
Adaptive Feature Sampling for Recommendation with Missing
Content Feature Values

Shaoyun Shi1, Min Zhang1*, Xinxing Yu2, Yongfeng Zhang3, Bin Hao1,
Yiqun Liu1 and Shaoping Ma1

1Department of Computer Science and Technology, Institute for Artificial Intelligence,
Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China

2Zhihu, Beijing, China
3Department of Computer Science, Rutgers University, NJ, USA

shisy17@mails.tsinghua.edu.cn, z-m@tsinghua.edu.cn

ABSTRACT
Most recommendation algorithms mainly make use of user history
interactions in the model, while these methods often suffer from
the cold-start problem (user/item has no history information). On
the other sides, content features help on cold-start scenarios for
modeling new users or items. So it is essential to utilize content
features to enhance different recommendation models. To take full
advantage of content features, feature interactions such as cross
features are used by some models and outperform than using raw
features. However, in real-world systems, many content features
are incomplete, e.g., we may know the occupation and gender of a
user, but the values of other features (location, interests, etc.) are
missing. This missing-feature-value (MFV) problem is harmful to
the model performance, especially for models that rely heavily on
rich feature interactions. Unfortunately, this problem has not been
well studied previously.

In this work, we propose a new adaptive “Feature Sampling”
strategy to help train different models to fit distinct scenarios, no
matter for cold-start or missing feature value cases. With the help
of this strategy, more feature interactions can be utilized. A novel
model named CC-CC is proposed. The model takes both raw fea-
tures and the feature interactions into consideration. It has a linear
part to memorize useful variant information from the user or item
contents and contexts (Content & Context Module), and a deep
attentive neural module that models both content and collaborate
information to enhance the generalization ability (Content & Col-
laborate Module). Both parts have feature interactions. The model is
evaluated on two public datasets. Comparative results show that the
proposed CC-CCmodel outperforms the state-of-the-art algorithms
on both warm and cold scenarios significantly (up to 6.3%). To the
best of our knowledge, this model is the first clear and powerful
model that proposed to handle the missing feature values problem
in deep neural network frameworks for recommender systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357942

CCS CONCEPTS
• Information systems→ Recommender systems;

KEYWORDS
Neural Recommendation Model, Missing Feature Value, Feature
Sampling, Feature Interaction
ACM Reference Format:
Shaoyun Shi1, Min Zhang1*, Xinxing Yu2, Yongfeng Zhang3, Bin Hao1,,
Yiqun Liu1 and Shaoping Ma1. 2019. Adaptive Feature Sampling for Recom-
mendation with Missing Content Feature Values. In The 28th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’19),
November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357384.3357942

1 INTRODUCTION

Occupation: B ? A A
Interest: C E D ?

Price: H M L H
Color: B W Y ?

Epoch 1 Epoch 2 Epoch e

……

Data Marix

Feature Sampling

Model Learning

Model

Figure 1: Model Learning with Feature Sampling
Traditional recommendation algorithms include two major ap-

proaches, i.e., Content-Based (CB) and Collaborative Filtering (CF)
methods. CF methods [10, 15] analyze the user and item historical
feedbacks. CB approach [1] takes advantage of the user and item
content information for recommendation, such as the occupation
and income of users, and the titles, genres of movies.

However, the two types of information are not always available.
When a new user or item with no historical information comes
into the system, CF models fail to make recommendations, which
is called the “Cold-Start” problem – a considerable problem in real-
world recommender systems. Content information is unavailable
or insufficient sometimes, which refers to missing feature values
problem. For example, some items may have particular values on a
certain feature but for other items the feature value may be miss-
ing, or some users are glad to provide their location and income
information, but others may prefer to leave it blank. Although the

* Corresponding Author
This work is supported by Natural Science Foundation of China (Grant No. 61672311,
61532011) and the National Key Research and Development Program of China
(2018YFC0831900).

https://doi.org/10.1145/3357384.3357942
https://doi.org/10.1145/3357384.3357942

cold-start problem has been well studied, how to handle the MFV
problem in recommendation is largely ignored in previous works.
The availability of content features can be immensely complicated.

Also, in deep neural networks, feature interactions like cross
feature [7] and Bi-Interaction (BI) layer [13] have been verified to
be helpful to improve the recommendation performance. Although
multilayer perceptron (MLP) can learn low-rank relations, it is in-
efficient [4]. Cross features and BI layers are effective ways to help
deep neural networks model feature interactions. However, MFVs
have negative impacts on model performance, especially models
relying on rich feature interactions. In deep neural networks, ran-
domized values, zeros, or specific Unknown tags are usually used
to fill in the missing values, making the model trainable and thus
producing normal outputs. Once the model is trained, the missing
value patterns in test cases can be different from what the model
has ever seen in training cases and hence lead to errors. Besides,
the true values of those unknown features on different users/items
may be different from each other, so either considering them as
randomized values or as the same Unknown label may introduce
biases into the model learning. Feature interactions between un-
reliable representations will lead to even baneful influence. With
these traditional treatments, the model will not perform well for
the missing feature value cases, and our experiments show that this
issue has a terrible impact on model performance.

To mitigate the effects of MFVs, we propose “Feature Sampling”
(FS) strategies to help train the models. The brief illustration of the
training process with FS is shown in Figure 1. The main idea is to
introduce more MFVs into the training process and thus help the
model learn a representation of those unknown features. Random
FS is further improved by an adaptive sampling and learning process
for different data scenarios to give a more robust performance. Note
that FS strategies are not specific for onemodel, but they are verified
to be helpful for various models.

With the help of FS strategies, more feature interactions can be
introduced to the models in the situation of MFVs. We propose a
Content & Context - Content & Collaborate (CC-CC) model, which
has a neural Content & Collaborate Module to integrate CF and CB.
To enhance the deep neural network, which is good at generalizing,
the CC-CC model has a linear Content & Context Module with a
strong memorization ability. The model considers both raw features
and feature interactions. On the linear Content & Context Module,
it takes automatically or manually designed cross-features as inputs.
In the neural Content & Collaborate Module, it uses Bi-Interaction
layer to model second-order feature interactions and then uses MLP
to learn even higher order feature interactions.

The proposed model is able to adjust the weights of information
from different resources (historical feedback and content infor-
mation) to make recommendations with the attention mechanism.
When the content parts meet MFVs or unreliable inputs, the outputs
will be more dependent on the historical feedback information. In
warm scenarios, it considers both kinds of information, but in cold
scenarios, it gives higher weights to the content information. Our
model is different from previous deep neural network models based
on global weights to model different types of information. The at-
tention weights in CC-CC are adaptively adjusted according to the
inputs during the testing procedure. The “Cold Sampling” [32] we
adopt and the new “Feature Sampling” strategies we proposed help

train the attention mechanism. The model has been evaluated on
two public datasets and outperforms the state-of-the-art algorithms
on different scenarios.

The main contributions of this work are summarized as follows:
(1) We propose an adaptive Feature Sampling learning strategy

to help deal with both the cold-start problem and the missing
feature value problem. The strategy is verified to be helpful
for different models to generate more robust results.

(2) A novel attentive model named CC-CC is designed, which
considers both raw features and their interactions to inte-
grate CF and CB recommendation. With the help of Feature
Sampling, it works in different scenarios (warm, cold, MFVs).

(3) Experimental results show that our model CC-CC makes
significant improvements against the state-of-the-art recom-
mendation algorithms.

2 RELATEDWORK
2.1 Deep Recommendation Models
In this work, we focus on deep neural recommendation. In recent
years, deep learning has shown its outstanding power in many
fields like computer vision and natural language processing. The
influence of deep learning has spread to the fields of information
retrieval and recommendation. It helps to enhance the ability of
traditional methods to model the non-linearity in data. For example,
early models such as MDA-CF [26] and CVAE [27] combine matrix
factorization with auto-encoders. CNN is a powerful structure to
help model the visual information [11, 12]. RNN can be used to
model the text data [2] or reviews [25, 38]. Some other research
redesigned traditional algorithms in a neural way, for example,
NCF [14] adopted a deep learning approach and JRL [37] adopted
a representation learning approach to collaborative filtering. Se-
quential information such as a list of user-item interactions can
also be modeled by RNN [17–19] or memory networks [6, 20] to
help provide sequential recommendations.

There exist some efficient models to combine content features
with end-to-end ID embeddings.Wide&Deep [7] proposed byGoogle
combines the deep neural network with a linear model. It has strong
generalization ability based on the deep neural part and memoriza-
tion ability based on the linear part. In the NFM [13], both sparse
IDs and content features are embedded into vectors to model feature
interaction. These methods have shown remarkable performance
on many datasets and in many scenarios, indicating that both raw
features and feature interactions are useful, and integrating the
content features and user-item interactions is helpful. However, a
disadvantage of these methods is that they use global weights to
model the information, which lacks the ability of adaption to better
solve for the cold-start and MFV problems.
2.2 Missing Data & Feature Values
In CF methods, the rating matrix of items by users has many unob-
served values. Missing ratings are usually assumed to be missing
at random. Some works have shown that incorrect assumptions
about the missing data can lead to biased parameter estimation
and prediction, and non-random missing data assumption performs
better [16, 28].

Most of the previous works ignored that content features can also
be missing in many situations. Although we can train the model

with sufficient content features to handle the cold-start problem,
the testing environment in real-world recommender systems is al-
ways changing and it usually suffers from the missing feature value
problem. A traditional way to solve the problem is to fill the missing
features with some valid values, what we call as “Missing Feature
Value Imputation”. Intuitively, MFVs can be filled with the most
frequent feature values, uniformly randomized values, or values
generated randomly according to the observed distribution. Fur-
thermore, there exist some works using KNN-based [29] methods
or autoencoders [3] to conduct missing data imputation. Most of
these works are based on two assumptions: MFVs have the same
or similar distribution with the observed feature values, and the
data distribution of the training set is similar to that of the testing
set. However, the testing distribution could be possibly different
from training cases because user records in online environments
are dynamic and difficult to predict. As a result, the imputation
performance in the testing procedure is usually not guaranteed.
2.3 Cold-Start Recommendation
Cold-start is an important problem in recommendation and must be
carefully considered in real-world recommender systems. For exam-
ple, some works use a hybrid model to generate recommendation
results [35, 36]. When new items come, the models give predictions
according to the content-based part. Other researchers combine the
content features with CF [33, 34]. These approaches take advan-
tages of both CF and CB to handle the cold-start problems. However,
they cannot adaptively balance the importance of different types of
information for each user-item pair so as to benefit both cold-start
cases and recommendation accuracy. ACCM [32] is proposed to ad-
dress the problem by an attention mechanism to determine whether
to use the user-item interactions or the content features to learn the
user/item vectors. Warm users and items benefit from both kinds of
information, but the vector representations of cold users/items are
mainly learned from content features. However, it fails to consider
the feature interactions and the adaptive importance between CF
and CB, limiting its ability to model content information for the
cold-start recommendation.
3 FEATURE SAMPLING (FS)
Although content features are sometimes easier to collect than
historical interactions, they can be partially missing in real-world
systems. Sometimes we use a specific Unknown tag to represent the
missing feature values and learn them in the training procedure.
We may also use some predicted or random values to replace the
unknown values. However, in the test procedure or real-world
online environments, content features can be diverse and complex,
and the missing features could be different from the training cases.
To alleviate the problem, we aim to introduce more complex and a
larger amount of MFVs into the training procedure by sampling and
hiding some feature values – without losing any useful information
– to train a more robust model that can handle MFVs in the testing
procedure. Two new sampling strategies are proposed here, namely
random feature sampling and adaptive feature sampling.

3.1 Random Feature Sampling (RFS)
The main idea of RFS is to change some values in each batch data
matrix. Let D = {di, j } be the total training data matrix, where
each row contains the user ID, item ID, and their feature values.

di, j = Unknown represents that the feature j in row i is unknown.
Then, we randomly change some feature values by:

d ′i, j =

{
di, j , si, j = 0
“Unknown” Tag, si, j = 1

(1)

where si, j ∈ {0, 1} is a random variable used to control if di, j is
to be changed or not, and it is generated from Bernoulli(β). β is
the FS ratio controlling how many feature values are sampled in
the strategy. When si, j = 1, no matter whether di, j is an observed
feature value or not, it is modified to be unknown. The whole RFS
process is shown in Figure 2.

Feature Columns

Epoch 1:
RFS

Feature Columns

Epoch e:
RFS

Training
𝛽

𝛽

𝑑#,%

𝑑#,%

Shuffle

Training
Shuffle

Figure 2: Illustration of Random Feature Sampling. The ma-
trix is the training datamatrixD = {di, j }, where white/black
blocks represent observed/unknown feature values, respec-
tively.

In each epoch, the si, j is regenerated so that different batch sam-
ples different features. Overall, as the training procedure advances,
it tends to use all the information available. In this way, RFS brings
more unknown feature values into the training procedure, so as to
force the model to handle complex missing feature value situations
and make the model more robust.

3.2 Adaptive Feature Sampling (AFS)
The previous RFS strategy brings some MFV into the training pro-
cess. However, in real-world data, some feature columns may be
relatively complete but others may be mostly missing. For those
features that are mostly complete, sampling some of them to be
unknown indeed brings more difficult training instances and forces
the model to learn how to handle the missing values. However, if
a feature column has only a few values and FS still changes some
values to Unknown in each epoch, there may not be sufficient val-
ues to learn the features. RFS uses a constant probability β for all
feature columns, and it needs to be manually tuned for satisfactory
performance.

Feature Columns

Epoch e:

AFS

𝛽"

𝑑$,&
LRP 0.1 0.4 0.1 0.2 0.2

Feature Columns

Epoch 1:

𝑑$,&
0.3 0.1 0.3 0.1 0.2

Training
Shuffle

Training
Shuffle

𝑙(

(𝑝()

𝑝(

AFS

𝛽,

LRP
𝑙(

(𝑝()

𝑝(

Figure 3: Adaptive Feature Sampling. Thematrix is the train-
ing datamatrixD = {di, j }.White blocks are observed feature
values, gray blocks are those feature values that are natu-
rally missing in the dataset, and black blocks are sampled
feature values replaced as Unknown. βe is to control how
many values are sampled as unknown and pf determines
which features have higher probabilities to be sampled.

Thus, we proposed the Adaptive Feature Sampling (AFS) strategy
to address the problem. The process is summarized in Figure 3.
There are mainly two differences from RFS:

• FS ratio. During the training process, AFS will gradually in-
crease the FS ratio βe in each epoch e until it gets a maximum FS
ratio β ′:

βe =min(β ′, β0 + ∆ · e) (2)
where β0 is the initial FS ratio in the first epoch and ∆ is the incre-
ment of βe in each epoch. βe determines how many values should
be sampled as unknown in the data matrix in each epoch e .

• Feature importance. The intuition is that if the model depends
heavily on some features, then missing those features will signifi-
cantly influence themodel performance. The solution is to introduce
some samples that miss those important features during training to
make the model more robust. In each epoch, we first calculate the
relevance of the features to the model predictions by the Layer-wise
Relevance Propagation (LRP) [5] technology. We assume that if the
LRP results show that a feature contributes more to the final results
of the sample, then it is more important than other features. To
avoid that missing too much important features harm the training
process, a small number of important features are sampled to be
unknown at the beginning of the training process, but increasingly
more important features will be sampled along with the training.

The LRP results keep changing along with the training process.
In our experiments, we generate new LRP results during each epoch.
Formally, let the lf be the LRP feature importance of the feature f ,
(
∑
f lf = 1). Then the probability to sample the value of feature f

in a training instance (a row of the data matrix) is

pf =

{
lf , lf ≤ σ (e) ·max{l}

δ ∗ lf , otherwise
(3)

where e is the current epoch, and σ (e) is a monotonically increas-
ing function used to adjust the threshold σ (e) ∗max{l}, so that
the important features (lf bigger than the threshold) have lower
probabilities (0 < δ < 1 is used to decrease the probabilities) to be
sampled as unknown at the beginning of the training process. Note
that pf needs normalization so that

∑
f pf = 1.

By doing these, AFS has at least two advantages compared to
the simple RFS strategy. Firstly, the gradually increasing sampling
probability provides a more robust training process. The max FS
ratio β ′ is the parameter we should take into consideration, but it
is less sensitive than a fixed FS ratio β . Secondly, AFS adaptively
prevents the model from relying heavily on some features. If the
values of some feature columns are mostly available or they are
more important to the model, they will contribute more to the pre-
dictions, and LRP will be able to detect them by gradually sampling
more of these features to be unknown.
3.3 Discussion on Feature Sampling
FS strategies are motivated by the “Cold Sampling” (CS) strat-
egy [32]. The CS is designed for the attention mechanism in deep
neural recommendation models. In traditional gradient-descent-
based training processes, attention fails in cold-start scenarios while
evaluating the vectors from historical information. This is because
there are no cold samples in the training process – the model sees
all users and items in the training set, but during the testing proce-
dure, a new user’s vector in the CF part remains untrained and its

distribution is different from those trained vectors. In this situation,
the output of the attention network will be unreliable. The key
point to solve this problem is to introduce cold users/items into the
training procedure, and hence help the model learn the attention
weights in diverse cases. Shi et al. [32] proposed the CS training
strategy to help the attention network learn what is cold-start and
how to handle it.

However, FS strategy is different from CS. It is somehow a gener-
alization of CS. If we regard the user/item IDs as some features and
FS is conducted on the whole input data, including the user/item
IDs, and let Unknown denote a cold user/item ID. Then we can find
that by changing the user/item IDs to Unknown in some samples,
FS brings some cold users/items into the training procedure, and a
new ID that the model has never seen is considered as an Unknown
ID. In this way, FS helps the model to learn a global embedding
for the Unknown ID, which is a specific user/item ID. The embed-
ding is used as the representation of all cold users/items, which
can help to make recommendations in cold scenarios. Unlike FS,
however, CS replaces the embeddings of user/item IDs with random
vectors as the input of the attention network. It directly teaches the
attention network to learn what the cold vectors look like. Then
the attention network gives small weights to the cold user/item CF
embeddings during testing. Overall, they both introduce some cold
users/items into the training process, but CS focuses on teaching
the attention network to adjust between different information re-
sources – content or collaborative filtering. The FS strategy, instead,
is not designed specifically for the attention network. So what is
most important is that FS can be adopted on different deep neural
models such as Wide&Deep [7] and NFM [13]. In our experiments,
we conducted FS on content features in all of the models, while CS
is conducted on the attention network of the ACCM [32] and our
further proposed CC-CC model.

4 CONTENT & CONTEXT -
CONTENT & COLLABORATE MODEL

With the help of FS strategies, more feature interactions can be uti-
lized without worrying too much about MFVs. To verify the effects
of FS strategies, the Content & Context - Content & Collaborate
Model (CC-CC) is proposed, which uses attention mechanism to
adaptively adjust the weights of different information resources.
Further experiments show that FS strategies help CC-CC work on
different scenarios. The model structure is in Figure 4. It mainly
has two modules, a linear Content & Context Module and a deep
Content & Collaborate Module. Their outputs are finally merged to
make predictions. Detailed structures are introduced in the follow-
ing subsections one by one.

4.1 Content & Collaborate Module
CF and CB are based on different kinds of information. We be-
lieve that integrating the advantages of CF and CB can improve
recommendation performance. In our model, the neural collabora-
tive filtering vectors and content features are separated and finally
combined by attention mechanism. The purpose of the attention
network is to adjust the information source, so that the model can
use the correct recommendation strategy in different scenarios (e.g.,
cold or unreliable content features). User and item information is
used to form the user vector u and item vector v independently.

Prediction

Bias

𝐮"#

Concatenation

𝐮"$

𝐮

𝐯"#

𝐯

Attention Attention

Concatenation

𝐯"$

𝐮𝐯

Sparse Features

Embedding Layer

Bi-Interaction Layer

Output Layer

User ID Item ID

Content & Context Module Content & Collaborate Module

CF
User CB Item CB

LR

User Content Item ContentVariant User/Item Content & Context Features

Fully Connected Layers

Figure 4: Content & Context - Content & Collaborate Model.
Note that in the formulas, bold fonts are used to represent vectors
and italic fonts mean scalars or entities.
4.1.1 Neural Collaborative Filtering. CF usually performs better
with sufficient feedback. An effective CF structure is necessary for a
good recommender algorithm. In neural networks, it is common to
transfer sparse IDs into vectors through the embedding layer. Also,
in neural recommendation models, user and item IDs are embedded
as vectors [13, 14]. Similarly, in CC-CC, the user ID and item ID
are embedded as a user CF vector uCF and an item CF vector vCF ,
respectively. The embeddings can be initialized randomly or with
pre-trained CF vectors, and they are trained end-to-end by the
historical feedbacks during the training procedure.

4.1.2 Neural Content Interaction. The content features of users and
items are usually diverse which contain real-values, multi-classes
or even texts and images. To feed them into the neural networks,
they are usually preprocessed and transferred into discrete and
sparse one-hot or multi-hot vectors. The sparse inputs are then
transferred into vectors through the embedding layers. In the deep
neural parts of Wide&Deep [7] and ACCM [32], they concatenate
these embedding vectors and simply use fully-connected layers to
model them. Although concatenation and fully-connected layers are
the basic operations in the neural networks, they can hardly learn
feature interactions. According to known experiences of feature
engineering, feature interactions are helpful to learn the relation-
ship between the features and the label. For example, the model
may remember that a highly educated engineer ({education=Ph.D.,
occupation=engineer}) has a high income ({income=high}). Feature
interactions make the model easier to remember this and are ver-
ified important to recommender systems [7, 13, 30]. One of the
traditional ways to do feature interactions is Factorization Machine.
In CC-CC, we adopt the Bi-Interaction (BI) layer to model the fea-
ture interactions. The BI layer is used in [13] and it works similarly
as Factorization Machine in a neural way. Formally, let xi be the
feature value and fi be the embedding vector of the i-th feature.
Then the output vector of the BI layer is

BI (x) =
∑
i

∑
j
xi fi ⊙ x j fj (4)

The ⊙ here means element-wise product. The process of BI layer
can be regarded as two steps. The first step is calculating the fea-
ture interactions xi fi ⊙ x j fj for each feature pair i, j. The second
step is the sum-pooling which does an element-wise sum of these

interaction vectors. It can also be the average-pooling here, and we
take sum-pooling because it is easier to implement. So the output
vector of the BI layer has the same size as feature vectors fi . Note
that the BI layer can be computed in linear time by reformulating
the Equation 4 as:

BI (x) =
1
2 [(

∑
i
xi fi)2 −

∑
i
(xi fi)2] (5)

Then it can be finished in O(kNx) time, the same as direct max
(average) pooling of the first-order feature vectors, where k denotes
the size of embeddings and Nx denotes the number of non-zero
entries in the input vector.

The output vector of BI layer is concatenated with all the first-
order feature embeddings, and the long concatenation vector is
then fed into the fully-connected layers to calculated the user CB
vector uCB or item CB vector vCB . By taking this kind of feature
interactions, the model captures second-order feature interactions
in the low level, which can hardly be learned by fully-connected lay-
ers in Wide&Deep or ACCM. The formed interaction vector brings
more information to the higher layer and provides a probability for
fully-connected layers to learn even higher-order and non-linear
feature interactions.

4.1.3 Attention Mechanism. In different scenarios, e.g. for heavy or
new users, CF and CB may have different importance for a person-
alized recommendation. Many previous models like Wide&Deep
and NFM do not consider this and use global weights to model
different types of information, and thus they do not have the ability
to adapt the importance of CF and CB to solve the cold-start and
MFV problems. We think it is a better way to combine different
information sources by attention mechanism by dynamic weights
for each user (item). Not only in the warm scenario but also it is
of great significance in the cold start scenario [32]. Besides, atten-
tion can distinguish content vectors from unreliable feature inputs,
which helps reduce the impact of the MFV.

Taking the user CF vector uCF and user CB vector uCB as the
inputs, the attention weights are calculated as follows:

lhuCF = hT f (WuCF + b),

huCB = hT f (WuCB + b),

auCF =
exp(huCF)

exp(huCB) + exp(h
u
CF)
= 1 − auCB

(6)

where W ∈ Rt×k , b ∈ Rt , h ∈ Rt are the parameters of attention
network, and t denotes the hidden layer size of the attention net-
work. f is the activation function which can be relu, tanh, siдmoid ,
etc. The attention weights of item CF avCF and CB avCB are calcu-
lated in a similar way. The parameters of attention networks in the
item part are shared with the user part because they have the same
purpose to judge whether a vector is informative.

Then the user and item vectors are formed by the weighted sum:

u = auCF uCF + a
u
CBuCB , v = avCF vCF + a

v
CBvCB (7)

and the user and item vectors u, v are used for further predictions.
4.2 Content & Context Module
Deep neural networks have strong generalization ability. By mod-
eling the samples in the training set, they can predict with unseen
or rarely seen feature combinations. However, they are weak in
memorization, compared with traditional linear models, which can
learn the direct relationships between features and final predic-
tions [7]. For example, young teenagers may love comics more than
the elders. Besides, except for the user and item interaction and con-
tent information, there is various informative context information
in recommender systems such as time and other session-related
features. Therefore, our CC-CC combines the deep Content & Col-
laborate module with a linear Content & Context module, inspired
by Wide&Deep [7].

Taking the sparse features x as input, it calculates a linear re-
gression of the features:

LR(x) = wT x =
∑
i
wixi (8)

wherew is the weight vector andwi is the weight of the i-th feature.
The module is also enhanced by the feature interactions. Dif-

ferent from the BI layer, cross features are used to better take
advantages of the memorization ability of the linear module and
form more variant features:

c {x j } =
∏
j
x j (9)

where {x j } is a subset of raw features x = {xi } and it means which
features the cross-product is conducted on. For example, xi = 1
means the user is from Japan and x j = 1means the book is in Italian.
Then in a second order cross-product, since generally a Japanese
does not prefer a book written in Italian, this c {xi ,x j } = xix j = 1
will be negative; while if x j is the book in Japanese, c {xi ,x j } =
xix j = 1 is positive. Cross features c can be automatically generated
or manually designed with experience. The cross features c finally
are fed into the linear regression together with the raw features.
4.3 Output Layer
To combine the Content & Context Module and the Content & Col-
laborate Module, we use a summarization layer for final prediction:

y = LR(x|c) + uv + b (10)

where b is the total bias, which is a summarization of the global
bias, user bias and item bias:

b = bд + bu + bv (11)

The output of the Content & Collaborate Module, user vector u
and item vector v, are used to conduct a dot product. Surely they

can be fed into more fully-connected layers or some other deep
neural structures. We use the dot product in our tasks due to the
computational efficiency and effectiveness, which is also commonly
used in the literature [14, 32].

The summarization layer is used to keep the linearity between
the Content & Context Module and the final predictions so that it
keeps the memorization ability. The experiments of our model are
conducted on rating and click prediction tasks, so linear regression
is adopted.
4.4 Loss Function
Weuse theRMSE loss to train ourmodel.We not only are concerned
about the final predictions, but also expect that the predictions of
both CF and CB parts themselves are accurate. As a result, the final
loss is formulated as follows:
L = RMSE(y, l)+γ [RMSE(yCF , l)+RMSE(yCB , l)]+ τ | |Θ| |2 (12)

The first term is the difference between the final predictions and
the labels, and the second term is used to guide the CF and CB
parts to generate meaningful and comparable vectors, where γ is
the weight of this term, yCF = LR(x|c) + uCF vCF + b and yCB =
LR(x|c) + uCBvCB +b. It encourages CF and CB to learn their own
structures and prediction abilities. The attention network evaluates
the vectors and gives different weights to different information
resources so that the model takes the best advantages of CF and CB
even if there is no content or historical information. The last term
is a L2-regularization, where τ is the L2-weight, and Θ represents
all the model parameters.
4.5 Model Discussion

Table 1: Comparison with State-of-the-Art Models

Adaptive Weights Feature Interactions
Wide&Deep ✗ Cross Feature

NFM ✗ Bi-Interaction
ACCM Attention ✗

CC-CC Attention Cross Feature,Bi-Interaction

Our proposed CC-CC aims to model different types of infor-
mation adaptively for each user and item. Wide&Deep, NFM and
some other deep models are also able to handle content, context
and interaction information, but they use global weights for all
users and items. However, disadvantages exist when some infor-
mation sources are unavailable or unreliable, e.g., the problem of
missing feedbacks in cold-start scenarios. Our CC-CC model uses
the attention mechanism to adjust the recommendation strategy,
which is adaptive to different scenarios. In particular, CC-CC uses
Content & Context Module and Bi-Interaction layer to enhance the
utility of content and context information. Moreover, it considers
the feature interactions and improves the memorization ability of
deep neural recommendation models. Comparison of our CC-CC
with some state-of-the-art models is concluded in Table 1.
5 EXPERIMENTAL SETTINGS
5.1 Datasets
We conducted our experiments on two datasets: ML-100k and
ZhiHu. Both datasets can be easily downloaded from the Internet.
Some detailed information of the datasets is shown in Table 3.

Table 2: Overall Performance

ML-100k ZhiHu
RMSE, lower is better AUC, higher is better

Random +Cold1 +MFV2 Random +Cold1 +MFV2

Wide&Deep [7] 0.9097 0.9909 0.9877 0.6963 0.6757 0.6651
NFM [13] 0.9118 0.9822 0.9967 0.7264 0.6877 0.6873
ACCM [32] 0.9018 0.9727 0.9739 0.7314 0.6885 0.6890

CC-CC 0.9012 0.9599* 0.9664* 0.7403* 0.6983* 0.6962*

1. Test sets: randomly 30% item cold, 30% user cold.
2. Test sets: randomly 30% item cold, 30% user cold, and 10% feature values missing.
*. Significantly better than the best baseline (ACCM, italic ones) with p < 0.05

Table 3: Statistics of Evaluation Datasets

Dataset Interaction# User# Item# Sparsity
ML-100k 100,000 943 1,682 93.70%
ZhiHu 1,334,168 13,537 61,661 99.84%

•ML-100k. It is maintained by Grouplens , which has been used
by many researchers for many years. It includes 100,000 ratings
ranging from 1 to 5 from 943 users and 1,682 movies. Content
information we used is the age, gender, occupation of users and
release year, genres of items.

• ZhiHu. ZhiHu is a Chinese platform which allows users to
ask or answer questions on it. It helps users share their knowledge
and experiences with others. It held a competition and published
its data on Biendata , which is available to the general public. The
dataset provides a huge amount of users, items (answers) and their
interactions, and aims at predicting whether a user is interested in
an answer. User features include the ID, device, position, topic, total
counts of user behaviors, etc, and items features include ID, time,
total like/dislike counts, and other user behavior counts such as the
number of clicks, etc. Privacy information is hidden or replaced by
IDs.
5.2 Baselines
Our model CC-CC is compared with several state-of-the-art neural
recommendation models as follows:

•Wide&Deep [7]. Google proposed it in 2016, which combines
the deep neural network and linear models. It is verified as one of
the best deep neural recommendation models.

• NFM [13]. The Neural Factorization Machine model proposed
in 2017, which uses Bi-Interaction Layer to model feature interac-
tions.

• ACCM [32]. The Attentional Content & Collaborate Model
proposed by in 2018. It works on both warm and cold scenarios,
and the model adopted a “Cold-Sampling” (CS) strategy to help the
attention network learn how to handle the cold data.

These works have compared their models with some famous
recommendation algorithms such as ItemKNN [8], UserKNN [22],
LibFM [31], BiasedMF [24], SVD++ [23] and surpassed them. Here
we do not compare CC-CC with these algorithms and focus on the
three state-of-the-art neural recommendation models.

https://grouplens.org/datasets/movielens/100k/
https://www.zhihu.com/
https://biendata.com/competition/CCIR2018/data/

5.3 Evaluation
Each dataset is split into the training (80%), validation (10%) and test
(10%) sets. To construct the evaluation sets in different cold ratios,
for example, 30% item cold, we randomly choose 30% samples in
the validation and test sets, and give each sample a new unique
item ID. The validation set is used to conduct early stopping and
optimize the hyper-parameters, and the test set is used to evaluate
the model performance. To construct MFVs, we randomly choose
some values in the feature matrix and give each value an Unknown
tag. To evaluate the models, for the rating prediction task on ML-
100k, we use Root Mean Square Error (RMSE, lower is better), and
for the click prediction task on ZhiHu, we use Area Under Curve
(AUC, higher is better). For a fair comparison, we do not use cross
features in our model or the Wide&Deep model.

5.4 Parameter Setting
We use Adagrad [9] to train the model with mini-batches at the
size of 128. NFM and Wide&Deep are trained in regular mini-
batches, ACCM and CC-CC use “Cold-Sampling” (CS) to train
the attention network to handle cold scenarios. The learning rate
is searched for each model from 0.001 to 0.1, and early-stopping
is conducted according to the performance on the validation set.
Embedding size k of user IDs, item IDs and features are set to
64 and batch Normalization (BN) [21] is conducted on the fully-
connected layers. To prevent the model from overfitting, we use
both the L2-regularization and dropout. The weight of L2 τ is set
between 1e-5 to 1e-3 and dropout ratio is set between 0.05 to 0.2.
The CS and FS ratios α , β(β ′) are set between 0.0 to 0.2. In AFS,
we set β0 = 0.1 and ∆ = (β ′ − β0)/20 so that the FS ratio βe
starts from 0.1 and achieves the max value around the 20th epoch,
σ (e) = 1.1

1+exp(3−e) and δ = 0.1. We provide the codes for CC-CC in
Github at https://github.com/THUIR/CC-CC.

6 EXPERIMENTAL RESULTS
We conduct our experiments mainly to answer the following ques-
tions:

RQ1 Does the specific Feature Sampling help handle the miss-
ing feature values?

RQ2 How does CC-CC perform compared with the state-of-
the-art methods?

RQ3 Does Feature Sampling work for different models?

https://grouplens.org/datasets/movielens/100k/
https://www.zhihu.com/
https://biendata.com/competition/CCIR2018/data/
https://github.com/THUIR/CC-CC

6.1 Performance Comparision (RQ1, RQ2)
6.1.1 Overall Performance. Firstly, the overall performance is shown
in the Table 2. We will give some further studies on FS and model
in later sections.

All models are trained with AFS. From the results, we conclude
that no matter on the warm/cold data or the data with MFV, CC-CC
achieves the best performance. It shows that using the attention
mechanism to adjust different information resources is helpful. CC-
CC performs better than ACCM, especially in cold data because it
has both the deep module and linear module, which considers both
raw features and feature interactions, highlighting its advantage of
modeling content features on cold data.

0 10 20 30 40 50

Missing Feature Values(%)

0.95

0.97

0.99

1.01

1.03

T
es

t
R

M
S

E

ML-100k

Wide&Deep NFM ACCM CC-CC

Figure 5: Different Amounts of Missing Feature Values. Test
sets: randomly 30% item cold, 30% user cold.

We also test the models’ performance on datasets suffering from
different amounts of MFV. The results are shown in Figure 5. A
percentage of feature values (from 0 to 50%) are randomly removed
based on the test set that contains 30% cold users and 30% cold items.
Models are trained with AFS. From the results, we can observe that
the more feature values are missing, the worse the models perform,
which is intuitive because MFV means missing information and
unreliable inputs. Generally, our model CC-CC is better than the
other baselines when the MFV problem exists in the input data.
6.1.2 Ablation Study. We did some ablation study to understand
the effects of FS and feature interactions better.

0.95

0.96

0.97

0.98

0.99

1.00

1.01

T
es

t
R

M
S

E

ML-100k (lower is better)

0.64

0.65

0.66

0.67

0.68

0.69

0.70

T
es

t
A

U
C

ZhiHu (higher is better)

No FS RFS AFS

Figure 6: Performance of CC-CCwith different Feature Sam-
pling strategies (No FS, RFS, AFS). Test sets: randomly 30%
item cold, 30% user cold, and 10% feature values missing.

We compare the different training strategies: no FS, RFS and
AFS. The results are shown in Feature 6. Models perform badly
on data with MFV without FS, showing that the problem should
be carefully considered, and FS helps to handle the MFV problem.
The strategy introduces more complex feature situations into the
training procedure and forces these models to learn how to predict
with MFV and unreliable content information. AFS is slightly better
than simple RFS because it analyzes the feature importance and

provides a more adaptive sampling. Our further experiments in 6.2.2
show that AFS is better than RFS generally on other models and
parameters (Figure 8, 9).

0.95

0.96

0.97

0.98

T
es

t
R

M
S

E

ML-100k (lower is better)

0.67

0.68

0.69

0.70

T
es

t
A

U
C

ZhiHu (higher is better)

No Content&Context No Bi-Interaction CC-CC

Figure 7: Performance of CC-CC w/o Content & Context
Module and Bi-Interaction Layer. Test sets: randomly 30%
item cold, 30% user cold, and 10% feature values missing.

We remove the Content & Context Module or the Bi-Interaction
Layer in the Content & Collaborate Module to observe whether they
can improve the model performance, as shown in Figure 7. It is clear
that CC-CC without either part performs worse. Content & Con-
text Module provides cross-features and a linear memorization
ability. The Bi-Interaction Layer models feature interactions with
deep neural networks. Both parts are helpful, showing that fea-
ture interactions are important to the model performance, while
Content & Context Module brings more improvement.
6.2 Impact of Proposed Feature Sampling

Strategies (RQ1, RQ2)
In this section, we explore the impact of proposed Feature Sampling
strategies. Experiments are conducted on a test set that contains
30% cold users, 30% cold items and 10% MFV, respectively.

6.2.1 Representations of MFV. In the experiments, we use a spe-
cific Unknown tag to represent the MFV. For example, in the age
column there are three values 0,1,2 to represent Unknown, Adult
and Child, respectively. Deep neural models embed these discrete
features into vectors, and AFS training strategy helps learn these
embeddings. In real-world applications, there are also some other
ways to represent the MFVs, such as using the most popular feature
value, randomizing a value uniformly or according to the distribu-
tion of the observed feature values. We compare these strategies
with AFS and the results are shown in Table 4.
Table 4: RMSE under Different Representations of MFV.

ML-100k1 Wide&Deep NFM ACCM CC-CC

Unknown Tag2 1.0410 1.0127 0.9796 1.0006
Random3 1.0126 1.0112 0.9882 0.9909
Frequency4 1.0077 1.0034 0.9821 0.9721
Distribution5 1.0037 0.9999 0.9827 0.9735

AFS 0.9877 0.9967 0.9739 0.9664*

1. Test sets: randomly 30% item cold, 30% user cold, and 10% feature
values missing.
2. Leave the MFV as Unknown tags in training and testing procedure
without any specific processing.
3. Randomize feature values uniformly to replace MFV.
4. Replace the MFVs with the most frequent feature values in each
feature column.
5. Randomize feature values according to the distribution of each feature
column to replace the MFVs.
*. Significantly better than other results with p < 0.05

Based on the results, leaving the MFVs as the Unknown tag in
training and testing procedure without any specific processing
brings the worst performance (Unknown Tag). It means that MFV
should be carefully considered because it brings uncertainty into
the systems, leading to unfavorable impacts on the performance.
Replacing the Unknown tag with some feature values can help a
little bit (Random, Frequency, Distribution) because these methods
construct meaningful inputs that may somehow match the true val-
ues. Intuitively, using the most frequent feature value (Frequency)
or randomly according to the distribution of the known feature
values (Distribution) is better than randomize a feature value uni-
formly (Random). The reason is that the first two methods give
better simulation to the real distribution of the feature values.

However, all these methods force the model to make predictions
according to some unknown or wrongly imputed feature values,
which is undesirable. What we want is that the model can recog-
nize MFVs and even learn the meaningful representations of the
unknown feature values. Using the Unknown tags in the test proce-
dure is fine, but the model should be taught how to handle these
tags and what those tags mean. The distributions of the known
and unknown feature values are different, and neither of them is
the same as the distributions of the training set and testing set.
AFS introduces more complex instances of missing feature values
into the training procedure, and then forces the model to learn
how to handle unreliable inputs. In this way, the model becomes
more robust and performs better than other methods. The results
show that CC-CC with a powerful content part suffers more from
the MFV problem, and ACCM suffers the least because it has an
independent CF part for rating prediction. But finally, CC-CC with
AFS achieves the best performance.

6.2.2 Different Feature Sampling Ratios. We test the performance
of the models when training with different ratios of FS (Figure 8):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

β(β′) - (Max) Feature Sampling Ratio

0.96

0.98

1.00

1.02

T
es

t
R

M
S

E

ML-100k

Wide&Deep NFM ACCM CC-CC

Figure 8: Performances of Different Feature Sampling Ra-
tios. Solid/Dashed lines are experiments with AFS/RFS. Test
sets: randomly 30% item cold, 30% user cold, and 10% feature
values missing.

The results show that a small ratio of FS (0.1-0.2) is enough for
different models. Different models perform best on different fea-
ture sampling ratios. But a too large FS ratio will affect the model
performance because it prevents the models from learning the rela-
tionship between the content features and the final predictions. AFS
with large FS ratio performs better than RFS because the FS ratio is
adaptively increasing during the training process instead of a fixed
ratio. Performance of CC-CC and ACCM are more stable even with

few content features thanks to the CF module in their structures.
Generally, AFS performs better than RFS in most situations. AFS
is less sensitive to the changes of the FS ratio because it provides
an adaptive way to sample different amounts of values during the
training process.
6.3 Feature Sampling Strategies for Different

Algorithms (RQ3)
To verify that FS can help different algorithms, we conduct some
experiments on the test sets with randomly 10% feature values
missing and 30% items cold, 30% users cold, as shown in Figure 9.

Results show that without FS, Wide&Deep, NFM, and ACCM all
suffer from the MFV problem. The reason is that all of the models
are trained with sufficient content features. The training procedure
does not carefully consider the MFV problem, but the testing set
contains many MFVs and has a different data distribution with the
training set. ACCM suffers the least because it has an independent
CF part (and a simple CB part) for prediction. FS brings MFVs into
the training process and improves the model performance. AFS also
performs better on other models than RFS.

According to Figure 8 in the previous section, AFS performs
better than RFS in most cases with different feature sampling ratios.

Wide&Deep NFM ACCM
0.96

0.98

1.00

1.02

1.04

T
es

t
R

M
S

E

ML-100k (lower is better)

Wide&Deep NFM ACCM
0.60

0.62

0.64

0.66

0.68

0.70

T
es

t
A

U
C

ZhiHu (higher is better)

No FS RFS AFS

Figure 9: Performance ofWide&Deep, NFM and ACCMwith
different Feature Sampling strategies (No FS, RFS, AFS). The
red dashed line is the CC-CCmodel with AFS. Test sets: ran-
domly 30% item cold, 30% user cold, and 10% feature values
missing.

7 CONCLUSION
In this work, Random Feature Sampling and Adaptive Feature Sam-
pling strategies are proposed to handle the missing feature values,
which is an important problem that has not been well studied in
previous works. The FS strategies are simple but work for different
models including Wide&Deep, NFM, and ACCM.

With the help of FS strategies, more feature interactions could
be taken into consideration, which suffer greatly from the MFV
problem. A novel Content & Context - Content & Collaborate model
is proposed to leverage different types of information: feedback,
content, and context. In both modules of the model, it utilizes both
raw features and feature interactions. It is verified that CC-CC
works not only on both warm and cold scenarios, but also with
MFVs. Finally, CC-CC achieves better performance than the state-
of-the-art methods on two different datasets.

However, giving reasonable outputs with missing feature values
is not the terminal of ourwork. Our further studywill work on using
observed interactions and feature values to recover some missing
feature values. We can use convinced values to partly replace the
missing values, which to some extent is different from the missing
feature value imputation approach, and it will be helpful to both
user modeling and generating personalized recommendations.

REFERENCES
[1] Charu C Aggarwal. 2016. Content-based recommender systems. In Recommender

systems. Springer, 139–166.
[2] Trapit Bansal, David Belanger, and Andrew McCallum. 2016. Ask the gru: Multi-

task learning for deep text recommendations. In Proceedings of the 10th ACM
Conference on Recommender Systems. ACM, 107–114.

[3] Brett K Beaulieu-Jones and Jason H Moore. 2017. Missing data imputation in the
electronic health record using deeply learned autoencoders. In Pacific Symposium
on Biocomputing 2017. World Scientific, 207–218.

[4] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H
Chi. 2018. Latent cross: Making use of context in recurrent recommender systems.
In Proceedings of the 11th ACM International Conference on Web Search and Data
Mining. ACM, 46–54.

[5] Alexander Binder, Sebastian Bach, Gregoire Montavon, Klaus-Robert Müller,
and Wojciech Samek. 2016. Layer-wise relevance propagation for deep neural
network architectures. In Information Science and Applications (ICISA) 2016.
Springer, 913–922.

[6] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In Proceedings of the 11th ACM International Conference on Web Search and Data
Mining. ACM, 108–116.

[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[8] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommenda-
tion algorithms. ACM Transactions on Information Systems (TOIS) 22, 1 (2004),
143–177.

[9] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. The Journal of Machine Learning
Research 12 (2011), 2121–2159.

[10] Michael D Ekstrand, John T Riedl, and Joseph A Konstan. 2011. Collaborative
Filtering Recommender Systems. Foundations and Trends in Human-Computer
Interaction 4, 2 (2011), 81–173.

[11] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. International World Wide
Web Conferences Steering Committee, 507–517.

[12] Ruining He and Julian McAuley. 2016. VBPR: visual Bayesian Personalized
Ranking from implicit feedback. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence. AAAI Press, 144–150.

[13] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval. ACM, 355–364.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 173–182.

[15] Anvitha Hegde and Savitha K Shetty. 2015. Collaborative filtering recommender
system. Int J Emerg Trends Sci Technol 2, 07 (2015), 291–324.

[16] José Miguel Hernández-Lobato, Neil Houlsby, and Zoubin Ghahramani. 2014.
Probabilistic matrix factorization with non-randommissing data. In Proceedings of
the 31st International Conference on International Conference on Machine Learning-
Volume 32. JMLR. org, II–1512.

[17] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks
with top-k gains for session-based recommendations. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management. ACM,
843–852.

[18] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[19] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos
Tikk. 2016. Parallel recurrent neural network architectures for feature-rich
session-based recommendations. In Proceedings of the 10th ACM Conference on

Recommender Systems. ACM, 241–248.
[20] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.

2018. Improving sequential recommendation with knowledge-enhanced mem-
ory networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. ACM, 505–514.

[21] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating deep
network training by reducing internal covariate shift. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning-Volume
37. JMLR. org, 448–456.

[22] Joseph A Konstan, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R
Gordon, and John Riedl. 1997. GroupLens: applying collaborative filtering to
Usenet news. Commun. ACM 40, 3 (1997), 77–87.

[23] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 426–434.

[24] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[25] Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. 2017. Neural
rating regressionwith abstractive tips generation for recommendation. In Proceed-
ings of the 40th International ACM SIGIR conference on Research and Development
in Information Retrieval. ACM, 345–354.

[26] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via marginal-
ized denoising auto-encoder. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. ACM, 811–820.

[27] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for
recommender systems. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 305–314.

[28] Benjamin M Marlin and Richard S Zemel. 2009. Collaborative prediction and
ranking with non-random missing data. In Proceedings of the 3rd ACM conference
on Recommender systems. ACM, 5–12.

[29] Ruilin Pan, Tingsheng Yang, Jianhua Cao, Ke Lu, and Zhanchao Zhang. 2015. Miss-
ing data imputation by K nearest neighbours based on grey relational structure
and mutual information. Applied Intelligence 43, 3 (2015), 614–632.

[30] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995–1000.

[31] Steffen Rendle. 2012. Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST) 3, 3 (2012), 57.

[32] Shaoyun Shi, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Attention-based
Adaptive Model to Unify Warm and Cold Starts Recommendation. In Proceed-
ings of the 27th ACM International Conference on Information and Knowledge
Management. ACM, 127–136.

[33] Manasi Vartak, Arvind Thiagarajan, ConradoMiranda, Jeshua Bratman, andHugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations for
items. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. Curran Associates Inc., 6907–6917.

[34] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. DropoutNet: address-
ing cold start in recommender systems. In Proceedings of the 31st International
Conference on Neural Information Processing Systems. Curran Associates Inc.,
4964–4973.

[35] Jian Wei, Jianhua He, Kai Chen, Yi Zhou, and Zuoyin Tang. 2016. Collaborative
filtering and deep learning based hybrid recommendation for cold start problem.
In Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive
Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),
2016 IEEE 14th Intl C. IEEE, 874–877.

[36] Jian Wei, Jianhua He, Kai Chen, Yi Zhou, and Zuoyin Tang. 2017. Collaborative
filtering and deep learning based recommendation system for cold start items.
Expert Systems with Applications 69 (2017), 29–39.

[37] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Bruce Croft. 2017. Joint repre-
sentation learning for top-n recommendation with heterogeneous information
sources. In Proceedings of the 2017 ACM on Conference on Information and Knowl-
edge Management. ACM, 1449–1458.

[38] Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint deep modeling of users
and items using reviews for recommendation. In Proceedings of the 10th ACM
International Conference on Web Search and Data Mining. ACM, 425–434.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Recommendation Models
	2.2 Missing Data & Feature Values
	2.3 Cold-Start Recommendation

	3 Feature Sampling (FS)
	3.1 Random Feature Sampling (RFS)
	3.2 Adaptive Feature Sampling (AFS)
	3.3 Discussion on Feature Sampling

	4 Content & Context - Content & Collaborate Model
	4.1 Content & Collaborate Module
	4.2 Content & Context Module
	4.3 Output Layer
	4.4 Loss Function
	4.5 Model Discussion

	5 Experimental Settings
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation
	5.4 Parameter Setting

	6 Experimental Results
	6.1 Performance Comparision (RQ1, RQ2)
	6.2 Impact of Proposed Feature Sampling Strategies (RQ1, RQ2)
	6.3 Feature Sampling Strategies for Different Algorithms (RQ3)

	7 Conclusion
	References

