
Neural Logic Reasoning
Shaoyun Shi∗

Tsinghua University
Beijing, China

shisy17@mails.tsinghua.edu.cn

Hanxiong Chen∗
Rutgers University

New Brunswick, USA
hanxiong.chen@rutgers.edu

Weizhi Ma
Tsinghua University

Beijing, China
mawz12@hotmail.com

Jiaxin Mao
Tsinghua University

Beijing, China
maojiaxin@gmail.com

Min Zhang
Tsinghua University

Beijing, China
z-m@tsinghua.edu.cn

Yongfeng Zhang
Rutgers University

New Brunswick, USA
yongfeng.zhang@rutgers.edu

ABSTRACT
Recent years have witnessed the success of deep neural networks
in many research areas. The fundamental idea behind the design
of most neural networks is to learn similarity patterns from data
for prediction and inference, which lacks the ability of cognitive
reasoning. However, the concrete ability of reasoning is critical
to many theoretical and practical problems. On the other hand,
traditional symbolic reasoning methods do well in making logical
inference, but they are mostly hard rule-based reasoning, which
limits their generalization ability to different tasks since difference
tasks may require different rules. Both reasoning and generalization
ability are important for prediction tasks such as recommender
systems, where reasoning provides strong connection between user
history and target items for accurate prediction, and generalization
helps the model to draw a robust user portrait over noisy inputs.

In this paper, we propose Logic-Integrated Neural Network
(LINN) to integrate the power of deep learning and logic reasoning.
LINN is a dynamic neural architecture that builds the computa-
tional graph according to input logical expressions. It learns basic
logical operations such as AND, OR, NOT as neural modules, and
conducts propositional logical reasoning through the network for
inference. Experiments on theoretical task show that LINN achieves
significant performance on solving logical equations and variables.
Furthermore, we test our approach on the practical task of recom-
mendation by formulating the task into a logical inference problem.
Experiments show that LINN significantly outperforms state-of-
the-art recommendation models in Top-K recommendation, which
verifies the potential of LINN in practice.

KEYWORDS
Neural Networks; Machine Learning; Machine Reasoning; Col-

laborative Reasoning; Cognitive AI

* This work was conducted when Shaoyun Shi was visiting at Rutgers University. The
first two authors contributed equally to the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411949

ACM Reference Format:
Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao, Min Zhang, Yongfeng
Zhang. 2020. Neural Logic Reasoning. In Proceedings of the 29th ACM In-
ternational Conference on Information and Knowledge Management (CIKM
’20), October 19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3340531.3411949

1 INTRODUCTION
Deep neural networks have shown remarkable success in many
fields, such as computer vision, natural language processing, in-
formation retrieval, and data mining. The design philosophy of
most neural network architectures is learning statistical similarity
patterns from large scale training data. For example, representation
learning approaches learn vector representations from image or text
for prediction, while metric learning approaches learn similarity
functions for matching and inference.

Though neural networks usually have good generalization ability
on dataset with similar distribution, the design philosophy of these
approaches makes it difficult for neural networks to conduct logical
reasoning in many theoretical and practical problems. However,
logical reasoning is an important ability for intelligence, and it is
critical to many theoretical tasks such as solving logical equations,
as well as practical tasks such as medical decision support systems,
legal assistants, and personalized recommender systems. For exam-
ple, in recommendation tasks, reasoning can help to model complex
relationships between users and items (e.g., user likes item A but
not item B → user likes item C), especially for those rare patterns,
which is usually difficult for neural networks to capture.

One typical way to conduct reasoning is through logical infer-
ence. In fact, logical inference based on symbolic reasoning was the
dominant approach to AI before the emerging of machine learn-
ing approaches, and it served as the underpinning of many expert
systems in Good Old Fashioned AI (GOFAI). However, traditional
symbolic reasoning methods for logical inference are mostly hard
rule-based reasoning, which are not easily applicable to many real-
world tasks due to the difficulty in defining the rules. For example,
in personalized recommendation systems, if we consider each item
as a symbol, we can hardly capture all of the relationships between
the items based on manually designed rules. Besides, personalized
user preferences bring various interacting sequences, which may
result in conflicting reasoning rules, e.g., one user may like both
item A and B, while another user who liked A may dislike B. Such
noise in data makes it very challenging to design recommendation
rules that properly generalize to new data.

https://doi.org/10.1145/3340531.3411949
https://doi.org/10.1145/3340531.3411949

To unify the generalization ability of deep neural networks and
logical reasoning, we propose Logic-Integrated Neural Network
(LINN), a neural architecture to conduct logical inference based on
neural networks. LINN adopts vectors to represent logic variables,
and each basic logic operation (AND/OR/NOT) is learned as a neu-
ral module based on logic regularization. Since logic expressions
that consist of the same set of variables may have completely differ-
ent logical structures, capturing the structure information of logical
expressions is critical to logical reasoning. To solve the problem,
LINN dynamically constructs its neural architecture according to
the input logical expression, which is different from many other
neural networks with fixed computation graphs. By encoding logi-
cal structure information in neural architecture, LINN can flexibly
process an exponential amount of logical expressions. Experiments
on theoretical problems such as solving logical equations verified
the superior logical inference ability of LINN compared to tradi-
tional neural networks. Extensive experiments on recommendation
tasks show that by introducing logic constraints over the neural
networks, LINN significantly outperforms state-of-the-art recom-
mendation models.

The main contributions of this work are summarized as follows:
(1) We propose a novel model named LINN, which has amodular

design and empowers the neural networks with the ability
of logical reasoning.

(2) Experiments on theoretical task show that compared to tradi-
tional neural networks, LINN has significantly better ability
on solving logical equations, which shows the great potential
of LINN on theoretical tasks.

(3) Experiments on practical task (recommendation) shows that
LINN significantly outperforms state-of-the-art recommen-
dation algorithms, which shows the great potential of LINN
on practical tasks.

The following part of the paper will include related work (Section
2), proposed model (Section 3), theoretical experiments (Section 4),
practical experiments (Section 5), and conclusions (Section 6).

2 RELATEDWORK
Logic and Symbolic AI. The Good Old-Fashioned Artificial Intel-
ligence (GOFAI) [14] was the dominant AI research paradigm from
the mid-1950s to the late 1980s. It is based on the assumption that
many aspects of intelligence can be achieved by the manipulation of
symbols [28]. Expert system is one of the most representative forms
of logical/symbolic AI. Although their development is based on au-
tomatic rule mining, the generalization ability limits the application
of these methods on many practical tasks [8, 30].

The problem is that not all of the practical problems (such as
recommendation) are hard-rule logic reasoning problems. For ex-
ample, researchers have shown that logical equation solvers such
as PicoSAT [2] performs well on clean logical equation problems,
which include no logical contradictions in the data. However, it
fails to give valid results on many practical tasks such as reasoning
on visual images [35] and knowledge graphs [12]. Similarly, per-
sonalized recommendation is a noisy reasoning task [29], which
required the ability of robust reasoning on data that includes con-
tradictions, and it shows the importance of bridging the power of
neural networks and logical reasoning for improved performance.

Deep Learning with Logic. Deep learning has achieved great
success in many areas. However, most of the existing methods are
data-driven models that learn patterns from data without the ability
of cognitive reasoning. Recently, several works used deep neural
networks to solve logic problems. Hamilton et al. [12] embedded
logical queries on knowledge graphs into vectors for knowledge
reasoning. Johnson et al. [18] and Yi et al. [35] designed deep frame-
works to generate programs and conduct visual reasoning. Yang
et al. [34] proposed a neural logic programming system to learn
probabilistic first-order logical rules for knowledge base reasoning.
Dong et al. [7] proposed a neural logic machine architecture for
relational reasoning and decision making. These works use pre-
designed model structures to process different logical inputs, which
is different from our LINN approach that constructs dynamic neural
architectures. Although these works help in logical tasks, they are
less flexible in terms of the model architecture, which makes them
problem-specific and limits the application in a broader scope of
theoretical and practical tasks. Researchers are even trying to solve
NP-complete Boolean satisfiability (SAT) problems with neural net-
works (NNs) [33]. It aims at deciding the satisfiability of a single
logical expression using NNs, which shows that when properly de-
signed, NNs have the ability to conduct symbolic reasoning on SAT
problems. Our model also tackles NP-complete problems but goes
even further to solve more challenging logical equation systems.
Neural Symbolic Learning. Neural symbolic learning has a long
history in the context of machine learning research. McCulloch
and Pitts [27] proposed one of the first neural systems for Boolean
logic in 1943. Neural logic learning gained further research in the
1990s and early 2000s. For example, researchers developed logi-
cal programming systems to make logical inference [10, 17], and
proposed neural frameworks for knowledge representation and
reasoning [3, 5]. They adopt meticulously designed neural archi-
tectures to achieve the ability of logical inference. Garcez et al. [9]
proposed a symbolic learning framework for non-classical logic,
abductive reasoning, and normative multi-agent systems. However,
it focuses more on hard logic reasoning, which is short of learn-
ing representations and generalization ability compared with deep
neural networks, thus not suitable for reasoning over large-scale,
heterogeneous, and noisy data. Neural symbolic learning received
less attention during the 2010s when deep neural networks achieved
great success on many tasks [22]. However, neural symbolic learn-
ing has regained importance recently due to the difficulty for deep
neural networks to conduct reasoning [1]. As a result, we explore
LINN as an extension of neural networks for logic reasoning in this
work, and demonstrate how the framework can be used for noisy
reasoning tasks such as recommendation.

3 LOGIC-INTEGRATED NEURAL NETWORKS
In this section, we will introduce our Logic-Integrate Neural Net-
work (LINN) architecture. In LINN, each logic variable in the logic
expression is represented as a vector embedding, and each basic
logic operation (i.e., AND/OR/NOT) is learned as a neural module.
Most neural networks are developed based on fixed neural architec-
tures that are independent from the input, either manually designed
or learned through neural architecture search. Differently, the com-
putational graph of our LINN architecture is input-dependent and

built dynamically according to the input logic expression. We fur-
ther leverage logic regularizers over the neural modules to guaran-
tee that each module conducts the expected logical operation.

3.1 Logic Operations as Neural Modules
An expression of propositional logic consists of logic constants
(True or False, noted as T or F), logic variables (𝑣), and basic logic
operations (negation ¬, conjunction ∧, and disjunction ∨). In LINN,
the logic operations are learned as three neural modules. Leshno
et al. [23] proved that multi-layer feed-forward networks with
non-polynomial activation function can approximate any function.
This provides us theoretical support for leveraging neural modules
to learn the logic operations. Similar to most neural models in
which input variables are learned as vector representations, in our
framework, T, F and all logic variables are represented as vectors
with the same dimension. Formally, suppose we have a set of logic
expressions 𝐸 = {𝑒𝑖 }𝑚𝑖=1 and their values 𝑌 = {𝑦𝑖 }𝑚𝑖=1 (either T or F),
and they are constructed by a set of variables 𝑉 = {𝑣𝑖 }𝑛𝑖=1, where
|𝑉 | = 𝑛 is the number of variables. An example logic expression 𝑒
would look like (𝑣𝑖 ∧ 𝑣 𝑗) ∨ ¬𝑣𝑘 = 𝑇 .

We use bold font to represent vectors, e.g. v𝑖 is the vector repre-
sentation of variable 𝑣𝑖 , and T is the vector representation of logic
constant T, where the vector dimension is 𝑑 . AND(·, ·), OR(·, ·),
and NOT(·) are three neural modules. For example, AND(·, ·) takes
two vectors v𝑖 , v𝑗 as inputs, and the output v = AND(v𝑖 , v𝑗) is the
representation of 𝑣𝑖 ∧ 𝑣 𝑗 , a vector of the same dimension 𝑑 as v𝑖
and v𝑗 . The three modules can be implemented by various neural
structures, as long as they are able to learn the logical operations.

Figure 1(a) is an example of the LINN architecture corresponding
to the expression (𝑣𝑖 ∧ 𝑣 𝑗) ∨ ¬𝑣𝑘 . The lower box shows how the
framework constructs a logic expression. Each intermediate vector
represents part of the logic expression, and finally, we have the
vector representation of the whole logic expression e = (v𝑖 ∧ v𝑗) ∨
¬v𝑘 . In this way, although the size of the variable embedding matrix
grows linearly with the total number of logic variables, the total
number of parameters in the operator networks keeps the same.
Besides, since the expressions are organized as tree structures, we
can calculate it recursively from leaves to the root.

To evaluate the T /F value of the expression, we calculate the
similarity between the expression vector and the T vector, as shown
in the upper box, where T, F are short for logic constants True and
False, respectively, and T, F are their vector representations. Here
𝑆𝑖𝑚(·, ·) is also a neural module to calculate the similarity between
two vectors and output a similarity value between 0 and 1. The
output 𝑝 = 𝑆𝑖𝑚(e,T) evaluates how likely LINN considers the
expression to be true.

LINN can be trained with different task-specific loss functions for
different tasks. For example, training LINN on a set of expressions
and predicting T /F values of other expressions can be considered
as a classification problem, and we can adopt cross-entropy loss:

𝐿𝑡 = 𝐿𝑐𝑒 = −
∑
𝑒𝑖 ∈𝐸

𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖) (1)

and for the top-n recommendation task, a pair-wise training loss
based on Bayesian Personalized Ranking (BPR) [31] can be used:

𝐿𝑡 = 𝐿𝑏𝑝𝑟 = −
∑
𝑒+

log
(
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑝 (𝑒+) − 𝑝 (𝑒−))

)
(2)

𝒗!

AND

𝒗" 𝒗#

NOT

OR

𝒗!∧𝒗" ¬𝒗#

Sim𝑻

(𝒗!∧𝒗")∨¬𝒗#
Logic Expression

0 < 𝑝 < 1
True/False Evaluation

(a) (𝑣𝑖 ∧ 𝑣𝑗) ∨ ¬𝑣𝑘

𝒗!

AND

NOT

Sim 𝑻

¬𝒗!∧(𝒗"∨𝒗#)
Logic Expression

0 < 𝑝 < 1
True/False Evaluation

OR

𝒗" 𝒗#

¬𝒗! 𝒗"∨𝒗#

(b) ¬𝑣𝑖 ∧ (𝑣𝑗 ∨ 𝑣𝑘)

Figure 1: Examples of the Logic-Integrated Neural Network
(LINN) architecture. LINN learns each variable as a vector
embedding, and learns each logic operation (i.e., ∧,∨,¬) as a
logic regularized neural module (i.e., AND, OR, NOT). For a
given logic expression, e.g., (𝑣𝑖 ∧ 𝑣 𝑗) ∨ ¬𝑣𝑘 in the left figure,
LINN dynamically assembles the neural architecture accord-
ing to the logic expression so as to learn the embedding of
the whole expression. It then compares the expression with
the constant True vector to evaluate the expression. For dif-
ferent input expressions, e.g.,¬𝑣𝑖∧(𝑣 𝑗∨𝑣𝑘) in the right figure,
LINN reuses the variable embeddings and logic modules to
assemble the architecture. In this way, LINN has the ability
to model a compositional number of logic expressions.

where 𝑒+ are the expressions corresponding to the positive interac-
tions in the dataset, and 𝑒− are the sampled negative expressions.

3.2 Logical Regularization over Neural Modules
So far, we only learned the logic operations AND, OR, NOT as
neural modules, but did not explicitly guarantee that these modules
implement the expected logic operations. For example, any variable
or expression w conjuncted with false should result in false, i.e.
w∧ F = F, and a double negation should result in itself ¬(¬w) = w.
Here we use w instead of v in the previous section, because w
could either be a single variable (e.g., v𝑖) or an expression in the
middle of the calculation flow (e.g., v𝑖 ∧ v𝑗). A LINN that aims
to implement logic operations should satisfy the basic logic rules.
Although the neural architecture may implicitly learn the logic
operations from data, it would be better if we apply constraints to
guide the learning of logical operations. To achieve this goal, we
define logic regularizers to regularize the behavior of the modules,
so that they perform certain logical operations. A complete set of
the logical regularizers are shown in Table 1.

The regularizers are categorized by the three operations. To form
the logical regularizers, these equations of laws are translated into
the modules and variables in LINN, i.e. 𝑟𝑖 ’s in the table. It should
be noted that these logical rules are not considered in the whole
vector space R𝑑 , but in the vector space defined by LINN. Suppose
the set of all input variables as well as intermediate states and final
expressions observed during training process is represented as𝑊 ,

Table 1: Logical regularizers and the corresponding logical rules

Logical Rule Equation Logic Regularizer 𝑟𝑖

NOT Negation ¬𝑇 = 𝐹 𝑟1 =
∑

𝑤∈𝑊∪{𝑇 } 𝑆𝑖𝑚(NOT(w),w)
Double Negation ¬(¬𝑤) = 𝑤 𝑟2 =

∑
𝑤∈𝑊 1 − 𝑆𝑖𝑚(NOT(NOT(w)),w)

AND

Identity 𝑤 ∧𝑇 = 𝑤 𝑟3 =
∑

𝑤∈𝑊 1 − 𝑆𝑖𝑚(AND(w,T),w)
Annihilator 𝑤 ∧ 𝐹 = 𝐹 𝑟4 =

∑
𝑤∈𝑊 1 − 𝑆𝑖𝑚(AND(w, F), F)

Idempotence 𝑤 ∧𝑤 = 𝑤 𝑟5 =
∑

𝑤∈𝑊 1 − 𝑆𝑖𝑚(AND(w,w),w)
Complementation 𝑤 ∧ ¬𝑤 = 𝐹 𝑟6 =

∑
𝑤∈𝑊 1 − 𝑆𝑖𝑚(AND(w,NOT(w)), F)

OR

Identity 𝑤 ∨ 𝐹 = 𝑤 𝑟7 =
∑

𝑤∈𝑊 1 − 𝑆𝑖𝑚(OR(w, F),w)
Annihilator 𝑤 ∨𝑇 = 𝑇 𝑟8 =

∑
𝑤∈𝑊 1 − 𝑆𝑖𝑚(OR(w,T),T)

Idempotence 𝑤 ∨𝑤 = 𝑤 𝑟9 =
∑

𝑤∈𝑊 1 − 𝑆𝑖𝑚(OR(w,w),w)
Complementation 𝑤 ∨ ¬𝑤 = 𝑇 𝑟10 =

∑
𝑤∈𝑊 1 − 𝑆𝑖𝑚(OR(w,NOT(w)),T)

then only {w|𝑤 ∈𝑊 } are constrained by the logical regularizers.
Take Figure 1(a) as an example, the corresponding w in Table 1
would include v𝑖 , v𝑗 , v𝑘 , v𝑖 ∧ v𝑗 , ¬v𝑘 and (v𝑖 ∧ v𝑗) ∨ ¬v𝑘 . Logical
regularizers encourage LINN to learn the neural module parameters
to satisfy these laws over the variables/expressions involved in the
model, which is much smaller than the whole vector space R𝑑 .

In LINN, the constant true vector T is randomly initialized and
fixed during the training and testing process, which works as an
anchor vector in the logic space that defines the true orientation.
The false vector F is thus calculated with NOT(T).

Finally, logical regularizers (𝑅𝑙) are added to the task-specific
loss function 𝐿𝑡 with weight _𝑙 :

𝐿1 = 𝐿𝑡 + _𝑙𝑅𝑙 = 𝐿𝑡 + _𝑙
∑
𝑖

𝑟𝑖 (3)

where 𝑟𝑖 are the logic regularizers in Table 1.
It should be noted that except for the logical regularizers listed

above, a propositional logical system should also satisfy other logi-
cal rules such as the associativity, commutativity, and distributivity
of AND/OR/NOT operations. For example, commutativity of the
AND operation requires that 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎, while distributivity
requires that 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐).

To consider the commutativity, the order of the variables joined
by conjunctions or disjunctions is randomized when calculating
the regularizers. For example, the network structure of𝑤 ∧𝑇 could
be AND(w,T) or AND(T,w), and the network structure of 𝑤 ∨
¬𝑤 could be OR(w,NOT(w)) or OR(NOT(w),w). In this way, the
model is encouraged to output the same vector representation when
inputs are different forms of the same expression in terms of the
commutativity.

There is no explicit way to regularize the modules for other
logical rules that correspond to more complex expression variants,
such as distributivity and De Morgan laws1. To solve the problem,
we make sure that the input expressions have the same normal form
– e.g., disjunctive normal form – because any propositional logical
expression can be transformed into a Disjunctive Normal Form
(DNF) or Conjunctive Normal Form (CNF), and each expression
corresponds to a computational graph. In this way, we can avoid
the necessity to regularize the neural modules for distributivity and
De Morgan laws.

1In propositional logic DeMorgan laws state that¬(𝑎∨𝑏) = ¬𝑎∧¬𝑏, while¬(𝑎∧𝑏) =
¬𝑎 ∨ ¬𝑏

3.3 Length Regularization over Logic Variables
We find that the vector length of logic variables, as well as inter-
mediate or final logic expressions, may explode during the training
process because simply increasing the vector length results in a
trivial solution for optimizing Eq.(3). Constraining the vector length
provides more stable performance, and thus a common ℓ2-length
regularizer 𝑅ℓ is added to the loss function with weight _ℓ :

𝐿2 = 𝐿𝑡 + _𝑙𝑅𝑙 + _ℓ𝑅ℓ = 𝐿𝑡 + _𝑙
∑
𝑖

𝑟𝑖 + _ℓ
∑
𝑤∈𝑊

∥w∥2𝐹 (4)

Similar to the logical regularizers,𝑊 here includes input variable
vectors as well as all intermediate and final expression vectors.

Finally, we apply ℓ2-regularizer with weight _Θ to prevent the pa-
rameters from overfitting. Suppose Θ are all the model parameters,
then the final loss function is:

𝐿 = 𝐿𝑡 + _𝑙𝑅𝑙 + _ℓ𝑅ℓ + _Θ𝑅Θ
= 𝐿𝑡 + _𝑙

∑
𝑖

𝑟𝑖 + _ℓ
∑
𝑤∈𝑊

∥w∥2𝐹 + _Θ∥Θ∥2𝐹
(5)

3.4 Implementation Details
Our prototype task is defined in this way: given a number of training
logical expressions and their T /F values, we train a LINN, and test
if the model can solve the T /F value of the logic variables, and
predict the value of new expressions constructed by the observed
logic variables in training. In the following, we will first conduct
experiments on a theoretical task to show that our LINN model has
the ability to make propositional logical inference. Then, LINN is
further applied to a practical recommendation problem to verify its
performance in practical tasks.

We did not design fancy structures for different modules. Instead,
some simple structures are effective enough to show the superiority
of LINN. In our experiments, the AND module is implemented by
multi-layer perceptron (MLP) with one hidden layer:

AND(w𝑖 ,w𝑗) = H𝑎2 𝑓 (H𝑎1 (w𝑖 ⊕ w𝑗) + b𝑎) (6)

where H𝑎1 ∈ R𝑑×2𝑑 ,H𝑎2 ∈ R𝑑×𝑑 , b𝑎 ∈ R𝑑 are the parameters
of the AND network. ⊕ means vector concatenation. 𝑓 (·) is the
activation function, and we use Rectified Linear Unit (ReLU) in our
networks. The OR module is built in the same way, and the NOT
module is similar but with only one vector as input:

NOT(w) = H𝑛2 𝑓 (H𝑛1w + b𝑛) (7)

where H𝑛1 ∈ R𝑑×𝑑 ,H𝑛2 ∈ R𝑑×𝑑 , b𝑛 ∈ R𝑑 are the parameters of the
NOT network.

The similarity module is based on the cosine similarity of two
vectors. To ensure that the output is formatted between 0 and 1, we
scale the cosine similarity by multiplying a value 𝛼 , followed by a
sigmoid function:

𝑆𝑖𝑚(w𝑖 ,w𝑗) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(
𝛼

w𝑖 ·w𝑗

∥w𝑖 ∥∥w𝑗 ∥

)
(8)

The 𝛼 is set to 10 in our experiments. We also tried other ways to
calculate the similarity such as 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (w𝑖 ·w𝑗) or MLP, and find
that the above approach provides better performance.

4 SOLVING LOGICAL EQUATIONS
Before applying LINN to practical tasks, in this section, we conduct
experiments on a theoretical task based on simulated data to verify
that our proposed LINN framework has the ability to conduct logic
inference, which is difficult for traditional neural networks. Given
a number of training logical expressions and their T /F values, we
train a LINN, and test if the model can solve the T /F value of the
logic variables, and predict the value of new expressions constructed
by the observed logic variables.

We randomly generate 𝑛 variables 𝑉 = {𝑣𝑖 }, and each variable
is randomly assigned a value of either T or F. Then these variables
are used to randomly create 𝑚 boolean expressions 𝐸 = {𝑒𝑖 } in
disjunctive normal form (DNF) as the dataset. Each expression
consists of 1 to 5 clauses separated by disjunction∨, and each clause
consists of 1 to 5 variables or the negation of variables connected by
conjunction∧. We also conduct experiments on many other fixed or
variational lengths of expressions, which have similar results. The
T/F values of the expressions 𝑌 = {𝑦𝑖 } can be calculated according
to the variables. But note that the T/F values of the variables are
invisible to the model. Here are some examples of the generated
expressions when 𝑛 = 100:

(¬𝑣80 ∧ 𝑣56 ∧ 𝑣71) ∨ (¬𝑣46 ∧ ¬𝑣7 ∧ 𝑣51 ∧ ¬𝑣47 ∧ 𝑣26)
∨𝑣45 ∨ (𝑣31 ∧ 𝑣15 ∧ 𝑣2 ∧ 𝑣46) = 𝑇

(¬𝑣19 ∧ ¬𝑣65) ∨ (𝑣65 ∧ ¬𝑣24 ∧ 𝑣9 ∧ ¬𝑣83)
∨(¬𝑣48 ∧ ¬𝑣9 ∧ ¬𝑣51 ∧ 𝑣75) = 𝐹

¬𝑣98 ∨ (¬𝑣76 ∧ 𝑣66 ∧ 𝑣13) ∨ (𝑣97 ∧ 𝑣89 ∧ 𝑣45 ∧ 𝑣83) = 𝑇
(𝑣43 ∧ 𝑣21 ∧ ¬𝑣53) = 𝐹

We train the model based on a set of known DNFs and expect
the model to predict the T/F values for new DNFs, without the
need to explicitly solve the T/F value of each logical variable. It
guarantees that there is an answer because the training equations
are developed based on the same parameter set with known T/F
values. However, we do not use the variable T/F information for
model learning.

On simulated data, we use the Cross-Entropy loss 𝐿𝑡 (as in Equa-
tion 1). We randomly generate two datasets, of which one has
𝑛 = 1 × 103 variables and𝑚 = 3 × 103 expressions, and the other
is ten times larger. On the two datasets, weights of vector length
regularizers _ℓ are set to 0.001, and weights of logic regularizers _𝑙
are set to 0.01 and 0.1 respectively. Datasets are randomly split into
the training (80%), validation (10%), and test (10%) sets.

4.1 Overall Performance
The overall performances on test sets are shown on Table 2. Bi-
RNN is bidirectional Vanilla RNN [32] and Bi-LSTM is bidirec-
tional LSTM [11]. CNN is the Convolutional Neural Network [19].
They represent traditional neural networks, which regard logic ex-
pressions as sequences. LINN-𝑅𝑙 is the LINN model without logic
regularizers (i.e., _𝑙 = 0). We decide an equation as 𝑇 if the output
similarity between the equation and T vector is ≥ 0.5, and 𝐹 other-
wise. Accuracy is the percentage of equations whose T/F value are
correctly predicted. Root Mean Squre Error (RMSE) is calculated
by considering the ground-truth value as 1 for 𝑇 and 0 for 𝐹 .

The poor performance of Bi-RNN, Bi-LSTM, and CNN verifies
that traditional neural networks, which ignore the logical structure
of expressions, do not have the ability to conduct logical inference.
Logical expressions are structural and have exponential combina-
tions, which are difficult to learn by a fixed model architecture. We
also see that Bi-RNN performs better than Bi-LSTM because the
forget gate in LSTMmay be harmful to model the variable sequence
in expressions. LINN-𝑅𝑙 provides a significant improvement over
Bi-RNN, Bi-LSTM, and CNN because the structure information of
the logical expressions is explicitly captured by the network struc-
ture. However, the behaviors of the logic modules in LINN-𝑅𝑙 are
freely trained without logical regularization. On this simulated data
and many other problems requiring logical inference, logical rules
are essential to model the internal relations. With the help of logic
regularizers, the modules in LINN learn to perform expected logic
operations, and finally, we can see that LINN achieves the best
performance and significantly outperforms LINN-𝑅𝑙 .

4.2 Weight of Logical Regularizers

0 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

λl - Weight of Logic Regularizers

0.84

0.86

0.88

0.90

0.92

0.94

T
es

t
A

cc
u

ra
cy

n = 1× 103,m = 3× 103

0 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

λl - Weight of Logic Regularizers

0.92

0.93

0.94

0.95

T
es

t
A

cc
u

ra
cy

n = 1× 104,m = 3× 104

Figure 2: Performance under different choices of the logical
regularization weight.

To better understand the impact of logical regularizers, we test
the model performance with different weights of logical regulariz-
ers. The results are shown in Figure 2. When _𝑙 = 0 (i.e., LINN-𝑅𝑙),
the performance is not so good, showing that structure information
is not enough to inference the T/F values of logic expressions. As
_𝑙 grows, the performance gets better, which shows that logical
rules of the modules are essential for logical inference. However,
a too-large _𝑙 will result in a drop of performance, because the
expressiveness power and generalization ability of the model may
be significantly constrained by the logical regularizers, which force
the model to performance hard-logic reasoning. In summary, proper
weights of logic regularizers are helpful by unifying both the ad-
vantages of neural networks and logic reasoning.

Table 2: Performance on solving logical equations

𝑛 = 1 × 103,𝑚 = 3 × 103 𝑛 = 1 × 104,𝑚 = 3 × 104

Accuracy RMSE Accuracy RMSE

Bi-RNN [32] 0.6493 ± 0.0102 0.4736 ± 0.0032 0.6942 ± 0.0028 0.4492 ± 0.0009
Bi-LSTM [11] 0.5933 ± 0.0107 0.5181 ± 0.0162 0.6847 ± 0.0051 0.4494 ± 0.0020
CNN [19] 0.6380 ± 0.0043 0.5085 ± 0.0158 0.6787 ± 0.0025 0.4557 ± 0.0016

LINN-𝑅𝑙 0.8353 ± 0.0043 0.3880 ± 0.0069 0.9173 ± 0.0042 0.2733 ± 0.0065
LINN 0.9440 ± 0.0064* 0.2318 ± 0.0124* 0.9559 ± 0.0006* 0.2081 ± 0.0018*

* Significantly better than the best of the other results (italic ones) with 𝑝 < 0.05

4.3 Solving Variables
It would be interesting to see whether LINN can solve the T/F value
of the variables in logical equations. To do so, in different training
epochs, we adopt t-SNE [26] to visualize the variable embeddings
on a 2-D plot, shown in Figure 3. We can see that at the beginning of
the training process, the variable embeddings are randomly mixed
together since they are randomly initialized. But they are gradually
rearranged and finally clearly separated. We assign the variables
in the two clusters as T and F, respectively. Compared with the
ground-truth 𝑇 /𝐹 value of the variables, the accuracy is 95.9%,
which indicates a high accuracy of solving variables based on LINN.
It means the model has the ability to inference the true/false values
of the logic variables through a number of expressions, and thus it
can further make reasoning on unseen logic expressions. Note that
the model is not trained with the ground-truth T/F values of the
variables.

5 RECOMMENDER SYSTEMS
Experiments on simulated data verify that LINN is able to solve
logic variables and make inferences on logical equations. It also
reveals the prospect of LINN to apply on many other practical tasks
as long as they can be formulated as logical expressions. Recommen-
dation needs both the generalization ability of neural networks and
reasoning ability of logic inference. As a result, we test the ability
of LINN on making personalized recommendations. To apply LINN
into the recommendation task, we first convert it into a logically
formulated problem. The key problem of recommendation is to
understand user preferences according to historical interactions.
Suppose there is a set of users𝑈 = {𝑢𝑖 } and a set of items𝑉 = {𝑣 𝑗 },
and the overall interaction matrix is 𝑅 = {𝑟𝑖, 𝑗 } |𝑈 |× |𝑉 | . The interac-
tions observed by the recommender system are the known values
in matrix 𝑅. However, they are very sparse compared with the total
size of the matrix |𝑈 | × |𝑉 |. Recommendation models predict user’s
preference based on the user’s history interactions (e.g., purchase
history). Logic expressions can be easily used to model the item
relationship in user history. For example, if a user bought an iPhone,
he/she may need an iPhone case rather than an Android data line,
i.e., iPhone∧ iPhone case = 𝑇 , while iPhone∧Android data line = 𝐹 .
Let 𝑟𝑖, 𝑗 = 1/0 if user 𝑢𝑖 likes/dislikes item 𝑣 𝑗 . Then if a user 𝑢𝑖
likes an item 𝑣 𝑗3 after a set of history interactions sorted by time
{𝑟𝑖, 𝑗1 = 1, 𝑟𝑖, 𝑗2 = 0}, the logical expression can be formulated as:

(𝑣 𝑗1 ∧ 𝑣 𝑗3) ∨ (¬𝑣 𝑗2 ∧ 𝑣 𝑗3) ∨ (𝑣 𝑗1 ∧ ¬𝑣 𝑗2 ∧ 𝑣 𝑗3) = 𝑇 (9)

which means the user likes 𝑣 𝑗3 either because he/she likes 𝑣 𝑗1 , or
because he/she dislikes 𝑣 𝑗2 , or because he/she likes 𝑣 𝑗1 and dislikes

−10 0 10

Epoch 1

−10

−5

0

5

10

−40 −20 0 20

Epoch 4

−10

0

10

20

−25 0 25

Epoch 5

−20

−10

0

10

20

−25 0 25

Epoch 6

−30

−20

−10

0

10

20

30

−50 0 50

Epoch 8

−20

−10

0

10

20

−50 0 50

Epoch 32

−20

−10

0

10

20

n = 1× 103,m = 3× 103 positive

negative

Figure 3: t-SNE visualization of how the variable embed-
dings change during model learning.

𝑣 𝑗2 at the same time. There are at least two advantages to take this
format of expressions:

• The model can filter out some unrelated interactions from
user history. For example, if 𝑣 𝑗1 , 𝑣 𝑗2 , 𝑣 𝑗3 are iPhone, cat food
and iPhone case, respectively, as long as 𝑣 𝑗1∧𝑣 𝑗3 is close to the
vector T, it does not matter what the vector of ¬𝑣 𝑗2 ∧𝑣 𝑗3 look
like. This characteristic encourages the model to find proper
solutions to multiple expressions through collaborative fil-
tering, and contribute to learning the internal relationship
between items.

• After training the model, given the user history and a target
item, the model not only predicts how much the user prefers
the item, but also finds out which items are related by eval-
uating each conjunction term, i.e. 𝑣 𝑗1 ∧ 𝑣 𝑗3 , ¬𝑣 𝑗2 ∧ 𝑣 𝑗3 and
𝑣 𝑗1 ∧¬𝑣 𝑗2 ∧𝑣 𝑗3 in Equation 9. If 𝑣 𝑗1 ∧𝑣 𝑗3 is close to the vector
T, the recommender system can give a explanation that it rec-
ommends item 𝑣 𝑗3 to the user because he/she likes 𝑣 𝑗1 . This
makes a step to explainable recommendation [36, 37], which
is an important aspect in recommender system research.

In Equation 9, the first two conjunction terms are the first-order
relationships between items, and the third one is a second-order
relationship. If the user hasmore historical interactions, there can be
higher-order and more relationships, but the number of disjunction
terms in Equation 9 will explode exponentially. One solution is to
sample terms randomly or using some designed sampling strategies.
In this work, for model simplicity, we only consider the first-order
relationships in experiments, which is good enough to surpassmany
state-of-the-art methods. Considering higher-order relationships
can be the future improvements of the work. As far as we know,

there are few works considering high-order recommendation rules
or explanations for recommendation.

It should be noted that the above recommendation model is non-
personalized, i.e., we do not learn user embeddings for prediction
and recommendation, but instead only rely on item relationships
for recommendation. However, as we will show in the following
experiments, such a simple non-personalized model outperforms
state-of-the-art personalized neural sequential recommendation
models, which implies the great power and potential of reasoning
in recommendation tasks. Extending the model to personalized
versions will be considered in the future.

5.1 Experimental Settings
5.1.1 Training and Evaluation. The models are evaluated on the
Top-K Recommendation task. We use the pair-wise learning strat-
egy [31] to train the model, which is a commonly used training
strategy in many ranking tasks. In detail, we use the positive in-
teractions in the datasets to train the baseline models and use the
expressions corresponding to the positive interactions to train our
LINN model. For each positive interaction 𝑣+, we randomly sample
an item the user dislikes or has never interacted with before as the
negative sample 𝑣− in each epoch. Then the loss function of the
base models is:

𝐿 = −
∑
𝑣+

log
(
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑝 (𝑣+) − 𝑝 (𝑣−))

)
+ _Θ∥Θ∥2𝐹 (10)

where 𝑝 (𝑣+) and 𝑝 (𝑣−) are the predictions of 𝑣+ and 𝑣−, respectively,
and _Θ∥Θ∥2

𝐹
is ℓ2-regularization. The loss function encourages the

predictions of positive interactions to be higher than the negative
samples. For our LINN, suppose the logic expression with 𝑣+ as
the target item is 𝑒+ = (· ∧ 𝑣+) ∨ · · · ∨ (· ∧ 𝑣+), then the negative
expression is 𝑒− = (· ∧ 𝑣−) ∨ · · · ∨ (· ∧ 𝑣−), which has the same
history interactions as 𝑒+ but replaces 𝑣+ with 𝑣−. Then the final
loss function of our LINN model is:

𝐿 = −
∑
𝑒+

log
(
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑝 (𝑒+) − 𝑝 (𝑒−))

)
+ _𝑙

∑
𝑖

𝑟𝑖 + _ℓ
∑
𝑤∈𝑊

∥w∥2𝐹 + _Θ∥Θ∥2𝐹
(11)

where 𝑝 (𝑒+) and 𝑝 (𝑒−) are the predictions of 𝑒+ and 𝑒−, respectively,
and other parts are the logic, vector length and ℓ2-regularizers as
mentioned before. In Top-K evaluation, we sample 100 𝑣− for each
𝑣+ and evaluate the rank of 𝑣+ in these 101 candidates, which is a
common way in many previous works. Recommendation perfor-
mance is evaluated on two metrics (mean of all evaluation samples):

• nDCG@K: larger is better. It is one of the most popular
ranking metrics in information retrieval, which is higher
when the results are more similar to the ideal ranking. We
consider the top-10 results, i.e., 𝐾 = 10.

• Hit@K: larger is better. It is the percentage of ranking lists
that include at least one positive item in the top-K highest
ranked items. We use 𝐾 = 1, which means that we evaluate
whether the top-ranked item is positive.

5.1.2 Datasets. Experiments are conducted on two publicly avail-
able datasets:

• ML-100k [13]. It is maintained by Grouplens2, which has
been used by researchers for many years. It includes 100,000 ratings
ranging from 1 to 5 from 943 users and 1,682 movies.

• Amazon Electronics [15]. Amazon Dataset3 is a public e-
commerce dataset. It contains reviews and ratings of items given by
users on Amazon – a popular e-commerce website. We use a subset
in the area of Electronics, containing 1,689,188 ratings ranging from
1 to 5 from 192,403 users and 63,001 items, which is larger and much
more sparse than the ML-100k dataset.

Table 3: Statistics of the Datasets

Dataset #User #Item #Positive #Negative

ML-100k 943 1,682 55,375 44,625
Electronics 192,403 63,001 1,356,067 333,121

The statics of two datasets are summarized in Table 3. The rat-
ings are transformed into 0 and 1. Ratings equal to or higher than 4
(𝑟𝑖, 𝑗 ≥ 4) are transformed to 1, which means positive attitudes (like).
Other ratings (𝑟𝑖, 𝑗 ≤ 3) are converted to 0, which means negative
attitudes (dislike). Then, each user’s interactions are sorted by time,
and each positive interaction of the user is translated to a logic
expression in the way mentioned above (Equation 9). We ensure
that the expressions corresponding to a user’s earliest 5 positive in-
teractions are in the training set. For those users with no more than
5 positive interactions, all the expressions are in the training set.
For the remaining data, the last two positive expressions of every
user are distributed into the validation set and test set, respectively
(test set is preferred if there remains only one expression for the
user). All the other expressions are in the training set. This way of
data partition and evaluation is usually called the Leave-One-Out
setting in personalized recommendation research.

5.1.3 Baselines. We compare LINN with the following baselines:
• BPRMF [31]. This is a Matrix Factorization (MF)-based model

that applies a pairwise ranking loss. It makes recommendations by
the dot product result of user and item vectors plus biases, which
is popular and competitive for item recommendation.

• SVD++ [21]. This model integrates both explicit and implicit
feedback, which explicitly models the user history interactions. It
has been verified as a powerful model of personalized recommen-
dation in many previous works.

Not only traditional recommendation models, but also some
recent neural recommendation models are compared to LINN. In
this work, we select the following neural models, which are more
powerful compared with other neural matching-based models [6].

• STAMP [25]. The Short-TermAttention/Memory Prioritymodel,
which uses the attention mechanism to model both short-term and
long-term user preferences. This is one of the state-of-the-art rec-
ommendation models that consider the recent user interactions for
recommendation.

• GRU4Rec [16]. A sequential recommendation model that ap-
plies Gated Recurrent Unit (GRU) [4] to derive the ranking scores.

• NARM [24]. This model utilizes GRU and the attention mech-
anism to consider the importance of different interactions, which

2https://grouplens.org/datasets/movielens/100k/
3http://jmcauley.ucsd.edu/data/amazon/index.html

https://grouplens.org/datasets/movielens/100k/
http://jmcauley.ucsd.edu/data/amazon/index.html

Table 4: Performance on the recommendation task

ML-100k Amazon Electronics

nDCG@10 Hit@1 time/epoch nDCG@10 Hit@1 time/epoch

BPRMF [31] 0.3664 ± 0.0017 0.1537 ± 0.0036 4.9s 0.3514 ± 0.0002 0.1951 ± 0.0004 112.1s
SVD++ [21] 0.3675 ± 0.0024 0.1556 ± 0.0044 30.4s 0.3582 ± 0.0004 0.1930 ± 0.0006 469.3s
STAMP [25] 0.3943 ± 0.0016 0.1706 ± 0.0022 8.3s 0.3954 ± 0.0003 0.2215 ± 0.0003 352.7s

GRU4Rec [16] 0.3973 ± 0.0016 0.1745 ± 0.0038 7.1s 0.4029 ± 0.0009 0.2262 ± 0.0009 225.0s
NARM [24] 0.4022 ± 0.0015 0.1771 ± 0.0016 9.6s 0.4051 ± 0.0006 0.2292 ± 0.0005 268.8s

LINN-𝑅𝑙 0.4022 ± 0.0027 0.1783 ± 0.0043 20.7s 0.4152 ± 0.0014 0.2396 ± 0.0019 498.0s
LINN 0.4064 ± 0.0015* 0.1850 ± 0.0053* 30.7s 0.4191 ± 0.0012* 0.2438 ± 0.0014* 754.9s

* Significantly better than the best of other results (italic ones) with 𝑝 < 0.05

improves the performance of recommendation. It is a state-of-the-
art sequential recommendation model.

In our experiments, for LINN and all baseline models utilizing
the sequential information (recent interactions), at most 10 previous
interactions right before the target positive item are considered.

5.1.4 Parameters. All the models, including baselines, are trained
with Adam [20] in mini-batches at the size of 128. The learning
rate is 0.001 and early-stopping is conducted according to the per-
formance on the validation set. Models are trained at most 100
epochs. To prevent models from overfitting, we use both the ℓ2-
regularization and dropout. The weight of ℓ2-regularization _Θ is
set between 1×10−7 to 1×10−4 and dropout ratio is set to 0.2. Vector
sizes of the variables and the user/item vectors in the recommen-
dation are 64. We run the experiments with five different random
seeds and report the average results and standard errors. For LINN,
_𝑙 is set to 1×10−6 on ML-100k and 1×10−5 on Electronics. _ℓ is set
to 1×10−4 on ML-100k and 1×10−6 on Electronics. Note that LINN
has similar time and space complexity with baseline models, and
each experiment run can be finished in 6 hours (several minutes on
small datasets) with a single GPU (NVIDIA GeForce GTX 1080Ti). 4

5.2 Overall Performance
The overall performance of models on two datasets are shown in
Table 4. From the results, STAMP achieves the best performance
among the non-sequential baselines because it utilizes the attention
mechanism to model both long-term and short-term user prefer-
ences. Models utilizing sequential information, such as GRU4Rec,
and NARM, are significantly better than other non-sequential base-
lines, which is also observed by other works [16, 24]. It shows
that sequential information is helpful to improve the recommenda-
tion performance. NARM performs better than GRU4Rec because
it utilizes two attention networks to model the importance of in-
teractions for users’ local and global preferences. Although the
personalized recommendation is not a standard logical inference
problem, logical inference still helps in this task, which is shown by
the results – we see that on both the ML100k and Electronics, LINN
achieves the best performance. LINN makes more significant im-
provements on the Electronics dataset because the dataset is more
sparse, and integrating logic inference is more beneficial than only
using collaborative filtering. Note that without logic regularizers,

4Codes are provided on GitHub at https://github.com/rutgerswiselab/NLR

LINN-𝑅𝑙 still achieves comparable performance with NARM on
ML-100k and is significantly better on Electronics.

Our LINN model is simple in nature, which only learns three
lightweight modules without personalized user embedding for all
of the prediction tasks. It is interesting to see that such a simple
approach outperforms state-of-the-art complex models such as
NARM, which adopts a bi-attention-network and learns the user
purpose features for personalization. This implies the power of
reasoning based on modularized logic networks, and indicates a
newway of designing neural networks andmodeling structural data.
We expect the performance of LINN will be further improved when
adding advanced modeling techniques into the architecture, such as
personalization, attention mechanism, and user’s long/short-term
preferences, which will be explored in the future.

We also show the training time per epoch of different models.
Models explicitly modeling user history are generally slower than
BPRMF, among which SVD++ takes more time for taking the full
user history as inputs. Because of the dynamic computational graph,
we simply pad meaningless tokens when forming the batches for
LINN if the batch size is not fully filled, which causes some redun-
dant computation (detailed implementation can be found in our
code). Although LINN is slower than most of the baselines, they
are at comparative levels, and the time cost is acceptable. Better
implementations, such as parallelized optimization and reducing
redundant computation (similar to GRU4Rec), may help improve
the efficiency of LINN, which we will explore in the future.

5.3 Weight of Logic Regularizers

0 1e-07 1e-06 1e-05 0.0001 0.001

λl - Weight of Logic Regularizers

0.390

0.395

0.400

0.405

0.410

T
es

t
n

D
C

G
@

10

ML-100k

0 1e-07 1e-06 1e-05 0.0001 0.001

λl - Weight of Logic Regularizers

0.410

0.415

0.420

T
es

t
n

D
C

G
@

10

Amazon Electronics

Figure 4: Performance on different logic regularizerweights.

Results of using different weights of logical regularizers verify
that logical inference is helpful in making recommendations, as
shown in Figure 4. Recommendation tasks can be considered as a
logical inference task on the history of user behaviors, since certain
user interactions may imply a high probability of interacting with

https://github.com/rutgerswiselab/NLR

Table 5: Results about negative interactions in sequence

ML-100k Amazon Electronics

nDCG@10 Hit@1 nDCG@10 Hit@1

STAMP 0.3943 0.1706 0.3954 0.2215
with −v 0.3757 0.1651 0.3901 0.2171
with v− 0.3803 0.1646 0.3936 0.2186
with 𝑔(v) 0.3745 0.1618 0.3899 0.2173

GRU4Rec 0.3973 0.1745 0.4029 0.2262
with −v 0.3909 0.1741 0.3924 0.2187
with v− 0.4006 0.1794 0.4050 0.2286
with 𝑔(v) 0.3843 0.1681 0.3946 0.2206

NARM 0.4022 0.1771 0.4051 0.2292
with −v 0.3917 0.1762 0.3978 0.2234
with v− 0.3964 0.1807 0.4029 0.2262
with 𝑔(v) 0.3842 0.1743 0.3942 0.2206

LINN 0.4064* 0.1850* 0.4191* 0.2438*
w/o negative 0.3990 0.1822 0.4172 0.2433

* Significantly better than the best baselines (italic ones)
with 𝑝 < 0.05

another item. On the other hand, learning the representations of
users and items are more complicated than solving pure logical
equations, since the model should have sufficient generalization
ability to cope with noisy or even conflicting input expressions.
Thus LINN, as an integration of logic inference and neural rep-
resentation learning, performs well on the recommendation task.
The weights of logical regularizers should not be too large because
recommendation is not a pure logic reasoning problem but instead
a reasoning problem on noisy data. Thus too large logical regular-
ization weights may limit the expressiveness power and lead to a
drop in performance.

5.4 Negative Interactions in Sequences
It should be noted that LINN can naturally model negative feed-
backs in the user history through the negation operation ¬. As far
as we know, except for using the negative interactions as the nega-
tive training samples, there is few work considering the negative
interactions in user interaction sequences. Although considering
negative interactions as negative samples helps to learn the item
similarities and their relationships, removing them from user’s
historical sequence is not ideal for modeling user preference, be-
cause negative items indeed possess rich information about the
user preference. LINN provides a straight-forward way to model
the negative interactions in the sequence. For fair comparison, we
enhance the STAMP, GRU4Rec, and NARM models in three ways
so that they can also take sequences of both positive and negative
interactions as inputs:

(1) Use the negative of the item vector −v instead of v as the
input of RNN or attention networks in STAMP, GRU4Rec
and NARM when the item is a negative interaction in the
user’s interaction sequence.

(2) Build an extra item embedding matrix, so that each item has
two vectors v and v− for representing positive and negative
interactions on the item, respectively.

549
436

602
576

387
342

1617
1144

1599

Sim(vi ∧ vj,T)

549

436

602

576

387

342

1617

1144

1599

0.78 0.63 0.86 0.83 0.55 0.20 0.00 0.08 0.00

0.73 0.65 0.79 0.89 0.69 0.66 0.00 0.13 0.00

0.87 0.76 0.95 0.65 0.80 0.08 0.00 0.54 0.00

0.89 0.83 0.44 1.00 0.81 0.03 0.00 0.00 0.00

0.59 0.61 0.80 0.88 0.73 0.90 0.00 0.05 0.00

0.24 0.68 0.03 0.12 0.86 0.03 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.17 0.11 0.64 0.01 0.05 0.00 0.00 0.01 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

9 random movies ranked on popularity

0.2

0.4

0.6

0.8

Figure 5:Heatmap of the co-occurrence probability by LINN.

(3) When there comes a negative interaction, we first use a two-
layer feed-forward network 𝑔(·) (similar as the NOT module
in LINN) to transform the item vector v into its negative
representation 𝑔(v).

We try our best to tune the parameters, and the results are shown
in Table 5. We see that only GRU4Rec with an extra negative em-
bedding matrix can slightly benefit from the negative interactions
in the sequence. The reason may be that −v makes a too strong
assumption that positive and negative preferences must have oppo-
site representations in the vector space, while it may not be valid
in non-linear neural networks and thus negatively affect the model
performance. Using an unconstrained network 𝑔(·) only increases
the parameter space and does not help in learning the meaning of
negative interactions. A separate embedding matrix for negative
interactions is better than these two methods, but it also weakens
the relationship between the two representations of the same item.
However, LINN achieves significantly better performance by using
logic expressions to model the negative interactions in sequences.
Note that even without these negative interactions, LINN still per-
forms much better than GRU4Rec and NARM on Electronics, and
achieves significantly better Hit@1 on ML-100k.

5.5 Item Co-occurrence
To better understand what LINN has learned, we randomly select
9 movies in ML-100k and use LINN to predict their co-occurrence
(i.e., liked by the same user). The movies are ranked based on their
popularity (interaction number) in the training set. More than 30
users interact with the first 3 movies, and less than 5 users interact
with the last three. We use LINN to calculate the 𝑆𝑖𝑚(v𝑖 ∧ v𝑗 ,T) of
each item pair, which means the probability of liking 𝑣 𝑗 if a user
likes 𝑣𝑖 . The results are shown in Figure 5, and we can draw the
following conclusions:

• Although we do not design a symmetric network for AND or
OR, LINN successfully learns that v𝑖 ∧ v𝑗 is close to v𝑗 ∧ v𝑖 .
This is shown by the observation that symmetric positions
in the heatmap matrix have similar values.

• LINN learns that popular item pairs have higher probabilities
to be consumed by the same user, which corresponds to the
top left corner of the heatmap matrix.

• LINN can discover potential relationships between items.
For example, item No.602 is a popular musical movie with
song and dance, and item No.1144 is an unpopular drama
movie, but they belong to the similar type of movies. We see
that LINN is able to learn that they have a high probability
of being liked by the same user.

Note that we do not use any content or category information of
the movies to train the models. It is not easy for models to learn the
item relationships solely based on interactions, especially on sparse
data, while LINN does well based on the power of deep learning
and logic reasoning. Our future work will consider modeling fea-
tures and knowledge with logic-integrated neural networks, and
we believe it has the potential to improve both transparency and
effectiveness of deep neural networks.

6 CONCLUSIONS AND FUTUREWORK
In this work, we propose a Logic-Integrated Neural Network (LINN)
framework, which introduces logic reasoning into deep neural net-
works. In particular, we use latent vectors to represent the logic vari-
ables, and the logic operations are represented as neural modules
regularized by logic rules. The integration of logical inference and
neural network enables the model to have the abilities of both repre-
sentation learning and logical reasoning, which reveals a promising
direction to design deep neural networks. Experiments on theoreti-
cal task show that LINN works well on logic reasoning problems
such as solving logical equations and variables. We further apply
LINN to recommendation tasks effortlessly and achieve significant
performance, which shows the prospect of LINN on practical tasks.

In this work, we focused on propositional logic reasoning with
neural networks, while in the future, we will further explore pred-
icate logic reasoning based on our LINN architecture, which can
be easily extended by learning predicate operations as neural mod-
ules. We will also explore the possibility of encoding knowledge
graph reasoning based on LINN, which will further contribute to
the explainable AI research.

7 ACKNOWLEDGEMENT
This work is supported in part by the Rutgers faculty support pro-
gram, and in part by the National Key Research and Development
Program of China (2018YFC0831900), Natural Science Foundation
of China (61672311, 61532011), and Tsinghua University Guoqiang
Research Institute. The project is also supported in part by China
Postdoctoral Science Foundation and Dr. Weizhi Ma has been sup-
ported by Shuimu Tsinghua Scholar Program.

REFERENCES
[1] Yoshua Bengio. 2019. From System 1 Deep Learning to System 2 Deep Learning.

In Thirty-third Conference on Neural Information Processing Systems.
[2] Armin Biere. 2008. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling

and Computation 4 (2008), 75–97.
[3] Antony Browne and Ron Sun. 2001. Connectionist inference models. Neural

Networks 14, 10 (2001), 1331–1355.
[4] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.
In NIPS 2014 Workshop on Deep Learning, December 2014.

[5] Ian Cloete and Jacek M Zurada. 2000. Knowledge-based neurocomputing. (2000).
[6] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we

really making much progress? A worrying analysis of recent neural recommen-
dation approaches. In RecSys. 101–109.

[7] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny
Zhou. 2019. Neural logic machines. ICLR (2019).

[8] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek.
2013. AMIE: association rule mining under incomplete evidence in ontological
knowledge bases. In WWW. ACM, 413–422.

[9] Artur S Garcez, Lus C Lamb, and DovMGabbay. 2008. Neural-Symbolic Cognitive
Reasoning. (2008).

[10] Artur S Avila Garcez and Gerson Zaverucha. 1999. The connectionist inductive
learning and logic programming system. Applied Intelligence 11, 1 (1999), 59–77.

[11] Alex Graves and Jürgen Schmidhuber. 2005. 2005 Special Issue: Framewise
phoneme classification with bidirectional LSTM and other neural network archi-
tectures. Neural Networks 18, 5-6 (2005), 602–610.

[12] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec.
2018. Embedding logical queries on knowledge graphs. In Advances in Neural
Information Processing Systems. 2026–2037.

[13] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. Acm Trans. on Interactive Intelligent Systems (TIIS) 5, 4 (2016), 19.

[14] John Haugeland. 1989. Artificial intelligence: The very idea. MIT press.
[15] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[16] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. Interna-
tional Conference on Learning Representations (2016).

[17] Steffen Hölldobler, Yvonne Kalinke, Fg Wissensverarbeitung Ki, et al. 1994. To-
wards a new massively parallel computational model for logic programming. In
In ECAI’94 workshop on Combining Symbolic and Connectioninst Processing.

[18] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li
Fei-Fei, C Lawrence Zitnick, and Ross Girshick. 2017. Inferring and Executing
Programs for Visual Reasoning. In ICCV. IEEE, 3008–3017.

[19] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1746–1751.

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[21] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 426–434.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[23] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. 1993. Mul-
tilayer feedforward networks with a nonpolynomial activation function can
approximate any function. Neural networks 6, 6 (1993), 861–867.

[24] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. ACM, 1419–1428.

[25] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-
term attention/memory priority model for session-based recommendation. In
SIGKDD. ACM, 1831–1839.

[26] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[27] Warren S McCulloch and Walter Pitts. 1943. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics 5, 4 (1943),
115–133.

[28] Allen Newell. 1980. Physical symbol systems. Cognitive science 4, 2 (1980),
135–183.

[29] An-Te Nguyen, Nathalie Denos, and Catherine Berrut. 2007. Improving new user
recommendations with rule-based induction on cold user data. In Proceedings of
the 2007 ACM conference on Recommender systems. 121–128.

[30] J Ross Quinlan. 1991. Knowledge acquisition from structured data: using deter-
minate literals to assist search. IEEE Expert 6, 6 (1991), 32–37.

[31] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[32] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[33] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L Dill. 2019. Learning a SAT solver from single-bit supervision. In
Proceedings of the 7th International Conference on Learning Representations (2019).

[34] Fan Yang, Zhilin Yang, and William W Cohen. 2017. Differentiable learning of
logical rules for knowledge base reasoning. In NIPS. 2316–2325.

[35] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh
Tenenbaum. 2018. Neural-symbolic vqa: Disentangling reasoning from vision
and language understanding. In NIPS. 1031–1042.

[36] Yongfeng Zhang and Xu Chen. 2020. Explainable recommendation: A survey
and new perspectives. Foundations and Trends in Information Retrieval (2020).

[37] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In SIGIR. 83–92.

	Abstract
	1 Introduction
	2 Related Work
	3 Logic-Integrated Neural Networks
	3.1 Logic Operations as Neural Modules
	3.2 Logical Regularization over Neural Modules
	3.3 Length Regularization over Logic Variables
	3.4 Implementation Details

	4 Solving Logical Equations
	4.1 Overall Performance
	4.2 Weight of Logical Regularizers
	4.3 Solving Variables

	5 Recommender Systems
	5.1 Experimental Settings
	5.2 Overall Performance
	5.3 Weight of Logic Regularizers
	5.4 Negative Interactions in Sequences
	5.5 Item Co-occurrence

	6 Conclusions and Future Work
	7 Acknowledgement
	References

