare the av-
erage nDCG@5, nDCG@10 and nDCG@20 of the queries,
and the results are shown in Figure 7.

Figure 7: Comparison of nDCG before and after
filtering out the cheating sessions

The figure shows that after filtering out the cheating ses-
sions, there is a larger increase in nDCG@5 than in nD-
CG@10 and nDCG@20. This result indicates that the de-
tected click spammers tended to succeed in placing their
websites at a higher position (≤5) in search results.

7. CONCLUSIONS
Previous studies show that click spam has a large influ-

ence on the performance of search engines. In this paper, we



propose a novel automatic session-level click spam detection
approach. We first model user sessions with a triple sequence
that accounts for the action objective and the time inter-
val between actions. Then, we construct the user-session
bipartite graph and the pattern-session bipartite graph to
describe their relations. Finally, based on the detected seed
cheating sessions, we diffuse the cheating score on the bi-
partite graph and improve the precision and recall of our
work. The approaches that we propose perform better than
the traditional session-level click spam detection method, as
our approach can detect 2.6% of all the queries and click-
s as spam with a precision of 97%. After filtering out the
cheating sessions that we have detected, the nDCG of the
search results increases, which indicates that the search en-
gine performs better.

8. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web

search ranking by incorporating user behavior
information. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 19–26.
ACM, 2006.

[2] R. Agrawal and R. Srikant. Mining sequential
patterns. In Data Engineering, 1995. Proceedings of
the Eleventh International Conference on, pages 3–14.
IEEE, 1995.

[3] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and
R. A. Baeza-Yates. Link-based characterization and
detection of web spam. In AIRWeb, pages 1–8, 2006.

[4] O. Chapelle and Y. Zhang. A dynamic bayesian
network click model for web search ranking. In
Proceedings of the 18th international conference on
World wide web, pages 1–10. ACM, 2009.

[5] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models.
In Proceedings of the 2008 International Conference
on Web Search and Data Mining, pages 87–94. ACM,
2008.

[6] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al. Botminer:
Clustering analysis of network traffic for protocol-and
structure-independent botnet detection. In USENIX
Security Symposium, pages 139–154, 2008.

[7] F. Guo, C. Liu, A. Kannan, T. Minka, M. Taylor,
Y.-M. Wang, and C. Faloutsos. Click chain model in
web search. In Proceedings of the 18th international
conference on World wide web, pages 11–20. ACM,
2009.

[8] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen.
Combating web spam with trustrank. In Proceedings
of the Thirtieth international conference on Very large
data bases-Volume 30, pages 576–587. VLDB
Endowment, 2004.

[9] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. Freespan: frequent pattern-projected
sequential pattern mining. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 355–359. ACM,
2000.

[10] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth.

In proceedings of the 17th international conference on
data engineering, pages 215–224, 2001.

[11] B. J. Jansen. Click fraud. Computer, 40(7):85–86,
2007.

[12] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on
Information Systems (TOIS), 20(4):422–446, 2002.

[13] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142. ACM,
2002.

[14] H. Kang, K. Wang, D. Soukal, F. Behr, and Z. Zheng.
Large-scale bot detection for search engines. In
Proceedings of the 19th international conference on
World wide web, pages 501–510. ACM, 2010.

[15] A. Karasaridis, B. Rexroad, and D. Hoeflin.
Wide-scale botnet detection and characterization. In
Proceedings of the first conference on First Workshop
on Hot Topics in Understanding Botnets, volume 7.
Cambridge, MA, 2007.

[16] V. Krishnan and R. Raj. Web spam detection with
anti-trust rank. In AIRWeb, volume 6, pages 37–40,
2006.

[17] Y. Liu, R. Cen, M. Zhang, S. Ma, and L. Ru.
Identifying web spam with user behavior analysis. In
Proceedings of the 4th international workshop on
Adversarial information retrieval on the web, pages
9–16. ACM, 2008.

[18] M. Marchiori. The quest for correct information on
the web: Hyper search engines. Computer Networks
and ISDN Systems, 29(8):1225–1235, 1997.

[19] A. Metwally, D. Agrawal, and A. E. Abbadi. Using
association rules for fraud detection in web advertising
networks. In Proceedings of the 31st international
conference on Very large data bases, pages 169–180.
VLDB Endowment, 2005.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
1999.

[21] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto,
Q. Chen, U. Dayal, and M.-C. Hsu. Mining sequential
patterns by pattern-growth: The prefixspan approach.
Knowledge and Data Engineering, IEEE Transactions
on, 16(11):1424–1440, 2004.

[22] F. Radlinski. Addressing malicious noise in
clickthrough data. In Learning to Rank for
Information Retrieval Workshop at SIGIR, volume
2007, 2007.

[23] N. Sadagopan and J. Li. Characterizing typical and
atypical user sessions in clickstreams. In Proceedings of
the 17th international conference on World Wide Web,
pages 885–894. ACM, 2008.

[24] T. Schluessler, S. Goglin, and E. Johnson. Is a bot at
the controls?: Detecting input data attacks. In
Proceedings of the 6th ACM SIGCOMM workshop on
Network and system support for games, pages 1–6.
ACM, 2007.

[25] X. Yan, J. Han, and R. Afshar. Clospan: Mining
closed sequential patterns in large datasets. In Proc.
2003 SIAM Int ↪aŕl Conf. Data Mining (SDM ↪aŕ03),
pages 166–177, 2003.


