

Automatic Query Type Identification Based on Click Through Information

Yiqun Liu, Min Zhang, Liyun Ru and Shaoping Ma State Key Lab of Intelligent Tech. & Sys Tsinghua University

Automatic Query Type Identification University

- Research Background
- User analysis for query type identification
- A Query Type Identification Algorithm
- Experiments Results and Discussions

Automatic Query Type Identification University

- Research Background
- User analysis for query type identification
- A Query Type Identification Algorithm
- Experiments Results and Discussions

- Observer user from Search Engine's prospect
 - Query stream & click through information
 - Query stream
 - Made up of queries which contain 3-4 words in English or less than 2 words in Chinese
 - Always confusing
 - Same query, different user request
 - Click through information helps us to identify users' information needs

- Example: 魔獸爭霸 (War Craft)
 - User type 1: Users want to visit a particular web site related to the game
 - User type 2: Users want to download the corresponding computer game
 - User type 3: Users want to get a overview of the corresponding computer game
 - We cannot identify the users' information needs without the help of click through information

- Categories of Users' information needs
 - Proposed by Broder(IBM, 2002) & Rose(Yahoo! 2004) respectively with search engine user behavior analysis
 Navigational
 - A specific search target page
 - Users want to know a certain web page's URL
 - "Yahoo HK", "SIGIR 04 home"
 - Informational / Transactional
 - No specific search target page
 - Users want to know something about a certain topic
 - "bird flu", "American civil war"

- Why should we identify users' query types?
 - Different ranking models
 - Navigational type search: anchor text, URL information...
 - Informational type search: hyper link analysis, traditional IR models
 - Different performance
 - Navigational type search: MRR > 80%, systems can return the correct answer at 1st ranking for most queries

Informational type search: P@10 < 30%, systems can only return less than 3 correct answers in the top 10 results.

- Features used in query type identification
 - Query content feature
 - Length, POS information, existence of Abbreviation, etc.
 - Whether the query is the anchor text for a particular page
 - Result feedback of IR system
 - The similarity between query and top-ranked documents
 - Past click-through information
 - Past click behavior

Research Background Related works TREC2004: Query content and result feedback HPvs NP HPvs TD ■NPvs TD Total error 121 **Best results:** 92 61.3% queries are correctly classified 49 48 45 43 30 wdbs1f1 MSRAQCSVM54 MSRAQC3 MSRAQC5 MSRAQC2 MSRAQC4 MeiiHLwap wdbyhfi wdbyhct random

- Related works
 - Kang et al
 - Mutual Information, POS and anchor text evidence
 - TREC data
 - Got better retrieval performance with his classification algorithm
 - Lee et al
 - Anchor text and click through information
 - UCLA campus search service data
 - 90% queries are correctly classified

- Major problems
 - Lack of practical search engine user analysis
 - TREC or small scale campus users' behavior are significantly different from ordinary web users
 - Lack of examination of reliability
 - Small number of special designed queries
 - How many percentages of practical queries can be classified?

Automatic Query Type Identification University

- Research Background
- User analysis for query type identification
- Query Type Identification Algorithm
- Experiments Results and Discussions

- Review of proposed features in query type identification
 - Practical query logs obtained from Sogou.com
 - All user queries and corresponding click through data in February 2006
 - 86538613 clicks
 - 26255952 user sessions
 - 4345557 unique user queries

About 200 queries are annotated by 3 assessors using voting method for training

Query Length

Distribution of query length for different query types

Part of speech tagging

POS feature of different types of queries

In-link anchor information
 Assumption:

If one query Q shares the same content as a anchor text linking to a page A, Q is likely to be a navigational type query whose target page is A.

- A has a lot of anchors whose content is Q ->
 Q is a navigational type query
- Adopted by Kang (2004) and Lee (2005)

- How many queries can be identified using anchor text information?
 - Not all queries have a page which shares a same anchor

- How many queries can be identified using past click through information?
 - About 90% queries have been proposed and clicked every day.

Automatic Query Type Identification University

- Research Background
- User analysis for query type identification
- Query Type Identification Algorithm
- Experiments Results and Discussions

Query Type Identification Algorithm University

N-click satisfied rate

- Assumption 1(懶鬼假設): When user submits a navigational type query, he clicks a small number of result URLs.
 - User has a specified search target in navigational searches
- He is intended to click the highly-related results only.
 N-click satisfied rate

 $nCS(Query \ q) = \frac{\#(Session \ of \ q \ that \ involves \ less \ than \ n \ clicks)}{\#(Session \ of \ q)}$

Query Type Identification Algorithrminus University

Distribution of nCS for search engine queries

Query Type Identification Algorithm

- Top-n-result satisfied rate
 - Assumption 2(封面假設):When user submits a navigational type query, he only clicks the top-ranked result URLs.
 - Navigational type search has good performance (usually over 80% correct answers are returned at top 1 ranking result)
 - It is not necessary for him to click other results
 - Top-n-result satisfied rate

 $nRS(Query \ q) = \frac{\#(Session \ of \ q \ that \ involves \ clicks \ only \ on \ top \ n \ results)}{\#(Session \ of \ q)}$

Query Type Identification Algorithminus University

Distribution of nRS for search engine queries

Query Type Identification Algorithm

Click Distribution

 Assumption 3(焦點假設):When different users submit a same navigational type queries, they intend to click the same result URL.

- Navigational type queries have specific search targets
- If this target appears in the result URL list, users will focus on it.

Click Distribution

 $CD(Query \ q) = \frac{\#(Session \ of \ q \ that \ involves \ clicks \ on \ the \ most \ frequently \ clicked \ results)}{\#(Session \ of \ q)}$

Query Type Identification Algorithminus University

Distribution of CD for search engine queries

Queries	Focus URL			
讀寫網	www.duxie.net/			
南方都市報	www.nanfangdaily.com.cn/			
卓越網	www.joyo.com/			

Query Type Identification for Web Search 자국 Engines

- Research Background
- User analysis for query type identification
- Query Type Identification Algorithm
- Experiments Results and Discussions

实验结论与应用方式讨论

Test set

- Completely different from the training set
 - Different annotation methods:
 - Obtain informational type queries from a Chinese search engine performance contest organized by TianWang.com
 - Obtain navigational type queries from a famous Chinese Web directory (Hao123.com)
 - 200+ test queries

实验结论与应用方式讨论

• Experimental results

 Our method outperforms previous Click-Distribution based method. (+30% in training, +19% in testing)

实验结论与应用方式讨论

• Experimental results

		Training set	$\langle \rangle$		Test set	$\langle \rangle$
	INF/TRA	NAV	Mixed	INF/TRA	NAV	Mixed
Precision	76.00%	91.07%	87.65%	73.74%	85.62%	81.49%
Recall	66.67%	90.71%	85.25%	72.84%	86.18%	81.54%
F-measure	0.71	0.91	0.86	0.73	0.85	0.81

 Over 80% queries are correctly classified both in training and testing sets

Thank you!

Questions or comments?