
Attention-based Adaptive Model to Unify Warm and Cold Starts
Recommendation

Shaoyun Shi, Min Zhang*, Yiqun Liu and Shaoping Ma
Department of Computer Science and Technology, Institute for Artificial Intelligence,

Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing 100084, China

shisy17@mails.tsinghua.edu.cn, {z-m, yiqunliu, msp}@tsinghua.edu.cn

ABSTRACT
Nowadays, recommender systems provide essential web services
on the Internet. There are mainly two categories of traditional rec-
ommendation algorithms: Content-Based (CB) and Collaborative
Filtering (CF). CF methods make recommendations mainly accord-
ing to the historical feedback information. They usually perform
better when there is sufficient feedback information but less success-
ful on new users and items, which is called the “cold-start” problem.
However, CBmethods help in this scenario because of using content
information. To take both advantages of CF and CB, how to com-
bine them is a challenging issue. To the best of our knowledge, little
previous work has been done to solve the problem in one unified
recommendation model. In this work, we study how to integrate CF
and CB, which utilizes both types of information in model-level but
not in result-level and makes recommendations adaptively. A novel
attention-based model named Attentional Content&Collaborate
Model (ACCM) is proposed. Attention mechanism helps adaptively
adjust for each user-item pair from which source information the
recommendation is made. Especially, a “cold sampling” learning
strategy is designed to handle the cold-start problem. Experimental
results on two benchmark datasets show that the ACCM performs
better on both warm and cold tests compared to the state-of-the-art
algorithms.

CCS CONCEPTS
• Information systems → Recommender systems;

KEYWORDS
Attention Mechanism, Cold-Start, Neural Recommendation Model,
Collaborative Filtering, Hybrid Recommendation, Cold Sampling

ACM Reference Format:
Shaoyun Shi, Min Zhang, Yiqun Liu and Shaoping Ma. 2018. Attention-
based Adaptive Model to Unify Warm and Cold Starts Recommendation.
In The 27th ACM International Conference on Information and Knowledge
Management (CIKM ’18), October 22–26, 2018, Torino, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3269206.3271710

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3271710

1 INTRODUCTION
With the continuous development of the Internet, the informa-
tion explosion has become a great challenge that people are faced
with [38]. Recommender systems are designed to help deal with this
problem, which can help us get the information more efficiently.
The two traditional recommendation techniques are Content-Based
(CB) and Collaborative Filtering (CF). They are widely used, and
many studies are based on them. They recommend according to
two different kinds of information: content and historical feedback.

Content-based methods are based on the content information,
which has mainly two types, i.e., user contents such as age, gender,
occupation and item contents such as the color of clothes, taste of
foods, melody of music. Besides, other specific information such as
text reviews can be taken as both user and item content. They can
give a brief impression of the user or the item even if there is no
historical feedback information.

The main idea of CF is to analyze the historical feedback infor-
mation of users and items. Two basic assumptions are that users
who consume more similar items may have more similar prefer-
ences and items which are consumed by common users may have
similar attributes or contents. The outstanding performance of CF
methods is verified on many datasets, especially when the feedback
information is rich.

From experiences [12, 15, 22, 35], no matter explicit or implicit,
feedback information can help us achieve a better understanding
of users’ preferences than content information. Thus CF methods
usually achieve better performance than CB methods. However,
historical feedback information is not always available or sufficient.
Especially, there is no previous feedback information of new users
and items in the system, which is called cold-start. CFmethods often
fail in this situation. While CB methods suffer much less from the
cold-start problem. CB methods can still recommend according to
the brief impression drawn from the content, which is independent
of the feedback information.

A promising way is to integrate advantages of CF and CB models
in the recommendation. In many real applications, people learn
to combine the results of CF and CB with different weights to
make recommendations. In other cases, people first separate the
scenario into warm or cold and use CF or CB respectively. In the
former cases, the learned weights keep the same for different data,
which makes the model less adaptive. In the latter cases, the model
uses only content information or the feedback information, but
actually, both of them are useful in the recommendation. Thus,
hybrid in the model level has been paid more attention in recent

* Corresponding Author

https://doi.org/10.1145/3269206.3271710
https://doi.org/10.1145/3269206.3271710

years. The deep learning approach is one of the trails, which can
embed content and feedback information into vectors [8, 14]. Deep
neural networks can jointly take advantage of the two kinds of
information in an easier way. They learn global weights of content
and feedback information, which makes them not flexible enough
for different users and items in different scenarios. Besides, it is
hard to understand where a recommendation result comes from, no
matter for a senior user with rich feedback information or a new
user with no history.

What we want is a model that takes advantages of both content
and feedback information. It should pay more attention to the
content information when there is no historical information and
leverage user feedback information when it is available. Hence,
both warm and cold scenarios can be handled smoothly.

In this work, we proposed a novel deep recommendation model
named Attentional Content&Collaborate Model (ACCM), which in-
tegrates both CB and CF uniformly. Unlike previous models, ACCM
provides a more clear information flow with help us understand
how much the content or the feedback information contributes
to the final predictions, according to the attention weights. For
each user-item pair, the weights for CB and CF are dynamically
adjusted. And a novel learning strategy “cold sampling” is designed
to “teach” the attention network what is cold-start. Experiments
show that our ACCM significantly outperforms the state-of-the-art
deep learning methods Wide&Deep [8], NFM [14] and AFM [42]
on both cold and warm datasets.

The main contributions of this work are summarized as follows:

(1) We propose a new attention model to unify CF and CB rec-
ommendations for both warm and cold scenarios, in which
both end-to-end features and traditional attributes are taken
into consideration. To the best of our knowledge, it is the
first work to select the information resource adaptively for
each user-item pair in personalized recommendation.

(2) A novel “cold sampling” learning strategy is proposed which
helps handle cold-start problem effectively. Noticeably, it is
not a separate strategy but works in both warm and cold
scenarios.

(3) Experimental results show it as a simple novel model which
makes significant improvements to the state-of-the-art meth-
ods, especially in cold scenarios.

2 RELATEDWORK
2.1 Traditional Recommendation Models
The two categories of traditional recommendation methods are
Content-Based (CB) and Collaborative Filtering (CF).

No matter from explicit [23, 37] or implicit [16, 18, 34, 35] feed-
backs, understanding the users and items from their historical feed-
back information is the basic idea of CF. One effective way to do CF
is matrix factorization (MF), such as BiasedMF [23], WRMF [18], Ex-
poMF [26], SVDPP [22]. Given an interactionmatrixR = (Ri j)m×n ∈
Rm×n+ ofm users and n items, the goal is to get user matrixUm×k
and item matrix Vk×n . R = UV , where k is the dimension of the
latent vector. Each row of U represents a user vector ui and each
column of V represents an item vector vj . We can use ui and vj ’s
dot product as the rating prediction about how user i likes item j.

But these methods can not deal with the cold-start problem, i.e.,
users or items with no historical feedback information.

CB methods make recommendation mainly based on users and
items’ content information. One of the typical CBmethods is CBF [33].
The main idea is to average item features a user has interacted with
to represent the user. A user feature vector can be formed to reflect
what kind of items the user prefers. Then CBF recommends accord-
ing to the similarities of the feature vectors of users and items. In
this framework, when new items come, CBF still work. Another
special source of content information is text reviews. A valuable
review not only shows the attributes a specific user focus on but
also indicates what the item is like. Many researchers are trying to
take advantage of reviews in recent years. Models like HFT [29],
RMR [27], EFM [46] have achieved excellent performance. CB meth-
ods are usually thought have the ability to handle the cold-start
problem because the content information can help understand the
users and items independent of historical feedback information.

The hybrid model is a promising way to combine CF and CB and
use the advantages of CB to fix the disadvantages of CF, to work on
both warm and cold scenarios [36]. Some works merge individual
predictions of CF and CB methods into a single [3, 32]. They can
work in the cold scenario but do not adaptively unify warm and
cold starts recommendation into one model and need additional
human efforts or knowledge to fit different scenarios. Other works
add content information into a collaborative filtering model [1, 7,
31]. Although these models have the ability to handle the cold-
start problem, they are parameter sensitive and have limitations on
processing large data or high dimension features.

2.2 Deep Learning in Recommendation
Deep learning methods [24] have achieved remarkable results in
many fields like computer vision [6, 13, 41] and natural language
processing [2, 9, 28]. So many researchers are trying to introduce
deep learning into recommender systems recently. Some strengthen
the ability of traditional methods with deep learning. For exam-
ple, Van den Oord et al. used CNN to extract latent vectors from
music and achieved excellent performance [39]. MDA-CF [25] com-
bines probabilistic matrix factorization with marginalized denoising
stacked auto-encoders. Some works transferred traditional algo-
rithms into deep learning framework. NCF [15] proposed by He
et al. and CF-NADE [47, 48] proposed by Zheng et al. tried to do CF
in a neural way. These methods achieved better results over many
state-of-the-art methods.

Deep neural networks can provide an easier way to unify both
content and historical feedback information to take advantage of
both CF and CB. All the information can be embedded into vectors.
For example, in the NFM [14], content information such as users
and items features are embedded into different vectors and the same
as their ids, which is end-to-end training by feedback information.
It uses a bi-interaction layer to do the similar things as Factorization
Machine (FM). Another example is Wide&Deep [8] proposed by
Google, which combines the deep neural network and the linear
model. The excellent performance of these methods is verified.

However, the weights in deep layers are fixed once the train-
ing process finished. Deep models can not adaptively adjust their
weights in warm and cold scenarios which means when users or

items are cold, the results are calculated from partly absent val-
ues. Although they can still work because content information
contributes to the final results, they may give undesirable outputs
because of the abnormal inputs. Besides, the explanation is also im-
portant for recommendation tasks. But the deep model is thought
as the black box, which is hard for us to understand how they
recommend.

2.3 Attention-Based Model
Attention mechanism has been shown effective in various machine
learning tasks such as computer vision [5, 43] and natural language
processing [17, 40]. It is a weighted sum technique but it can au-
tomatically analyze which parts, such as areas in images or words
in sentences, are more important. For example, in neural machine
translation, the attention mechanism can help decide which words
in source sentence should be focused on when generating each tar-
get word. It makes neural networks more explainable and adaptive.

There are also trails to take advantages of attention mecha-
nism in recommendation tasks. Miura et al. unified text, metadata,
and user network representations with an attention mechanism
in geolocation prediction to overcome the previous ensemble ap-
proaches [30]. Chen et al. introduced both component-level and
item-level attention for multimedia recommendation into a CF
framework [4]. Another example is AFM [42], which is an exten-
sion of NFM [14]. It improves FM by discriminating the importance
of different feature interactions with the help of attention mecha-
nism.

However, most of the attentional recommendation models need
a list of historical information such as interacted items, linked cities
or reviews of a user or an item. New items and users do not have
such lists, making the models hard to recommend. Models like
AFM can still give results in the cold scenario because the atten-
tion mechanism is applied to both content and historical feedback
information. But they do not specifically handle the cold-start prob-
lem, which may affect the model performance because attention
networks have not been trained to handle cold vectors and may
give abnormal weights.

3 ATTENTIONAL COLLABORATE&CONTENT
MODELS

Attention mechanism is a weighted sum technique. Assume there
are a set of vectors {vi ∈ Rk }, i ∈ [1,n], where k is the vector size.
We can form a vector f with attention as follows:

ui = hT tanh(Wgi + b)

ai =
exp(ui)∑
i exp(ui)

f =
∑
i aigi

(1)

whereW ∈ Rt×k and b ∈ Rt are parameters of attention network
and t is the attention size. The main idea is to dynamically adjust
the weights by the network.

Here we want to use attention mechanism to decide where the
recommendation should come from, the content or the historical
feedback information. When feedback information is not sufficient,

𝐮"#

user id

𝐯"#

user features

𝑝

𝑏𝑖𝑎𝑠

𝑦

MLP

𝑝"#

𝑑𝑜𝑡

𝐮".

item id

𝐯".

item features

Attention

MLP

𝑝".

𝑑𝑜𝑡

+

+

𝑏/ 𝑏0𝑏1 + +

Figure 1: Model Structure of Result Level Attention

recommending according to the user profile and item attributes
may be a better strategy.

3.1 Result Level Attention
A direct idea is using attention mechanism to combine CF and
CB methods and give a weighted sum of two results, as shown in
Figure 1. We can divide the prediction into two parts whose basic
information is different.

The left part is a simple neural collaborative filtering framework
in which each user u and item i is embedded as user vector uCF ∈
Rk and item vector vCF ∈ Rk directly from their ids, where k is the
dimension of vectors. The embeddings can be learned during the
training process from the historical feedback information. It can be
seen as an end-to-end learning process. The input is which user and
item, and the output is the preference prediction. The preference
prediction of CF part comes from the dot product of uCF and vCF :

pCF = uCF · vCF (2)

Similarly, in the CB part, each user u and item i is embedded as
user vector uCB ∈ Rk and item vector vCB ∈ Rk . However, vectors
here are calculated from the user and item feature embeddings,
content information like user age, occupation or item color. It is not
an end-to-end but feature-based learning. The preference prediction
here keeps the same as CF part with dot product:

pCB = uCB · vCB (3)

The model prediction p is a weighted sum of predictions from
two parts, pCF and pCB . The attention network is responsible for
giving the proper weight, which is the blue part in Figure 1. It can
judge how reliable the predictions from two parts according to the
information embedded in vectors. Ideally, not only warm vectors
can be evaluated, but also cold vectors from CF part containing
no feedback information can be identified. Formally, the attention
network is defined as:

hCF = hT tanh(W(uCF∥vCF) + b)

hCB = hT tanh(W(uCB∥vCB) + b)

aCF =
exp(hCF)

exp(hCB)+exp(hCF) = 1 − aCB

(4)

𝐮"#

user id

𝐮"$

user features

𝐮𝐯

𝑏𝑖𝑎𝑠

𝑦

Attention

MLP

𝐮

+

𝐯"#

item id

𝐯"$

item features

Attention

MLP

𝐯

+

𝑑𝑜𝑡

+

𝑏. 𝑏/𝑏0 + +

user part item part

Figure 2: Model Structure of Vector Level Attention

where W ∈ Rt×2k , b ∈ Rt , h ∈ Rt are model parameters, and t
denotes the hidden layer size of the attention network. ∥ here means
vector concatenation. aCF and aCB are the output weights and the
model prediction p is calculated as:

p = aCFpCF + aCBpCB (5)

For rating prediction task, it is common to take bias into con-
sideration, including global bias bд , user bias bu and item bias bv .
Then the predicted rating of item v given by user u is:

y = bд + bu + bv + p (6)

And the predicted ratings of two single parts, CF and CB, can be
defined as:

yCF = bд + bu + bv + pCF

yCB = bд + bu + bv + pCB

(7)

To encourage two single parts to give both meaningful predic-
tions and avoid the situation that one part is much more stronger
than the other part, RMSE of two single parts is added to the loss
function. Otherwise, it may cause an unbalanced attention network
giving larger weights to the same part all the time.

Loss = RMSE{(y, r)} + RMSE{(yCF , r)} + RMSE{(yCB , r)} (8)

From the attention weights, we can clearly understand which
part the prediction comes from, reflecting which kind of informa-
tion the recommendation is based on. The structure is somehow
like an ensemble learning method. But they are different because
the weights given by attention network is dynamically adjusted for
each user-item pair. Assume that there comes a new user, attention
network may identify that he is new to the system and the recom-
mendation should come from the CB part, which means aCB = 1
and aCF = 0. But in ensemble learning method, the weights of
different parts will remain unchanged as long as the training pro-
cess is finished. If the CF part performs better on the training data,
it will get a higher weight wCF > 0 in ensemble methods. Then
no matter which user comes to the system, with sufficient or no
feedback information, the model prediction comes from CF part on
the weight ofwCF , which may bring unreliable results.

3.2 Vector Level Attention
A shortcoming of result level attention is that when a new user
comes to the system, the model will predict according to the CB part
even if the item contains rich historical feedback information. For
example, if a specific user like puzzle games very much, much more
than other users with the similar profile. Then if we want to know
how the user prefers a newly published puzzle game, the model
may give a medium rating according to the content information.
What the model ignored is that the user loves puzzle games very
much, which is embedded in the user vector uCF .

One way to solve this problem is to route the information flow
in detail. We can decide how much should the user or item vector
come from the content or historical feedback information. Attention
mechanism can help when the user or item vectors are formed, as
shown in Figure 2. In this structure, the attention weights in the user
part only depend on the user information. User-specific historical
feedback information can be reserved in user vector u. Considering
the example we mentioned in the last paragraph, ideally, the atten-
tion can give suitable weight so that the user vector u contains the
information that the user loves puzzle games very much and finally
the model give a high rating to the newly published puzzle game.
Formally, the attention here is similar to equation 4:

huCF = hT tanh(WuCF + b),

huCB = hT tanh(WuCB + b),

auCF =
exp(huCF)

exp(huCB)+exp(h
u
CF)
= 1 − auCB

(9)

where W ∈ Rt×k , b ∈ Rt , h ∈ Rt are model parameters, and t
denotes the hidden layer size of the attention network. Then the
user vector is a weighted sum:

u = auCF uCF + a
u
CBuCB (10)

The item vector v is generated similarly to user vector u. The
attention network in item part shares the same parameters with
that in the user part. We have two reasons: the dot product makes
that the same dimension of the user and the item vector should
be a hidden factor with the same physical meaning; the purposes
of attention mechanism in two parts are the same that to judge
whether the vector coming from content or feedback information
is reliable.

The model prediction is a sum of bias and the dot product of u
and v:

y = bд + bu + bv + uv (11)

The model is more general than the result level attention. This
model indicates explicitly whether the prediction comes from con-
tent or feedback information or more specifically, how the model
understands the user or the item from the historical feedback or
their content. The vectors coming from the user or item features
are content-based. The learning process of user and item id em-
beddings is end-to-end collaborative filtering. They are combined
by attention mechanism. So we named the model Attentional Con-
tent&Collaborate Model (ACCM).

3.3 Model Learning: Attention on Cold users
and items

In general cases, historical information on user-item interactions
is used to train the model, hence the user’s feedback information
plays important role on reflecting his preference, usually even more
than his profile information does. While what is more common in
real scenarios, there are always some cold users or items, which
have never (or rarely) been observed in past known user-item in-
teractions. In such cold start cases, CF part does not work properly
since no information of this new user/item is provided. Since all
information is known to the model in the traditional training pro-
cess, during test procedure, new user’s vector from the CF part
remains the initial state and is usually random at a distribution dif-
ferent from trained vectors. In this situation, the output of attention
network will be unreliable.

In this section, we discuss and propose several strategies to solve
the learning problem in cold start scenarios. The basic idea is how
to introduce cold users and items in training procedure and hence
help the model learn the attention weights in such real cases.

3.3.1 Attention Set Strategy. One intuitive way is to lay off a set of
data, at a ratio α , from the training data, which contains both cold
and warm users and items. We call it “attention set”, use it to train
the attention network only. The training process alternate between
two steps:
• model update: Keep the attention network unchangeable and
use the remaining part of the training set to update the main
stream of the model, which is the black part in Figure 2.
• attention update: Use the laying off “attention set” to train
the attention network, which is the blue part in Figure 2.
To keep the cold data remaining cold, the other part of the
model should not be updated during this step.

Note that historical feedback information in the laying off “atten-
tion Set” is not used to train the id embeddings. When we want to
make recommendations about these users or items, their feedback
information will not contribute to the results due to this hard split,
which is undesirable.

3.3.2 Cold Sampling Strategy. We propose a new alternative strat-
egy to overcome the above problem in “Attention Set Strategy”. We
name it “cold sampling”, which randomly shadows the historical
feedback information of some users and items in each batch. The

𝐮"#

user id

𝐮"$

user features

𝐮𝐯

𝑏𝑖𝑎𝑠

𝑦

Attention

MLP

𝐮

+

𝐯"#

item id

𝐯"$

item features

Attention

MLP

𝐯

+

𝑑𝑜𝑡

+

𝑏. 𝑏/𝑏0 + +

Figure 3: Learning of ACCM in Cold Scenarios

input : training set T = {(u,v, r)}; learning rate lr ;
batch size n; sample ratio β

parameter :cold signal for the user and the item cui , c
v
i ;

user CF vectors{uCF }; item CF vectors{vCF };
global bias дb ; user bias дu ; item bias дv ;
other feature embeddings, parameters

for epoch do
T ← shuffle(T);
for batch B = {(ui ,vi , ri)}, i ∈ [1,n] do

generate cui , c
v
i ∈ {0, 1} ∼ Bernoulli(β) independently

(0 denotes cold and 1 is not);
for user ui do

generate user random vector {uir };
calculate user CF and CB vector uiCF , u

i
CB ;

calculate attention weight auiCF ,a
ui
CB with

(1 − cui)u
i
CF + c

u
i u

i
r and uiCB according to

equation 9;
calculate user vector ui according to equation 12;

end
foreach item vi do calculate item vector vi similarly
as above calculation on ui ;
foreach i do yi ← bд + c

u
i bui + c

v
i bvi + uivi ;

Calculate the Loss according to equation 8;
foreach cui == 1 do update uiCF with Adagrad(lr,Loss);
foreach cvi == 1 do update viCF with Adagrad(lr,Loss);
update other parameters with Adagrad(lr,Loss);

end
end

Algorithm 1: Learning Process of “Cold Sampling”

process is concluded as Algorithm 1. The model is trained with the
common mini-batches. In each batch with a size of n, some users
and items are randomly set to be cold, i.e. their historical interaction
information is shadowed as unknown. Let cui , c

v
i ∈ {0, 1} denote

whether the feedback information of the user and the item with
index i ∈ [1,n] in the batch is shadowed, respectively. cui and cvi
are sampled independently in Bernoulli(β).

Then the prediction during training process is:

ui = auiCF [(1 − c
u
i)u

i
CF + c

u
i u

i
r] + a

ui
CBu

i
CB

vi = aviCF [(1 − c
v
i)v

i
CF + c

v
i v

i
r] + a

vi
CBv

i
CB

yi = bд + c
u
i bui + c

v
i bvi + uivi

(12)

where ri is the label, uir and vir are randomly generated vectors in
Rk in the same distribution as the initial user and item vectors. The
attention weights of CF part auiCF and aviCF is calculated according to
the uir and vir if ui orvi is chosen to be shadowed as cold one. Note
that the bias will also be shadowed in order to simulate a real cold
situation. The model structure with historical feedback information
shadowed is shown in Figure 3.

Since users and items be shadowed as cold ones are randomly
selected in each batch and epoch, overall, the model tends to use all

information available. This Cold Sampling Strategy takes an unified
learning process and is easy to be implemented.

4 EXPERIMENTS
To verify the model performance, we conduct experiments mainly
to answer the following questions:

RQ1 How does ACCM perform compared to the state-of-the-
art methods?

RQ2 How do the key hyper-parameters of ACCM (i.e., atten-
tion size, embedding size) influence the performance?

RQ3 Is attention mechanism helpful to adjust source infor-
mation of recommendation? Can it recognize cold items or
users while predicting?

RQ4 Does the specific “cold sampling” learning strategy en-
hance the model ability to make recommendations on cold
data?

4.1 Experimental Settings
4.1.1 Datasets. We mainly conducted our experiments on two
datasets: ML-100k and WeiboDouban. Some detailed information
of the datasets is shown in Table 1

Table 1: Statistics of Evaluation Datasets

Dataset Interaction# User# Item# Sparsity

ML-100k 100,000 943 1,682 93.70%
WeiboDouban 354,929 5,796 14,468 99.58%

•ML-100k. It is a stable benchmark dataset maintained by Grou-
plens . It includes 943 users and 1,682 movies. Historical feedback
information is 100,000 ratings in 1 to 5 given by a user to a movie.
Content information we used is the age, gender, occupation of users
and release year, genres of items.
• WeiboDouban. The data has been used by many previous

works [20, 44, 45]. The dataset contains the footprints of users
mainly from two domains: Douban and SinaWeibo . We use the
ratings of books as the historical feedback information. We sampled
5,796 users and 14,468 books with non-empty tags. Tags are words
which can give a brief capture of users and books. Users may tag
themselves in SinaWeibo and tag books in Douban. We choose the
top 100 most frequent tags of users as their content information,
and the books are similar. 1 and 0 mean whether the user or the
book has this tag or not. The WeiboDouban dataset is much sparse
than the ml-100k, which provide verification of model performance
with different sparsity.

4.1.2 Evaluation. To form a warm evaluation first, we remain one
sample for each user and item in the training data, and then ran-
domly split the other samples. We split the dataset into training
(80%), validation (10%) and test (10%) sets. To form evaluation sets
in different cold ratios, for example, 50% item cold, we randomly
choose 50% samples in the validation and test sets and give each
sample a specific item id only for the sample. The validation set
is used to conduct the early stop and optimize hyper-parameters,

https://grouplens.org/datasets/movielens/100k/
https://www.douban.com/
https://www.weibo.com/

and we use the test set to evaluate the model performance. The
evaluation metric is Root Mean Square Error (RMSE).

4.1.3 Baselines and Variations of Our Model. We compare our pro-
posed ACCM with the following state-of-the-art algorithms. Each
algorithm has been trained and optimized on each dataset.
•UserKNN [21]. It is a CF method based on the k-nearest neigh-

bors (KNN) algorithm. To predict the rating of an item given by a
user, it finds the most similar users who have rated the item and
output a weighted average of their ratings.
• ItemKNN [10]. It is similar to UserKNN but applies KNN on

item level.
• BiasedMF [23]. It is one of the matrix factorization models of

CF. Similar to ACCM, it uses dot product of user and item vectors
with biases as the prediction. It makes recommendations only based
on the historical feedback information.
• SVD++ [22]. A well-known CF method which integrates both

explicit and implicit feedback, which has been shown powerful in
personalized recommendations in many previous researches.
• UserItemCB. It can be regarded as the right CB part of result

level attention model in Figure 1 with biases. It makes recommen-
dations mainly based on content information of users and items.
• NCF [15]. It is Neural network-based Collaborative Filtering

proposed byHe et al. in 2017. It performswell by doing collaborative
filtering in a framework of neural networks.
•NFM [14]. It is a Neural Factorization Machine proposed by He

and Chua in 2017. It is one of the state-of-the-art deep learning
methods, which uses Bi-Interaction Layer to integrate both content
and historical feedback information.
•AFM [42]. Attentional FactorizationMachine, it is an extension

of NFM, which uses attention network to achieve a weighted sum
of feature interactions.
•Wide&Deep [8]. It is proposed by Google in 2016, which com-

bines the deep neural network and linear model. One-hot vectors
are directly fed into the wide linear part and embedded in the deep
neural part.

To better understand the model structure, experiments were also
conducted on some variation of ACCM.
• RLAM. It is Result Level Attention Model, mentioned in 3.1.
•RLWS. It is Result Level Weighted-SumModel, which replaces

the attention network in RLAM with weights as a weighted-sum of
CF and CB results.
•VLWS. It is Vector Level Weighted-SumModel, which replaces

the attention network in ACCM with weights as a weighted-sum
of CF and CB vectors.

RLWS and VLWS models are used to show the effectiveness
of attention parts in the proposed ACCM. For RLAM and ACCM,
experiments of different training strategies are also conducted,
including regular training and using “attention set” or “cold sam-
pling” mentioned in 3.3. We provide the codes for ACCM in Github
at https://github.com/THUIR/ACCM.

4.1.4 Parameter Setting. Generally, all the methods are optimized
with mini-batch Adagrad [11], in which the learning rate can adap-
tively slow down as the learning process going on. Learning rate is
searched for each model from 0.001 to 0.1. Batch size is set to 128.
The early stop is conducted according to the performance on the

https://github.com/THUIR/ACCM

Table 2: Overall Performance

ML-100k WeiboDouban

Random Cold1 Random Cold1

UserKNN 0.9376 1.0498 1.5550 1.7511
ItemKNN 0.9237 1.0431 1.4622 1.7125
BiasedMF 0.9375 1.0186 1.4278 1.5917
SVD++ 0.9220 1.0151 1.4327 1.5960

UserItemCB 0.9370 0.9931 1.4225 1.5750

NCF 0.9450 1.1696 1.4818 1.8382
NFM 0.9143 0.9974 1.4072 1.5818
AFM2 0.9274 0.9934 - -

Wide&Deep 0.9099 0.9966 1.4064 1.5680

RLWS 0.9133 1.0567 1.4158 1.7215
RLAM (Regular Train) 0.9132 1.1574 1.4053 1.6357
RLAM (Attention Set) 0.9123 1.0150 1.4063 1.5808
RLAM (Cold Sampling) 0.9134 0.9951 1.4084 1.5753

VLWS 0.9110 1.0608 1.4101 1.6573
ACCM (Regular Train) 0.9006*3 1.0176 1.40483 1.5896
ACCM (Attention Set) 0.9012*3 0.9906 1.40273 1.5812
ACCM (Cold Sampling) 0.9027*3 0.9776* 1.3987*3 1.5541*

1. Randomly item 30% cold and user 30% cold
2. Experiments of AFM on WeiboDouban cannot finish in acceptable
time and computing resources
3. The bold values in the same column are not significantly different
among themselves (p > 0.01)
*. Significantly better than the best baseline (italic ones) with p < 0.01

validation set. Embedding size (number of latent factors) is 64 in
ML-100k and 32 in WeiboDouban. Specifically, there is no hidden
layer in the AFM, UserItemCB or ACCM’s CB part and one hidden
layer with the size of 64 in NFM and Wide&Deep. All these parame-
ters are well optimized by our efforts and near the best. To prevent
the model from overfitting, we employ dropout on the attention
network and fully-connected layers in the CB parts and the dropout
ratio is set between 0.05 to 0.2. Batch Normalization (BN) [19] is
conducted on the fully-connected layers.

4.2 Performance Comparison (RQ1)
4.2.1 Overall Performance. Table 2 shows the overall performance
of ACCM and other baselines. We also show the performance of
result level attention model (RLAM) as a comparison. Models are
evaluated on two cold scenarios: randomly split data; indepen-
dently random 30% of users and 30% of items to be cold. Note that
experiments of AFM on WeiboDouban cannot finish in acceptable
time and computing resources due to hundreds of tag features. So
AFM could only be tested on ML-100k. From the results, following
observations can be made:

(1) Methods taking advantages of both content and feedback
information like ACCM, RLAM, Wide&Deep, NFM are generally
better thanmethods using only one of them. It is reasonable because
more information can help us know users better.

(2) On warm scenarios, using attention mechanism to adjust
the recommendation source, content or historical feedback infor-
mation, ACCM outperforms state-of-the-art approaches including

0 20 50 80 100
Item Cold Ratio(%)

0.92
0.94
0.96
0.98
1.00
1.02

Te
st

 R
M

SE

ML-100k

0 20 50 80 100
User Cold Ratio(%)

0.92
0.94
0.96
0.98
1.00
1.02

Te
st

 R
M

SE

ML-100k

0 20 50 80 100
Item Cold Ratio(%)

1.38
1.39
1.40
1.41
1.42
1.43

Te
st

 R
M

SE

WeiboDouban

0 20 50 80 100
User Cold Ratio(%)

1.38
1.47
1.56
1.65
1.74
1.83
1.92

Te
st

 R
M

SE

WeiboDouban

BiasedMF UserItemCB NFM Wide&Deep ACCM

Figure 4: Performance in Different Scenarios. Note that the
RMSE of BiasedMFkeeps growing up to a high value in some
scenarios. To have a clear comparison between other meth-
ods, lines of BiasedMF is not drawn entirely in those dia-
grams.

Wide&Deep, NFM and other baselines. The reason is that the rich-
ness of content and feedback information are different among users
and items. Other methods use global weights, which may ignore
this and lose some ability of adaptation in different scenarios.

(3) On cold scenarios, using attention and training in a regu-
lar way is not enough to handle the cold-start problem. Because
samples in the training set are all warm and attention networks
have not been taught how to handle cold items or users. Either cold
training strategy, “attention set” or “cold sampling”, improves the
performance.

(4) To handle the cold-start problem, “cold sampling” is better
because “attention set” throw out some historical feedback informa-
tion and do not provide a unified learning process as “cold sampling”,
as mentioned in 3.3.

(5) In most situations, vector level attention (ACCM) is better
than result level attention (RLAM). It is reasonable because vec-
tor level attention is more flexible and general than result level
attention. It can not only identify cold user-item pairs but also
differentiate cold and warm starts of each user or item.

4.2.2 Impacts of Different Cold Ratios. We also test the models’
performance on datasets suffering from different ratios of cold-start,
shown in Figure 4. It is clear that our ACCM perform better than
other baselines on all conditions. Note that the performance of
UserItemCB is getting worse at a slowest speed because it is a CB
method. ACCM is no worse than UserItemCB in all scenarios. NFM
and Wide&Deep perform worse than UserItemCB in the extremely
user cold situations. The reason we think is that historical feedback
information of users plays an important role in understanding the
user, thus NFM and Wide&Deep may give a bigger global weight to
user embeddings. But in extremely cold scenarios the embeddings
of user ids contain no information and have a harmful impact on
the model outputs.

Wide&Deep is the best baseline in most scenarios. So we mainly
compare ACCM with Wide&Deep in the following experiments.

8 16 32 64
Attention Size

0.97

0.98

0.99

1.00

1.01

Te
st

 R
M

SE

ML-100k
Wide&Deep
ACCM

8 16 32 64
Attention Size

1.55

1.56

1.57

1.58

Te
st

 R
M

SE

WeiboDouban
Wide&Deep
ACCM

Figure 5: Impact of Attention Size. Models are evaluated on
test sets in which randomly 30% of samples are item cold,
and 30% of samples are user cold.

32 64 128 256
Embedding Size

0.96

0.98

1.00

Te
st

 R
M

SE

ML-100k

16 32 64 128
Embedding Size

1.56

1.57

1.58

1.59

Te
st

 R
M

SE

WeiboDouban

NFM Wide&Deep ACCM

Figure 6: Impact of Embedding Size. Models are evaluated
on test sets in which randomly 30% of samples are item cold
and 30% of samples are user cold.

4.3 Hyper-Parameter Investigation (RQ2)
There are mainly two hyper-parameters in ACCM: attention size,
embedding size.

4.3.1 Attention Size. Attention size may affect the ability of the
model to evaluate the source information and choose proper rec-
ommendation strategy. To investigate the impact of attention size,
we test the model performance when the attention size is 8, 16,
32, 64, shown in Figure 5. Results show that ACCM is robust to
the changes of attention size. This may be due to that it is enough
to measure two vectors from CF and CB parts with a small size
of attention. But an over size of attention may lead to overfitting
and cause a drop of model performance. We choose 16 to be the
attention size for other experiments.

4.3.2 Embedding Size. Another hyper-parameter we focus on is
the embedding size. Small embedding size may not be enough to
represent the user and item features. Larger embedding size can
enhance the model’s ability to describe data. But an over size of em-
bedding may cause overfitting and significantly affect the learning
efficiency. Figure 6 shows the performance of models with different
embedding sizes. In most situations, ACCM performs better with
the same embedding size as NFM and Wide&Deep, except on the
WeiboDouban when the embedding size is larger than 128. The
reason is that our ACCM starts to overfit at a smaller embedding
size than Wide&Deep. But ACCM performs well with small em-
bedding size, better than NFM and Wide&Deep with much larger
embedding size, which shows the effectiveness of our model.

0.0 0.2 0.4 0.6 0.8 1.0
avCF - Attention Weight of Item CF

0.0

0.2

0.4

0.6

0.8

1.0

au CF
 -

At
te

nt
io

n
W

ei
gh

t
of

 U
se

r
CF

warm

user cold

item cold

both cold

ML-100k(item 30% user 30% cold)

Figure 7: Visualization of Attention Weights. Samples are
from the test set of ML-100k in which randomly 30% of sam-
ples are item cold, and 30% of samples are user cold. avCF is
the attention weight of item CF vector, and auCF is the atten-
tion weight of user CF vector.

4.4 Recommendation Traceback with
Attention (RQ3)

The attention weights reflect how the model recommend and which
information the recommendation is based on. Ideally, for those
samples suffer from the cold-start problem, attention mechanism
should give higher weights to content information. To have a look
at whether the attention network can identify cold items and users,
we let the attention weights of the user and item CF vector, i.e., auCF
and avCF , be the two features of a user-item pair. We draw a scatter
diagram of samples according to their attention weights, as shown
in Figure 7. The samples are from the test set of ML-100k in which
30% items and 30% users are cold.

Each point is a user-item pair and different colors represent
different cold scenarios. Results show that ACCM can not only
clearly identify which is a cold sample, but also distinguish the item
cold and user cold. For example, when the sample is from a warm
user and a cold item, which is among the green dots on the top
left, the weight of CF vector in item part avCF is near 0 because it is
better to understand the items by its content information, but the
weight of CF vector in user part auCF is near 1 because historical
feedback information is a better reflection of the users’ preference.
From the two dimensions of attention weights, four situations, i.e.,
item cold, user cold, both cold, warm, can be clearly differentiated.

Let us take some examples to show how the attention weights
help us trace back the recommendation. Table 3 shows some sam-
ples in different cold scenarios from ML-100k. The first three (EX1-
EX3) are all warm user-item pairs. Their attention weights of CF
part are all bigger than 0, which means that there is some historical
feedback information can be taken advantage of. The last three
(EX4-EX7) are cold user-item pair. No matter the user or the item,
if it is cold, not concluded in the training set, the attention weights
of the CF vectors will be around 0. Note that the attention weights
can also somehow reflect the richness of feedback information. The
EX4 is an example that the item shows only once in the training
set, whose attention weight of item CF is still near 0. And EX2 and

Table 3: Examples of Attention Weights on ML-100k

in Training Attention Rating

User Item auCF avCF y r

Warm
EX1 102 165 0.998 0.998 5.13 5
EX2 25 121 0.746 1.000 3.799 4
EX3 358 10 0.996 0.344 2.838 3

Cold

EX4 157 1 0.998 0.000 4.015 4
EX5 0 52 0.024 0.985 2.385 2
EX6 183 0 0.993 0.015 1.120 1
EX7 0 0 0.015 0.000 4.059 4

EX3 show the historical feedback information is not rich enough
to absolutely dominate the recommendation.

Generally, there are two advantages of taking this kind of atten-
tion framework:

(1) Instead of manual efforts to adjust recommendation strate-
gies, the model can automatically select appropriate recom-
mendation strategies in different cold scenarios and take the
best advantages of content and historical feedback informa-
tion.

(2) The attention weights make the recommendation strategies
understandable by us. We can trace back what information
dominates the prediction.

4.5 Impact of Cold Training (RQ4)

0 0.01 0.05 0.1 0.2
α

0.97
0.98
0.99
1.00
1.01
1.02

Te
st

 R
M

SE

ML-100k

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
β

0.97
0.98
0.99
1.00
1.01
1.02

Te
st

 R
M

SE

ML-100k

0 0.01 0.05 0.1 0.2
α

1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62

Te
st

 R
M

SE

WeiboDouban

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
β

1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62

Te
st

 R
M

SE

WeiboDouban

Wide&Deep ACCM (Attention Set) ACCM (Cold Sampling)

Figure 8: Impact of Cold Training. Models are evaluated on
test sets inwhich randomly 30% of samples are item cold and
30% of samples are user cold. α is the size of “attention set”, a
relative ratio of the whole training set. β is the ratio of cold
sampling in each batch.

As mentioned in 3.3, in ACCM, we conduct a special training
strategy “cold sampling” to help handle the cold start problem. We
first focus on whether “cold sampling” can help deal with the cold
data. We changed the ratio β of vectors shadowed in each batch.
The models are evaluated on test sets in which randomly 30% of
samples are item cold and 30% of samples are user cold. The results
are shown in Figure 8.

As a comparison, results ofWide&Deep are the black lines, which
are trained in regular batches. Without “cold sampling”, the perfor-
mance of ACCM (red lines when β = 0.0) is worse thanWide&Deep.
This is because in ACCM the vectors of cold items are remained
untrained and usually are random mass. Attention networks have
not been trained to handle such situations and may give random
weights too, which directly affects the final prediction. Wide&Deep
learns global weights of those features and has hidden layers to
extract information from other content features. Fully connected
hidden layers dilute the influence of cold embeddings. But the
absent information still have weights and bad impact on the final
result. Fortunately, a small number of cold samples can significantly
improve the ACCM performance on cold data, i.e. red lines when
β ≥ 0.1. The reason is that a few cold samples are enough to let the
model or the attention network know what is “cold” and what to
do in such a situation. But the number of cold samples should not
be too large, as it may affect the efficiency of the learning process.

We also test the performance of different sizes of “attention set”,
which are the blue lines in the figures. It uses part of the train-
ing set to specifically train the attention network. We show the
performance changes as the size of “attention set” changing. α is
the relative size to the whole training set. This training strategy is
verified worse than “cold sampling”. There are mainly two reasons:
laying off an “attention set” will throw out much historical feed-
back information, which should be used to train the user and item
embeddings; two step training is not unified and may impair the
coordination of learning process.

For other experiments in previous sections, we set the β 0.1 to
0.4 in ML-100k and 0.3 to 0.6 in WeiboDouban. And the relative
size of “attention set” α is 1% to 5% of the training set.

5 CONCLUSIONS
In this work, we proposed a novel model called Attentional Con-
tent&Collaborate Model (ACCM) to unify both content and histor-
ical feedback information in the recommendation. In the model,
CB and CF information are combined in vector-level but not result-
level. It uses the attention mechanism to control the ratio of the two
types of information for each user-item pair when making recom-
mendations. ACCM can automatically choose proper information to
represent the user and the item. Adaptive learning strategies “cold
sampling” are conducted to handle the cold-start problem. ACCM
finally achieves better performance on both cold and warm data
than the state-of-the-art methods like NFM, AFM and Wide&Deep.
It reveals a new direction to handle both cold and warm starts in
the same recommendation model adaptively and effectively with
attention mechanism.

We notice that “cold sampling” is not a training strategy specific
for attention set. In the future, we would like to introduce the
“cold sampling” strategy on more models, including state-of-the-art
approaches. Besides, more information such as social information or
reviews can also be integrated, which can be considered as context
information different from both content and historical feedback.

ACKNOWLEDGMENTS
This work is supported by Natural Science Foundation of China
(Grant No. 61672311, 61532011), and is partly supported by the
Tsinghua-Sogou Tiangong Institute for Intelligent Computing.

REFERENCES
[1] Deepak Agarwal, Bee-Chung Chen, and Bo Long. 2011. Localized factor models

for multi-context recommendation. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 609–617.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Daniel Billsus and Michael J Pazzani. 2000. User modeling for adaptive news
access. User modeling and user-adapted interaction 10, 2-3 (2000), 147–180.

[4] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, 335–344.

[5] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao, and Tat-Seng
Chua. 2016. SCA-CNN: Spatial and Channel-wise Attention in Convolutional
Networks for Image Captioning. arXiv preprint arXiv:1611.05594 (2016).

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. 2016. Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected crfs. arXiv preprint
arXiv:1606.00915 (2016).

[7] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong
Yu. 2012. Svdfeature: a toolkit for feature-based collaborative filtering. Journal
of Machine Learning Research 13, Dec (2012), 3619–3622.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

[9] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[10] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommenda-
tion algorithms. ACM Transactions on Information Systems (TOIS) 22, 1 (2004),
143–177.

[11] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[12] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2015. TrustSVD: Collaborative
Filtering with Both the Explicit and Implicit Influence of User Trust and of Item
Ratings.. In Aaai. 123–129.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse
Predictive Analytics. (2017).

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 173–182.

[16] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-
trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. ACM, 549–558.

[17] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching machines to read and
comprehend. In Advances in Neural Information Processing Systems. 1693–1701.

[18] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. Ieee, 263–272.

[19] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[20] Meng Jiang, Peng Cui, Nicholas Jing Yuan, Xing Xie, and Shiqiang Yang. 2016.
Little Is Much: Bridging Cross-Platform Behaviors through Overlapped Crowds..
In AAAI. 13–19.

[21] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R
Gordon, and John Riedl. 1997. GroupLens: applying collaborative filtering to
Usenet news. Commun. ACM 40, 3 (1997), 77–87.

[22] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 426–434.

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009).

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[25] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via marginal-
ized denoising auto-encoder. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. ACM, 811–820.

[26] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling user exposure in recommendation. In Proceedings of the 25th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 951–961.

[27] Guang Ling, Michael R Lyu, and Irwin King. 2014. Ratings meet reviews, a
combined approach to recommend. In Proceedings of the 8th ACM Conference on
Recommender systems. ACM, 105–112.

[28] Christopher Manning, Richard Socher, Guillaume Genthial Fang, and Rohit
Mundra. 2017. CS224n: Natural Language Processing with Deep Learning1.
(2017).

[29] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems. ACM, 165–172.

[30] Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi, and Tomoko Ohkuma.
2017. Unifying text, metadata, and user network representations with a neural
network for geolocation prediction. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1.
1260–1272.

[31] Xia Ning and George Karypis. 2012. Sparse linear methods with side informa-
tion for top-n recommendations. In Proceedings of the sixth ACM conference on
Recommender systems. ACM, 155–162.

[32] Michael J Pazzani. 1999. A framework for collaborative, content-based and
demographic filtering. Artificial intelligence review 13, 5-6 (1999), 393–408.

[33] Michael J Pazzani and Daniel Billsus. 2007. Content-based recommendation
systems. In The adaptive web. Springer, 325–341.

[34] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining. ACM, 273–282.

[35] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[36] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B Kantor. 2015. Recom-
mender systems handbook. Springer.

[37] Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo. In Proceedings of the 25th interna-
tional conference on Machine learning. ACM, 880–887.

[38] Latanya Sweeney. 2001. Information explosion. Confidentiality, disclosure, and
data access: Theory and practical applications for statistical agencies (2001), 43–74.

[39] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Advances in neural information process-
ing systems. 2643–2651.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv preprint arXiv:1706.03762 (2017).

[41] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and tell: A neural image caption generator. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3156–3164.

[42] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional factorization machines: Learning the weight of feature interac-
tions via attention networks. arXiv preprint arXiv:1708.04617 (2017).

[43] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. 2016.
Image captioning with semantic attention. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4651–4659.

[44] Nicholas Jing Yuan, Fuzheng Zhang, Defu Lian, Kai Zheng, Siyu Yu, and Xing
Xie. 2013. We know how you live: exploring the spectrum of urban lifestyles. In
Proceedings of the first ACM conference on Online social networks. ACM, 3–14.

[45] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, and Xing Xie. 2014. Mining
novelty-seeking trait across heterogeneous domains. In Proceedings of the 23rd
international conference on World wide web. ACM, 373–384.

[46] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval. ACM, 83–92.

[47] Yin Zheng, Cailiang Liu, Bangsheng Tang, and Hanning Zhou. 2016. Neural
Autoregressive Collaborative Filtering for Implicit Feedback. In Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2–6.

[48] Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. 2016. A neural
autoregressive approach to collaborative filtering. arXiv preprint arXiv:1605.09477
(2016).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Recommendation Models
	2.2 Deep Learning in Recommendation
	2.3 Attention-Based Model

	3 Attentional Collaborate&Content Models
	3.1 Result Level Attention
	3.2 Vector Level Attention
	3.3 Model Learning: Attention on Cold users and items

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison (RQ1)
	4.3 Hyper-Parameter Investigation (RQ2)
	4.4 Recommendation Traceback with Attention (RQ3)
	4.5 Impact of Cold Training (RQ4)

	5 Conclusions
	Acknowledgments
	References

