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ABSTRACT
Graph-based learning methods explicitly consider the relations be-
tween two entities (i.e., vertices) for learning the prediction function.
They have been widely used in semi-supervised learning, mani-
fold ranking, and clustering, among other tasks. Enhancing the
expressiveness of simple graphs, hypergraphs formulate an edge as
a link to multiple vertices, so as to model the higher-order relations
among entities. For example, hyperedges in a hypergraph can be
used to encode the similarity among vertices.

To the best of our knowledge, all existing hypergraph struc-
tures represent the hyperedge as an unordered set of vertices, with-
out considering the possible ordering relationship among vertices.
In real-world data, ordering relations commonly exist, such as in
graded categorical features (e.g., users’ ratings on movies) and nu-
merical features (e.g., monthly income of customers). When con-
structing a hypergraph, ignoring such ordering relations among
entities will lead to severe information loss, resulting in suboptimal
performance of the subsequent learning algorithms.

In this work, we address the inherent limitation of existing hy-
pergraphs by proposing a new data structure named Partial-Order
Hypergraph, which specifically injects the partially ordering rela-
tions among vertices into a hyperedge. We develop regularization-
based learning theories for partial-order hypergraphs, generalizing
conventional hypergraph learning by incorporating logical rules
that encode the partial-order relations. We apply our proposed
method to two applications: university ranking from Web data
and popularity prediction of online content. Extensive experiments
demonstrate the superiority of our proposed partial-order hyper-
graphs, which consistently improve over conventional hypergraph
methods.
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1 INTRODUCTION
Graphs naturally represent relational data and have been widely
used to model the relationships between entities. Simple graphs in-
tuitively connect two vertices (i.e., entities of interest) with an edge
(i.e., the relationship to model), which can be either undirected or
directed depending on whether the pairwise relationship between
entities is symmetric. For example, given a set of entities with fea-
ture vectors, we can construct an undirected graph by forming the
adjacency matrix with a similarity metric [45, 48]. The World Wide
Web is a well-known instance of directed graphs, where vertices
represent webpages, and edges represent hyperlinks. With such
graph representations of entities and their relations, many graph-
based learning methods have been developed to address various
tasks, such as semi-supervised learning [11, 32, 37, 47], manifold
ranking [20, 30, 31, 49], and clustering [4, 8, 40], personalized rec-
ommendation [17, 23], and so on.

Hypergraph is a generalizaton of simple graph, in which an edge
(aka. hyperedge) can connect any number of vertices rather than
just two. As such, it can model high-order relations among multiple
entities that cannot be naturally represented by simple graphs. Fig-
ure 1 shows an illustrative example of using graphmethods to tackle
the university ranking task [9]. Each university has two features:
the located city and the salary level of its graduates (Figure 1a). A
simple graph can be constructed by connecting a university with
its two nearest neighbors (Figure 1b); then performing a manifold
ranking on the simple graph can obtain a ranked list of universities.
Further, we can build a hypergraph by connecting universities with
a same attribute (Figure 1c), e.g., universities that are located in the
same city, which is a high-order relation among universities missed
by the simple graph.

In existing research, hyperedges in a hypergraph are typically
formed by linking similar entities — either globally similar such
as a cluster of entities that are close to each other [27, 36, 38], or
locally similar such as sharing a same attribute [3, 35, 43]. However,
we argue that many real-world applications need to deal with far
more complex relations than similarities. One particular type is
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Figure 1: An example of using graphmethods to tackle the university ranking task. (a) Input data, where each row represents a
university and its features: city and salary level; for salary level, smaller index indicates higher salary (i.e., s1 > s2 > s3 > s4). (b)
A simple graph, where an edge connects a vertex and its two-nearest vertices. (c) A hypergraph, where a hyperedge connects
vertices with a same attribute: either in the same city or having the same salary level. (d) A partial-order hypergraph, where
the directed edges within an hyperedge represent the partially ordering relationship between vertices on the salary level.

the ordering relationship among entities, which commonly exists
in graded categorical features and numerical features. Taking the
university ranking task in Figure 1 as an example. Two universities
u5 and u6 are located in the same city, while u5 has a salary level
much higher than u6 — an evidence that u5 might be ranked higher
than u6. Unfortunately, the hypergraph constructed in Figure 1c
encodes the similarity information only, thus fails to capture the or-
dering information on salary. To address this limitation, an intuitive
solution is to incorporate the ordering relations by adding directed
edges between entities of a hyperedge, as shown in Figure 1d. It
is worth noting that not every two entities within a hyperedge
have an ordering relation; for example, two entities may have the
same graded categorical feature (see u1 and u2 in Figure 1d) or the
difference on the target numerical feature is not significant enough.
As such, we term such generalized hypergraph with partial-order
relations on vertices as a Partial-Order Hypergraph (POH), which is
a new data structure that has never been explored before.

In this work, we formalize the concept of POHs and further
develop regularization-based graph learning theories on them. We
express the partial-order relations with logical rules, which can be
used to encode prior domain knowledge. In the previous example
of university ranking, one example of domain knowledge can be
that for two universities ui and uj in the same city, ui tends to be
ranked higher than uj if the salary level of ui is higher than that of
uj . The corresponding logical rule can be written as:

city=(ui ,uj ) ∧ salary>(ui ,uj ) → score>(ui ,uj ). (1)

We extend conventional hypergraph learning [38, 48] to incorpo-
rate such logical rules for an effective learning on POHs. Besides
the improved accuracy, we can further enhance the interpretability
of hypergraph learning. Specifically, we can interpret the learn-
ing results by verifying the logical rules, rather than relying on
the smoothness factor only. To justify our proposed partial-order
hypergraph and the learning method, we employ them to address
two applications: university ranking [9] and popularity prediction
[5, 16]; the two tasks are representatives of two machine learning
tasks: unsupervised ranking and semi-supervised regression, re-
spectively. Extensive results demonstrate the superiority of our

proposed method, which significantly outperforms existing simple
graph and hypergraph methods.

The key contributions of the paper are summarized as follows.

• We propose a novel partial-order hypergraph to represent
the partial-order relations among vertices, which are missed
by the traditional hypergraph.

• We generalize existing graph-based learning methods to
partial-order hypergraphs to encode domain knowledge in
the format of logical rules.

• We empirically demonstrate the effectiveness of our POH
and learning method on two machine learning tasks of un-
supervised ranking and semi-supervised regression.

The remainder of this paper is organized as follows. Section 2 in-
troduces some preliminary knowledge. In Section 3, we present our
proposed methods, followed by reviewing related work in Section 4.
In Section 5 and 6, we employ POH learning to address the two
tasks of university ranking and popularity prediction, respectively.
We conclude the work in Section 7.

2 PRELIMINARIES
We introduce some notations first. We use bold capital letters (e.g.,
X) and bold lowercase letters (e.g., x) to denote matrices and vec-
tors, respectively. Scalars and hyperparameters are respectively
represented as normal lowercase letters (e.g., x) and Greek letters
(e.g., λ). If not otherwise specified, all vectors are in a column form,
and Xi j denotes the entry at the i-th row and the j-th column of X.

2.1 Hypergraph
As aforementioned, the vertices and hyperedges of a hypergraph
represent the entities of interest and their relations, respectively.
Given N entities with their features X = [x1, x2, · · · , xN]T ∈

RN×D , we can construct a hypergraph with N vertices and M
hyperedges, for which the structure can be represented as an in-
cidence matrix H ∈ RN×M . Similar to the incidence matrix of a
simple graph, H is a binary matrix, where Hi j = 1 if the i-th ver-
tex is connected by the j-th hyperedge, otherwise Hi j = 0. There



are two ways to define a hyperedge in existing work: attribute-
based [3, 22, 35, 43] and neighbor-based [27, 36, 38]. An attribute-
based hyperedge connects vertices with same value on one or mul-
tiple target attributes (i.e., features). A neighbor-based hyperedge
connects vertices nearby, based on these vertices with similarity
larger than a threshold or simply using the k-nearest neighbors.

Moreover, we use the diagonal matrix E ∈ RM×M to denote the
degrees of hyperedges, i.e., Ej j =

∑N
i=1 Hi j denotes the number

of vertices connected by the j-th hyperedge. Analogous to simple
graph that an edge typically has a weight to model the strength
of the relation, a hyperedge in hypergraphs also has a weight to
denote the density of the vertices it connected. Such weights are
represented as a diagonal matrix W ∈ RM×M . To estimate the
hyperedge weight, many methods have been proposed, among
which the most popular one is to use the average pairwise similarity
between vertices connected by the hyperedge:

Wj j =
1
Ej j

∑
Hi j=1

д(xi, xj), (2)

where д denotes the similarity function on feature vectors. In graph-
based methods, one common choice for д is the radial basis function
(RBF) kernel, i.e., д(xi, xj) = exp(−∥xi−xj ∥

2

2σ 2 ). Given the weights
for hyperedges, we can further derive the degree of a vertex i:
Vii =

∑M
j=1Wj jHi j , i.e., the sum of weights of hyperedges that are

connected with i . We use the diagonal matrix V ∈ RN×N to denote
the vertex degree matrix.

2.2 Learning on Hypergraphs
Graph-based learning has been applied to various machine learn-
ing tasks such as manifold ranking, semi-supervised learning, and
clustering [1, 26, 44]. The general problem setting is to learn a pre-
diction function ŷ = f (x), which maps an entity from the feature
space to the target label space. It is usually achieved by minimizing
an objective function abstracted as:

Γ = G + λL, (3)

where L is a task-specific loss function that measures the error
between prediction ŷ and ground-truth y, G is a graph regular-
ization term that smooths the prediction over the graph, and λ is
a hyperparameter to balance the two terms. The regularization
term typically implements the smoothness assumption that similar
vertices tend to have similar predictions. For hypergraphs, a widely
used G is the hypergraph Laplacian term, defined as:

G =

N∑
i=1

N∑
j=1

д(xi, xj)
M∑
k=1

HikWkkHjk︸                            ︷︷                            ︸
strength of smoothness

 f (xi)√
Vii

−
f (xj)√
Vj j

2︸                ︷︷                ︸
smoothness

. (4)

The regularization term operates smoothness on each pair of enti-
ties, enforcing their predictions (after normalized by their degrees)
to be close to each other. The strength of smoothness is determined
by the similarity over their feature vectors д(xi, xj) and the hyper-
edges that connect the two vertices. It can be equivalently written
in a more concise matrix form:

G = trace(Ŷ(S ⊙ L)ŶT ), (5)

where Ŷ = [ŷ1, ŷ2, · · · , ŷN], each element of S is Si j = д(xi, xj), and
L is defined as L = V−1/2(V − HWHT )V−1/2, known as the hyper-
graph Laplacian matrix. Note that L is typically a sparse matrix,
where an entry Li j is nonzero only if vertex i and j are connected
by at least one hyperedge. Thus, the time complexity of calculating
G is linear w.r.t. the number of nonzero entries in L, which is far
smaller than N 2.

3 PARTIAL-ORDER HYPERGRAPH
Distinct from the typical problem setting of hypergraph learning,
we further associate the problem with a set of logic rules, which
can be used to encode the partial-order relations between entities:{

pr (xi, xj) → qr (f (xi), f (xj)) | r = 1, 2, · · · ,R
}
, (6)

where r denotes a partial-order relation, and there can be multiple
relations (in total R) for a problem. For example, in the university
ranking task, we can have a partial-order relation based on salary
level, number of students, research grants among other features.
For each partial-order relation r , qr is a binary function indicating
whether the prediction of two entities satisfies a certain relation.
For example, in a ranking/regression task, qr can indicate whether
f (xi ) is higher than f (xj ); in a classification task, qr can indicate
whether the probability of xi being a class is higher than that of
xj. The pr (xi, xj) denotes whether xi and xj have the partial-order
relation r . A partial-order relation is a pairwise relation satisfying
the following basic properties on the entities connected by any
hyperedge:

• Irreflexivity: not pr (xi, xi).
• Asymmetry: if pr (xi, xj) then not pr (xj, xi).
• Transitivity: pr (xi, xj) and pr (xj, xk) implies pr (xi, xk).

In what follows, we first present how to construct and represent
a POH. We then elaborate our proposed regularized learning on
POHs. Lastly, we analyze its time complexity.

3.1 Construction and Representation
To jointly represent the partial-order relations and the higher-order
relations among entities, we first construct a normal hypergraph,
and then use directed edges to connect vertices that have any partial-
order relation. Note that it is possible that there are multiple edges
between two vertices, since multiple partial-order relations are
considered. Concerning the efficiency of downtream graph-based
learning applications, we constrain that directed edges only exist
on vertices connected by at least one hyperedge. Such a constraint
guarantees that the number of directed edges constructed from
a partial-order relation is no larger than the number of nonzero
entries in the hypergraph Laplacian matrix. As such, a learning
algorithm that enumerates all directed edges will not increase the
time complexity of calculating the hypergraph Laplacian term.

As described in Section 2.1, after constructing a hypergraph, we
use several matrices to represent it, such as the incidence matrix H
and hypergraph Laplacian matrix L. In addition to these matrices,
we further introduce a partial incidence matrix Hr ∈ RN×N to
represent the directed edges of a partial-order relation r . As shown
in Figure 2, given a partial-order relation r , we first construct a
binary relation matrix Pr ∈ RN×N , where Pri j = 1 if pr (xi, xj) is



Figure 2: A toy example to illustrate the construction of ma-
trix representation of a POH. Given the feature matrix X
and a partial-order relation r , we construct the incidencema-
trix H of the hypergraph and the binary relation matrix Pr ,
respectively. We then generate the co-occurrence matrix C
from H and apply element-wise product to C and Pr to get
the partial incidence matrix Hr .
true. Based on the incidence matrixH of the hypergraph, we further
build a co-occurrence matrix C ∈ RN×N , where each element Ci j
denotes the number of hyperedges connecting vertex i and j . Then
the partial incidence matrix Hr can be derived,

Hr = Pr ⊙ C, (7)

where ⊙ is the element-wise matrix multiplication. In the partial
incidence matrix, a non-zero entry H r

i j means that the i-th and
j-th vertices have the r -th partial-order relation, and they are si-
multaneously connected by H r

i j hyperedges. In other words, we
assign higher weights to vertex pairs that are connected by more
hyperedges, accounting for the effect that vertex pairs with higher
co-occurrence are more important.

3.2 Learning on Partial-Order Hypergraphs
After constructing a POH, we have several matrices to represent it,
including the general ones describing a conventional hypergraph
(e.g., the incidence matrix H and edge weight matrixW), and the
specific partial incidence matrices {Hr |r = 1, 2, · · · ,R} to model
partial-order relations. We now consider how to extend the con-
ventional hypergraph learning methods for POHs.

The key problem is the encoding of the partial-order relations
and the corresponding logical rules into the learning framework of
Equation (3). Generally speaking, there are two solutions — either
injecting the rules into the predictive model (i.e., the definition of
f (x)), or using the rules to regularize the learning (i.e., augmenting
the objective function Γ). The first solution may need different ways
to encode the rules for different predictive models, such as logistic
regression, factorization machines [15], and neural networks [14].
As such, we opt for the second solution, aiming to provide a generic

solution for POH learning. Specifically, we append an additional reg-
ularization term P that encodes partial-order rules to the objective
function:

Γ = G + λL + βP, (8)

where β is a hyperparameter to balance P and the other two terms.
Similar to the smoothness regularizer G, P should also operate
on the predicted label space to regularize the learning process. We
define P as:

P0 =
R∑
r=1

arE(i, j)∼H r
i j,0

[
1 − qr (ŷi, ŷj)

]
,

=

R∑
r=1

ar
|Hr |

∑
{i, j |H r

i j,0}
1 − qr (ŷi, ŷj), (9)

where ŷi = f (xi) is the prediction of xi, |Hr | denotes the number of
nonzero entries in Hr, and ar is the hyperparameter to control the
importance of the logical rule of the r -th partial-order relation. The
core idea of this regularization term is to enforce the predictions of
vertices that have a partial-order relation to be consistent with the
corresponding rule. To be more specific, small values of P0 can be
achieved if qr (ŷi, ŷj) is 1, meaning that pr (xi, xj) is true (evidenced
by H r

i j , 0) and the rule pr (xi, xj) → qr (f (xi), f (xj)) is satisfied.
However, this definition treats all vertex pairs of a partial-order
relation equally, without considering their relative strengths. This
assumption may decrease modelling fidelity for practical applica-
tions. To address this problem, we revise the regularizer as:

P1 =
R∑
r=1

ar
|Hr |

∑
{i, j |H r

i j,0}
(1 − qr (ŷi, ŷj))H r

i j , (10)

which incorporates H r
i j as a coefficient to rescale the regulariza-

tion strength of a vertex pair. With such a formulation, we enforce
stronger partial-order regularization for vertex pairs that are con-
nected by more hyperedges. Lastly, to get rid of the difficulties in
discrete optimization, we replace the binary logic function qr with
a continuous function sr that approximates it. Such approximation
trick allows stable optimization and has been widely used in proba-
bilistic soft logics [2]. This leads to the final version of our proposed
partial-order regularizer:

P =

R∑
r=1

ar
|Hr |

∑
{i, j |H r

i j,0}
sr (ŷi, ŷj)H r

i j , (11)

where sr is a self-defined function adjustable for different problems.
For instance, sr might be the subtraction between the predicted
ranks ŷi− ŷj in a ranking problem, while in a classification problem,
sr could be the gap between the predicted probabilities on a specific
class.

3.2.1 Optimization. By minimizing the objective function of
Equation (8), we can achieve the prediction function that is smooth
over the hypergraph and satisfies the logical rules on partial-order
relations. Note that the regularization terms L and P operate on
the predicted label space only and do not introduce extra model
parameters. As such, the only model parameters to learn come
from the predictive model f (x). Given that f is a differentiable



function (e.g., logistic regression and neural networks), we can opti-
mize the objective function with standard gradient-based methods,
such as the stochastic (or batch) gradient descent [12]. Moreover,
one can also directly learn f (x) without specifying an explicit form
of the predictive model. This will make the prediction function
comply with the regularization to the maximum degree. We will
empirically study how would this affect the prediction performance
for downstream applications in Section 6.

3.3 Time Complexity Analysis
In this subsection, we analyze the time complexity of POH learning
by comparing with conventional hypergraphs. As discussed in [21]
and Section 2.2, the computational complexity of conventional hy-
pergraph learning methods are O(J ), where J denotes the number
of nonzero entries in the sparse hypergraph Laplacian matrix L.
In contrast, the additional computational cost of our POH learn-
ing comes from the construction of the partial incidence matrices
{Hr |r = 1, 2, · · · ,R} and the partial-order regularization term P.
To compute Hr, we need to obtain the co-occurrence matrix C first,
and then evaluate the element-wise product C ⊙ Pr. For C, we can
achieve it by traversing all nonzero entries on the incidence matrix
H, for which the complexity isO(J ). Then for each nonzero element
Ci j inC, we check whether pr (xi ,xj ) is true or not to obtain C⊙Pr.
As such, the complexity of constructing aHr isO(J ), and the overall
complexity of constructing all R partial incidence matrices isO(R J ).
Similarly, the computation of P can be done in O(R J ) time. In a
real-world application, the number of partial-order relations R is
typically a small number, since we need to account for the most
prominent numerical or graded categorical features only. As such,
the overall time complexity of our POH learning is essentiallyO(J ),
which is the same as that of conventional hypergraph learning.

4 RELATEDWORK
Our work is directly related to the recent work on hypergraphs,
which can be seperated into two main categories: hypergraph con-
struction and hypergraph utilization. Since proposed in [48], re-
searchers have paid lots of attention on how to construct hyper-
graphs. For instances, Wang et al. leveraged a sparse representation
of the entity feature space to generate hyperedges and learn the
relationship among hyperedges and the connected vertices[38]. In-
stead of simply learning a sparse representation, Liu et al. employed
an elastic net to regulate the representation learing [24]. Besides,
Feng et al. jointly learned hypergraph representations of multi-
ple hypergraphs by further encouraging the consitancy among
different hypergraph representations [10]. However, none of the
aforementioned work is able to incorporate the partial-order rela-
tions among entities that exist in graded categorical features and
numerical features during the construction of hypergraphs. They
thus lead to severe information loss and limit the expressiveness of
the constructed hypergraphs.

Besides, hypergraph and hypergraph-based learning have been
widely applied on many machine learning tasks, including clus-
tering, embedding, ranking, semi-supervised classification and re-
gression [3, 22, 27, 35, 36, 43]. For instance, the authors of [22] con-
structed a hypergraph to represent the correlations among news
readers, news articles, topics and name entities and then ranked

the news articles on the hypergraph to make recommendation
for readers. In [3], the authors utilized a hypergraph to represent
the relations among candidate sentences and made a graph-based
extractive document summarization. Yoshida and Yuichi used a
hypergraph to estimate the betweenness centrality and importance
of vertices [42]. Huang et al. constrcuted a hypergraph of images
and predicted the attributes of the images with hypergraph-based
label propagation [19]. Tran et al.built a hypergraph where ver-
tices and hyperedges respectively represent features and training
samples to represent the sparse pattern of the training data [35].
Hmimida and Kanawati depicted the relation among social users,
resources, and the tags of resources assigned by the users. They
then employed hypergraph-based ranking to recommend candidate
tags for resources [18]. These articles indicated the popularity and
usability of hypergraphs and learning on hypergraphs. However
they only utilized conventional hypergraphs instead of simulta-
neously improving the representation ability of the conventional
hypergraphs and the corresponding learning methods.

5 UNIVERSITY RANKING
Following the previous work [9], we formulated university ranking
as an unsupervised ranking (i.e., re-ranking) problem. Given N
universities with a feature matrix X ∈ RN×M and a historical
ranking result y ∈ RN , the target is to learn a new ranking f ∈

RN . To solve the problem, we manually selected several partial-
order relations and constructed a partial-order hypergraph (POH)
to represent the given universities. Upon the constructed POH, we
learned f byminimizing a ranking instantiation of the POH learning
objective function. Specifically, we set the loss term in Equation (8)
as L = ∥y − f ∥2F , which encourages the learned ranking to be
consistent and smooth with the historical one. Besides, we set the
soft logic functions {sr |r = 1, 2, · · · ,R} as sr (fi , fj ) = fi − fj , i.e.,
university i is encouraged to be ranked ahead of university j if
the two universities have the selected partial-order relations. By
specifying the above application-specific terms, we derived the
objective function for the task,

Γ = fT Lf + λ ∥f − y∥2F + β
R∑
r=1

ar
|Hr |

∑
{i, j |H r

i j,0}
ReLU ((fi − fj )H r

i j ), (12)

where we further used the rectifier function (ReLU) [13] on the
partial-order regularization term, so as to guarantee the objective
function to be non-negative for stable optimization.

5.1 Experiment Settings
5.1.1 Dataset. To investigate the effectiveness of the proposed

method, we employed the dataset of Chinese university ranking
collected by [9]. This dataset contains 743 Chinese universities with
data collected between January 1st, 2015 and May 1st, 2016. For
each university, Web data from five channels were collected, includ-
ing official, mass media, academic, employment, and general user
channels. The official channel contains the primary information of
a university, such as student quality, official activities, and develop-
ment plans. In the mass media channel, they collected news reports
mentioning the given university from mass media. The academic
and employment channels contain university’s academic status and
graduate students employment statistics, respectively. The general



user channel contains public impressions, attitudes, and sentiment
polarities of universities shared in social media posts. To describe
the universities, we also employed the rich set of features extracted
by the authors of [9]. Among the 743 universities, we selected 438
top-tier ones in China1 since they have more academic and research
activities. Towards the historical ranking result y, we merged the
ranking results in 2015 from four well-known ranking systems of
Chinese universities, namely, CUAA, WSL, WH, and iPIN2. The
ranking ground-truth is generated in the same way, but based on
the rankings of the four systems in the year 2016. As such, the
task can be understood as using the past year’s ranking and this
year’s features to predict the ranking of universities in this year.
We normalized the constructed historical ranking result and the
ground-truth into range [0, 1] by scaling them with 1/N .

5.1.2 Evaluation. We performed 5-fold cross-validation, em-
ploying three metrics to evaluate the ranking performance: mean
absolute error (MAE) [41], Kendall’s tau (Tau) [28], and Spearman’s
rank3 (Rho) [34]. The three metrics have been widely used to eval-
uate pointwise, pairwise, and listwise ranking methods [25]. Note
that better performance is evidenced by smaller MAE, larger Tau
and Rho scores. Moreover, we carried out the student’s t-test and
reported the p-values where necessary.

5.1.3 Methods. We compared with following baselines4:
• SimpleGraph [49]: It first constructs a simple graph to represent
the universities, where the edge weight between two vertices is
evaluated using the RBF kernel. We set the radius parameter σ
as the median of the Euclidean distances of all pairs. The method
then calculates the Laplacian matrix L, learning f by minimizing
the objective function fLT f + λ∥y − f ∥2. We experimented with
different values of λ and reported the best performance.

• Hypergraph [3]: It first calculates the similarities between uni-
versities, and then constructs the hypergraph using neighbor-
based methods. Specifically, the i-th hyperedge connects the k
universities that are most similar to university i . The learning
of f is performed by minimizing Equation (3). We tuned the two
hyperparameters k and λ.

• GMR [9]: This is the state-of-the-art method for the university
ranking task. It builds a simple graph from the features of each
channel, modelling the relations between channels to reach a
consensus ranking on all simple graphs. We used the same hy-
perparameter settings as reported in their paper.

We evaluate several POHmethods that incorporate different partial-
order relations on the same hypergraph structure of Hypergraph:
• POH-Salary: Thismethod considers the partial-order relation on
the salary feature. We encoded the logical rule salary>(xi, xj) →
rank<(xi, xj), meaning that xi tends to be ranked higher than xj
if the salary feature of xi is higher than that of xj.

1In China, universities were officially separated into three tiers by Ministry of Educa-
tion (https://tinyurl.com/moe-univ-list/.).
2 CUAA: http://www.cuaa.net/cur/. WSL: http://edu.sina.com.cn/gaokao/wushulian/.
WH: http://www.nseac.com/html/168/. iPIN: https://www.wmzy.com/api/rank/schList/.
3Note that we omitted listwise ranking evaluation metrics like Precision@K [6],
Recall@K [39], and NDCG@K [29] since they are sensitive to the selection of K
4Note that we omitted the comparison with TMALL and GCN mentioned in Section
6.1.3. Because [9] has shown that TMALL (similar to the JL baseline in their paper)
is less effective than GMR; GCN is not fit for this unsupervised ranking task as it is
designed for semi-supervised and supervised tasks [21]

Table 1: Performance comparison on university ranking.
Methods MAE Tau Rho

Simple Graph 0.074 ± 9e-3 0.870 ± 2e-2 0.970 ± 8e-3
Hypergraph 0.067 ± 7e-3 0.876 ± 9e-3 0.974 ± 5e-3

GMR 0.065 ± 7e-3 0.871 ± 3e-2 0.970 ± 1e-2
POH-Salary 0.054 ± 1e-2∗ 0.892 ± 1e-2∗ 0.979 ± 5e-3∗
POH-NCEE 0.055 ± 1e-2∗ 0.893 ± 9e-3∗ 0.978 ± 5e-3∗
POH-All 0.053 ± 1e-2∗ 0.898 ± 1e-2∗∗ 0.980 ± 6e-3∗∗

∗ and ∗∗ denote that the corresponding performance is significantly better
(p-value < 0.05) than all baselines and all other methods, respectively.

• POH-NCEE: This method considers the partial-order relation
on the NCEE feature, which stands for a university’s admission
requirement on the score of National College Entrance Examina-
tion. The logical rule to be encoded is naturallyNCEE>(xi, xj) →
rank<(xi, xj), meaning universities with a higher NCEE score
tend to have a better quality.

• POH-All: In this method, we model both partial-order relations
as encoded in POH-Salary and POH-NCEE. We set the impor-
tance hyperparameters for the regularizers of the two rules as a1
and 1 − a1, respectively.

5.1.4 Hyperparameter Tuning. We employed grid search to se-
lect the optimal hyperparameters for POH methods based on the
results of Tau. The optimal hyperparameter setting and implemen-
tation of the compared methods can be publicly accessed5. For
POH-Salary and POH-NCEE, we tuned one implicit (k) and two
explicit hyperparameters (λ and β). To validate the strength of the
proposed POH over traditional hypergraph, we set k and λ as the
optimal ones of the baseline Hypergraph, and then searched β in
the range of [1e-4, 1e1]. For POH-All, we tuned one more hyper-
parameter a1, which controls the importance of logical rules and is
in the range of [0, 1].

Note that we have intentionally fixed k and λ to the optimal ones
of Hypergraph, which also simplifies the tuning process. Further
tuning k and λ based on the performance of POH methods can
lead to even better performance (see Figure 4). Figure 3 shows the
performance of POH-All w.r.t. β and a1. This was accomplished by
varying one parameter and fixing the other to the optimal value. As
can be seen, our method is rather insensitive to hyperparameters
around their optimal settings.

5.2 Experiment Results
5.2.1 MethodComparison. Table 1 summarizes the performance

comparison on university ranking, from which we have the follow-
ing observations: (1) Hypergraph performs better than Simple
Graph, which verifies that considering the higher-order relations
among universities is effective for the ranking task. (2) All POH-
based methods outperform baselines by a large margin (e.g., POH-
All ourperforms GMR with an improvement of 18.46%, 3.10%, and
1.03% w.r.t.MAE, Tau, and Rho, respectively). It demonstrates the
effectiveness of our proposed POH and regularized learning in in-
tegrating partial-order relations. (3) POH-All outperforms both
POH-Salary and POH-NCEE. It further verifies the advantage of
POH-based learning methods and reflects that jointly modelling
multiple partial-order relations and rules is helpful. (4) The p-values
5https://github.com/hennande/Partial_Order_Hypergraph

https://tinyurl.com/moe-univ-list
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https://github.com/hennande/Partial_Order_Hypergraph


Figure 3: Procedure of tuning β and a1 for POH-All. The red
dotted line marked the optimal settings

Figure 4: Performance comparison on Tau of Hypergraph
and POH-based methods w.r.t. different k .

of student’s t-test between POH-based methods and all the other
methods are smaller than 0.05, indicating the significance of the
performance improvements.

As we constructed hypergraphs by connecting a vertex with its
k-nearest vertices, larger k makes the POH-based methods con-
sider more vertex pairs with the given partial-order relations (these
pairs would be eliminated if the vertex pair is not connected by
any hyperedge). It is thus interesting to see how does the setting
of k impact the performance of POH learning. Figure 4 shows the
performance of Tau of Hypergraph and our POH-based methods
on different k . Note that other hyperparameters have been fairly
tuned for each setting of k . As can be seen, all POH-based meth-
ods outperform the Hypergraph on all settings. It demonstrates
that the proposed POH learning consistently outperforms the con-
ventional hypergraph, regardless of the underlying hypergraph
structure. Moreover, all POH-based methods achieve performances
better than those reported in Table 1, which shows the performance
of POH methods on the optimal k of Hypergraph only. It reveals
the potential of POH-based methods on further improvements if a
better hyperparameter tuning strategy is applied.

5.2.2 Result Analysis. To understand the results better, we per-
formed finer-grained error analysis. Given the result generated by
a method, we generated an array of rank positions (integers from
1 to N ) for universities, computing the absolute error on the rank
position on each university.

Figure 5 depicts the distribution of the absolute rank errors as a
boxplot. As can be seen, the rank error distribution of POH-based
methods is more dense and centralizes at smaller medians than
that of Simple Graph and Hypergraph. It provides sufficient ev-
idence on the better ranking generated by the POH-based methods.
Moreover, we find that Simple Graph and Hypergraph make er-
rors larger than 5 on about 25% of the universities, which is rarely

Figure 5: Distribution of absolute rank errors.

Figure 6: Percentage of correctly ranked university pairs.

seen from POH-based methods. Meanwhile, the largest error made
by Simple Graph and Hypergraph is almost two times that of
POH-based methods. These results demonstrate that POH-based
methods are more robust, thus being more applicable in real-world
applications. Among the baselines, GMR achieves the smallest
rank error, which is comparable with POH-Salary. This signifies
the usefulness of modelling the relations among data from differ-
ent channels, which could be a future direction to be explored by
POH-based methods.

Besides the investigation on pointwise rank errors, we further
performed an analysis on pairwise ranks. For each method, we
counted the number of university pairs that are ranked correctly,
and drew the percentage of correct pairs in Figure 6. As shown,
POH-based methods manage to generate ranks with correct order
on 1% more university pairs than Simple Graph, Hypergraph,
and GMR, further demonstrating the accuracy and advantage of
POH-based methods. Considering that there are more than 80,000
university pairs, an improvement of 1% (correctly ranking 800+
pairs) is a significant improvement.

Finally, we studied whether the ranking generated by ourmethod
POH-All is consistent with the four popular Chinese university
ranking systems of year 2016 (cf. Section 5.1.1). We evaluated the
pairwise correlation (Tau) and listwise correlation (Rho) between
the ranked lists of the five ranking systems (POH-All and the four
existing systems). The results are shown in Table 2. We can see that
our method achieves rather high correlations with existing ranking
systems, and it correlates most with WH. This shows that our
result is relatively consistent with these manually devised ranking
systems, implying that our POH-based re-ranking method shall be
acceptable by the general readers.



Table 2: Pairwise and listwise correlations between the ranking results of POH-All and four Chinese university ranking sys-
tems. Entries in bold denote the most correlated result to the method of the corresponding column.

Tau Rho
CUAA WSL WH iPIN POH CUAA WSL WH iPIN POH

CUAA - 0.763 0.778 0.431 0.765 - 0.903 0.903 0.573 0.886
WSL 0.763 - 0.823 0.459 0.806 0.903 - 0.950 0.627 0.943
WH 0.778 0.823 - 0.469 0.832 0.903 0.950 - 0.645 0.961
iPIN 0.431 0.459 0.469 - 0.569 0.573 0.627 0.645 - 0.750
POH 0.765 0.806 0.832 0.569 - 0.886 0.943 0.961 0.750 -

6 POPULARITY PREDICTION
Predicting the popularity of online content is a hot research topic in
social media mining and has varying problem statements [16, 33].
Following the recent work on micro-video popularity prediction [5],
we formulated the task as a semi-supervised regression problem.
Given N +U items with a feature matrix X ∈ R(N+U )×M and the
ground-truth popularity of the N items y ∈ RN , the objective is to
learn a function ŷi = f (xi) that maps an item from the feature space
to the popularity space. To solve the problem, we first constructed
a POH with partial-order relations on some important numerical
features (detailed later in experiments). We then derived an instanti-
ation of the general framework Equation (8) for the semi-supervised
regression task as follows:

Γ = ŷT Lŷ + λ
N∑
i=1

(ŷi − yi )2 + β
R∑
r=1

ar
|Hr |

∑
{i, j |H r

i j,0}
ReLU ((ŷj − ŷi )H r

i j ),

(13)
where ŷ = [ŷ1, · · · , ŷN , ŷN+1, · · · , ŷN+U ] ∈ RN+U , denoting the
prediction of all items (both with labels and without labels).

6.1 Experiment Settings
6.1.1 Dataset. We employed the same dataset as [5] for experi-

ments. It contains 9,719 micro-videos collected from Vine6, posted
between July 1st and October 1st, 2015. Each micro-video has vi-
sual, audio, and textual contents, as well as the profile of the user
who posted it. With these data, the authors of [5] extracted a rich
set of popularity-oriented features, such as user activities, object
distribution, aesthetic description, sentence embedding, and tex-
tual sentiment polarity, to represent a micro-video. To measure
the popularity of a micro-video, they employed four popularity-
related indicators, namely, the number of comments (n_comments),
the number of likes (n_likes), the number of reposts (n_reposts),
and the number of loops (n_loops); the four indicators were aver-
agely fused ((n_comments + n_likes + n_reposts + n_loops)/4) as
the popularity ground-truth for a micro-video.

6.1.2 Evaluation. We performed 10-fold cross-validation and
evaluated the performance in terms of three metrics. From the
regression perspective, we followed the previous work [5] and
employed normalized mean square error (nMSE). Meanwhile, we
utilized two ranking-oriented metrics, Tau and Rho correlation
coefficients. Besides, we carried out the student’s t-test and reported
the p-values where necessary.

6.1.3 Methods. We compare with following baselines:

6https://vine.co/.

• Simple Graph [49]: We applied the same setting as the Simple
Graph described in Section 5.1.3.

• Hypergraph [3]: We also adopted the same setting as the Hy-
pergraph in Section 5.1.3.

• TMALL [5]: This method first calculates a simple graph Lapla-
cian matrix with features from each modality (visual, audio, etc.).
It then learns a common space Laplacian matrix by considering
the relations among different modalities and fusing the corre-
sponding graph Laplacian matrices. It finally performs a simple
graph learning like Simple Graph on the common Laplacian
matrix. We followed the settings as reported in their paper.

• GCN [21]: This is the state-of-the-art graph learning method by
using graph convolutional neural networks. We replaced the log
loss term in their implementation with the same mean squared
loss in Equation (13) for a fair comparison. We carefully tuned
four hyperparameters, namely, learning rate, dropout ratio, l2-
norm weight and hidden layer size.

• LR-HG: This method is similar to Hypergraph. Instead of di-
rectly learning ŷ, we parameterized it as a linear regression (LR)
model on features. The optimization process learns the parame-
ters of LR, which is then used to predict ŷ.

We evaluated several POH methods on the same hypergraph struc-
ture of Hypergraph:

• POH-Follow: This method considers a partial-order relation on
the follower feature (i.e., the number of followers of the user who
posted the video). It encodes the logical rule f ollowers>(xi, xj) →
popularity>(xi, xj), meaning that xi would be more popular than
xj if the user of xi has more followers than that of xj.

• POH-Loop: This method has the same setting as POH-Follow,
besides that it encodes another partial-order relation on the loop
feature (i.e., total number of views of all videos posted by a user).

• POH-All: This method jointly encodes the two partial-order rela-
tions in POH-Follow and POH-Loop. We set the corresponding
rule importance hyperparameters as a1 and 1 − a1, respectively.

• LR-POH: Similar to LR-HG, this method parameterizes the ŷ
of POH-All as a linear regression model on input features.

6.1.4 Hyperparameter Tuning. We employed the same proce-
dure as described in Section 5.1.4 to tune the hyperparameters of
POH methods. Optimal hyperparameter settings of each compared
method will be released together with their codes. We investigated
the sensitivity of our proposed POH-based methods by taking POH-
All as an example. Figure 7 illustrates the performance of POH-All
while varying one hyperparameter and fixing the others with opti-
mal values. Again, the results demonstrate that our model is not
sensitive to the parameters around their optimal settings.

https://vine.co/


Figure 7: Procedure of tuning β and a1 for POH-All. The red
dotted line marks the optimal settings.

Table 3: Performance comparison on popularity prediction.
Methods nMSE Tau Rho

Simple Graph 0.999 ± 1e-3 0.137 ± 2e-2 0.200 ± 2e-2
Hypergraph 1.000 ± 4e-5 0.165 ± 3e-2 0.240 ± 4e-2
TMALL7 0.979 ± 9e-3 - -

POH-Follow 1.000 ± 4e-4 0.393 ± 3e-2∗ 0.562 ± 3e-2∗
POH-Loop 0.997 ± 2e-3 0.376 ± 2e-2∗ 0.540 ± 3e-2∗
POH-All 0.989 ± 9e-3 0.419 ± 2e-2∗∗ 0.592 ± 3e-2∗∗

GCN 0.919 ± 6e-2 0.171 ± 2e-2 0.252 ± 3e-2
LR-HG 0.846 ± 1e-1∗ 0.117 ± 2e-2 0.182 ± 3e-2
LR-POH 0.724 ± 2e-1∗∗ 0.350 ± 2e-2∗ 0.496 ± 3e-2∗

∗ and ∗∗ denote that the corresponding performance is significantly better
(p-value < 0.05) than all baselines and all other methods, respectively.

6.2 Experiment Results
6.2.1 Method Comparison. We first investigated the effective-

ness of the proposed methods. Table 3 shows the performance of
all the compared methods. We have the following findings:
(1) Hypergraph outperforms Simple Graph w.r.t. Tau and Rho,
although they achieve the same performance level on nMSE. It
verifies that considering the higher-order relations among videos
leads to popularity prediction with more accurate relative orders.
(2) POH-Follow and POH-Loop further surpass Hypergraph
with an average improvement of 133.03% and 129.58% on the pair-
wise and listwise ranking metrics; meanwhile, slight improvement
is obtained on the pointwise regression metric nMSE. This indicates
that considering meaningful partial-order relations is particularly
helpful for better predicting the relative order of the videos.
(3) POH-All outperforms POH-Follow and POH-Loop with a
significant average improvement on Tau (+8.97%) and Rho (+7.44%)
as well as a slight improvement on nMSE. It validates that jointly
considering multiple partial-order relations is useful.
(4) Comparing Hypergraph with LR-HG, we can see that better
nMSE can be achieved by using LR as the predictive model, but
the two ranking metrics become worse. The same situation can be
observed for POH-All and LR-POH. This provides evidence that
using a sophisticated model can better fit the labels and help to
minimize the regression loss, however, the ranking performance
may not be necessarily improved. The same finding has been ob-
served before in popularity prediction [16] and another orthogonal
application of item recommendation [7]. In our case of graph-based
learning, the regularizers (for smoothness and partial-order rules)
carry strong signals for learning the relative orders between ver-
tices. However, the regularization effects might be weakened when

7This result is directly copied from the corresponding paper since we exactly followed
their experimental settings.

Figure 8: Performance comparison on Tau of Hypergraph
and POH-based methods w.r.t. different k .

a specialized model is used to fit the label in the meantime. We
leave more detailed exploration of this hypothesis as future work.
(5) GCN outperforms POH-All w.r.t. nMSE, while Tau and Rho
indicate that its ranking performance is worse. The lower nMSE
of GCN can be credit to the strong representation power of the
underlying neural network, which can fit the labels well. However,
GCNmay overfit the data and fail to predict the popularity ranking
well without regularization on the relative orders of vertices.
(6) LR-POH achieves the best performance with significantly better
nMSE than all the other compared methods as well as tremendously
better Tau and Rho than all the baseline methods. This further
demonstrates the effectiveness of our proposed POH learning.

We further studied whether the performance improvements of
the proposed POH-based methods are consistent under different
hypergraph settings. We compared the optimal performance of
Hypergraph, POH-Follow, POH-Loop, and POH-All under dif-
ferent values of k , which controls the number of videos connected
by a hyperedge. As illustrated in Figure 8, all POH-based methods
outperform the Hypergraph under all the values of k by a large
margin. It is worth noting that the optimal performance of POH
methods are better than that shown in Table 3 (Table 3 shows the
results of POH on the optimal setting of Hypergraph). This is con-
sistent with the university ranking task, which implies the potential
of further improving POH learning with a better hyperparameter
tuning strategy.

7 CONCLUSIONS
In this paper, we proposed a novel partial-order hypergraph that
improves conventional hypergraphs by encoding the partial-order
relations among vertices. We then generalized existing graph-based
learning methods to partial-order hypergraphs by integrating the
second-order logic rules that encode the partial-order relations;
moreover, the time complexity of learning remains unchanged.
Experimental results on university ranking and video popularity
prediction demonstrate the effectiveness of our proposed methods.

In future, we will explore the proposed POH to address more
graph-based applications. Besides, we will further improve POH
learning by replacing the linear prediction function from feature to
label spaces with the advanced deep neural networks. Moreover,
we plan to optimize the spatial complexity of POH with discrete
hashing techniques like [46]. Furthermore, we would like to investi-
gate the automatic extraction of partial-order relations and logical
rules to construct POH.
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