
Graph Heterogeneous Multi-Relational Recommendation

Chong Chen 1, Weizhi Ma 1, Min Zhang 1 *, Zhaowei Wang 2, Xiuqiang He 2, Chenyang Wang 1,
Yiqun Liu1 and Shaoping Ma

1 Department of Computer Science and Technology, Institute for Artificial Intelligence,
Beijing National Research Center for Information Science and Technology, Tsinghua University

2 Huawei Noah’s Ark Lab
cc17@mails.tsinghua.edu.cn, z-m@tsinghua.edu.cn

Abstract

Traditional studies on recommender systems usually lever-
age only one type of user behaviors (the optimization target,
such as purchase), despite the fact that users also generate a
large number of various types of interaction data (e.g., view,
click, add-to-cart, etc). Generally, these heterogeneous multi-
relational data provide well-structured information and can
be used for high-quality recommendation. Early efforts to-
wards leveraging these heterogeneous data fail to capture the
high-hop structure of user-item interactions, which are unable
to make full use of them and may only achieve constrained
recommendation performance. In this work, we propose a
new multi-relational recommendation model named Graph
Heterogeneous Collaborative Filtering (GHCF). To explore
the high-hop heterogeneous user-item interactions, we take
the advantages of Graph Convolutional Network (GCN) and
further improve it to jointly embed both representations of
nodes (users and items) and relations for multi-relational pre-
diction. Moreover, to fully utilize the whole heterogeneous
data, we perform the advanced efficient non-sampling opti-
mization under a multi-task learning framework. Experimen-
tal results on two public benchmarks show that GHCF sig-
nificantly outperforms the state-of-the-art recommendation
methods, especially for cold-start users who have few primary
item interactions. Further analysis verifies the importance of
the proposed embedding propagation for modelling high-hop
heterogeneous user-item interactions, showing the rationality
and effectiveness of GHCF. Our implementation has been re-
leased (https://github.com/chenchongthu/GHCF).

Introduction
Recommender systems have been widely deployed in to-
day’s web platforms and applications, serving as important
tools to alleviate the information overload issue and im-
prove user experience (Ricci, Rokach, and Shapira 2011;
Chen et al. 2018). To provide more accurate recommenda-
tions, it is a trending topic to take more user preference re-
lated information into account (Chen et al. 2019a, 2020b).
In real-world information systems, although the systems of-
ten choose “click” or “purchase” as the optimization target,
there are also various types of user behaviors, such as view,
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Figure 1: An example of multiple types of user feedback.
High-hop connectivity contains rich semantic features that
carry collaborative signals. E.g., the 3-hop heterogeneous
connections between u1 and i4 contain u1

view→ i3
view←

u2
purcahse→ i4, u1

cart→ i3
view← u2

rating→ i4, etc.

add-to-cart, etc. Figure 1 shows an example of heteroge-
neous user behaviors in E-commerce scenarios. Users can
view an item, add an item to shopping cart, and purchase an
item, etc. These heterogeneous behaviors provide valuable
signals of user preference, which are helpful for building
a fine-grained recommender system (Gao et al. 2019; Pan,
Liu, and Ming 2016; Chen et al. 2020d; Krohn-Grimberghe
et al. 2012).

To leverage these heterogeneous feedback data, several
efforts on multi-relational recommender systems have been
made, showing the superior performance in terms of learn-
ing user preference (Ding et al. 2018; Gao et al. 2019;
Chen et al. 2020d). However, summarizing existing multi-
relational recommendation methods, a common drawback
can be found: these methods follow the typical Collabora-
tive Filtering (CF) learning scheme, which lacks an explicit
encoding of the high-hop graph structure of user-item het-
erogeneous interactions. As shown in Figure 1, high-hop
connectivity also contains rich semantics that carry collab-
orative signals. For example, u1 and i4 have several 3-hop

heterogeneous connections (e.g.,u1
view→ i3

view← u2
purcahse→

i4). This suggests that u1 is likely to adopt i4 , since his
similar user u2 has viewed, purchased, and rated i4 before.



However, the high-hop heterogeneous connections have not
been well-utilized in previous recommendation work, which
compromises the model’s effectiveness. Although some re-
cent studies have tried to introduce Graph Convolutional
Network (GCN) for recommendation task (Wang et al.
2019a,b,c; He et al. 2020), they only focus on leveraging
user-item homogeneous graph with only one type of user
behavior. There lacks in-depth investigation of users’ het-
erogeneous behaviors.

Motivated by the above observations, we propose to
construct a unified heterogeneous graph based on multi-
ple types of behavioral data. We further propose a novel
model named Graph Heterogeneous Collaborative Filtering
(GHCF), which not only seamlessly incorporates the auxil-
iary user behaviors into recommendation, but also considers
the high-hop connectivities among the heterogeneous feed-
back data. Specifically, different from existing GCN applica-
tions which are either restricted to non-relational graph set-
ting (Bruna et al. 2013; Velickovic et al. 2017) or limited to
learning only node representations (Marcheggiani and Titov
2017; Schlichtkrull et al. 2018), the GCN propagation layer
in GHCF is further enhanced to jointly embed both repre-
sentations of nodes (user and item) and relations for multi-
relational prediction. Besides, we perform multi-task learn-
ing with the advanced efficient non-sampling optimization
(Chen et al. 2019b, 2020c) in model training. In contrast to
sampling, non-sampling strategy computes the gradient over
the whole data (including all non-observed data) and can
easily converge to a better optimum in a more stable way
(Xin et al. 2018; Wang et al. 2018). Through these designs,
our GHCF method effectively addresses the main challenges
and helps to exploit auxiliary behaviors for a better predic-
tion on the target behavior. The main contributions of this
work are as follows:

• We propose a novel neural model named GHCF for multi-
relational recommendation, which uncovers the underly-
ing relationships among heterogeneous user-item interac-
tions and shows multi-task ability to predict various types
of user behaviors using one unified model.

• We design relation-aware GCN propagation layers, which
jointly embed both representations of nodes (users and
items) and relations in a graph to explicitly exploit the
collaborative high-hop signals.

• Extensive experiments are conducted on two benchmark
datasets. The results show that GHCF consistently and
significantly outperforms the state-of-the-art recommen-
dation models, especially for cold-start users.

Related Work
Multi-relational Recommendation
Multi-relational (or multi-behavior) recommendation is an
emerging branch in the research community of recom-
mender systems, which aims to leverage multiple user be-
havior data to improve the recommendation performance on
the target behavior (Gao et al. 2019; Chen et al. 2020d; Jin
et al. 2020; Zhou et al. 2019). Early research naturally ex-
tends the Matrix Factorization (MF) methods to perform

multiple learning of different behaviors (Tang et al. 2016;
Krohn-Grimberghe et al. 2012; Singh and Gordon 2008).
Another line of research addresses the problem from the
perspective of learning, which considers multiple types of
behaviors by changing the negative sampling strategy and
enriching the training set from the auxiliary behavioral data
(Ding et al. 2018; Loni et al. 2016; Qiu et al. 2018). Re-
cently, there are also some researchers attempt to develop
neural network models to capture the complicated and multi-
type interactions between users and items (Gao et al. 2019;
Chen et al. 2020d). For example, Chen et. al (Chen et al.
2020d) propose an Efficient Heterogeneous Collaborative
Filtering model (EHCF), which correlates the prediction of
each user behavior in a transfer way for multi-relational rec-
ommendation. Summarizing existing multi-relational rec-
ommendation methods, they lack an explicit encoding of the
high-hop graph structure of user-item heterogeneous inter-
actions, which is the main concern of our GHCF model.

Graph-based Recommendation
In recent years, Graph Neural Networks (GNNs) have
achieved great success due to the powerful capability on rep-
resentation learning from structured data (Bruna et al. 2013;
Hamilton, Ying, and Leskovec 2017; Velickovic et al. 2017).
Recently, GNNs have attracted increasing attention in rec-
ommendation. For example, GC-MC (Den Berg, Kipf, and
Welling 2017) applies graph convolution network on user-
item graph, which employs one convolutional layer to ex-
ploit the direct connections between users and items. Pin-
Sage (Ying et al. 2018) combines random walks with mul-
tiple graph convolutional layers on the item-item graph for
image recommendation. SpectralCF (Zheng et al. 2018) pro-
poses a spectral convolution operation to discover all possi-
ble connectivity between users and items in the spectral do-
main. NGCF (Wang et al. 2019c) exploits high-order prox-
imity by propagating embeddings on the user-item interac-
tion graph. NGCF is further extended to LightGCN (He et al.
2020) by removing the non-linear activation function and
feature transformation in embedding propagation layers to
improve the performance of CF tasks. Besides these works
on user-item interaction data, there are also GNN models
for recommendation with side information, such as social-
aware recommendation (Fan et al. 2019) and knowledge en-
hanced recommendation (Wang et al. 2019b). In this pa-
per, we present a graph heterogeneous collaborative filter-
ing model, which incorporates heterogeneous feedback data
in graph convolutional networks for recommendation with
multiple user behaviors.

Preliminaries
Problem Formulation
We denote the user and item sets as U and V, respec-
tively. We use u to denote a user, and v to denote an
item. The user-item heterogeneous interactions are denoted
as {Y(1),Y(2), ...,Y(K)}, where Y(k) = [y(k)uv]|U|×|V| ∈
{0, 1} indicates whether user u has interacted with item v
under behavior k, and K is the number of user behavior



types. Generally, multi-relational recommendation has a tar-
get behavior to be optimized, which we denote as Y(K). An
example of the target behavior is the purchase behavior in
E-commerce, and other behaviors include view, click, add-
to-cart, etc. Given a target user u, the multi-relational rec-
ommendation task is to estimate the likelihood ŷ(K)uv that
a user u will interact with an item v under the target behav-
ior. The items (uninteracted under the target behavior) are
ranked in descending order of ŷ(K)uv to provide the Top-N
item recommendation list.

Graph Convolutional Networks
Most existing research on graph convolutional networks
(Bruna et al. 2013; Hamilton, Ying, and Leskovec 2017;
Velickovic et al. 2017) are focused on learning representa-
tions of nodes in simple undirected graphs. Given a graph
G = (V, E), where V denotes the set of nodes and E de-
notes the set of edges, respectively. The node representation
obtained from a single GCN layer is defined as:

E = σ(ÂE(0)W) (1)

where Â = D−
1
2 (A + I)D−

1
2 is the normalized adjacency

matrix with added self-connections and D is a diagonal de-
gree matrix, which is defined as Dii =

∑
j(A + I)ij ; I

denotes an identity matrix; E(0) is the set E at the initial
message-passing iteration. The model parameter is denoted
as W and σ is an activation function. The GCN representa-
tion E encodes the immediate neighborhood of each node
in the graph. For capturing high-hop dependencies in the
graph, several GCN layers can be stacked as:

E(l) = σ(ÂE(l−1)W(l)) (2)

where l denotes the number of layers and W(l) is layer-
specific parameter.

For a relational graph G = (V, E ,R) whereR denotes the
set of relations, a commonly used GCN formulation is as
follows (Marcheggiani and Titov 2017; Schlichtkrull et al.
2018):

E(l) = σ(ÂE(l−1)W(l)
r ) (3)

where W(l)
r is the relation specific parameters of the model.

However, this formulation leads to over-parameterization
and embeds only nodes in the graph. Thus it need to be im-
proved to support multi-relational recommendation.

Graph Heterogeneous Collaborative Filtering
In this section, we present the proposed GHCF model. The
overall architecture is described in Figure 2, which has three
important components: 1) Embedding propagation layers,
which embed both nodes and relations in heterogeneous
user-item interaction data; 2) Multi-task prediction module,
which predicts the likelihood that a user will interact with
an item under each relation type; 3) Efficient non-sampling
learning module to achieve more effective and stable model
optimization.
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Figure 2: An illustration of GHCF model.

Embedding Propagation Layers
The embedding propagation layers in our model are built
upon the message-passing architecture of GCNs (Bruna
et al. 2013; Hamilton, Ying, and Leskovec 2017; Velickovic
et al. 2017) to capture the CF signals along with the graph
structure of user-item heterogeneous interactions. The basic
idea of GCNs is to learn representation for nodes by smooth-
ing features over the graph. In our model, the representation
of a user (or item) is modeled by accumulating the incom-
ing messages from all the heterogeneous interacted items (or
users). A general method to achieve the above target is like
Eq. (3), which can be re-written as:

e(l)u = σ(
∑

(v,r)∈N (u)

1√
|Nu| |Nv|

W(l)
r e(l−1)v ) (4)

where N (u) and N (v) are the set of immediate neighbors
of u and v, respectively; W(l)

r is the relation specific pa-
rameters of the model; The symmetric normalization term

1√
|Nu||Nv|

is used to avoid the scale of embeddings increas-

ing with graph convolution operations. However, this formu-
lation suffers from over-parameterization and embeds only
nodes in the graph.

To address the above issues, in our model we perform
composition (φ) of a neighboring node v with respect to
its relation r to model the relational user-item interac-
tions. Inspired by entity-relation composition operations
used in knowledge graph embedding approaches (Bordes
et al. 2013; Vashishth et al. 2019), the message passing equa-
tion of our model is defined as:

e(l)u = σ(
∑

(v,r)∈N (u)

1√
|Nu| |Nv|

W(l)φ(e(l−1)v , e(l−1)r ))

(5)



where W(l) is layer-specific, φ is a composition operator to
incorporate relation embeddings into the GCN formulation.
The activation function σ is LeakyReLU (Maas, Hannun,
and Ng 2013). Eq. (5) allows our model to be relation-aware
while being linear (O(|R|d)) in the number of feature di-
mensions. Specifically, in our model the composition opera-
tor is defined as:

φ(ev, er) = ev � er (6)

where � denotes the element-wise product of vectors. Note
that other composition methods like subtraction (Bordes
et al. 2013) and neural network approaches (He et al. 2017;
Socher et al. 2013) can also be applied, we leave it as future
work.

It is worth noting that in our model, we aggregate only
the connected neighbors and do not integrate the target node
itself (i.e., self-connection). This is also adopted in Light-
GCN (He et al. 2020), which shows that through the layer
combination operation (to be introduced in the next subsec-
tion), the model has already captured the same effect as self-
connections in this way.

After the node embedding update defined in Eq. (5), the
relation embeddings are also transformed as follows:

e(l)r = W(l)
rele

(l−1)
r

(7)

where W(l)
rel is a layer-specific parameter which projects all

the relations to the same embedding space as nodes and al-
lows them to be utilized in the next GCN layer.

For the first-hop propagation, e(0)u , e(0)v , e(0)r are initial fea-
tures for node u, v and relation r respectively, which is gen-
erated through an ID embedding layer.

Multi-task Prediction
After propagating with L layers, we obtain multiple repre-
sentations for user u, item v, and relation r. The represen-
tations obtained from different layers emphasize the infor-
mation passed from different hops. E.g., the first layer en-
forces smoothness on users and items that have interactions,
the second layer smooths users (items) that have overlap on
interacted items (users), and higher-layers capture higher-
order proximity (He et al. 2020; Wang et al. 2019c). Thus
we further combine them to get the final representations:

eu =

L∑
l=0

1

L + 1
e(l)u ; ev =

L∑
l=0

1

L + 1
e(l)v ; er =

L∑
l=0

1

L + 1
e(l)r

(8)

Note that a uniform weight 1/(L + 1) is set to each em-
bedding layer, which leads to good performance in general.
Other weighting strategies such as attention mechanisms
(Vaswani et al. 2017) can also be applied, we leave it as fu-
ture work.

To predict the likelihood of users’ multiple behaviors on
items, the learnt representation of each behavior is incor-
porated as a separated prediction layer. Specifically, let erk
denotes the learnt representation of the k−th behavior, the
likelihood that user u will perform the k-th behavior on item
v is estimated by:

ŷ(k)uv = eTu · diag(erk) · ev =

d∑
i

eu,ierk,iev,i (9)

where diag(erk) denotes a diagonal matrix whose diagonal
elements equal to erk correspondingly and d denotes the em-
bedding size.

Efficient Multi-task Learning without Sampling
To learn model parameters in a more effective and stable
way, we apply the efficient non-sampling learning (Chen
et al. 2020c) to optimize our GHCF model. It is a recently
proposed learning method and has been shown to be su-
perior in both effectiveness and efficiency than traditional
sampling-based learning methods (Chen et al. 2020a,c,d)
(e.g., Bayesian Personalized Ranking loss (Rendle et al.
2009)). Take a single k-th behavior as an example, for a
batch of users B and the whole item set V, the traditional
weighted regression loss is:

Lk(Θ) =
∑
u∈B

∑
v∈V

ckuv(y(k)uv − ŷ(k)uv)2 (10)

where ckuv denotes the weight of entry y(k)uv . As can
be seen, the time complexity of computing this loss is
O(|B||V|d), which is generally unaffordable in practice.
Based on the derivation of previous work (Chen et al.
2020c,d), if the instance weight ckuv is simplified to ckv , a
more efficient form of Eq. (10) can be obtained, which is:

L̃k(Θ) =
∑
u∈B

∑
v∈Vk+

(u)

(
(ck+v − ck−v )ŷ2

(k)uv − 2ck+v ŷ(k)uv

)

+

d∑
i=1

d∑
j=1

(
(erk,ierk,j)

(∑
u∈B

eu,ieu,j

)(∑
v∈V

ck−v ev,iev,j

))
(11)

where Vk+
(u) denotes the interacted items of user u under the

behavior k. The complexity of Eq.(11) is O((|B|+ |V|)d2 +

|Vk+|d). Since |Vk+| is the number of positive user-item
interactions under the k-th behavior and |Vk+| � |B||V| in
practice, the complexity is reduced significantly compared
with Eq. (10). The proof can be made by reformulating the
expensive loss over all negative instances using a partition
and a decouple operation, which largely follows from that in
(Chen et al. 2020c,d) with little variations.

Multi-task learning (MTL) is a paradigm that performs
joint training on the models of different but correlated tasks,
so as to obtain a better model for each task (Argyriou, Evge-
niou, and Pontil 2007). To better learn parameters from all
the heterogeneous data, we propose a MTL objective func-
tion defined as follows:

L(Θ) =

K∑
k=1

λkL̃k(Θ) + µ‖Θ‖22 (12)

where K is the number of types of users’ behavior, λk is
added to control the influence of the k-th behavior on the
joint training, which is a hyper-parameter to be specified for
different datasets. We additionally enforce that

∑K
k=1 λk =

1 to facilitate the tuning of these hyper-parameters. L2 reg-
ularization parameterized by µ on Θ is conducted to prevent
overfitting.



Dataset #User #Item #View #Add-to-cart #Purchase
Beibei 21,716 7,977 2,412,586 642,622 304,576
Taobao 48,749 39,493 1,548,126 193,747 259,747

Table 1: Statistical details of the evaluation datasets.

To optimize the objective function, we use mini-batch
Adam (Kingma and Ba 2014) as the optimizer. Its main ad-
vantage is that the learning rate can be self-adaptive during
the training phase, which eases the pain of choosing a proper
learning rate. Dropout is an effective solution to prevent neu-
ral networks from overfitting (Srivastava et al. 2014). We
propose to employ two widely used dropout methods: mes-
sage dropout and node dropout in our model.

Experiments
Experimental Settings
Datasets We experiment with two real-world e-commerce
datasets: Beibei and Taobao 2. The two datasets contain
three types of user behaviors, including view, add-to-cart,
and purchase. The target behavior of the recommendation
task is purchase. The two datasets are preprocessed to filter
out users and items with less than 5 purchase interactions.
After that, the last purchase records of users are used as test
data, the second last records are used as validation data, and
the remaining records are used for training. Note that for ob-
jective comparison, in our experiments the two datasets are
exactly the same as those used in (Chen et al. 2020d) 3, in
which the split datasets are publicly available. The statistical
details of the datasets are summarized in Table 1.

Baselines To demonstrate the effectiveness of our GHCF
model, we compare it with several state-of-the-art methods.
The baselines are classified into two categories based on
whether they utilize single-behavior or heterogeneous data.
The compared single-behavior methods include:

• BPR (Rendle et al. 2009), a widely used pairwise learning
method for item recommendation.

• NCF (He et al. 2017), a state-of-the-art deep learning
method which combines MF with a multilayer perceptron
(MLP) model for item ranking.

• ENMF (Chen et al. 2020c), a state-of-the-art non-
sampling recommendation method for Top-N recommen-
dation.

• LightGCN (He et al. 2020), a state-of-the-art graph neu-
ral network model which simplifies the design of GNN to
make it more appropriate for recommendation.

The second category that leverages heterogeneous data are
as follows:
• CMF (Zhao et al. 2015), it decomposes the data matrices

of multiple behavior types simultaneously.
• MC-BPR (Loni et al. 2016), it adapts the negative sam-

pling rule in BPR for heterogeneous data.
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
3https://github.com/chenchongthu/EHCF

• NMTR (Gao et al. 2019), a state-of-the-art method which
combines the recent advances of NCF modeling and the
efficacy of multi-task learning.

• EHCF (Chen et al. 2020d), a state-of-the-art method
which correlates the prediction of each behavior in a
transfer way and adopts non-sampling learning for multi-
relational recommendation.

Evaluation Methodology All experiments are run on the
same machine (Intel Xeon 8-Core CPU of 2.4 GHz and sin-
gle NVIDIA GeForce GTX TITAN X GPU) for fair com-
parison. We apply the widely used leave-one-out technique
(Gao et al. 2019; Rendle et al. 2009; Chen et al. 2020d) and
then adopt two popular metrics, HR (Hit Ratio) and NDCG
(Normalized Discounted Cumulative Gain), to judge the per-
formance of the ranking list. HR is a recall-based metric,
measuring whether the testing item is in the Top-N list, while
NDCG is position-sensitive, which assigns higher scores to
hits at higher positions. For each user, our evaluation proto-
col ranks all the items except the positive ones in the training
set. In this way, the obtained results are more persuasive than
ranking a random subset of negative items only (Krichene
and Rendle 2020). For each method, we randomly initial-
ize the model and run it five times. After that, we report the
average results.

Parameter settings We search for the optimal parame-
ters on validation data and evaluate the model on test data.
The parameters for all baseline methods are initialized as
in the corresponding papers, and are then carefully tuned
to achieve optimal performances. After the tuning process,
the batch size is set to 256, the size of the latent fac-
tor dimension d is set to 64. The learning rate is set to
0.001. We set the negative sampling ratio as 4 for sampling-
based methods, an empirical value that shows good perfor-
mance. For non-sampling methods ENMF, EHCF and our
GHCF, the negative weight is set to 0.01 for Beibei and
0.1 for Taobao. The number of graph layers is set to 4, and
the dropout ratio was set to 0.8 for Beibei and Taobao to
prevent overfitting. Our implementation has been released
(https://github.com/chenchongthu/GHCF).

Performance Comparison
The performance comparison results are presented in Table
2. To evaluate on different recommendation lengths, we set
the length N = 10, 50, and 100 in our experiments. From the
results, the following observations can be made:

First and foremost, our proposed GHCF achieves the best
performance on the two datasets, significantly outperform-
ing all the state-of-the-art baseline methods with p-values
smaller than 0.01. The average improvement of our model
to the best baseline EHCF is 16.9% on Beibei dataset and
14.2% on Taobao dataset, which verifies the effectiveness of
our model. The substantial improvements can be attributed
to two reasons: 1) the proposed relation-aware GCN lay-
ers, which explicitly exploit the collaborative high-hop sig-
nals; 2) the efficient non-sampling learning module, which is
more effective and stable than traditional negative sampling
learning strategy.



Beibei HR@10 HR@50 HR@100 NDCG@10 NDCG@50 NDCG@100

Single-behavior
BPR 0.0437 0.1246 0.2192 0.0213 0.0407 0.0539
NCF 0.0441 0.1562 0.2343 0.0225 0.0445 0.0584
ENMF 0.0464 0.1637 0.2586 0.0247 0.0484 0.0639
LightGCN 0.0451 0.1613 0.2495 0.0232 0.0466 0.0611

Heterogeneous-behavior

CMF 0.0482 0.1582 0.2843 0.0251 0.0462 0.0661
MC-BPR 0.0504 0.1743 0.2755 0.0254 0.0503 0.0653
NMTR 0.0524 0.2047 0.3189 0.0285 0.0609 0.0764
EHCF 0.1523 0.3316 0.4312 0.0817 0.1213 0.1374

GHCF 0.1922** 0.3794** 0.4711** 0.1012** 0.1426** 0.1575**

Taobao HR@10 HR@50 HR@100 NDCG@10 NDCG@50 NDCG@100

Single-behavior
BPR 0.0376 0.0708 0.0871 0.0227 0.0269 0.0305
NCF 0.0391 0.0728 0.0897 0.0233 0.0281 0.0321
ENMF 0.0398 0.0743 0.0936 0.0244 0.0298 0.0339
LightGCN 0.0415 0.0814 0.1025 0.0237 0.0325 0.0359

Heterogeneous-behavior

CMF 0.0483 0.0774 0.1185 0.0252 0.0293 0.0357
MC-BPR 0.0547 0.0791 0.1264 0.0263 0.0297 0.0361
NMTR 0.0585 0.0942 0.1368 0.0278 0.0334 0.0394
EHCF 0.0717 0.1618 0.2211 0.0403 0.0594 0.0690

GHCF 0.0807** 0.1892** 0.2599** 0.0442** 0.0678** 0.0792**

Table 2: Performance of different models on two datasets. ** denotes the statistical significance for p < 0.01 compared to the
best baseline. Note that the results of EHCF are consist with those reported in (Chen et al. 2020d) since we share exactly the
same data splits and experimental settings.
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Figure 3: Performances of NCF, ENMF, NMTR, EHCF,
and our GHCF on users with different number of purchase
records.

Second, the methods using heterogeneous feedback data
generally outperform methods that only making use of
purchase behavior, which shows the complementarity of
user heterogeneous feedback. Compared to the best single-
behavior baseline, our GHCF exhibits remarkable average
improvements of 208% on Beibei dataset and 116% on
Taobao dataset, which clarifies the necessity of introducing
heterogeneous feedback data.

Third, the methods with non-sampling learning strategy
(ENMF, EHCF, and GHCF) generally perform better than
sampling-based methods, especially for multi-relational rec-
ommendation task. This is consistent with previous work
(Chen et al. 2020d; Gao et al. 2019). Although negative
sampling is a widely-used learning strategy, it has been
shown not suitable for learning from heterogeneous behav-
ior data (Chen et al. 2020d). To generate a training instance,
sampling-based methods (e.g., MC-BPR, NMTR) generally
need to sample a negative instance for every observed in-

teraction (regardless of the behavior type). This produces
a much larger randomness in total (K times than single-
behavior scenario) and would inevitably lead to informa-
tion loss. This explains why non-sampling methods EHCF
and GHCF outperform the state-of-the-art sampling-based
method NMTR substantially.

Handling Data Sparsity Issue

Data sparsity is a big challenge in recommendation
(Volkovs, Yu, and Poutanen 2017) because it is hard to estab-
lish optimal representations for inactive users with few in-
teractions. Multi-relational recommendation which utilizes
auxiliary behavior data provides a solution to alleviate the
data sparsity issue. Thus we further investigate how our
GHCF model performs for the users with few records of tar-
get behavior. Figure 3 illustrates the results w.r.t. HR@100
on different user groups in Beibei and Taobao. For other
metrics, the observations are similar.

From the figure, we can see that our GHCF consis-
tently outperforms other models including the state-of-the-
art multi-relational methods like NMTR and EHCF, espe-
cially for the first user group with only 5-8 purchase records.
Some methods have a slight descent in the middle, we think
it is because of the size difference of auxiliary behavioral
data. For example, on Taobao dataset the number of aux-
iliary behavioral records for users who have 5-8 purchase
records is much more than users who have 17-20 purchase
records. Typically, the data of low-level behaviors (e.g.,
view) is easier to collect and has a larger volume than the
target behavior (e.g., purchase). The results indicate the ef-
fectiveness of leveraging auxiliary behavior to alleviate the
data sparsity issue and the strong power of our GHCF model.
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Figure 4: Effect of auxiliary behavior data.

Beibei Taobao
HR@100 NDCG@100 HR@100 NDCG@100

GHCF-1 0.4569 0.1494 0.2473 0.0755
GHCF-2 0.4636 0.1498 0.2501 0.0778
GHCF-3 0.4674 0.1551 0.2567 0.0787
GHCF-4 0.4711 0.1575 0.2599 0.0792
GHCF-5 0.4681 0.1554 0.2558 0.0782

Table 3: Effect of embedding propagation layer numbers

Ablation Study
To understand the effectiveness of auxiliary behavior data,
we conduct experiments with several variants of GHCF:
• GHCF-P: The variant model of GHCF which utilizes only

purchase data.
• GHCF-PV: The variant model of GHCF which utilizes

purchase data and view data.
• GHCF-PC: The variant model of GHCF which utilizes

purchase data and carting data.
Figure 4 shows the performance of different variants. Due

to the space limitation, we only show the results on HR@100
metrics. For other metrics, the observations are similar. As
shown in the figure, both adding view data and carting data
lead to better recommendation performance. When using all
the three behavior data, the performance of our GHCF is
further improved. This verifies the effectiveness of auxil-
iary behaviors for user preference modeling. Moreover, we
observe that on Beibei dataset, carting behavior contributes
more than that on Taobao dataset. The reason may be the size
difference of auxiliary behavioral data in the two datasets.

Effect of Layer Numbers
To investigate whether GHCF can benefit from multiple em-
bedding propagation layers, we vary the model depth. In par-
ticular, we search the layer numbers in the range of [1, 2, 3,
4, 5]. Table 3 summarizes the experimental results, where
GHCF-1 indicates the model with one embedding propaga-
tion layers, and similar notations for others. From the table,
we can see that by increasing the depth of GHCF from one to
four, the recommendation results on both Beibei and Taobao
datasets are improved. Generally, four propagation layers
are sufficient to capture the heterogeneous signals. Deeper
layers might introduce noise and lead to overfitting. More-
over, when varying the number of propagation layers, GHCF

Figure 5: Performance of GHCF with different loss coeffi-
cient.

is consistently superior to other methods on the two datasets.
The above observations verify the effectiveness of GHCF
and empirically show that explicit modeling of high-order
heterogeneous connections can greatly facilitate the recom-
mendation task.

Effect of Loss Coefficient
As the coefficient parameter λk in the multi-task loss func-
tion plays a pivotal role in GHCF, we investigate its im-
pact on the performance. There are three behavior types in
Beibei and Taobao (view, add-to-cart, and purchase), which
means there are three loss coefficients λ1, λ2, and λ3, re-
spectively. As λ1 + λ2 + λ3 = 1, when λ1 and λ2 are
given, the value of λ3 is determined. We tune the three coef-
ficients in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1] and plot the results
of HR@100 in Figure 5 where darker block means better
performance. In the figure, outermost blocks are rather shal-
low since they represent a zero λ3, which is the coefficient
of the target behavior (purchase). For both datasets, the best
performances of our GHCF are achieved at almost the same
setting: (1/6, 4/6, 1/6). On Beibei dataset, a relatively large
coefficient of carting behavior outperforms that of view be-
havior. While on Taobao dataset, a relative large λ1 gener-
ally performs better. We think that it is due to the size differ-
ence of auxiliary behavioral data in the two datasets.

Conclusions
In this work, we study the problem of multi-relational rec-
ommendation that considers multiple types of user-item in-
teractions. We propose a novel end-to-end model GHCF,
which achieves the target by modelling high-order hetero-
geneous connectivities in the user-item integration graph.
Different from most existing GCN methods, the embed-
ding propagation layers in our model leverage a composi-
tion operator to jointly embed both representations of nodes
(users and items) and relations for multi-relational predic-
tion. Moreover, we adopt an efficient non-sampling learning
module to achieve more effective and stable model optimiza-
tion. Extensive experiments on two real-world datasets show
that GHCF consistently and significantly outperforms the
state-of-the-art recommendation models on different evalua-
tion metrics, especially for cold-start users that have few tar-
get interactions. Future work includes exploring our GHCF
model in other related tasks such as network embedding and
multi-label classification.
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