
Improving Session Search Performance with a
Multi-MDP Model

Jia Chen?, Yiqun Liu, Cheng Luo, Jiaxin Mao, Min Zhang, and Shaoping Ma

Department of Computer Science and Technology, Institute for Artificial Intelligence,
Beijing National Research Center for Information Science and Technology,

Tsinghua University, Beijing 100084, China
yiqunliu@tsinghua.edu.cn

www.thuir.cn

Abstract. To fulfill some sophisticated information needs in Web search, users
may submit multiple queries in a search session. Session search aims to provide
an optimized document rank by utilizing query log as well as user interaction be-
haviors within a search session. Although a number of solutions were proposed to
solve the session search problem, most of these efforts simply assume that users’
search intents stay unchanged during the search process. However, most compli-
cated search tasks involve exploratory processes where users’ intents evolve while
interacting with search results. The evolving process leaves the static search in-
tent assumption unreasonable and hurts the performance of document rank. To
shed light on this research question, we propose a system with multiple agents
which adjusts its framework by a self-adaption mechanism. In the framework,
each agent models the document ranking as a Markov Decision Process (MDP)
and updates its parameters by Reinforcement Learning algorithms. Experimental
results on TREC Session Track datasets (2013 & 2014) show the effectiveness of
the proposed framework.

Keywords: Session search · Markov Decision Process · Reinforcement Learn-
ing.

1 Introduction

Session search is an unfading topic in Information Retrieval (IR) research. It refers to
the retrieval and reranking of documents for a search session with multiple queries.
When a user tries to complete some complicated tasks, she may need information con-
cerning various aspects. A single query can hardly satisfy such complex information
need, so more queries might be submitted later. Research frameworks designed for
single-round search processes may not be expert in dealing with these scenarios. To
shed light on this research question, researchers in the IR community seek to optimize
users’ whole-session experiences with context information, e.g. “short-term” query his-
tory within a search session. This is the core idea of most existing studies which try to
support session search.
? This work is supported by Natural Science Foundation of China (Grant No. 61622208,

61732008, 61532011) and National Key Basic Research Program (2015CB358700).

2 J. Chen et al.

Q: iPhone slow down

Q: iPhone battery

Q: iOS update

Query: iPhone slow down
Results: R1, R2, ...
Behavior:
• Click R1 (dwell time)
• Click R2 (dwell time)

Query: iPhone battery
Results: S1, S2, ...
Behavior:
• Non-Click

Query: iOS update
Results: T1, T2, ...
Behavior:
• Click T1 (dwell time)

User Interaction TREC Dataset

Fig. 1: An example search session which shows multi-round search interactions. (The left col-
umn illustrates the interaction process between a user and a search engine. The right column
presents the information provided by TREC Session Track corpus, which is one of the most
popular benchmarks in session search studies.)

Although this line of research has already gained significant success in support-
ing session search, we find that they may suffer from the “intent shift problem”, i.e.
when users are submitting queries and reading search results, their information needs
keep evolving because the search can also be regarded as a learning process [7]. Fig-
ure 1 presents an example of a search session in which a user found that her iPhone
became very slow and issued a query “iPhone slow down”. She clicked several results
and found that it may be caused by the battery problem. Then she submitted another
query “iPhone battery” to the search engine and read a document which said that this
issue might be solved by a future iOS update. At last, she checked the news about
“iOS update”. We can observe that during the example search process, the intent of the
user actually shifted from “slow down” to “battery”, then ended with “iOS update”.
This kind of “intent shift” was also observed by previous studies [19, 12]. Traditional
session search approaches may fail to deal with this kind of intent shift since their op-
timization strategies usually implicitly assume that search sessions are focusing on a
specific topic/intent.

In a search session, users’ interaction processes are modeled as a trial-and-error
process, which means that users are trying to optimize their search strategies by multi-
round iterations. This process can also be regarded as a gaming process in which both
users and search engines only know a portion of information. Reinforcement Learning
(RL) algorithms can be naturally introduced to solve these problems. For instance, [13]
proposes a system called “win-win” search model which regards the search process
within a session as a Partially Observable Markov Decision Process (POMDP). It as-
sumes that the users’ decision states are determined by exploration and exploitation

Improving Session Search Performance with a Multi-MDP Model 3

processes of search engine users. Many existing studies share similar ideas, i.e. using
the queries and results in previous rounds to improve the ranking performance of lately
submitted queries.

However, most of the existing models maintain a single RL agent. The static system
framework may hurt the performance of document ranking if the queries are rather
dissimilar, or in other words focus on very different topics. To settle this problem, we
propose a novel RL framework named Multiple Markov Decision Process (Multi-MDP)
Model. The basic idea is: to improve the document rank of a certain query, we can not
only learn from previously issued queries in the same session but also benefit from those
semantically similar ones in other sessions. In our proposed framework, an MDP agent
will be trained on a self-clustered query collection. Firstly each query will be distributed
to the most appropriate cluster, then its candidate documents will be ranked by the
MDP agent trained on this cluster. The system performance is validated on two popular
session search benchmarks: TREC Session Track 2013 & 2014. Experimental results
demonstrate that Multi-MDP model outperforms existing session search solutions on
these datasets.

To summarize, the contributions of this paper are:

– We propose a novel framework based on reinforcement learning named Multi-MDP
to improve performance in the context of session search.

– With Multi-MDP, we are able to capture users’ evolving information needs by query
clustering during the search process.

– Self-adaption techniques are employed to reduce the computational cost of multiple
MDP rankers, which greatly improve the efficiency of Multi-MDP.

2 Related Work

2.1 Session search

Search engines are trying to support complex search tasks with useful history informa-
tion. There has been much work on session search [3, 5, 8, 6, 4]. These approaches can
be classified into log-based and content-based methods.

Considerable work involves studying queries and sessions through session log. [16]
improved ranking performances by using query chains and click-through data from logs
with a learning-to-rank framework. [18] put forward an optimal rare query suggestion
framework by leveraging implicit feedbacks from users in the query logs. The frame-
work also used a random walk model to optimize query correlation. In addition, [20]
targeted the identification of cross-session tasks by learning inter-query dependencies
from user behaviors in logs with a semi-supervised clustering model. Similarly, Kotov
et al. proposed methods for modeling and analyzing user search behaviors that extend
over multiple search sessions [10].

Less common in session search are content-based methods which directly study
the content of queries and documents. Some methods are generated with the aid of
Session Tracks at TREC [1, 2]. [5] greatly boosted the search accuracy by formulating
structured queries using the nuggets generated from context information rather than

4 J. Chen et al.

just using the current query. Furthermore, [17] optimized the whole-session relevance
by exploring the intrinsic diversity of sessions.

What sets our work apart from previous studies is: rather than looking into the rela-
tionship between query and document, we put the emphasis on the semantic similarity
between queries. We detect the users’ information intents by query clustering and then
optimize ranking performances with Reinforcement Learning.

2.2 Reinforcement Learning in IR

In these years, Reinforcement Learning (RL) has been a promising direction in Arti-
ficial Intelligence studies. In particular, session search can be modeled as a Markov
Decision Process (MDP) or Partially Observable Markov Decision Process (POMDP)
based on its trail-and-error specialty. Many relevant problems could be solved by a
family of reinforcement learning algorithms. A number of MDP/POMDP models have
been raised to optimize the system performance in session search.

[6] proposed a novel query change retrieval model, named as QCM, which modeled
session search as an MDP process and utilized syntactic editing changes between query
change and previously retrieved documents to enhance search accuracy. Zeng and Xu’s
work regarded the construction of a document ranking as a sequence of decision mak-
ings and each of which corresponded to an action of selecting a document for a specific
position [21].

Some other researchers exerted POMDP to construct more complicated systems [11].
[22] modeled log-based document re-ranking as a POMDP which can complete the task
effectively without document contents. Yuan and Wang’s work addressed online adver-
tisement recommendation by employing POMDPs. They also discussed how to utilize
the correlation of ads to improve the efficiency of the exploration and increased ads
incomes. The win-win search model proposed by [13] considered session search as a
dual-agent stochastic game and designed four user decision states in its POMDP.

Our approach models the re-ranking of document lists as a Markov Decision Process
(MDP). The essential difference between our model and the previous one is that our
framework owns a self-adaption mechanism. Specifically, all of the aforementioned
systems mainly focused on optimizing search results with a static user intent while ours
starts from the semantic information embedded in queries. It provides users with better
search experiences when their information needs are dynamically changing.

3 Multi-MDP Ranking Model Framework

3.1 Main Framework

We introduce a Multi-MDP ranking model to improve the ranking performance in ses-
sion search. The model owns multiple agents and maintains each agent by training
queries with similar semantic features with reinforcement learning algorithms.

To facilitate the presentation of our work, we first briefly introduce the kernel mod-
ules of the model. Figure 2 outlines two core parts of the Multi-MDP Ranking Model.

Part I is an automatic clustering module distributing training queries into clusters
according to their semantic features. Here we detect the evolving intents of search

Improving Session Search Performance with a Multi-MDP Model 5

session k

session k+1

session k+2

scooter brandsscooter brands reliablescooter

[qk1][qk3] [qk2]

Input

MDP Ranker 1

MDP Ranker 2

MDP Ranker 3

new MDPRanker

!

Part I CRPAutomatic Clustering Part II Multi-MDPRanker

Similarity Calculation Clustering

former queries

Added to
former queries

Fig. 2: The Framework of Multi-MDP Ranking Model

users by clustering a sequence of queries on the semantic level. For a specific query,
it might be aggregated to an existing cluster or a newly created one. In this process, a
hyper-parameter θ is introduced as the threshold of the minimum similarity between two
queries within the same agent. We calculate the value of the θ by implementing a greedy
search method on the training set. More details of this method will be described in Sec-
tion 3.2. Then we model query clustering as a Chinese Restaurant Process (CRP). In
probability theory, the Chinese Restaurant Process provides a generative description for
the Dirichlet Process [15]. It is a discrete-time stochastic process analogous to seating
customers at tables in a Chinese restaurant. Note that CRP is introduced in the preven-
tion of explosive growth in the number of ranking clusters in part II.

Part II is a series of ranking agents, each of which models document ranking as an
MDP and trains parameters by REINFORCE, a widely-used Policy Gradient algorithm
in reinforcement learning. As described in part I, the increase of the agent totality will
be under the control of CRP.

System parameters are learned in the training phase. For a query in the test set, the
system will choose the most appropriate cluster for it(even the cluster does exist yet
and should be created). Then the query will be processed by the MDP ranker which is
trained on that cluster. Note that the proposed framework can dynamically detect the
instant information needs of users in multiple search rounds (Part I) as well as optimize
the document list returned for a specific query at each rank(Part II).

3.2 Chinese Restaurant Process Based Query Clustering

We model the clustering process as a Chinese Restaurant Process (CRP). The reason we
choose CRP rather than some other classical clustering methods is that it can dynam-
ically control the total number of clusters with a hyper-parameter ξ. For a new query,
the system will calculate the similarity between it and existing clusters first. If the max-
imal similarity is lower than a pre-set threshold, then the query should not be owned by
any existing clusters. So it will be distributed to a newly created one with a probability

6 J. Chen et al.

determined by CRP. This mechanism efficaciously restrains the total number of rankers
within an upper bound and avoids a huge occupation of system space. For a query Qi
(analogous to a customer) and a query cluster (compared to a table), the probability
distribution of seating one customer at a table is as follows:

Pr(Qi = r|Q1 , ...,Qi−1) =

{
ξ+|B|α
ξ+i−1 if r ∈ new ranker,
|b|−α
ξ+i−1 if r = b, b ∈ B;

(1)

where |B | denotes the total number of existing clusters, b is one of the non-empty
clusters and |b| denotes the capacity of it. Specifically, we only need to control the
probability of creating a new cluster so only the first formula will be utilized. Thus
there is no need to discuss the value of |b| here. If we let α = 0, then a single parameter
ξ needs to be determined. This can be solved by the expected number of rankers E(R)
as shown in Equation 2:

E(R) =

n∑
k=1

ξ

ξ + k − 1
= ξ · (Ψ(ξ + n)− Ψ(ξ)), (2)

In this equation, n refers to the number of queries. ξ is the hyper-parameter while
Ψ(ξ) denotes the digamma function. To hold system robustness, we set the expected
number of rankers E(R) as twice of topic scopes in training set (this can be adjusted
according to system condition). By solving the equation, the value ξ can be determined
and will be introduced as a parameter in query clustering. In this way, the total number
of rankers will converge to an invariant value rather than increase endlessly.

Given that query clustering has a direct impact on the system performance, we
should try to find a potentially reasonable threshold, e.g. θ, which can discriminate
a query from other dissimilar ones. If the similarity of the two queries is higher than
the threshold then we should aggregate them in the same cluster. One of the options is
to estimate θ based on the topic labels provided by TREC Session Track training set. A
greedy algorithm searching for the value θ follows two heuristic rules:

– if the maximum similarity of the current query q and a previous query q̂ is greater
than the threshold, then labelq = labelq̂;

– if the maximum similarity of the current query q and a previous query q̂ is lower
than the threshold, then labelq is assigned to a new label.

In the training phase, the clustering process is performed as mentioned above. How-
ever in testing phase, a query is always distributed to the cluster that is the most similar
to it. By comparing the coherence with ground truth labels for various searching values
of θ, we choose the one of highest coherence. The ground truth labels are analyzed from
the log provided by TREC which classifies each query to a corresponding topic.

3.3 MDP Ranking Agent

Having clustered each query into a specific cluster, the system should optimize doc-
ument rankings for queries within a cluster. The document ranking process for each

Improving Session Search Performance with a Multi-MDP Model 7

query is formalized as a Markov Decision Process (MDP) [21], where document rank-
ing is considered as a sequence of decision makings, each of which can be defined as
selecting one appropriate document at a rank in vertical position. As shown in Figure 3,
the proposed MDP ranking process is represented as a tuple {S, A, T, R, π}, respectively
denoting system states, actions, transition function, reward and the decision policy. De-
tailed expositions are described as:

States S is a set of different states that describe the system environment. To arrange
a rank for a document set, the agent should make a sequence of decisions. One decision
can be made according to the position and the candidate document set the agent can
choose from. Thus, the state at the time t is designed as [t, Xt], where Xt represents the
remaining candidate document set.

Actions A refers to a set of actions that the agent could take at each step. In our
model, the agent should decide which document to be selected at the current position.
The action set for the state st is denoted by A(st). At the time t, at ∈ A(st) selects a
document di at the ranking position t + 1, where i is the index of the chosen document.

Transition Function T(S, A) is a function that maps a state st into a new state
st+1 in response to the action at time t. When the agent chooses a document di from
the candidate set and ranks it at the t-th position, the document is removed from the
candidate set in case of duplication. Equation 3 is the formulation of the transition
function.

st+1 = T ([t,Xt], at) = [t+ 1, Xt\di], (3)

Reward R(S, A) is the global reward of a rank, which directly represents the gains of
users. In this paper, the reward is regarded as a sum of discounted gain at each position
from 1 to N. It is defined in a manner similar to DCG (a widely-used metric) to directly
optimize the evaluation measures and leverages the performances at each rank. Unable
to estimate accurate user gains from the insufficient interaction data, we design a reward
function in direct promotion of IR metrics.:

R(st, at) =

{
2L(di) − 1 if t = 0,

2L(di)−1
log2(t+1) if t 6= 0;

(4)

where L(di) is the relevance label of the selected document di. The reward at each
position will be accumulated at the end to represent the global reward of a rank, which
provides references for an agent to update parameters through RL algorithms.

Policy π(a|s) : A × S → (0, 1) is a probabilisitic distribution over the possible
actions for an agent at the state st. Generally, the policy of one agent represents the
probabilities of selecting one specific document for a position. This is formalized as
Equation 5:

π(at|st;w) = softmax(wTV (di)), (5)

where V (di) denotes the vector representation of di, w ∈ Rk represents the parameters
of each ranking agent with the same dimension k as the query/document representations.

Given a training query q, a set of h candidate documents D, the relevance labels
for each document L, the initial system state can be denoted as s0 = [0,X]. At each
time t = 0, ..., h − 1, the agent observes the environment and determines the belief
of its state st. According to the state and the system policy π, an agent carries out an

8 J. Chen et al.

Agent Environment

action !"	~	%(!"|(";*)

reward ," = .(("/0, !"/0)

Policy

state transition
(" 	→ 	 ("30	 (" = [5, 6"]

Fig. 3: State Transition in Each MDP Ranking Agent

action at and ranks a document at a position. The agent will immediately receive a
reward rt = R(st, at) on the basis of the relevance label. Then the system transfers to
the next state st+1 and tries to take next action at+1. The process is repeated until all
the h documents are selected. We adopt the Monte Carlo Sampling method to generate
several ranks and calculate the reward of these ranks. Of all the rank with the highest
reward will be recorded for system updates.

In the testing phase, no label is available. An agent will generate a rank according
to its learned policy. For each position, the agent will choose a document with maximal
probability. The probability is calculated by the product of w and document represen-
tation. In order to learn the model parameters w, we use REINFORCE algorithm to
update them. According to the reward defined above, the long-term gain of a sampled
ranking list µ can be defined as:

G(µ) =

M∑
k=1

γk−1rk, (6)

where µ is the ranking list sampled from a stochastic ranking process, on the basis of
Monte Carlo sampling. Note that if γ = 1, the formula is equivalent to the definition of
DCG. According to REINFORCE algorithm, the gradient ∇wJ (w) can be calculated
as follows:

∇wJ (w) = γtGt∇wlogπw(at|st;w), (7)

where J(w) is the expected long-term return of the document ranking for a query. Our
goal is to optimize this value, enabling the sampled rank to approximate the ideal rank.
By comparing the reward received by the agent from different ranks, the agent chooses
the one with the highest reward and stores the rank with its reward as an episode into
its memory. Every time after a batch of training queries has been processed, the agent
updates its parameters by the episodes stored in the memory through equation 7 and
clears the memory then.

4 Experiments

4.1 Dataset

To validate the effectiveness of our proposed Multi-MDP framework, we conducted our
experiments on TREC Session Tracks 2013-2014 datasets [1, 2]. TREC Session Tracks
were one of the core tasks of Text REtrieval Conference1.

1 http://trec.nist.gov

Improving Session Search Performance with a Multi-MDP Model 9

Table 1: Dataset Statistics for TREC Session Track 2013 and 2014
Data 2013 2014

#topic number 61 60
#session number 133 1,257
#query number 453 3,213

#unduplicated documents 26,664 107,564

As shown in Figure 1, in Session Tracks, the participants were given a collection
of search sessions. For each session, the participants were provided with real users’
interactions in multiple search rounds except for the last one. The goal is to optimize
document rank for the last query with the context information in previous search rounds.

Table 1 provides an overview of the two datasets. For each query, we used the top
100 documents through batch query service as the candidate set on the ClueWeb12 B13
dataset. In addition, queries whose number of documents returned by batch service are
less than 100 were filtered. All duplicated documents were removed as well.

4.2 Query Clustering

The clustering process is based on semantic features. For a pair < q1, q2 >, the similar-
ity can be calculated as follows:

1. The textual similarity of q1 and q2 (QT);
2. The proportion of overlapped documents in the top 10 retrieved documents of q1

and q2 (DO);
3. The average textual similarity of top-10 retrieved documents of q1 and q2 (DT);

These three measurements are respectively denoted as QT, DO and DT in the re-
maining parts of this paper. Note that for QT and DT, textual similarity refers to the
cosine similarity of two semantic representations. DT can be formulated as:

simDT (q1, q2) =
1

100

10∑
i=1

10∑
j=1

cos(Vd1i , Vd2j) (8)

where d1i refers to the document at the i-th position of q1 and d2j refers to the document
at the j-th position of q2. V denotes vector representation.

To better capture the implicit information intents embedded in queries, the similar-
ity is calculated based on the distributed representation of textual contents, i.e. Another
option here is to use the one-hot representation of tokens. We choose distributed presen-
tations since they are more likely to capture the semantic level similarity while one-hot
representations tend to capture exact matchings of textual units.

According to the three definitions of query similarity and two methods of generating
document vector representations (this will be described in Section 4.3), five combinato-
rial methods can be applied in the traversal process (the result of top 10 document over-
lapping ratio is equivalent for max-pooling or average-pooling representations, hence a
repeated method is removed). The consistency was measured by Cohen’s Kappa. Table

10 J. Chen et al.

Table 2: Best Threshold of Each Method.
Method Best θ Kappa Method Best θ Kappa
MAX QT (2013) 0.95 0.454 MAX QT (2014) 0.96 0.052
AVG QT (2013) 0.75 0.335 AVG QT (2014) 0.77 0.054
DO (2013) 0.60 0.497 DO (2014) 0.90 0.040
MAX DT (2013) 0.99 0.289 MAX DT (2014) 0.99 0.032
AVG DT (2013) 0.99 0.428 AVG DT (2014) 0.99 0.044

2 shows the best thresholds θ found for each method/dataset. Note that the scale of 2014
dataset is much larger, the clustering consistency results are much lower compared to
those of the 2013 dataset. Generally, the similarity between MAX representations is
higher so we can also find a relatively higher value of θ in MAX representations.

4.3 Evaluation Settings

We followed the Session Tracks’ settings and used the first N − 1 queries in each ses-
sion for training. The Test set is consist of the last queries. For both Session Track 2013
& 2014 dataset, the ratio of the training set and test set approximates 4:1. Queries and
documents actually contain multiple words. We tried two methods of generating the
query-level/document-level representations: max-pooling (MAX) and average-pooling
(AVG) of word vectors. All web pages in Session Track 2013 & 2014 dataset were
collected as the corpus. The detailed process is described as follows: We first fed the
corpus to a word representation model, named as Global Vectors for Word Representa-
tion (GloVe) [14], to get each word’s representation. Long-tailed words were removed
and only those with top 100K frequency remain.

To validate the system performance, we compared our model with several baseline
systems listed as following:

– Win-Win: A framework which models the session search process as Partially Ob-
servable Markov Decision Process (POMDP) [13];

– Lemur: We submitted each query to Lemur Indri Search Engine2 through online
batch service provided by ClueWeb12 and calculate evaluation metrics of the doc-
ument lists returned from it;

– TREC median: The median TREC system reported by TREC Session Track;
– TREC best: The winning run in TREC Session Tracks;
– QCM SAT: A variation of QCM proposed by [6];
– Rocchio: A session search model which is proposed by [9].

We use nDCG and MAP to evaluate different runs. For nDCG, we choose several
different cutoffs to check the performance of our model at different ranks.

2 http://lemurproject.org/clueweb12/

Improving Session Search Performance with a Multi-MDP Model 11

Table 3: Search Performance on TREC Session Tracks 2013. (The best Multi-MDP model, i.e.
Multi-MDPMAX QT , is significantly better than the strongest baseline Win-Win at p < 0.001
using a paired t-test.)

System MAP nDCG@1 nDCG@3 nDCG@6 nDCG@10
Win-Win 0.1290 – – – 0.2026

Lemur 0.1072 0.0592 0.0775 0.0953 0.1123
TREC best – – – – 0.1952

TREC median – – – – 0.1521
QCM SAT 0.1186 – – – 0.0939
Rocchio 0.1320 – – – 0.1060

Multi-MDPMAX QT 0.2190 0.2561 0.2638 0.2453 0.2556
Multi-MDPAVG QT 0.1891 0.2073 0.1956 0.2089 0.2182
Multi-MDPMAX DO 0.2138 0.2561 0.2339 0.2193 0.2301
Multi-MDPAVG DO 0.1342 0.1138 0.1171 0.1333 0.1424
Multi-MDPMAX DT 0.1488 0.1638 0.1627 0.1571 0.1618
Multi-MDPAVG DT 0.1306 0.1156 0.1075 0.1170 0.1409

Table 4: Search Performance on TREC Session Tracks 2014. (The best Multi-MDP model, i.e.
Multi-MDPMAX QT , is significantly better than the baseline Lemur at p < 0.001 using a paired
t-test.)

System MAP nDCG@1 nDCG@3 nDCG@6 nDCG@10
Lemur 0.1260 0.0916 0.1009 0.1139 0.1251

TREC best – – – – 0.2099
TREC median – – – – 0.1170

Multi-MDPMAX QT 0.1857 0.2271 0.2169 0.2118 0.2107
Multi-MDPAVG QT 0.1315 0.1194 0.1063 0.1211 0.1361
Multi-MDPMAX DO 0.1850 0.2047 0.2036 0.2000 0.1995
Multi-MDPAVG DO 0.1516 0.1573 0.1630 0.1649 0.1751
Multi-MDPMAX DT 0.1293 0.1358 0.1388 0.1384 0.1412
Multi-MDPAVG DT 0.1586 0.1413 0.1544 0.1672 0.1779

4.4 Experimental results

For both TREC 2013 and 2014 dataset, we tried our Multi-MDP Ranking Model with
six types, where QT, DO and DT denote three definitions of query similarity and
“MAX”/“AVG” refers to the generating methods for query/document presentation.

Table 3 shows the search performance of all systems in TREC Session Tracks 2013.
Since our experimental settings are exactly the same as [13], we cite the results they
reported for comparison. The result shows that our model significantly outperforms
other session search systems. We can see that Multi-MDPMAX QT is the best among
all methods. The nDCG metrics of Multi-MDP models are significantly higher than
those of Lemur Search Engine at all ranks. The results validate that our model can
better detect evolving intents of users and improve search performance in both whole-
session level (high metric value on average) and query level (high performance at each
rank).

Table 4 shows the search performance of all systems for TREC Session Tracks 2014.
On the 2014 dataset, we can only get the results of TREC Best and TREC Median [2].
Although the dataset scale is much larger, the experimental results show that the Multi-
MDP Ranking Model still performs well. Of all the methods, Multi-MDPMAX QT still
owns the best performance, although the results are not statistically significant com-
pared to the TREC Best result.

12 J. Chen et al.

An interesting finding is that the systems with QT usually outperform other systems.
It suggests that the query contents are more representative than the document lists or
document contents. Query contents suffer from fewer noises than documents thus could
express refined user intents which may improve clustering accuracy. Another finding is
that the systems with DO perform better for a dataset on a larger scale. This might
be caused by the smaller threshold of small dataset which owns lower discrimination
between two documents.

5 Conclusion

This paper presents a novel session search framework: Multi-MDP Model, which mod-
els the document reranking for each query as a Markov Decision Process (MDP) and
owns multiple agents. Our model gives a new guide of constructing a self-adaptive
framework to fit with the size of the dataset and dynamically detect the instant informa-
tion intents of search users. The increase of agents is under the control of the Chinese
Restaurant Process (CRP) to ensure a low space occupation. In each agent, an MDP-
based ranking model is trained for better document ranking performances. The exper-
iments on TREC Session Tracks 2013 and 2014 datasets show that our work is both
effective and efficient for session search and outperforms the best systems in TREC.

Our work is content-based and considers the explicit feedbacks of users as the global
reward for a rank. We emphasize two main stages: query clustering and model training.
Some other factors like click-through data, dwell time from session logs have not been
utilized in the system yet. We may have an attempt to make better use of this information
to improve the system performance in future.

References

1. Carterette, B., Kanoulas, E., Hall, M., Bah, A., Clough, P.: Overview of the trec 2013 session
track. Tech. rep., DELAWARE UNIV NEWARK DEPT OF COMPUTER AND INFORMA-
TION SCIENCES (2013)

2. Carterette, B., Kanoulas, E., Hall, M., Clough, P.: Overview of the trec 2014 session track.
Tech. rep., DELAWARE UNIV NEWARK DEPT OF COMPUTER AND INFORMATION
SCIENCES (2014)

3. Carterette, B., Kanoulas, E., Yilmaz, E.: Simulating simple user behavior for system effec-
tiveness evaluation. In: Proceedings of the 20th ACM international conference on Informa-
tion and knowledge management. pp. 611–620. ACM (2011)

4. Feild, H., Allan, J.: Task-aware query recommendation. In: Proceedings of the 36th inter-
national ACM SIGIR conference on Research and development in information retrieval. pp.
83–92. ACM (2013)

5. Guan, D., Yang, H., Goharian, N.: Effective structured query formulation for session search.
Tech. rep., GEORGETOWN UNIV WASHINGTON DC DEPT OF COMPUTER SCIENCE
(2012)

6. Guan, D., Zhang, S., Yang, H.: Utilizing query change for session search. In: Proceedings of
the 36th international ACM SIGIR conference on Research and development in information
retrieval. pp. 453–462. ACM (2013)

Improving Session Search Performance with a Multi-MDP Model 13

7. Gwizdka, J., Hansen, P., Hauff, C., He, J., Kando, N.: Search as learning (sal) workshop
2016. In: Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. pp. 1249–1250. ACM (2016)

8. Jiang, J., Han, S., Wu, J., He, D.: Pitt at trec 2011 session track. In: TREC (2011)
9. Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text categoriza-

tion. Tech. rep., Carnegie-mellon univ pittsburgh pa dept of computer science (1996)
10. Kotov, A., Bennett, P.N., White, R.W., Dumais, S.T., Teevan, J.: Modeling and analysis of

cross-session search tasks. In: Proceedings of the 34th international ACM SIGIR conference
on Research and development in Information Retrieval. pp. 5–14. ACM (2011)

11. Littman, M.L., Kaelbling, L.P., Cassandra, A.R.: Planning and acting in partially observable
stochastic domains. In: ARTIFICIAL INTELLIGENCE. pp. 99–134 (1995)

12. Liu, J., Belkin, N.J.: Personalizing information retrieval for multi-session tasks: The roles of
task stage and task type. In: Proceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval. pp. 26–33. ACM (2010)

13. Luo, J., Zhang, S., Yang, H.: Win-win search: Dual-agent stochastic game in session search.
In: Proceedings of the 37th international ACM SIGIR conference on Research & develop-
ment in information retrieval. pp. 587–596. ACM (2014)

14. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In:
Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP). pp. 1532–1543 (2014)

15. Pitman, J., et al.: Combinatorial stochastic processes. Tech. rep., Technical Report 621, Dept.
Statistics, UC Berkeley, 2002. Lecture notes for St. Flour course (2002)

16. Radlinski, Filip, Joachims, Thorsten: Query chains: learning to rank from implicit feedback
pp. 239–248 (2006)

17. Raman, K., Bennett, P.N., Collins-Thompson, K.: Toward whole-session relevance: explor-
ing intrinsic diversity in web search. In: Proceedings of the 36th international ACM SIGIR
conference on Research and development in information retrieval. pp. 463–472. ACM (2013)

18. Song, Y., He, L.W.: Optimal rare query suggestion with implicit user feedback. In: Interna-
tional Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, Usa, April.
pp. 901–910 (2010)

19. Teevan, J., Dumais, S.T., Liebling, D.J.: To personalize or not to personalize: modeling
queries with variation in user intent. In: International ACM SIGIR Conference on Research
and Development in Information Retrieval. pp. 163–170 (2008)

20. Wang, H., Song, Y., Chang, M.W., He, X., White, R.W., Chu, W.: Learning to extract cross-
session search tasks. In: Proceedings of the 22nd international conference on World Wide
Web. pp. 1353–1364. ACM (2013)

21. Wei, Z., Xu, J., Lan, Y., Guo, J., Cheng, X.: Reinforcement learning to rank with markov
decision process (2017)

22. Zhang, S., Luo, J., Yang, H.: A pomdp model for content-free document re-ranking pp. 1139–
1142 (2014)

