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ABSTRACT
Examination is one of the most important user interactions in Web
search. A number of works studied examination behavior in Web
search and helped researchers better understand how users allocate
their attention on search engine result pages (SERPs). Compared
to desktop search, mobile search has a number of dierences such
as fewer results on the screen. These dierences bring in mobile-
specic factors aecting users’ examination behavior. However,
there still lacks research on users’ attention allocation mechanism
via viewports in mobile search. Therefore, we design a lab-based
study to collect user’s rich interaction behavior in mobile search.
Based on the collected data, we rst analyze how users examine
SERPs and allocate their attention to heterogeneous results. Then
we investigate the eect of mobile-specic factors and other com-
mon factors on users allocating attention. Finally, we apply the
ndings of user attention allocation from the user study into click
model construction eorts, which signicantly improves the state-
of-the-art click model. Our work brings insights into a better un-
derstanding of users’ interaction patterns in mobile search and may
benet other mobile search-related research.
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1 INTRODUCTION
In the past decades, the development of Web search is inseparable
from the understanding of user interactions. Among all user interac-
tion behaviors, examination is one of the most important. Better un-
derstanding how users examine search engine result pages (SERPs)
∗Corresponding author.
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Figure 1: Examples of Google SERPs on desktop and twomo-
bile phones with dierent screen sizes. The query is “Hous-
ton” and only the initial viewports are shown.

can greatly improve the eectiveness of search. Eye-tracking is a
commonly used technique for analyzing user examination behavior
in Web search. Eye gaze behavior is usually considered as an im-
portant signal for user attention [18, 19]. By collecting eye-tracking
data, a number of existing works [6, 9, 12, 17, 28, 30] studied users’
examination behavior in Web search, but most of them focused on
the desktop search environment.

However, there exist great dierences in search behavior on mo-
bile, tablet and desktop devices [32]. Figure 1 shows the Google
SERPs of the same query on desktop and mobile with dierent
screen sizes, where a OnePlus 5T is the mobile phone used in our
user study. Compared to desktop search, mobile search takes place
on a much smaller screen where fewer results can be examined in
the viewport1. Recently, search results in mobile search became
more heterogeneous and have various presentation styles. Some
results with rich information in their snippets may help users eas-
ily obtain relevant information without any click, which causes
so-called click necessity bias [27]. All these dierences make the
patterns of user examination behavior found in desktop search
potentially inapplicable in mobile search.

Several existing works already paid attention to the examination
behavior in mobile search. Based on experiments with eye-tracking
devices, Kim et al. [18] compared the dierences in user behaviors
1The visible portion of SERP.
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on large and small screens, including xation duration, click pattern,
scanning path and etc., but they simulated the phone by shrinking
the desktop browser window and used the same SERPs on both
large and small screens. Lagun et al. [19] conducted a user study on
a 4.7-inch mobile phone and found that the user attention in mobile
search is generally focused on the top half of the screen. Based
on a similar experimental setting, Lagun et al. [20] also tried to
infer user gaze from viewport data using a linear model and some
non-parametric methods with hand-crafted features. Nowadays,
the screen sizes of mobile phones become bigger and are stable at
around 6 inches because the phone sizes are now close to users’
limit of one-handed operation. For example, the iPhone Xs has a
5.8-inch screen and the Samsung S10 has a 6.1-inch screen. With
such a large mobile screen, the user can examine more area of
SERPs in a viewport than before, as shown in Figure 1. To the best
of our knowledge, there is still a lack of research to investigate
users’ examination behavior on a relatively larger mobile screen.
Therefore, we propose our rst research question:

• RQ1: How do users examine SERPs and allocate attention
when searching on a mobile device with a large screen?

Search is a complex process of information cognition and seek-
ing, during which user attention is usually biased by a number
of factors. According to the previous works in both desktop and
mobile search, the factors include result position [18], result presen-
tation style [20, 24], result quality [3], result relevance [23] and etc.
Besides these factors, the dierences between mobile and desktop
search bring more potential factors into our sights, such as the posi-
tion in a viewport (e.g., located in the upper, middle or lower part of
a viewport) and the click necessity2 [25] of results. We would like
to investigate the eect of these new factors as our second research
questions:

• RQ2:What factors aect users’ attention allocation mecha-
nism in mobile search?

Accurately modeling user attention during a search process can
help improve a number of IR-related tasks, such as UI design of
search engines [29], user satisfaction prediction [19], result rank-
ing [13], click prediction [38], and etc. We would like to know
whether our ndings of user examination patterns can be applied
in practical mobile search tasks. Thus, we propose our third research
question:

• RQ3: Can our ndings of users’ attention allocation mecha-
nism be adopted in improving practical search applications?

To address these three research questions, we conduct a lab-
based user study to collect rich user interaction data and various
feedback annotations in mobile search. Based on the collected data,
we rst analyze the patterns of user attention allocation within a
viewport. Dierent from previous works, we nd that users’ atten-
tion focuses on dierent parts of the screen in dierent stages of
the search process. Second, we investigate the impact of several im-
portant factors on user attention during a search process, including
position, result presentation, click necessity, viewport coverage, re-
sult exposure and etc. Finally, we choose the click prediction task as

2How much necessary it is for a user to click on a result to obtain its relevant informa-
tion.

the practical application to answer RQ3 and show the eectiveness
of our ndings in improving the performance of click models.

2 RELATEDWORK
Examination in Web search always attracts much attention in In-
formation Retrieval (IR) research. Researchers rst studied user
examination behavior in desktop search. Granka et al. [12], Richard-
son et al. [30] and Joachims et al. [17] looked into user’s basic eye
movements and scan patterns during search tasks with eye-tracking
devices. Dumais et al. [9] focused on searchers’ interactions with
the whole search engine result page instead of individual compo-
nents and investigated individual dierences in gaze patterns for
web search. Diaz et al. [8] tried to use cursor movements to es-
timate user visual attention on the components of SERPs. Wang
et al. [34] found result presentation styles have dierent eects on
user examination behavior for vertical results and for the whole
result list. Liu et al. [23] proposed a two-stage examination model
for Web search consisting of a “from skimming to reading” stage
and a “from reading to clicking” stage. Liu et al. [24] investigated
the inuence of vertical results in Web search examination and
revealed the existence of a vertical attraction eect, an examination
cut-o eect and an examination spill-over eect. Li et al. [22] con-
ducted a user study to investigate reading attention and proposed
a two-stage reading model for relevance judgment. Existing works
found several user behavior biases in Web search, such as position
bias [7], attractiveness bias [1, 37] and domain bias [16].

In the research line of user examination behavior in mobile
search, Lagun et al. [19] is one of the rst researchers to apply
eye-tracking into mobile search. They found eye gaze behavior has
a strong correlation with user satisfaction in mobile search and pro-
posed to utilize viewport metrics as an alternative of user attention
in estimating satisfaction. Lagun et al. [20] then looked into spon-
sored search and found that rich ad formats can improve the user
experience and tried several methods to infer user attention from
viewports based on a per-element basis. When searching on a mo-
bile device, it can be considered that users are examining the SERP
by the trail of viewports [25]. Wang et al. [35] investigated exami-
nation behavior in mobile search based on large-scale search logs
with viewport information and found that click positions mostly
happen in the top two-third portion of the viewport.

User behavior is widely used in improving mobile search. Guo
and Agichtein [14] found that post-click behavior, including mouse
movement and scrolling, can help better estimate document rele-
vance. Guo et al. [15] showed that touch interaction data on mobile
devices can eectively predict result relevance. White et al. [36]
adopted the information of SERP visual layout, cursor movement
and viewport changing behavior to predict real-time document
prefetching decisions. Shokouhi and Guo [31] used viewport dura-
tion and user clicks to infer result relevance in proactive systems
such as Microsoft Cortana.

A more accurate estimation of examination usually brings im-
provements to click models [5]. Mao et al. [27] proposed that user
search behavior is biased by click necessity and examination satis-
faction in mobile search and modeled the ndings into the Mobile
Click Model (MCM). Zheng et al. [38] proposed a Viewport Time
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Click Model (VTCM) to incorporate the viewport time informa-
tion into the modeling of users’ click behavior in mobile search. In
VTCM, the modeling of viewport time takes examination behavior,
user clicks and examination satisfaction into account and adopts
four independent conditional probabilities for dierent conditions
as follows:

P(Vi = ti |Ei = 0) = f E=0vi (ti ) (1)

P(Vi = ti |Ei = 1,Ci = 0, SEi = 0) = f E=1,C=0,S
E=0

vi (ti ) (2)

P(Vi = ti |Ei = 1,Ci = 1, SEi = 0) = f E=1,C=1,S
E=0

vi (ti ) (3)

P(Vi = ti |Ei = 1,Ci = 0, SEi = 1) = f E=1,C=0,S
E=1

vi (ti ) (4)

where Ci and Vi are the click and viewport time events of the i-th
result in a search session, ti is the observed viewport time of this
result, Ei is its examination event, SEi is the examination satisfaction
event, andvi is its vertical type, f is a probability density function of
a certain distribution. They follow Lagun et al. [19] to calculate the
viewport time for each result using the ratios of viewport coverage
and result exposure as weights:

t =
n∑
j=1

tj ∗
hej

hvj
∗
hej

hrj
(5)

where t is the weighted viewport time of a result in a search session,
n is the viewport number in the session, tj is the duration of the
j-th viewport, hej is the visible height of the result exposed in the
j-th viewport, hrj is the total height of the result, h

v
j is the height of

the j-th viewport. hej /h
v
j represents how much the result occupies

the viewport (viewport coverage) and hej /h
r
j represents how much

the result is visible to the user (result exposure).

3 USER STUDY
To investigate users’ examination behavior during searching on
mobile devices, we conduct a lab-based user study with 60 search
tasks. In this section, we describe the details of the user study and
the dataset we collected. Table 1 shows the statistics of the user
study dataset3. The dataset consists of tasks, user behavior, user
explicit feedback, and crowdsourcing annotations.

3.1 Tasks and Participants
Wemanually sample 60 queries with high or intermediate frequency
from search logs of a commercial search engine, Sogou.com, includ-
ing 10 navigational, 25 informational and 25 transactional queries.
We don’t sample long-tail queries because they may contain user
privacy and require much context information or knowledge to
understand the search intent. For each query, we construct a de-
scription of search background to make the search intent more
clear and unambiguous. We crawl the rst two SERPs of these
queries from Sogou.com on May 8th, 2019. We remove the query
suggestion and sponsored results. About 22 results are reserved
for a search task on average. Pagination and query reformulation
are not allowed. We randomly divide the 60 tasks into three equal
groups.

3We publicly released this dataset at http://www.thuir.cn/data-wsdm20-UserStudy/
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Figure 2: The procedure of our user study.4

Table 1: The statistics of the dataset in our user study.

#Users #Tasks #Valid sessions #Unique results

13 60 478 1308

We recruit 13 undergraduate and graduate students (6 females
and 7 males, aged from 18 to 26) from a university via online fo-
rums and social networks. All participants are familiar with mobile
devices and have daily mobile search experience. To ensure the
validity of collected eye movements, we screen the applicants based
on their eyesight. Each participant needs to accomplish one to two
groups of search tasks. It takes about 1 hour to complete one search
group. For their involvement, the participants will be paid about 15
dollars.

3.2 Procedure
The procedure of our user study is shown in Figure 2. In the be-
ginning, we introduce the experiment to participants by guiding
them to complete two training tasks. Next, they are required to
accomplish one or two groups of search tasks independently. The
system shows 20 tasks of a certain group to the participant one
by one in random order. The procedure for each search task is as
follows:

Searching with the given task. The participants are rst pre-
sented with the search query and background description of the
task. After reading, they are required to search with the given query
on the provided mobile phone. The phone is xed on a stand to
allow eye tracking. Participants can hold the phone but can’t move
or rotate it. Then the pre-processed SERP will be shown to partici-
pants. They can freely examine and interact with the results. At the
same time, their eye movements are collected by the eye tracker
and other interactions are recorded by our system. We collect the
eye-tracking including both xations and saccades, clicks, viewport
information, and etc. Once the participants feel satised or the
provided SERP can not satisfy the information needs, they can exit
by clicking on a “nish searching” button.

Post-task questionnaire. After browsing the provided SERP,
the participants are required to complete a post-task questionnaire.

4The diagram of mobile-specic eye-tracking device is from Tobii support document
(https://www.tobii.com)

http://www.thuir.cn/data-wsdm20-UserStudy/
https://www.tobii.com
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We collect explicit feedback on the experience of searching, includ-
ing the binary question is_successful and a ve-grade satisfaction
response.

Result assessment. In this step, the SERP is presented to par-
ticipants again and they are asked to annotate usefulness for the
search results. The usefulness labels are on a four-level scale (1:
useless, 2: somewhat useful, 3: fairly useful, 4: extremely useful).

Since the analysis of this work doesn’t involve users’ feedback
from the post-task questionnaire and the usefulness annotations for
results, we don’t describe the details of the post-task questionnaire
and the result assessment step here.

3.3 Experiment System and Platform
We conduct the user study on an Android smartphone, OnePlus 5T.
It is equipped with a 6-inch screen and the resolution is 412 x 824 in
density-independent pixels, which is the mainstream specication
of smartphones in recent years. We develop a mobile app using
Java, through which participants can log in to the system of our
user study and complete search tasks. We use a backend database to
record participants’ interaction behavior including click, scrolling,
etc. We use a Tobii X2-30 eye tracker to record the eye movements
of participants as they browse the SERPs. To ensure that the eye
movements are recorded accurately, a calibration process is taken
for each participant before they begin the user study.

3.4 Search Result Annotation
After collecting user search behavior and explicit feedback from
the participants, we further annotate the page relevance, snippet rel-
evance, click necessity, and result type for each search result through
crowdsourcing. The page relevance is measured based on the whole
landing page of the result and the snippet relevance is judged ac-
cording to the snippet of the result in the SERP. For page relevance
and snippet relevance, we use a four-grade relevance judgment
scale (1: irrelevant, 2: marginally relevant, 3: relevant, 4: highly rel-
evant) according to the TREC criterion [33]. For click necessity, we
use the three-grade necessity judgment (1: not necessary, 2: fairly
necessary, 3: denitely necessary) [25]. For result type, we catego-
rize all results into 18 result types according to their vertical types
and presentation styles, such as news, encyclopedia, video, direct
answer and so on. Each annotation is judged by three professional
workers and we perform quality inspection on the annotations to
ensure the reliability of these annotations. The values of Fleiss’
κ [11] of page relevance, snippet relevance, click necessity and re-
sult type are 0.847, 0.725, 0.628, and 0.912 respectively, all of which
reach a substantial or almost perfect interpersonal agreement [21].
For page relevance, snippet relevance and click necessity, if there is
a disagreement between judgments of a result, we use the median
as the nal judgment. For result type, we use majority voting to
determine the result type. If all three annotations are dierent from
each other, an external expert will be involved to judge and make a
decision.

4 EXAMINATION IN MOBILE SEARCH
Based on the collected data in the user study, we would like to
investigate the users’ attention allocation patterns in mobile search.
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Figure 3: The normalized rst arrival time at dierent verti-
cal positions of SERPs.

Table 2: The statistics of viewport and examination behavior
at dierent viewport osets.

Viewport oset 0 0∼0.5H 0.5∼1H 1∼2H >2H
#Avg. viewports per session 2.19 1.18 0.89 0.85 1.53
#Avg. visible results per viewport 3.31 3.70 3.63 3.86 4.13
#Avg. examined results per viewport 1.41 1.07 0.99 0.94 0.90
Avg. duration per viewport (ms) 2427 1344 1095 1089 977
Avg. reading time per viewport (ms) 1568 895 713 662 581

Since users allocate attention via the trail of viewports, we separate
RQ1 into two sub-questions:
• RQ1a:What are the patterns of users to examinemobile SERPs?
• RQ1b: How do users pay attention in the viewports of SERPs?

4.1 Examination Behavior Patterns
To address RQ1a, we investigate examination order by measuring
the rst arrival time at dierent vertical positions of the SERP,
see Figure 3. We normalize the vertical positions of a SERP by
the max exposed depth in a session and normalize the rst arrival
time at dierent vertical positions by the total session duration. It
shows that the rst arrival time increases with the vertical position,
indicating that on average, the user browses the SERP in a top-down
order, which is consistent with the assumption of Mobile Click
Model (MCM) [27]. Further, we examine the viewport transition
behavior. By recording the viewport oset in the SERP, we can
get the viewport transition directions, including forward to view
the results with lower ranks and backward to a higher position of
the SERP, and calculate the sliding distances between two adjacent
viewports. The ratio of forward is 86.9%, which is much larger than
that of backward (13.1%), which verify that users tend to examine
SERPs from the top to the bottom. In our user study, the height
of a SERP viewport is 789 dp, which we label it as H . The average
sliding distances of forward and backward are 459.1 dp (SD=1183.1)
and 611.6 dp (SD=1106.3) respectively, indicating that users usually
slide forward for about a half viewport height on average to view
the next results and sometimes move backward for a rather long
distance to visit relatively higher-rank results.

Table 2 shows the statistics of the viewport and eye-tracking
behavior in the user study. We view xation duration as reading
time and treat a result with more than 200 ms reading time as an
examined result according to [23, 26]. The result with less than
200ms reading time is regarded as not examined. As the viewport
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Figure 4: The vertical viewport attention distributions at dif-
ferent osets in the SERPs, where H is the height of a view-
port.

oset increases, the average viewport number in a session decreases.
Users stay at the top of the SERP for a longer time than other
viewports and spend more time reading more results. After, users
examine about one result per viewport on average and allocate
diminishing attention when browsing deeper in the SERP. The
average number of examined results per session is 4.47 (SD=3.43),
while the average number of unexamined results before the last
examined result is 1.13 (SD=2.46), indicating that users may skip
some results during the search processes.

4.2 Viewport Attention
To address RQ1b, We examine viewport attention during search
tasks. Figure 4 shows the vertical attention distributions within a
viewport with dierent viewport osets. The attention distribution
with zero viewport oset is signicantly dierent from others with
p < 0.01 using an unpaired t-test, while the attention distributions
with more than zero viewport osets are highly similar. With the
nding of user sequential browsing inmobile search, we can see that
after the user examines the initial viewport, the focus of attention
transfers from the top to the bottom half. This indicates that the
viewport attention is biased by two factors at the same time, the
viewport oset and the vertical position in a viewport. Figure 5
shows the interface of our system and the eye-gaze heatmaps in two
viewports of the same search session. In the left viewport with zero
oset, the user mainly examined the rst three results and didn’t
pay attention to the fourth result. In the right viewport whose oset
is about 0.3H , the user spent more time to examine the new results
at the bottom half of the viewport. On the one hand, the results at
the bottom half are usually new to users. On the other hand, the
bottom half is more convenient for users to click or make other
interactions if they want with their ngers when they are holding
the phone.

4.3 Summary
To answer RQ1a and RQ1b. We found that, during mobile search,
the user tends to rst pay attention to the top half of the screen
and carefully examines several top-ranked results. Then, if they
would like to continue browsing, they usually scroll down and
focus on the bottom half of the screen to view one new result in the
next viewport and repeat this examination action with occasional

Viewport offset = 0 Viewport offset = 0.3H

Query: Popular mobile game list Finish button

Viewport 
of SERP

Result 1

Result 2

Result 3

Result 4

Result 3

Result 4

Result 5

Result 2

Figure 5: The interface of our system and the user atten-
tion heatmaps of two viewports in the same search session,
where H is the height of a viewport.

1 2 3 4 5 6 7 8 9 ⩾10
Rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
se

r a
tte

nt
io

n

Figure 6: The average user attention per viewport at dier-
ent results ranks.

revisiting or skipping some results until entering another page or
leaving.

5 VIEWPORT ATTENTION BIAS
To address RQ2, we try to investigate what factors aect the view-
port attention. Since results that are taller in the SERP are more
likely to get more eye gaze, we normalize the result reading time by
result height. We use this normalized reading time as the measure
of user attention during search tasks. Note that the reading time is
in milliseconds (ms) and the result height is in density independent
pixel (dp).

5.1 Result Rank
Figure 6 shows the average user attention at dierent results ranks
per viewport. We can see that the rst two ranks usually attract
more attention. The top results are usually highly relevant to a
query and can often contain an answer to the query or the result
may consist of multiple images and links, making them attractive
and causing more user attention. However, from rank three down,
the levels of average user attention per viewport become similar
with little decay, showing that it takes at least a certain time for
users to read a result in the viewport.
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Table 3: The average user attention per viewport on results
with dierent levels of viewport coverage and result expo-
sure.

Coverage 0∼0.2 0.2∼0.4 0.4∼0.6 0.6∼0.8 0.8∼1
Attention 0.331 0.500 0.560 0.697 0.789
Frequency 4604 7160 1249 309 242
Exposure 0∼0.2 0.2∼0.4 0.4∼0.6 0.6∼0.8 0.8∼1
Attention 0.123 0.223 0.309 0.330 0.554
Frequency 1066 989 1034 1173 9302

Application Video Aggregation

Direct answer

Organic

Encyclopedia

Input the express number Submit

Input your phone number

The direct answer of 
Chengdu’s area code

Overview of Tesla

Reviews from Tesla users

Popular cars

Figure 7: Snippet examples of several popular result types
shown in SERPs.

Table 4: The average user attention per viewport on dierent
result types and the statistics of these result types.

Result type Attention #Words Img. coverage Height (dp)

Organic 0.464 67.3 0% 447
Encyclopedia 0.440 104.5 9.5% 550
Direct answer 0.577 125.7 14.6% 912

Video 0.606 301.1 28.1% 1232
Aggregation 0.648 617.6 12.0% 2453
Application 1.457 207.9 2.2% 937

5.2 Viewport Coverage and Result Exposure
Second, we examine the ratio of viewport coverage and result expo-
sure (See the denitions in Equation 5). Table 3 shows the average
user attention per viewport on results with dierent levels of view-
port coverage and result exposure.We can see that with the increase
of results’ viewport coverage, users tend to pay more attention to
examining them. However, about 86.7% results occupy less than
40% area of the viewport. Results with more than 40% viewport cov-
erage are mostly a long result with a specially-designed snippet and
abundant information in the SERP and hence usually attract more
user attention. For the aspect of result exposure, we can see that
the most of the results in viewports have a more than 80% visible

Figure 8: The average user attention per viewport on results
with dierent levels of snippet relevance and click necessity.

area, which is more likely to be the focus of users in viewports. Our
results support the ndings in Lagun et al. [19] that it is eective
to calculate the viewport time of a result weighted by its viewport
coverage and result exposure.

5.3 Result Type and Presentation Style
Current mobile search engines tend to retrieve heterogeneous re-
sults from multiple sources for a query and design dierent pre-
sentation styles for these results. We investigate six popular result
types with dierent presentation styles to see how users pay atten-
tion to them. Figure 7 shows the snippet examples of these results
types. Table 4 shows the average viewport attention on dierent
result types in mobile search. Direct-answer results provide an
answer box to directly answer users’ question, while aggregation
results contain multiple pieces of vertical information which is
highly relevant to the query and hence have a rather large result
height. Video results consist of several images and have a large
ratio of image coverage. Users spend more time examining these
result types than organic results which only contain a title and a
short snippet text. Application results allow users to directly in-
teract with them on the SERP to get useful information, such as
ight inquiry and exchange rate calculation. Therefore, application
results attract the most user attention among all result types.

5.4 Snippet Relevance and Click Necessity
Figure 8 shows the average user attention on results with dierent
snippet relevance and click necessity. We obtain the snippet rele-
vance and click necessity of a result from crowdsourcing. We can
see that users pay more attention to relevant and highly relevant
results than irrelevant and marginally relevant results. Results with
low click necessity are likely to attract more attention from users
than results with high click necessity. In general, the highly rele-
vant results with low click necessity attract the most user attention
among all combinations of snippet relevance and click necessity.
Since users browse SERPs with the aim to satisfy their information
need, they usually look for the relevant results. Results with low
click necessity can provide users with abundant information with
little interaction eort, so these results attract much user attention
when they are relevant to the query.
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5.5 Summary
In summary, these factors can be classied into two categories:
(1) general factors whose eect on user attention allocation have
been investigated in desktop search, such as result rank, result type
and presentation style and result relevance, and (2) mobile-specic
factors including viewport coverage, result exposure and click ne-
cessity. Our results show the viewport attention doesn’t have an
obvious decay from the third rank to lower ranks. In addition, the
lower click necessity of a result usually leads results to a higher
level of user attention when the result is relevant.

6 APPLICATION OF THE FINDINGS
To answer RQ3, we choose the click prediction task and perform
two experiments based on click models. In the rst experiment,
we try to introduce the patterns of viewport attention distribution
into the calculation of results’ viewport time and compare the
performances of VTCM under dierent calculation methods of
viewport time. In the second experiment, we incorporate the eect
of result rank on user attention into the modeling of viewport time
in VTCM and compare our method with the original VTCM and
other baseline click models.

6.1 Dataset
We sample search sessions from search logs of a Chinese commercial
search engine, Sogou.com, during the rst eight days in August, 2018.
The search log of a search session contains the query, ten URLs
of search results, a 10-dimensional binary click vector, ten vertical
type ids of the search results and viewport-related information,
such as the position and the height of the viewport, the visible
search results in the viewport and the viewport change events with
timestamps [35]. The sampling procedure is: (1) We reserve the
sessions whose resolution is similar to that of our mobile device
(412×824 dp) with the width from 380-500 dp and the height from
680-1000 dp; (2) We remove search sessions with no clicks. After
sampling, we split the sessions into two parts with the equal data
size, using sessions of the rst four days as the training set and those
of the latter four days as the test set. Table 5 shows the statistics
of the dataset used in the following experiments. We calculate the
weighted viewport time for each result as same as [38] (Equation 5).

6.2 Click Model
In this study, we use four click models with probabilistic graphical
model (PGM) framework and one click model with neural network
framework as baselines:

• UBM: User Browsing Model proposed by Dupret and Pi-
wowarski [10].

• DBN:Dynamic BayesianNetworkmodel proposed byChapelle
and Zhang [4].

• MCM: Mobile Click Model proposed by Mao et al. [27].
• VTCM: Viewport Time Click Model proposed by Zheng et al.
[38]. We use Weibull distribution to serve as f in Equation 4
to model the viewport time, which is reported the best by
the authors.

• NCM: Neural Click Model proposed by Borisov et al. [2]. We
implement NCM with the LSTM conguration.

Table 5: The statistics of the dataset used in click prediction.

#Unique queries #Sessions #Unique URLs Date

156,507 212,059 1,141,001 Aug. 1st to 8th, 2018

Table 6: The overall click prediction performance of click
modelsmeasured in log-likelihood (LL) and average perplex-
ity (AvдPerp). All dierences over VTCM are statistically sig-
nicant atp < 0.01 level, pairwise t-test, two-tailed,n = 9, 590.
va represents that the model is trained and evaluated on the
dataset with user attention-based viewport time. rank means
that the model tasks advantage of result rank information
into the modeling of viewport time.

Click model LL Impr. AvдPerp Impr.
DBN -0.8478 -4.11% 1.0960 -4.58%
UBM -0.8487 -4.22% 1.0952 -3.68%
MCM -0.8209 -0.80% 1.0926 -0.84%
NCM -0.8193 -0.61% 1.0924 -0.69%
VTCM -0.8144 - 1.0918 -
VTCMva -0.8060 1.02% 1.0911 0.79%
VTCMrank -0.8094 0.61% 1.0913 0.54%
VTCMva+rank -0.7974 2.08% 1.0899 2.06%

6.3 Experiments
6.3.1 Baseline performance. We train all click models on the train-
ing set until they converge completely and evaluate models on the
sessions of the test set whose query appears more than 10 times in
the training set. We use log-likelihood (LL) and average perplexity
(AvдPerp) as metrics [27]. Table 6 shows the click prediction per-
formances of baseline models. With the additional viewport time
information, VTCM achieves the best performance in both LL and
Avдperp metrics among ve baseline models, followed by NCM
and MCM, which is consistent with the results in [38].

6.3.2 Viewport aention distribution. We nd that the peak of
viewport attention transfers downward from the top half of the
viewport to the bottom half when users browse deeper in a SERP.
The reading time of two results with the same result height, view-
port coverage and result exposure may consequently be dierent
if they appear at dierent vertical positions of the viewports. We
can utilize this nding to improve the calculation of results’ view-
port time in mobile search. We extend the calculation of a result’s
viewport time in a session as:

t =
n∑
j=1

∫ star tj+hej

star tj
Wj (h) ∗Vj (h)dh (6)

where startj andhej are the oset and the visible height of the result
in the j-th viewport, Vj (h) is the attention distribution within the
j-th viewport andWj (h) is the attention allocation weight for the
result in the j-th viewport. For the method in Equation 5,Vj (h) and
Wj (h) is 1/H and hej /h

r
j respectively. We introduce the viewport

attention allocation patterns found in the user study into the design
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(a) User attention proportion. (b) Vertical click position.

Figure 9: (a) the proportion of user attention at ve-level ver-
tical positions of viewports in our user study and (b) the dis-
tribution of vertical click positions within viewports in our
practical search logs.

Table 7: The average viewport time (in second) learned by
VTCMva+rank and VTCMva for results with dierent ranks.

Condition VTCMva+rank VTCMvarank 6 2 rank > 2
E = 0 2.88 0.96 0.93

E = 1,C = 1 6.15 3.91 5.45
E = 1,C = 0, Se = 0 3.83 2.42 3.61
E = 1,C = 0, Se = 1 4.18 9.50 11.9

of Vj (h) and split it into two conditions:

Vj (h) =

{
V 0
j (h) o f f set = 0

V >0
j (h) o f f set > 0

(7)

We follow the method of Lagun et al. [20] to split the viewport
into ve equal parts according to the vertical position. Dierent
from them, we don’t use a learning model to predict the viewport
attention distribution because our aim is just to examine the ef-
fectiveness of our ndings instead of studying how to infer user
attention from viewports. So we directly use the statistics of the
viewport attention distribution in our user study forVj (h), as shown
in Figure 9(a). We use our method to update the viewport time for
all results in the training and test sets, and then train VTCM. The
performance of VTCM on the updated dataset is reported in Table 6.
We can see with the attention-based viewport time, the performance
of VTCM gets signicantly improved by 1.02% and 0.79% in LL and
AvдPerp respectively, showing our viewport attention distribution
found in the user study is eective in the click prediction task.

We examine the distribution of vertical click positions in the
search logs. Figure 9(b) shows the distribution of vertical click
positions within viewports in our search logs. We can nd user
clicks have the same patterns with viewport attention. Clicks occur
more often at the top half of the viewport when the viewport oset
is zero. When users slide down, more clicks happen at the bottom
half of the viewport. Since a click on a result indicates the result
was examined in most cases, the highly similar patterns between
vertical click position and viewport attention can be used to support
our ndings as well as the improvement of VTCMva .

6.3.3 Result rank. In Section 4, we found that users pay dierent
attention on results with dierent ranks and results with higher
ranks are likely to attract more user attention in mobile search. This
inspires us to introduce the result rank information into the model-
ing of viewport time. We extend these conditional probabilities in
Equation 4 by adding the result rank ri into them:

P(Vi = ti |Ei = 0) = f E=0vi ,ri (ti ) (8)

P(Vi = ti |Ei = 1,Ci = 0, SEi = 0) = f E=1,C=0,S
E=0

vi ,ri (ti ) (9)

P(Vi = ti |Ei = 1,Ci = 1, SEi = 0) = f E=1,C=1,S
E=0

vi ,ri (ti ) (10)

P(Vi = ti |Ei = 1,Ci = 0, SEi = 1) = f E=1,C=0,S
E=1

vi ,ri (ti ) (11)

Here we describe the detailed implementations. From Table 2 and
Figure 6, we nd that results with higher ranks usually attract more
attention, especially the results in the initial viewport of the SERP.
Thus, we split the ten results in a session into two groups, the rst
k results and the latter 10 − k results. We set k to 2 in the following
experiment with two considerations. On the one hand, Figure 6
shows that users tend to view about 1.41 results in the viewports
of the top of SERPs; On the other hand, Figure 6 shows that users
usually pay more attention on the rst two results. Therefore, ri
is a binary value indicating whether the result is at the rst two
ranks in the session. Table 6 shows the performance of the new
VTCM model with result rank information, VTCMrank . We can
see it signicantly outperform the original VTCM with 0.61% and
0.54% improvements in LL and AvдPerp metrics. We then train and
evaluate VTCMrank on the dataset with attention-based viewport
time. We can see that VTCMva+rank gets the best performance
among all the click models in our experiment.

We examine the learned parameters of viewport time models in
these models to see whether they learn in an eective way. Table 7
shows the average viewport time of results under dierent con-
ditions estimated by VTCMva+rank and VTCMva . These results
show that users usually spend more time examining the rst two
results before clicking on them than the other lower-rank results.
Besides, compared to the latter eight results, it takes a shorter time
on average for users to feel satised after examining the rst two
results without any click. We consider this phenomena is because
the rst two results are usually highly relevant with abundant
and useful information in the snippets. For the rst two results in
VTCMva+rank , their mean viewport time in three of the four con-
ditions is larger than that of the other results. From the parameters,
we can see that VTCMva+rank can eectively model the viewport
time as our ndings.

7 CONCLUSION AND FUTUREWORK
In this paper, we investigate users’ examination behavior in mo-
bile search by conducing a lab-based user study. By analyzing the
eye-tracking behavior and other interaction behavior from the user
study as well as result annotations from crowdsourcing, we found
several patterns of users’ examination behavior on a rather large
mobile screen. Users tend to rst pay more attention to the top
half of the initial SERP viewport to read the top-ranked results.
When users start scrolling, the focus of user attention moves to
the bottom half of the viewport, which is the rst time to be ob-
served in an eye-tracking study. We investigate the eect of several
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mobile-specic and other common factors on attention allocation
in viewports. We are the rst to show the eect of click necessity
on user attention allocation. Finally, we introduce the patterns of
viewport attention allocation into the modeling of clicks, which im-
proves the performance of a state-of-the-art click model and shows
the potential of our ndings to benet the practical applications in
mobile search.

In future work, we would like to incorporate more ndings into
click models or other related tasks to further improve their perfor-
mance. For example, one may improve click models to model the
relationship between the viewport time and the snippet relevance
(or click necessity) of a result. We also want to investigate the gen-
erality of our ndings to other mobile screen sizes. We may also
better infer user attention on results or other components in the
SERP from the viewport information using learning methods.
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