Automatic Search Engine Evaluation with Click-through Data Analysis

Yiqun Liu
State Key Lab of Intelligent Tech. & Sys
Jun. 3th, 2007
Recent work:

• Using query log and click-through data analysis to:
 • identify search engine users’ information need types
 • evaluate search engine performance automatically
 • separate key resource pages from others
 • estimate Web page quality

Our Lab:

• A joint lab
• R&D Support to a widely-used Chinese Search Engine Sogou.com, platform to get research results realized.
Yiqun Liu
Ph.D student from Tsinghua University, Beijing, China.
liuyiqun03@gmail.com

• Web Data Cleansing
 • Using query-Independent features and ML algorithms
 • 5% web pages can meet >90% user’s search needs
• Query type identification
 • Identify the type of user’s information need
 • Over 80% queries are correctly classified
• Search engine performance evaluation
 • Construct query topic set and answer set Automatically.
 • Obtain similar evaluation results with manual based methods, and cost far less time and labor.
Introduction

• Lots of search engines offer services on the Web

• Search Engine Performance Evaluation
 – Web Users
 • over 120 million users in mainland
 – Search Advertisers
 • spending 5.6 billion RMBs in 2007
 – Search engineers and researchers
• **Evaluation is a key issue in IR research**
 – Evaluation became central to R&D in IR to such an extent that new designs and proposals and their evaluation became one. (Saracevic, 1995)

• **Cranfield-like evaluation methodology**
 – A set of query topics, their corresponding answers (usually called qrels) and evaluation metrics.
 – Adopted by IR workshops such as TREC and NTCIR.
Introduction

• **Problems with Web IR evaluation**
 – 9 people months are required to judge one topic for a collection of 8 million documents. (Voorhees, 2001)
 – Search engines (Yahoo!, Google) index over 10 billion Web documents.
 – Almost Impossible to use human-assessed query and qrel sets in Web IR system evaluation.
Related works

• Efforts in automatic search engine performance evaluation (Cranfield-like)
 – Considering pseudo feedback documents as correct answers (Soboroff, 2001; Nuray, 2003)
 – Adopting query topics and qrels extracted from Web page directories such as open directory project (ODP) (Chowdhury, 2002; Beitzel, 2003)
Related works

• Efforts in automatic search engine performance evaluation (other evaluation approaches)
 – *Term Relevance Sets (Trels)* method. Define a pre-specified list of terms relevant and irrelevant to these queries. (Amitay, 2004)
 – The use of click-through data. Construct a unified meta search interface to collect users’ behaviour information. (Joachims, 2002)
Our method

- A cranfield-like approach
 - Accepted by major IR research efforts
 - Difficulty: annotating all correct answers automatically

- Click-through behavior analysis
 - Single user may be cheated by search spams or SEOs.
 - User group’s behavior information is more reliable.
Automatic Evaluation Process

• Information need behind user queries
 – Navigational type: One query have only one correct answer.
 – Informational type: One query may have several correct answers.

• Different behavior over different types of information needs
Information needs and Evaluation

- Informational queries cannot be annotated
 - People click different answers while using different search engines.
Automatic Evaluation Process

Search Engine Click-through Logs

Data Cleansing and Feature Extraction

Query Selection and Classification

Navigational Type Query Annotation

Informational Type Query Annotation

Search Engine Result Crawling

Performance Evaluation with Metrics
Query Set Classification

• Less Effort Assumption & N Clicks Satisfied (nCS) Evidence

![Graph showing query set classification with Navigational and Informational & Transactional categories.](image)
Query Set Classification

- Cover Page Assumption and Top N Results Satisfied (nRS) Evidence
Query Set Classification

• Click Distribution Evidence
 – Proposed by Lee (Lee, 2005). Also based on click-through information.
 – Users tend to click the same result while proposing a same navigational type query

\[CD(\text{Query } q) = \frac{\#(\text{Session of } q \text{ that involves clicks on the most frequently clicked results})}{\#(\text{Session of } q)} \]

 – Less than 5% informational / Transactional queries’ CD value is over \(\frac{1}{2} \), while 51% navigational queries’ corresponding value is more than \(\frac{1}{2} \).
Query Set Classification

- A decision tree algorithm
Answer Annotation

- Navigational type query annotation
 - Define: Click focus

\[
\text{ClickFocus}(\text{Query } q, \text{Result } r) = \frac{\#(\text{Session of } q \text{ that clicks } r)}{\#(\text{Session of } q)}
\]

- Annotate \(q \) with the result \(r \) whose \(\text{ClickFocus} \) value is the largest.
Answer Annotation

• Annotation Algorithm

```
For a given Query Q in the Query Set and its clicked result list r1, r2, ..., rM:
IF Q is navigational
    Find R in r1, r2, ..., rM, ClickFocus(Q,R) = ClickDistribution(Q);
IF CD(Q) > T1
    Annotate Q with R;
    EXIT;
ELSE
    Q cannot be annotated;
END IF
ELSE //Q is informational
    Q cannot be annotated;
END IF
```
Experiment Results

• Experiment data
 – Over 700 million querying or clicking events totally.

• Annotation experiment results
 – 5% of all results are checked manually.

<table>
<thead>
<tr>
<th>Period</th>
<th>Annotated queries</th>
<th>Checked sample set</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun. 06 - Aug. 06</td>
<td>13,902</td>
<td>695</td>
<td>98.13%</td>
</tr>
<tr>
<td>Sept. 06 - Nov. 06</td>
<td>13,884</td>
<td>694</td>
<td>97.41%</td>
</tr>
<tr>
<td>Dec. 06 - Jan. 07</td>
<td>11,296</td>
<td>565</td>
<td>96.64%</td>
</tr>
</tbody>
</table>
Experiment Results

- **Performance evaluation experiment**
 - 320 manual-developed queries and corresponding answers are used in the evaluation experiment.
 - Correlation value between MRRs of the manual and the automatically methods is 0.965.
Applications and Future works

• Choosing the correct search portal
 – Overall performance
 – Performance for queries in a certain field

• Search engine monitoring
 – Complicated computer cluster systems are used in modern search engines
 – To notify the engineers when the search engine fails.
 (performance going down)
Thank you!

Questions or comments?