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ABSTRACT
Web search heavily relies on click-through behavior as an essen-
tial feedback signal for performance evaluation and improvement.
Traditionally, click is usually treated as a positive implicit feedback
signal of relevance or usefulness, while non-click is regarded as a
signal of irrelevance or uselessness. However, there are many cases
where users satisfy their information need with the contents shown
on the Search Engine Result Page (SERP). This raises the problem
of measuring the usefulness of non-click results and modeling user
satisfaction in such circumstances.

For a long period, understanding non-click results is challenging
owing to the lack of user interactions. In recent years, the rapid
development of neuroimaging technologies constitutes a paradigm
shift in various industries, e.g., search, entertainment, and edu-
cation. Therefore, we benefit from these technologies and apply
them to bridge the gap between the human mind and the exter-
nal search system in non-click situations. To this end, we analyze
the differences in brain signals between the examination of non-
click search results in different usefulness levels. Inspired by these
differences, we conduct supervised learning tasks to estimate the
usefulness of non-click results with brain signals and conventional
information (i.e., content and context factors). Furthermore, we
devise two re-ranking methods, i.e., a Personalized Method (PM)
and a Generalized Intent modeling Method (GIM), for search result
re-ranking with the estimated usefulness. Results show that it is
feasible to utilize brain signals to improve usefulness estimation
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performance and enhance human-computer interactions by search
result re-ranking.
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1 INTRODUCTION
The Information Retrieval (IR) community has a long tradition
of using click-through behavior as vital user feedback for search
evaluation [16] and relevance modeling [17, 34]. These researches
usually consider click as a positive signal for relevance or usefulness
and non-click (especially non-click after examination) as negative.
However, search results returned by the current search engines are
far more informative than “ten blue links”, aiming to satisfy the
user’s information need without any click on the Search Engine
Result Page (SERP). Figure 1 presents examples of three real-world
search results, of which two are non-click.

With the advancement of search engines, it is prevalent to find
non-click results useful. Previous literature has investigated an ex-
treme case called “Zero-click” search 1, where users do not click on
any results in a search session. As reported, “Zero-click” searches on

1https://www.searchmetrics.com/glossary/zero-click-searches/
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Figure 1: Examples of non-click search results. The first re-
sult is helpful to satisfy the user’s information need with its
snippets and unnecessary to click.

Google have risen to nearly 65% in 2020 2. Therefore, understanding
why the user does not click a search result or even abandon a SERP
becomes a vital challenge and attracts much attention. Existing ef-
forts focus on detecting “good abandonment” (i.e., user satisfy their
Information Need (IN) without clicks) with SERP content [42] and
search context [7, 42]. However, these works only involve a special
case where all results are non-click ones and analyze the non-click
behavior at a coarse-grained level, i.e., SERP-level. Besides, their
prediction performances are limited by the lack of user interactions
as implicit feedback, such as clicks on the SERP and interactions
on the landing pages. Thus, there is still room for improving the
performance if more feedback signals can be acquired.

Recently, the development of brain–computer interfaces (BCIs)
makes it feasible to collect user feedback for non-click results and
“Zero-click” scenarios. As BCI devices become low-cost (hundreds
of dollars) and portable 3, BCI constitutes a paradigm shift in hu-
man–machine interaction and reshapes human’s life in many do-
mains, such as game playing [41] and image recommendation [5].
In IR domain, Liu et al. [24] suggest a revolution of search interface
with portable BCI and Chen et al. [4] verify its feasibility by build-
ing a practical BCI controlled search system. In addition to utilizing
brain signals to control search interface, decoding brain signals
into user feedback for search performance improvement is another
benefit of BCI-enhanced search. However, to what extent brain
signals could benefit search performance, especially for non-click
results that suffer from the lack of user feedback, remains an open
problem.

In this paper, we delve into the phenomenon of non-click be-
havior and explore the effectiveness of usefulness estimation with
different information sources (i.e., content, context, and brain sig-
nals, detailed in Section 5.1.1). The following research questions
are raised:

2https://sparktoro.com/blog/in-2020-two-thirds-of-google-searches-ended-without-
a-click/
3https://the-unwinder.com/reviews/best-eeg-headset/

• RQ1: How are brain signals in the non-click behaviors asso-
ciated with the usefulness of search results?

• RQ2: To what extent can we estimate the usefulness of non-
click results with additional information sources of brain
signals?

• RQ3: Can we improve the performance of search result re-
ranking with the estimated usefulness?

To shed light on these research questions, we conduct a lab-based
user study to investigate non-click behavior. Participants are re-
quired to perform search tasks while an electroencephalogram
(EEG) device is applied to collect their brain activities. The ex-
ploratory analyses indicate that the EEG band power is correlated
with search result usefulness, particularly in the brain regions of
left temporal, frontal, and occipital. This finding illustrates the pos-
sibility of utilizing brain signals for the usefulness estimation of
non-click results.

To verify the effectiveness of brain signals in the usefulness esti-
mation task, we conduct extensive experimentswith user-independent
and task-independent protocols. Experimental results demonstrate
that models with brain signals can obtain a significant improve-
ment of 6.8% (user-independent) and 11.9% (task-independent) in
terms of AUC compared to the conventional usefulness estimation
models based on content and context factors [26]. Furthermore,
we propose two re-ranking methods, a Personalized Method (PM)
and a Generalized Intent modeling Method (GM), for search re-
sult re-ranking with the estimated usefulness. By virtue of brain
signals, the search result re-ranking task obtains a performance
improvement of 17.0% and 20.6% in terms of 𝑁𝐷𝐶𝐺@1 for PM and
GIM, respectively. These experimental results illustrate that brain
signals are valuable feedback during non-click search result exami-
nation. Furthermore, the findings also demonstrate the benefits of
constructing a proactive search system with real-time BCI in the
foreseeable future.

2 RELATEDWORK
2.1 Zero-click Search
“Zero-click” refers to the situation that the SERP successfully and
entirely satisfies the IN, without the necessity to click on a search
result. Recently, commercial search engines have been attempting
to improve user experience by extracting high-quality snippets or
creating enhanced search results so that a user can pay as little
effort (including click) as possible to access the IN. Therefore, “Zero-
click” search plays an important role in real-world IR and attracts
much attention.

To understand the non-click behaviors in Web search, recent
researches have concentrated on “good abandonment”, which indi-
cates the user’s IN is successfully realized with no need to click on
a result or refine the query. For instance, Li et al. [21] approximate
the prevalence of good abandonment in desktop and mobile search
logs and find that a large amount of abandonment behavior is good
abandonment, especially in mobile search. Additionally, some re-
searchers detect and predict good abandonment in desktop [7] and
mobile [42, 43], with the help of page content and user interactions.

However, these studies exclude the understanding of fine-grained
usefulness for each result, which is more beneficial than page-level
satisfaction for search evaluation. To unravel the usefulness of



non-click results and deal with the lack of user interactions in this
scenario, we leverage the brain signals as user feedback and demon-
strate its effectiveness. To our best knowledge, our work reveals the
difference in brain activities while examining search results with
different usefulness for the first time. We believe that our paradigm
can extend to other situations that lack user interactions.

2.2 Usefulness of Search Result
In the user-centric evaluation, usefulness is a significant concept.
Dislike relevance, which is often annotated by external assessors,
“usefulness represents users’ opinions about whether search results
can meet their INs” [39]. Mao et al. [27] find that there exist many
cases where high relevance doesn’t mean the document is useful.
And they reveal that usefulness has a higher correlation with user
satisfaction than relevance. With such findings, they further pro-
pose models for usefulness judgment prediction in desktop search
scenarios [26] and mobile search scenarios [25].

With the emergence of “Zero click” search, understanding the
usefulness judgment of non-click results is vital. One of the chal-
lenges is the interactions on the landing page, which contain valu-
able feedback such as dwell time and mouse movement, are absent
for non-click results. Therefore, we collect brain signals during
the examination of non-click results to uncover this problem. In
addition, to verify the effectiveness of collected brain signals, we
evaluate and compare the usefulness estimation model based on
brain signals and conventional features proposed by Mao et al. [26].

2.3 BCI for IR
There is an increasing number of literature that applies neurological
devices to IR research. On the one hand, several studies investigate
the cognitive components related to IR from a neuroscience per-
spective. For example, Moshfeghi et al. [28, 29, 30] and Pinkosova
et al. [32] conduct a series of studies using brain signals to unravel
the nature of a set of core notions, such as relevance and IN. They
demonstrate the distributed network of brain regions associated
with these concepts and related IR tasks. Insightful findings are
obtained, such as (1) IN reflects a neural mechanism to acquire exter-
nal information sources, and (2) relevance is a graded phenomenon
in the human brain.

On the other hand, recent years have witnessed some researches
utilize brain signals to infer relevance. For instance, Gwizdka et al.
[10] conduct extensive studies to judge text relevance using EEG or
in combination with eye movements. They show that models using
EEG features can achieve an improvement of 20% in terms of AUC
compared to that of an untrained model. And their work is further
extended into classifying topical relevance of visual shots with EEG
algorithm [18]. Nevertheless, these studies are not carried out in
the search scenario, which includes the interactions on SERP and
examination on the landing page. Whether it is possible to improve
search performance with BCI remains unknown.

Recently, researchers suggest the possibility of using BCI as a
new interface for search [24]. Inspired by the latest BCI technology,
Chen et al. [4] design the first ready-to-use BCI-based search system
with Steady-State Visual Evoked Potentials (SSVEP). It can help sce-
narios in which hand-based interactions are infeasible, e.g., virtual
reality games and users with severe neuromuscular disorders.

Going one step further, we suggest that brain signals can not
only control the search system but also benefit the search experi-
ence with real-time feedback, especially for non-click results that
suffer from the lack of user interactions. What we add on top of
these works is that we demonstrate the effectiveness of brain sig-
nals for the usefulness estimation of non-click results in search
scenarios. Our work suggests that a BCI-based search system can
provide additional user feedback for performance improvement
and evaluation. We believe that our experimental results can verify
the benefits of BCI-based search in the foreseeable future.

3 DATA COLLECTION
In this section, we introduce the design of our user study and the
collected dataset 4.

3.1 User study tasks
We first select 150 queries from the SRR (Search Result Relevance)
dataset [45] for our user study. We use this dataset for two main
reasons: (1) It contains a large number of real-life query logs, screen-
shots of search results, and landing pages. Each query has ten cor-
responding results. (2) It provides human annotations of result
type according to presentation styles. To ensure that a query is
understandable and has a greater probability to cause non-click
behaviors, 90 queries are sampled based on these criteria: (1) A
sampled query should have a clear and unambiguous description
and have a straightforward information need. (2) Among the ten
corresponding results, at least four results are unnecessary to click.
The click necessity is annotated by 15 external assessors. For each
result, click necessity (binary) is judged by at least three different
assessors, and the majority vote decides whether it is necessary to
click. After the selection, we generate a task description manually
for each task and collect the corresponding search results in the
dataset for our study. Figure 1 presents an example query “Does
sunflower seed contains fat?” and some of its corresponding search
results (translated from Chinese). Note that we consider search
tasks with straightforward information need in our user study, it’s
also interesting to explore the exploratory search scenarios in the
furture.

3.2 Participants
We recruit 18 college students aged from 19 to 26 (M 5 = 21.56,
SD 6 = 1.82). The number of participants is analogous to previous
EEG-based studies (e.g., 15 in [15] and 20 in [1]) and the estimated
sample size for the factor analysis in Section 4.1 is 18 (statistical
power=0.8, 𝛼=0.05). There are ten males and eight females who
mainly major in computer science, physics, arts, and engineering.
All the participants are acquainted with the usage of search engines,
and all of them report using search engines daily or once in two days.
The whole task takes about two hours to complete: 50 minutes for
preparation and rest, 60 minutes for the main task, and 10 minutes
for the questionnaire procedure. And each participant would gain
$30 after completing all the tasks.

4The data and code is publicly available in http://www.thuir.cn/Search_Brainwave/.
5Mean value.
6Standard deviation.
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Figure 2: The procedure of a search task. If participants
choose not to click in S2, the result is a non-click one.

3.3 Procedure
This user study adheres to the ethical procedures which is approved
by the ethics committee of the School of Psychology at Tsinghua
University. In the beginning, participants fill in an entry question-
naire to report demographic information and sign an informed
consent about security and privacy protection. Then they read user
study instructions about the procedure of each search task during
the user study. Before entering themain step, participants undergo a
training step with two search tasks to ensure they are familiar with
the procedure. Each participant is instructed to complete search
tasks on a website developed with Django. In the main step, the
participants are supposed to seriously accomplish the search tasks
as many as possible in 60 minutes. They are allowed to rest between
tasks while the rest time would not be included in the time limit.

Figure 2 illustrates the procedure of each search task in the main
step. For simplicity, we denote a search result is a screenshot on
the SERP (Figure 1 gives three examples) and its corresponding
landing page is the standalone web page after the user click the
link corresponding to the search result. The search tasks follow the
same order of steps, i.e., S1 to S4:

(S1) Participants view a task description randomly selected from
the dataset. Once they fully understand the question, they can press
a button and enter the second step.

(S2) A fixation cross is presented for 1.5 seconds on the screen
center to capture participants’ attention and indicate the location
of the forthcoming result. Then a search result (Figure 1 gives three
examples) is displayed, lasting for 2.5 seconds. This procedure,
following the previous works [30, 44], ensures that brain activity
related to the motor response of moving the cursor and clicking
the button would not be contained during the 2.5 seconds. And we
would use brain signals recorded in this time interval for further
analysis and experiments. After that, three response choices, i.e.,
“skip”, “click”, and “end the search”, will be presented above the
search result. If the user chooses to skip the search result or end
the search, the search result will be a non-click one.

(S3) If participants choose “click” in (S2), the landing page of the
corresponding search result will be presented. After examining the
lading page, the participant can either end the search or continue
to examine the next result in this step.

(S4) Once the participant is convinced of the answer to the search
task, they can end the search in (S2) or (S3). Then they are presented
with an end-mark page. On this page, they are required to give the

answer via voice input and report their perceived difficulty (five-
point Likert scale) to the search task and usefulness feedback (four-
point Likert scale) to each result. The participants are informed
that the voice input would be examined to ensure that they have
carefully accomplished the search tasks.

We randomize the tasks’ order for each participant and display
each search result within a task in a randomized sequence. A pilot
study, which involved four additional users, is conducted ahead to
adjust the settings, including the display time of fixation cross and
result, amount of training tasks, etc. Note that in our experimental
paradigm, the search result is displayed one by one. We apply this
paradigm to collect brain signals and behavior responses for each
specific result and leave the investigation on the whole page as
future work.

3.4 Preprocessing of EEG data
EEG data commonly contains noise sources related to power line
noise, eye blinks, body movement, etc., which need to be pre-
processed with standard procedures for further analysis. The stan-
dard procedures include: re-referencing to averaged mastoids, base-
line correlation, low-pass of 50Hz and high-pass of 0.5Hz filtering,
artifacts removal (with a parametric noise covariance model [12]),
and down-sampling to 500 Hz. Afterward, interested epochs (brief
EEG segment, 2,500 ms in our experimental settings) are extracted,
and baseline correlation is applied again using the pre-stimulus
period 0-1500 ms.

3.5 Apparatus
Our study uses a desktop computer that has a 27-inch monitor with
a resolution of 2,560×1440 and Google Chrome browser. A Scan
NuAmps Express system (Compumedics Ltd., VIC, Australia) and
a 64-channel Quik-Cap (Compumedical NeuroScan) are deployed
to capture the participants’ EEG data. All the EEG channels are
placed based on the International 10–20 system. The impedance of
the channels is calibrated under 10 𝑘Ω in the preparation step, and
the sampling rate is set at 1,000 Hz.

3.6 Statistics of the Collected Data
The collected dataset consists of 1252 interactions on 90 search
tasks, and participants examine 3.61(SD=2.24) search results for
each task on average. One participant averagely accomplishes
69.56 (SD=12.23) tasks and examines 250.78 (SD=56.53) search re-
sults. Table 1 presents the participants’ responses (click and non-
click) across usefulness levels ranging from 1 to 4. We can observe
that about 85.9% of search results are non-clicked, among which
46.8% are “not useful at all” (usefulness=1), followed by “very use-
ful” (usefulness=4), while fewer in “fairly useful” (usefulness=3) and

Table 1: The average number of participants’ responses
across usefulness levels.

Response Usefulness
1 2 3 4

#Click 14.0(±14) 7.4(±7) 10.2(±11) 12.8(±13)
#Non-click 101.2(±53) 30.8(±21) 31.5(±20) 52.5(±16)



Table 2: Statistical significant differences in EEG spectral
powers among various coarse-grained brain regions. (*/**, ·)
indicates the ANOVA test is significant at the 𝑝 < 0.05/0.01
level. (·, ↑∗/∗∗ /↓∗/∗∗) indicates the post-hoc test suggest the
spectral powers in “not useful at all” group in higher/lower
than that in the “very useful” group at the 𝑝 < 0.05/0.01 level.

Brain region Bands (ANOVA test, post-hoc test)

Pre-frontal 𝛿 (*, ↑**), 𝜃 (**, ↓**), 𝛽 (*, ↑*)
Frontal 𝛿 (*, ↑*), 𝜃 (**, ↓**), 𝛾 (*, ↑*), 𝛽 (*, ↑*)
Central 𝛾 (**, ↑*), 𝛽 (**, ↑**)
Partial 𝛾 (**, ↑*), 𝛽 (**, ↑*)
L-temporal 𝛾 (*, ↑*), 𝛽 (*, ↑*)
R-temporal 𝛾 (*, ↑*), 𝛽 (**, ↑*)
Occipital 𝛾 (**, ↑**), 𝛽 (**, ↑**)

“somewhat useful” (usefulness=2). Then we conduct exploratory
analyses and usefulness estimation experiments on these results.

4 BRAIN SIGNALS ANALYSES
To address RQ1, we investigate the effects of search results’ useful-
ness on the corresponding brain signals.

4.1 Statistical methods
We access the effects of search results’ usefulness on the human
brain by analyzing the spectral powers in different frequency bands
and EEG channels, which are widely applied to measure brain
activities [35]. For each EEG channel, we extract the spectral powers
of each epoch between 0.5 and 50 Hz according to the Welch’s
method and average them over the frequency bands of delta (0.5-
4Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-
50 Hz). In order to test the difference of spectral powers between
brain signals in response to search results of different usefulness,
we applied repeated measures ANOVA. The independent variable
is the usefulness rating of search results. The dependent variable is
each participants’ mean spectral power in a frequency band and
a EEG channel. After that, we apply post-hoc Bonferroni tests to
conduct pair-wise comparisons between groups. We report ANOVA
results in fine-grained and coarse-grained strategies regarding the
division of brain regions. The fine-grained strategy treats each
channel as a brain region. The coarse-grained strategy aggregate
the adjacent channels’ spectral powers in different brain regions (i.e.,
pre-frontal, frontal, central, parietal, l-temporal, r-temporal, and
occipital) according to the 10-20 system [11].

Besides, to explore the mixed effects, such as the display type
of the search result, the task order, and the word number in a
search result, we conduct mixed effect analyses with a mixed linear
model. We find that the effect of the search results’ usefulness is
significant when taking these confounding factors into account,
which suggests that we can infer the search results’ usefulness with
brain signals robustly. The mixed effects analyses are elaborated in
Section A.2.

Theta: 4-8Hz

Beta: 13-30Hz

Alpha: 8-13Hz

Gamma: 30-50Hz
10

-10

0 (%)

5

-5

Delta: 0.5-4Hz
FP2

Figure 3: The relative differences of the spectral powers be-
tween groups of “not useful at all” and “very useful”. The
highlighted sensors indicate the differences of spectral pow-
ers in 1) the repeated measures ANOVA test regrading all
groups and 2) the post hoc Bonferroni tests between groups
of “not useful at all” and “very useful” are both significant
at the 𝑝 < 0.05 level.

4.2 Relationship between the EEG spectral
power and result usefulness

Significance levels of spectra powers’ differences among different
usefulness ratings are reported in Table 2 and Figure 3. From Table 2,
we observe that the usefulness ratings have significant effects on all
the coarse-grained brain regions. Among all coarse-grained brain
regions, the theta band power in pre-frontal achieves the most
significant statistic in the ANOVA test (F[2,36]=12.67, p<1e-3) and
the post-hoc test (𝑀𝑑𝑖 𝑓 𝑓 =-5.96, p<1e-3). Besides, among all the EEG
channels, the theta band power in FP2 (see in Figure 3) achieves the
most significant statistic in the ANOVA test (F[2,36]=9.42, p<1e-3)
and the post-hoc test (𝑀𝑑𝑖 𝑓 𝑓 =-5.46, p<1e-3). Therefore, we suggest
that brain signals are effective and robust factors in predicting
usefulness judgment.

Additionally, we find that more significant channels have ap-
peared in beta and gamma bands than others. The beta and gamma
bands are related to stressed and alert levels [31]. We observe that
the non-click search results with higher usefulness usually have
lower spectral powers in these bands. Thus it suggests that the
useless search result may cause negative emotion such as stress
and anxious thinking. Besides, previous studies have revealed that
the spectral powers in beta and gamma bands are more effective
for emotion recognition [20]. In the scenario of search result exam-
ination, we speculate that whether the IN is realized and whether
the user is satisfied might arouse patterns of advanced cognitive
functions similar to certain positive emotions. Our findings indicate
that we can detect positive emotions when the user is visiting useful
results.

Significant findings also exist in delta and theta bands. Theta
bands are related to cognitive and memory performance [19] while
delta bands are traditionally considered to be associated with deep
sleep [2]. We observe that the dominant band (i.e., band with



Table 3: The content, context, and brain signals features.

Information source Features

Content BM25 score, BERT score, result type

Context
result position, avg/max/total usefulness
of previous results, avg/max similarity
score with previous results

Brain signals 62 channels × (5 spectral domain features
+ 62 temporal domain features)

higher spectral power) is the theta band, which suggests the pro-
cess related to working memory are more active in useful search
results. Another observation is that the significant findings are dis-
tributed mainly at brain regions of frontal and pre-frontal. Previous
functional magnetic resonance imaging (fMRI) studies on relevance
perception [28] suggest that the brain activities at these regions (i.e.,
frontal and pre-frontal), are different when processing relevant and
non-relevant documents. These findings indicate that relevance
and usefulness, though differentiated by some researchers, might
be two highly connected concepts sharing similar cerebral function
areas.

Answer to RQ1. We analyze the effects of the usefulness of non-
click results on the spectral powers of EEG signals. The above
analyses provide converging and insightful evidence that there are
detectable differences in brain activities while examining non-click
search results of different usefulness ratings. It suggests that brain
signals are effective in inferring usefulness judgment.

5 USEFULNESS ESTIMATION
To answer RQ2, we explore the effectiveness of brain signals in
usefulness estimation. We conduct experiments to compare differ-
ent models based on brain signals, content/context information,
and their combinations. Furthermore, we analyze the effect of brain
signals in different experimental settings.

Since the aim of this experiment is to demonstrate the effective-
ness and robustness of EEG signals as feedback, we apply prevalent
feature engineering methods and several state-of-the-art multichan-
nel EEG classification models. The investigation on designing more
sophisticated EEG classification models and methods to combine
various information sources are left as future work.

5.1 Experimental setups
5.1.1 Features. This subsection elaborates selected features based
on brain signals and content/context factors. For content and con-
text features, we inherit the factors from [25, 25]’s study. Their study
investigate the factors that affect usefulness judgments, e.g., BM25
score and result position, which is detailed in Section A.1 (e.g.,
). For brain signals, existing works in multichannel EEG-based
prediction extract features in the spectral domain and the tem-
poral domain [9, 44]. In our practice, we extract differential en-
tropy (DE) [13] as spectral domain features and down-sampling the
raw EEG data of each channel to 25Hz as temporal domain features.
DE is equivalent to the logarithm of band power as described in

Section 4.1, which is considered to have a better performance than
band power in EEG-based prediction [8].

5.1.2 Models. In general, EEG classification models can be divided
into topology-invariant and topology-aware. Traditional classifi-
cation models, such as support vector machines (SVM), k-Nearest
Neighbors (KNN), and Gradient Boosting Decision Tree (DT), are
belong to the group of topology-invariant. They do not consider the
topological structure of EEG channels when extracting the infor-
mation and adopt manually designed features, especially spectral
features, to circumvent the issue of high dimensionality. In con-
trast, topology-aware classifiers, such as CNN [22], GNN [38], and
attention-based model [15, 40], take the spatial relations of EEG
channels into account and learn EEG representations by aggregat-
ing features from different channels.

To verify the effectiveness of brain signals, we exploit preva-
lent models from both groups. For the group of topology-invariant
classifiers, we adopt DT, which is widely used in machine learn-
ing tasks since it can automatically choose and combine the EEG
features. For topology-aware models, we exploit Graph Convolu-
tional Neural Network (GCN) [38], Hierarchical Spatial Learning
Transformer (HSLT) [40], and SST-EmotionNet (SST) [15]. GCN
constructs heterogeneous graph to learn deep-level information
of graph-structured EEG signals. HSLT and SST applies attention
mechanisms to adaptively capture discriminative patterns in spec-
tral and temporal information, which achieves state-of-art perfor-
mance for EEG-based prediction tasks.

As for the modeling of content and context features, we compare
the performance of DT, multilayer perceptron (MLP), and SVM in
our dataset. Among them, DT achieves the best performance, which
is consistent with previous work [26]. Due to the page limits, we
only report the experimental results of DT.

Finally, we perform a grid search using a trade-off parameter
𝜆 (19 values from .05 to .95) to combine the estimation scores of
models based on content/context information and brain signals.
Since we aim to explore the effectiveness and robustness of brain
signals, designing more sophisticated combination methods is left
as future work.

5.1.3 Protocols and Evaluation. Given content/context features,
brain signals features, or their combination, the task is to estimate
the usefulness level of non-click search results. We simplify the
task as a binary classification problem by only considering useful-
ness ratings of 1 and 4. The reasons are two-fold: (1) Ratings of
1 (“not useful at all”) and 4 (“very useful”) are boundary usefulness
judgments, and thus they contain less noise than ratings of 2 and 3.
(2) Ratings of 1 and 4 make up of 71.2% search results in total.

To verify the performance in different application scenarios,
we perform two protocols in our experiments: task-independent
and user-independent. The task-independent protocol partitions
the tasks into ten folds then uses the rest folds for training when
validating each fold. The user-independent protocol uses data of an
individual participant for evaluation and trains with the remaining
participants’ data.

As for evaluation metrics, we follow the same principle as in
[26] and also use Area Under Curve (AUC) for our task and report
the standard deviation of AUC among different folds.



5.1.4 Parameter setups. For all models, the parameters are tuned ac-
cording to the averaged AUC. For DT, the parameters include learn-
ing rate, estimator number, leaf nodes, and maximum tree depth,
then the hyper parameters are selected from {10−4, 10−3, 10−2},
{100, 200, 400}, {3, 9}, and {3, 9}, respectively. For GCN, HSLT, and
SST, we inherit most of the hyper parameters from the original
paper [15, 38, 40] and tune the parameters of learning rate and
batch size, which are selected from {10−4, 10−3, 10−2} and {4, 8, 16},
respectively. Besides, to accelerate the training procedure, we train
GCN, HSLT, and SST on an NVIDIA TITAN XP 12G GPU and adopt
the early-stop strategy when the validation performance does not
improve after five iterations.

5.1.5 Definitions. To avoid ambiguity, we use 𝑀 𝑓 to denote the
model 𝑀 (=DT, SST) using features 𝑓 (= 𝑐𝑛, 𝑐𝑥, 𝑏𝑠). cn, cx, and bs
indicate content features, context features, and brain signal features,
respectively. + denotes the combination of different models with
trade-off parameters 𝜆. For instance, 𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠 denotes the
combination model of DT using features of content and context
features and SST using brain signals.

5.2 Results and Analysis
In this section, we report experimental results to answer RQ2.
Primarily, we elaborate the overall performance of usefulness es-
timation with different information sources to demonstrate the
effectiveness of brain signals. Additionally, we provide extensive
analysis to study the effect of different experimental settings (i.e.,
trade-off parameter, task difficulty, and length of time interval).

5.2.1 Overall Performance. Table 4 shows the overall performance
of the usefulness estimation of different models on the basis of vari-
ous sources (i.e., content, context, brain signals, and their combina-
tion). For combination models, we mainly discuss 𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝐷𝑇𝑏𝑠

and 𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠 since 𝐷𝑇𝑏𝑠 and 𝑆𝑆𝑇𝑏𝑠 are representative
topology-invariant and topology-aware model, respectively. And

Table 4: The performance of usefulness estimation with dif-
ferent information sources. 𝑀 𝑓 denotes model 𝑀 using fea-
tures 𝑓 . cn, cx, and bs indicate content, context, and brain
signals, respectively. + denotes grid search combination. ∗/∗∗
indicate the difference of performance with 𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠

is significant with p-value < 0.05/0.01.

Model task-independent user-independent
AUC STD AUC STD

𝐷𝑇𝑐𝑥 0.585∗∗ 0.049 0.664∗∗ 0.047
𝐷𝑇𝑐𝑛 0.593∗∗ 0.080 0.619∗∗ 0.040
𝐷𝑇𝑐𝑛,𝑐𝑥 0.614∗ 0.067 0.672∗∗ 0.049
𝐷𝑇𝑏𝑠 0.642 0.033 0.585∗∗ 0.047
𝐺𝐶𝑁𝑏𝑠 [38] 0.644 0.030 0.591∗∗ 0.023
𝐻𝑆𝐿𝑇𝑏𝑠 [40] 0.654 0.043 0.620∗∗ 0.030
𝑆𝑆𝑇𝑏𝑠 [15] 0.655 0.037 0.654∗∗ 0.043
𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝐷𝑇𝑏𝑠 0.683 0.049 0.687∗∗ 0.049
𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠 0.687 0.050 0.718 0.040

(a) User-independent. (b) Task-independent.

Figure 4: The performance of usefulness estimationwith dif-
ferent trade-off parameter 𝛾 . When 𝛾 = 0, the performance
coincides with 𝐷𝑇𝑐𝑛,𝑐𝑥 . When 𝛾 = 1, the performance coin-
cides with 𝐷𝑇𝑏𝑠 or 𝑆𝑆𝑇𝑏𝑠 . The hollow dot denotes the perfor-
mance is significantly better than 𝐷𝑇𝑐𝑛,𝑐𝑥 .

𝑆𝑆𝑇𝑏𝑠 outperforms other topology-aware models. From Table 4, we
have the following observations:

(1) For both protocols, models utilizing all features perform sig-
nificantly better than models that ignore brain signals. The best
performance is achieved by 𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠 , in which we use SST
for brain signals modeling and combine it with 𝐷𝑇𝑐𝑛,𝑐𝑥 . This obser-
vation demonstrates that brain signals complement conventional
features, including content and context features, and benefit useful-
ness estimation.

(2) For EEG models, the performance in user-independent pro-
tocol is worse than that in task-independent protocol, especially
for DT. The reason is that the brain signals have individual differ-
ences [46]. In spite of this, our experimental results suggest that
individual differences can be alleviated with the deep network of
SST, which performs better than other models in user-independent
protocol. The result highlights the effectiveness of the multi-stream
attention mechanism in SST [15]. This finding is interesting, and
we left the study of how to utilize brain signals to perform stability
across protocols as future work.

(3) As for models excluding brain signals, they perform worse
in the protocol of task-independent than user-independent. The
reason is that some of the content and context features (e.g., BM25
score, total usefulness of previous results) are associated with the
task, as discussed in Section A.1. Thus, the performance degrades
for unseen tasks. However, models using brain signals do not per-
form worse in task-independent protocol than in user-independent
protocol since they directly capture user’s psychological feedback,
which is not associated with the tasks.

5.2.2 In-depth Analysis.

Analysis of trade-off parameter. By using a trade-off parameter 𝛾
to combine the scores estimated by information sources of brain
signals and content/context features, we aim to test (1) for which
settings of 𝛾 the combination model performs better than 𝐷𝑇𝑐𝑛,𝑐𝑥

significantly and (2) whether the combination model is sensitive
to the 𝛾 or not. In Figure 4, we show the performance of models
using all features (𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝐷𝑇𝑏𝑠 and 𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠 ) with dif-
ferent trade-off parameter 𝛾 . Recall that for 𝛾 = 0 and 𝛾 = 1, models
degrades to the 𝐷𝑇𝑐𝑛,𝑐𝑥 and 𝑆𝑆𝑇𝑏𝑠 /𝐷𝑇𝑏𝑠 , respectively. Since SST
performs better for brain signals modeling, we mainly discuss the
𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠 and have two main observations.



(a) User-independent. (b) Task-independent.

Figure 5: The performance of usefulness estimation with
various task difficulties. 𝐷𝑇𝑐𝑛,𝑐𝑥 performs worse in difficult
tasks than that in easy and medium tasks (𝑝 < 0.05).

On the one hand, as 𝛾 increases, 𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠 monotonically
increases to the best performance with an optimal value of 𝛾 and
then gradually decreases. This finding demonstrates that incorpo-
rating conventional features and brain signals together is better
than considering one facet only.

On the other hand, 𝐷𝑇𝑐𝑛,𝑐𝑥 + 𝑆𝑆𝑇𝑏𝑠 is significantly better than
𝐷𝑇𝑐𝑛,𝑐𝑥 for 0.4 ≤ 𝛾 ≤ 0.85 (user-independent) and 0.55 ≤ 𝛾 ≤
0.9 (task-independent). However, changing 𝛾 in 0.15 ≤ 𝛾 ≤ 0.85
shows no significant differences (for both protocols). These suggest
that the combination model is not sensitive to this parameter.

Analysis of task difficulty. The task difficulty collected in the
user study is classified into three groups: easy (very easy and easy),
medium (neither easy nor difficult), and difficult (difficult and very
difficult). Then we calculate the performance of usefulness estima-
tion across these groups, as shown in Figure 5.

The performance of 𝐷𝑇𝑐𝑛,𝑐𝑥 is worse in the difficult tasks than
that in the easy tasks in both protocols. Especially in the protocol
of user-independent, repeated measures ANOVA shows that there
exists a significant difference among task difficulty levels (𝐹 [20, 2] =
4.24, 𝑝 < 0.05). In contrast, the performance of models based on
brain signals does not decrease along with the increase of task
difficulty. This finding indicates that models using brain signals are
effective and robust in difficult tasks.

Analysis of time intervals. Since brain activities are time-sensitive,
we further explore the influences of the lengths of time intervals
of brain signals on the model performance. Figure 6 shows the
experimental results of 𝑆𝑆𝑇𝑏𝑠 and 𝐷𝑇𝑏𝑠 . We find no significant
difference in terms of the model performance after 800ms in both
protocols and both models. It is consistent with existing work that

(a) User-independent. (b) Task-independent.

Figure 6: The performance of usefulness estimation using
brain signals with different time intervals of [0,𝑇 ].

suggests that our brain needs around 800ms to judge the relevance
of a visually presented stimulus [1].

Answer to RQ2. According to the experimental results, we find
that incorporating brain signals can improve the performance of
usefulness estimation significantly (e.g., 7.3% in terms of AUC in
the task-independent protocol). Besides, we verify the robustness
of brain signals in different situations (i.e, unseen users and unseen
tasks) and various experimental settings (i,e., trade-off parame-
ter, task difficulty, and time intervals). The findings suggest that
improving usefulness estimation with brain signals is beneficial.

6 SEARCH RESULT RE-RANKING
In this section, we devise two re-ranking methods, i.e., a PM and
a GIM, to answer RQ3. The predicted usefulness in Section 5 is
inherited in PM and GIM for search result re-ranking.

6.1 Problem Statement
We formulate the 𝑝th user’s usefulness judgment within the 𝑡th
search task on the 𝑖th search result as 𝐼𝑡,𝑖𝑝 = {𝑑𝑡,𝑖𝑝 , 𝑢

𝑡,𝑖
𝑝 }, where 𝑢𝑡,𝑖𝑝

denotes the usefulness score of search result 𝑑𝑡,𝑖𝑝 . Note that the
search results in a certain search task are different for different
users, i.e., ⟨𝑑𝑡, 𝑗1𝑝 𝑗

, 𝑑
𝑡, 𝑗2
𝑝 𝑗

, ...⟩ ≠ ⟨𝑑𝑡,𝑘1𝑝𝑘
, 𝑑

𝑡,𝑘2
𝑝𝑘

, ...⟩, since the result lists
are shuffled and the users can break their search at any time (see
Section 3.3). Then the re-ranking methods aim to rank results with
higher usefulness judgment score to top positions given a user and
a task.

6.2 Methods
6.2.1 Baselines. We adopt two baseline models for comparison: a
probabilistic retrieval model BM25 [36] and a pre-trained model
BERT (for text ranking [23]). These models only take the content
information of queries and search results into account while leave
out the search context.

6.2.2 PM. The personalized method re-ranks the search results
with each person’s predicted usefulness score. The re-ranked list
Π𝑡
𝑝 can be formulated as:

Π𝑡
𝑝 = §(⟨𝑑𝑡,𝑖1𝑝 , 𝑑

𝑡,𝑖2
𝑝 , ...⟩, ⟨𝑢𝑡,𝑖1𝑝 , 𝑢

𝑡,𝑖2
𝑝 , ...⟩)

where 𝑢𝑡,𝑖𝑝 is the usefulness score predicted by the usefulness
estimation models, § indicates the function to sort ⟨𝑑𝑡,𝑖1𝑝 , 𝑑

𝑡,𝑖2
𝑝 , ...⟩

according to the predicted usefulness score ⟨𝑢𝑡,𝑖1𝑝 , 𝑢
𝑡,𝑖2
𝑝 , ...⟩.

6.2.3 GIM. The generalized intent modeling method builds an
intent estimation model to generate an intent representation with
the wisdom of general users, which is shown in Algorithm 1. Given
the user 𝑝𝑖 and task 𝑡 , we firstly generate the intent vector ®𝐼 by ag-
gregating the search result vectors ⟨𝐷𝑡, 𝑗1

𝑝 𝑗
, 𝐷

𝑡, 𝑗2
𝑝 𝑗

, ...⟩, 𝑗 ≠ 𝑖 according
to their predicted usefulness score ⟨𝑢𝑡, 𝑗1𝑝 𝑗

, 𝑢
𝑡, 𝑗2
𝑝 𝑗

, ...⟩, 𝑗 ≠ 𝑖 , where 𝐷𝑡, 𝑗
𝑝 𝑗

is the representation of 𝑑𝑡, 𝑗𝑝 𝑗
using a pre-trained “bert-chinese-base”

encoder [6]. The motivation for constructing the intent vector is
that the usefulness score indicates the contribution of the search
result to satisfy the intent. Then we generate the search result score
𝑠
𝑡,𝑖
𝑝𝑖

for the user 𝑝𝑖 and task 𝑡 by calculating the cosine similarity



of intent vector ®𝐼 and the search result vector 𝐷𝑡,𝑖
𝑝𝑖
. Finally, the

re-ranked list Π𝑡
𝑝𝑖

can be calculated by sorting the search results
according to their scores ⟨𝑠𝑡,𝑖1𝑝𝑖

, 𝑠
𝑡,𝑖2
𝑝𝑖

, ...⟩.

Algorithm 1: Generalized Intent modeling Method (GIM)

Input: Search results for the validating user ⟨𝑑𝑡,𝑖1𝑝𝑖
, 𝑑

𝑡,𝑖2
𝑝𝑖

, ...⟩;
Search results for the other users ⟨𝑑𝑡, 𝑗1𝑝 𝑗

, 𝑑
𝑡, 𝑗2
𝑝 𝑗

, ...⟩;
The estimated usefulness scores ⟨𝑢𝑡, 𝑗1𝑝 𝑗

, 𝑢
𝑡, 𝑗2
𝑝 𝑗

, ...⟩, 𝑗 ≠ 𝑖 .
Data:

1 Score list ⟨𝑠𝑡,𝑖1𝑝𝑖
, 𝑠
𝑡,𝑖2
𝑝𝑖

, ...⟩; Intent vector ®𝐼 ;

2 Search result vector ®
𝐷
𝑡,𝑖
𝑝 ;

3 Init;

4 𝑠
𝑡,𝑖
𝑝𝑖

= 0; ®𝐼 = ®0; ®
𝐷
𝑡,𝑖
𝑝 = 𝐵𝐸𝑅𝑇 (𝑑𝑡,𝑖𝑝 );

𝑢𝑡𝑝𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒{𝑢𝑡, 𝑗𝑘𝑝 𝑗
∈ ⟨𝑢𝑡, 𝑗1𝑝 𝑗

, 𝑢
𝑡, 𝑗2
𝑝 𝑗

, ...⟩, 𝑗 ≠ 𝑖};
5 for all 𝑗 ≠ 𝑖 do
6 for all 𝑑𝑡, 𝑗𝑘𝑝 𝑗

∈ ⟨𝑑𝑡, 𝑗1𝑝 𝑗
, 𝑑

𝑡, 𝑗2
𝑝 𝑗

, ...⟩ do
7 ®𝐼 = ®𝐼 + 𝐷

𝑡, 𝑗𝑘
𝑝 𝑗

· (𝑢𝑡, 𝑗𝑘𝑝 𝑗
− 𝑢𝑡𝑝𝑖 )

8 end
9 end

10 for all 𝑠𝑡,𝑖𝑘𝑝𝑖
∈ ⟨𝑠𝑡,𝑖1𝑝𝑖

, 𝑠
𝑡,𝑖2
𝑝𝑖

, ...⟩ do
11 𝑠

𝑡,𝑖𝑘
𝑝𝑖

= 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (®𝐼 , 𝐷𝑡,𝑖𝑘
𝑝𝑖

)
12 end
13 Π𝑡

𝑝𝑖
= §(⟨𝑑𝑡,𝑖1𝑝𝑖

, 𝑑
𝑡,𝑖2
𝑝𝑖

, ...⟩, ⟨𝑠𝑡,𝑖1𝑝𝑖
, 𝑠
𝑡,𝑖2
𝑝𝑖

, ...⟩) ;
14 return Π𝑡

𝑝𝑖
;

6.3 Experimental settings
In our experiment, we inherit the usefulness score of DT𝑐𝑛,𝑐𝑥 , SST𝑏𝑠 ,
and DT𝑐𝑛,𝑐𝑥 + SST𝑏𝑠 since they perform better than other models.
The experiments using the usefulness score in the task-independent
and user-independent protocols show consistent findings in the
comparisons of the models. Thus, we only present observations
in the task-independent protocol. To avoid ambiguity, we use𝑀 𝑓

to denote the model 𝑀 (=BM25, BERT, PM, GIM) using features
𝑓 (= 𝑐𝑛, 𝑐𝑥, 𝑏𝑠). For example, 𝐵𝑀25𝑐𝑛 indicates the BM25 model
utilizing the content features and 𝐺𝐼𝑀𝑐𝑛,𝑐𝑥,𝑏𝑠 indicates the GIM
models inheriting the usefulness score of DT𝑐𝑛,𝑐𝑥 + SST𝑏𝑠 .

To compare the performance of different models and features, we
utilize two popular evaluation metrics: Normalized Discounted Cu-
mulative Gain (NDCG) [14] and Mean Reciprocal Rank (MRR) [33].
Since the average amount of documents in a search task is 3.41,
we calculate NDCG at different cutoff positions of {1, 3, 5}, i.e.,
𝑁𝐷𝐶𝐺@{1, 3, 5}. And we report MRR of the full ranked list.

6.4 Results and discussions
Table 5 shows the ranking performance of our re-ranking meth-
ods using different features. From Table 5, we have the following
observations:

(1) 𝐵𝐸𝑅𝑇𝑐𝑛 performs better than 𝐵𝑀25𝑐𝑛 in terms of most evalu-
ation metrics, i.e., 𝑁𝐷𝐶𝐺@3, 𝑁𝐷𝐶𝐺@5, and𝑀𝑅𝑅. However, their
performance is significantly worse than all PM and GIM models in

Table 5: The performance of search result re-ranking with
different information sources. 𝑀 𝑓 denotes model 𝑀 using
features 𝑓 . cn, cx, and bs indicate content, context, and
brain signals, respectively. ∗ indicate the difference of per-
formance with𝐺𝐼𝑀𝑐𝑛,𝑐𝑥,𝑏𝑠 is significant with p-value < 0.01.

Model NDCG@1 NDCG@3 NDCG@5 MRR

𝐵𝑀25𝑐𝑛 0.407* 0.672* 0.725* 0.621*
𝐵𝐸𝑅𝑇𝑐𝑛 0.399* 0.691* 0.737* 0.655*

𝑃𝑀𝑐𝑛,𝑐𝑥 0.446* 0.714* 0.751* 0.677*
𝑃𝑀𝑏𝑠 0.457* 0.725* 0.764* 0.691
𝑃𝑀𝑐𝑛,𝑐𝑥,𝑏𝑠 0.522* 0.752* 0.787* 0.726*

𝐺𝐼𝑀𝑐𝑛,𝑐𝑥 0.490* 0.739* 0.775* 0.709*
𝐺𝐼𝑀𝑏𝑠 0.571 0.776 0.811 0.754
𝐺𝐼𝑀𝑐𝑛,𝑐𝑥,𝑏𝑠 0.591 0.787 0.814 0.764

all evaluation metrics. The reason is that the result usefulness can’t
be simply judged with semantic score only [3, 37].

(2) For PM and GIM, models using additional information of
brain signals (i.e., 𝑃𝑀𝑐𝑛,𝑐𝑥,𝑏𝑠 and𝐺𝐼𝑀𝑐𝑛,𝑐𝑥,𝑏𝑠 ) perform significantly
better than models using content and context information only (i.e.,
𝑃𝑀𝑐𝑛,𝑐𝑥 and𝐺𝐼𝑀𝑐𝑛,𝑐𝑥 ), respectively. This result demonstrates that
utilizing brain signals can improve re-ranking performance.

(3) 𝐺𝐼𝑀𝑐𝑛,𝑐𝑥,𝑏𝑠 performs significantly better than 𝑃𝑀𝑐𝑛,𝑐𝑥,𝑏𝑠 ,
which indicates our intent modeling method is more effective. Ad-
ditionally, the GIM re-ranks the result list by modeling the search
intent in the corresponding search task. Therefore, it can be adopted
to unseen users and unseen search results. In contrast, the PM gen-
erates a re-ranked list for search results with predicted usefulness
scores, and thus it is unpractical for unseen search results. Besides,
the PM underperforms GIM since PM suffers from the problem of
unstableness in modeling the search behavior and the brain activi-
ties of only an individual user. Nevertheless, it is worth mentioning
that the PM has its advantages since it takes personalized informa-
tion into account. It is interesting to conduct future work to design a
more sophisticated PM and analyze its effectiveness in personalized
IR scenarios, such as personalized search or recommendation.

Answer to RQ3. According to the experimental results, we can
observe that PM and GIM perform significantly better than the
baselines. Besides, brain signals as additional information sources
can significantly improve the performance of both PM and GIM.

7 CONCLUSIONS AND DISCUSSIONS
Understanding the non-click results is increasingly significant with
the growing percentage of SERP snippets satisfying the user’s in-
formation need directly. In this paper, we design a user study and
analyze the relationship between brain signals and the usefulness
of non-click search results. We find detectable differences in vari-
ous spectral bands and brain regions. Additionally, our neurology
analysis indicates that usefulness judgments are associated with
several cognitive functions related to positive emotions, working
memory, and relevance perception.

Inspired by the findings above, we conduct extensive experi-
ments on usefulness estimation and search result re-ranking for



non-click results based on brain signals and conventional factors,
i.e., content and context factors. Insightful findings include: (1) brain
signals are effective for usefulness estimation and are more robust
than conventional features in different protocols and experimental
settings; (2) the performances of models only using conventional
features degrades in difficult tasks while models based on brain
signals do not; (3) the search result re-ranking performance is sig-
nificantly improved with the usefulness estimated models using
brain signals.

With the development of wearable devices, researchers have
already built an available system of using BCI to replace keyboard
and mouse in search scenarios [4, 24]. On top of that, our research
shows additional promising benefits with the practical application
of BCI in search engines. Besides helping applications in which
hand-based interactions are infeasible, we suggest that the bene-
fits of BCI for the search system are two-fold: (1) BCI can detect
user satisfaction with real-time brain signals. To make the first
move in BCI-enhanced IR, we study the non-click results, which
are special circumstances where conventional user interactions (i.e.,
click, dwell time in the landing page) are inaccessible. We believe
this paradigm can also improve performance in other scenarios
lacking feedback signals. (2) BCI has advantages over traditional

search feedback. Traditional web search heavily relies on implicit
feedback (e.g., click, dwell time) and explicit feedback (i.e., human
annotation) to improve performance. Since BCI directly captures
brain activities, we suggest using brain signals as special “explicit
feedback”, which requires no extra efforts for annotation and repre-
sent real search experience.With the BCI devices becoming portable
in the near future, it is promising to utilize brain signals for search
evaluation and performance improvement.

Several limitations guide exciting directions for future work:
(1) In this paper, we perform lab-based settings in our user study.
Analyzing brain signals in real-life search scenarios with portable
EEG devices and taking temporal and demographic aspects into
account is an interesting future work. (2) We demonstrate that
brain signals are valuable for the usefulness estimation and can
be collected almost in real-time. Hence, designing scene-adaptive
methods to model brain signals and combine various information
sources for real-time proactive IR systems is a promising direction.
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A SUPPLEMENTARY MATERIAL
A.1 Content and context factors
Among the literature of usefulness judgment, Mao et al. [26] firstly
investigate the factors that affect usefulness judgments in desktop
search scenarios and extend their study into mobile devices [25].
They conduct usefulness estimation task using two types of factors
related to: (1) content information (i.e., factors of current search
result) and (2) context information (i.e., factors of interaction his-
tory). The factors in our experiment are mostly inherited from
their study, excluding those related to interactions with the landing
page, such as dwell time, scrolling, etc., which are not available for
non-click results. In addition, we supplement the content factors
with result type, which is intuitively related to the usefulness of
non-click results. The factor result type consists of 19 categories ac-
cording to their presentation styles, such as “Question Answering”
and “Tutorial” [45]. Consequently, the content factors consist of
BM25 score [36], BERT score [23], and result type. And we also utilize
the context factors of result position, average/max/total usefulness
ratings with previous search results, and average/max similarity score
with previous search results fromMao et al. [26]’s study. In summary,
the content and context factors are presented in Table 3.

For content factors, BM25 score and BERT score have positive
effects on usefulness ratings. However, the effect (Pearson’s 𝑟=0.086,
p < 1e-3 for BERT score) is lower than that reported in Mao et al.
[26]’s study (Pearson’s 𝑟=0.18). The reasons are two-fold: 1) Text
information provided on the SERP is less than that on the entire
document. 2) The real-world top ten search results need more than
text information to judge their usefulness [3]. Besides, result type of
Question Answering (Pearson’s 𝑟=0.127, p < 1e-3) plays a positives
role since it can satisfy the user with its snippet directly. These
findings indicate that utilizing text information for usefulness es-
timation is insufficient and demonstrate the benefits of enhanced
search results, e.g., Question Answering type.

For context factors, the result position has negative correla-
tion (Pearson’s 𝑟=-0.095,p<1e-3) with usefulness. This finding sug-
gests that the usefulness measures the increment of information
when visiting result lists, and thus the usefulness of search results
will diminish. Nevertheless, the total usefulness of previous results
has no effect (Pearson’s 𝑟=-0.017), which is different from previous
research [26]. Mao et al. [26] observe that the total usefulness of
previous results has a negative effect due to the redundancy with
previous documents. But in our study, participants are allowed
to break the search process once they are satisfied, and thus the
redundancy problem is alleviated. However, most of the correla-
tions of context factors are weak since some valuable interaction
information such as click and dwell time do not exist in zero-click
scenarios. This finding implies the demand for additional factors in
zero-click search process.

A.2 Mixed effects analyses
In this section, we discuss some confounding factors that may affect
the independence of our observations in Section 4. The confounding
factors include: individual difference (𝐼 ), the display type of the
search result (𝐷), the task order (𝑂𝑡 ), the search result order (𝑂𝑠 ),
the word number in the search results (𝑊 ). A linear mixed model is
used for modeling the dependence of brain activities (𝐵) measured

by EEG spectral powers and the search result usefulness (𝑈 ), which
can be specified as:

𝐵 = (𝛽𝑢 + 𝑖𝑢 )𝑈 +𝛽𝑤𝑊 +𝛽𝑡𝑂𝑡 +𝛽𝑠𝑂𝑠 +
∑

𝑗=1,2,...,𝐶−1
𝛽𝑑,𝑗𝐷 𝑗 + 𝐼 +𝛽0 +𝑒

where 𝑒 is the general residual error, 𝛽0 is the general intercept,
𝛽𝑢 , 𝛽𝑤 , 𝛽𝑡 , 𝛽𝑠 , 𝛽𝑑,𝑗 are coefficients corresponding to different effects.
𝐼 is the individual difference effect and 𝑖𝑢 is a random by-participant
coefficient in respect to the search result usefulness. The word
number in the search results (𝑊 ) is a continuous variable. The task
order (𝑂𝑡 ) and the search result order (𝑂𝑠 ) are continuous variables
indicating the task rank for the participants and the search result
rank within a task, respectively. Note that we randomize them in the
data collection procedures. The display type of the search result (𝐷)
is a category variable, and 𝐶 is the category number, which is
detailed in Section A.1. Note that the category variable in the mixed
linear model has only 𝐶 − 1 degrees of freedom. Then we model
the dependence of brain activity (B) (estimated by spectral power,
detailed in Section 4) and the search result usefulness (𝑈 ) (ranging
from 1 to 4).

Firstly, with the mixed linear model, we find significant corre-
lations (𝑝 < 0.05) between the search result usefulness and the
spectral power in 168 different channel-band pairs (e.g, the FP2
channel in the theta band). On the other hand, the prior analy-
ses (see in Figure 3), which don’t take the confounding factors into
account, show 141 significant channel-band pairs, and 107 of them
are identical to the analyses with the mixed linear model. This
suggests that the dependence of brain activity and the search result
usefulness are robust and are less affected by the above confound-
ing factors. Then we discuss the effect of confounding factors on
the FP2 channel in the theta band (the most significant finding in
prior analysis in Section 4) in detail.

Table 6 presents the statistical results of the mixed linear model
when measuring the brain activities with the spectral power of the
FP2 channel in the theta band. From Table 6, we have the following
observations: (1) The effect of usefulness on brain activities is the
most significant. It verifies that when doing usefulness judgments,
the brain activities are different regarding the usefulness ratings.
(2) The effect of task order is not significant since we randomize
the task order for each participant. But the search result order has
a significant effect on brain activities. The search result order is
indeed related to the usefulness judgments since the top search

Table 6: The statistical results of the mixed linear model.
Coef. and z indicate the coefficient variable and the statistic
corresponding to the effect, respectively.

Effects Coef. Std z p>z

Word number 0.000 0.000 1.339 0.180
Search result order -0.012 0.004 -2.720 0.007
Task order -0.001 0.000 -1.867 0.062
Display type (QA) 0.006 0.060 0.099 0.921
Display type (mixed) 0.046 0.022 2.096 0.036
Display type (organic) 0.036 0.028 1.319 0.187
Usefulness 0.029 0.006 5.079 0.000



results usually provide more useful information in the search pro-
cess. It is not clear whether this effect of search result order can
be separated from the search results’ usefulness. (3)Some display
types have significant effects, and three typical display types are
selected to present on the table, i.e., QA, mixed, and organic. We
find that the display type of mixed have a significant positive effect
and its coefficient variable is higher than that of the organic type.
We speculate the reasons are two-fold. On the one hand, mixed type
contains both image and text, and thus it contributes to usefulness

of the search result and further affects the brain activities. On the
other hand, the content variability of different search result types
may have an effect that can be separated from the search results’
usefulness.

In general, although there exist several confounding factors in
our study, we suggest the effect of usefulness on brain activities
significantly exists. Therefore, we suggest that brain activities can
be utilized to infer users’ usefulness judgments.
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