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ABSTRACT
Users’ click-through behavior is considered as a valuable yet noisy
source of implicit relevance feedback for web search engines. A
series of click models have therefore been proposed to extract ac-
curate and unbiased relevance feedback from click logs. Previous
works have shown that users’ search behaviors in mobile and desk-
top scenarios are rather different in many aspects, therefore, the
click models that were designed for desktop search may not be
as effective in mobile context. To address this problem, we pro-
pose a novel Mobile Click Model (MCM) that models how users
examine and click search results on mobile SERPs. Specifically, we
incorporate two biases that are prevalent in mobile search into
existing click models: 1) the click necessity bias that some results
can bring utility and usefulness to users without being clicked; 2)
the examination satisfaction bias that a user may feel satisfied and
stop searching after examining a result with low click necessity.
Extensive experiments on large-scale real mobile search logs show
that: 1) MCM outperforms existing models in predicting users’ click
behavior in mobile search; 2) MCM can extract richer information,
such as the click necessity of search results and the probability of
user satisfaction, from mobile click logs. With this information, we
can estimate the quality of different vertical results and improve
the ranking of heterogeneous results in mobile search.
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1 INTRODUCTION
Previous studies showed that user clicks can be used as implicit
relevance feedback to improve the ranking of search results [13].
However, clicks on a result are inherently stochastic and systemati-
cally biased by factors such as the position [6, 13] and presentation
style [2, 24] of the result. Therefore, a number of click models
(see [3] for an overview) have been proposed to model users’ click
behavior as a stochastic process and obtain unbiased relevance
feedback from the biased click logs.

The performance of a click model depends heavily on making
correct assumptions on users’ search behavior. By assuming a user
will examine and click the results on the search engine result page
(SERP) in a certain way, a click model can estimate how different
kinds of biases affect users’ click actions and derive unbiased rele-
vance feedback from click logs. However, users’ search behavior
in the mobile environment are different from those in the desktop
context. For example, previous studies suggest that users will pay
more attention to the top-ranked results and scan fewer results on
a small screen [16]; relevance judgments for documents are also
affected by search devices [23]. Therefore, the existing click models
originally designed for the desktop environment may not be as ef-
fective in the mobile search context. We need to refine the existing
behavioral assumptions of click models to adapt to the shift from
desktop to mobile.

One of the factors that may alter users’ behavior in the mobile
environment is the heterogeneity of search results. Today’s search
engines return richer results than the homogeneous ten blue links
on both mobile and desktop. The heterogeneous results have a
larger impact on users’ interaction behavior on mobile SERPs be-
cause: 1) Compared to desktop search, direct answer and knowledge
card results are federated into mobile SERPs more frequently. In
many circumstances, these results present useful information on
the SERP and users do not need to click the hyperlinks to visit
the corresponding landing pages. While loading a page on mobile
devices may take a longer time than on desktop devices, this strat-
egy helps to reduce users’ interaction costs as well as data usage
on mobile. 2) Due to the limit of screen size, the heterogeneous
results are usually injected into the main ranking list and often
occupies a large proportion of user viewport. In a recent study, Luo
et al. [19] showed these two factors may affect users’ behavior in
mobile search and proposed to incorporate them in the evaluation
of mobile search engines.

As an example, we show two SERPs for the same query, ann arbor,
on mobile and desktop in Figure 1. Compared with the desktop
SERP in Figure 1b that displays the knowledge graph result on
the right side, the knowledge graph result is placed at the first
position in the mobile SERP (Figure 1a) and occupies almost the
whole initial viewport. This result is highly likely to be examined by
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(a) Mobile SERP (b) Desktop SERP

Figure 1: Examples of SERPs on (a) mobile and (b) desktop from Google. Only the content in the initial viewport is shown.

users and affect their following actions. The knowledge graph result
contains a brief introduction to the city, as well as the information
about the weather and local time. A user who wants to gather
some basic information about Ann Arbor will find the knowledge
graph result relevant and useful even without clicking it. She may
even feel satisfied and leave the SERP just after examining the
first knowledge graph result. In this case, an existing click model
will: 1) mistakenly regard the skipping (i.e. no click) behavior on
the first result as a negative relevance feedback; 2) ignore the cut
off effect [18], that the user can be satisfied with the non-clicked
knowledge graph result, but still assume the user will scan the
following results.

While some studies [2, 4, 24] tried to incorporate the heterogene-
ity of search results into click models in the desktop environment,
they mainly focused on modeling the presentation bias or attetion
bias but ignored the click necessity bias. Chen et al. [2] found that
users are more likely to examine the vertical result and more likely
to be satisfied if they click it. Chuklin et al. [4] assumed that the
probability that a user will examine a result is determined by her
intent and the type of the result. Based on the findings in an eye-
tracking study, Wang et al. [24] further assumed that the vertical
result will affect not only the examination probabilities but also
the examination order of search results. However, none of these
existing efforts considered the situations where some results pro-
vide sufficient information on SERPs and thus are less likely to be
clicked.

To address this problem in the mobile search context, we pro-
pose a novel click model named Mobile Click Model (MCM). The
proposed MCM assumes that: 1) Some types of search results (e.g.
the knowledge graph and direct answer results) have lower click
necessity than others, which means that they can fulfill users’ in-
formation needs without requiring any clicks (click necessity bias);
2) A user can be satisfied after examining a search result with low
click necessity because this kind of results are designed to satisfy
users’ common information needs directly on SERPs (examination
satisfaction bias). We will further introduce how we incorporate
these two biases into the proposed model in Section 3.

Through extensive experiments on a large-scale mobile search
log from a popular commercial search engine in China, we show
that the proposed model can effectively infer the parameters for
click necessity and examination satisfaction, along with the param-
eters for relevance and click satisfaction, from users’ interaction
logs with heterogeneous mobile SERPs. With these parameters
learned from logs, we can: 1) improve the ranking of heterogeneous
results in mobile search; 2) analyze how users interact with a cer-
tain type of vertical results. The experiment results also show that
MCM achieves better performance in both click prediction and
relevance estimation tasks than the baseline click models which
are not specifically designed for the mobile environment.

The rest of the paper is organized as follows: We first provide
an overview of the background of mobile search and click models
in Section 2. In Section 3, we will formally introduce MCM model
and compare it with existing click models. We then present the
experiment setup and results in Section 4. Finally, we conclude the
paper and discuss directions for future work in Section 5.
2 RELATEDWORK AND BACKGROUND
2.1 Search Behavior on Mobile
With the rise of mobile search, understanding users’ search behav-
ior on mobile devices becomes increasingly important. Existing
research has characterized the differences between desktop search
and mobile search in various aspects.

First, compared to desktop search, mobile search is often con-
ducted to fulfill different types of information needs, in diverse
contexts. Yi et al. [27] and Kamvar et al. [15] are among the first
who spotted a difference in the distribution of query categories
across difference search devices. Song et al. [22] further found that
the information needs of mobile searchers varied at the different
time of the day. They also showed that a mobile user tended to
search at different locations and users’ click preferences changed
with the search devices. Recently, Harvey and Pointon [11] sug-
gested that users often used mobile devices to search in an “on the
go" context, where they might be interrupted or distracted. They
conducted a user study to assess the impact of these “fragmented
attention" situations on the users’ search behavior and performance.



The differences in search contexts and information needs on mobile
and desktop suggest that the mobile search engine should return
different results to satisfy mobile searchers. Therefore, it is crucial
to develop newmethods to extract relevance feedbacks frommobile
search logs.

Second, the user interface (UI) of mobile search is very different
from that of desktop search. Unlike a desktop PC with a large dis-
play (13 to 30 inches) as well as a mouse and a keyboard as input
devices, a mobile phone usually has a much smaller screen (4 to 5
inches) and responds to a variety of touch interactions, including
swiping, zooming, and on-screen text input. Previous works studied
how the differences in UIs affect users’ search behavior on mobile
and desktop. Regarding the differences in input interactions, Kam-
var and Baluja [14] and Song et al. [22] showed that while the query
length was not significantly different on mobile and desktop, the
mobile searcher tended to issue fewer queries in a session than the
desktop searcher; Guo et al. [10] proposed to use the mobile touch
interactions as features to estimate the relevance of mobile search
results and identified some similarities and differences between
user’s fine-grain interactions on the landing pages in both desktop
and mobile environments. On the other hand, the difference in
screen size may impose more efforts for the mobile searchers to
gather the same amount of information. Kim et al. [16] conducted
an eye-tracking study to compare users’ SERP scanning patterns on
small screens and large screens. They found that on small screens,
users put more attention to top-ranked results and exhibited a more
linear scanning pattern. Recently, Ong et al. [20] found that users
used different search strategies to adapt to the SERPs with vary-
ing Information Scent Levels and Information Scent Patterns [26]
on mobile and desktop. These studies showed that users’ search
behavior on mobile devices was different from that in traditional
desktop settings, therefore the click models that were originally
designed to model users’ click behavior in desktop search need to
be adapted for mobile environment.

Third, today’s mobile search engines will return more diverse
results to cope with some specific information needs (e.g. checking
the weather forecast or looking for a restaurant nearby) and reduce
users’ interaction cost in mobile environment. These heterogeneous
vertical results may alter users’ search behavior on mobile. For
desktop search, Liu et al. [18] conducted a dedicated eye-tracking
study to analyze the effects of different types vertical results on
users’ examination and click behavior on SERPs. For mobile search,
Lagun et al. [17] studied how knowledge graph results affected
users’ attention and satisfaction. Their results showed that when a
relevant knowledge graph result was presented, the user would pay
less attention to the results below it, spend less time on the whole
SERP, and feel more satisfied in the search. They also used an eye-
tracker to measure users’ gaze time on each search result and found
that users paid more attention to the second and third results than
the first results in mobile search, which is different from the findings
in the eye-tracking studies conducted in desktop search settings
(e.g. [8, 13]). Williams et al. [25] found that in mobile search, the
direct answer results often led to good abandonment, where the user
was directly satisfied by the SERP without clicking any hyperlinks,
and proposed a gesture model to predict user satisfaction for the
abandoned queries. These findings emphasized the importance
of modeling the heterogeneity of search results in building click
models for mobile search.

2.2 Click Models for Web Search
In this section, we will first present some definitions and notations
used in this paper and introduce some existing click models, along
with their corresponding behavioral assumptions, in these nota-
tions. We will also introduce existing research on click models that
has considered the heterogeneity of search results.

When a user submits a query q to the search engine in a session
s , an SERP that consists ofM ranked search results, (d1,d2, . . . ,dM ),
will be returned to the user. Usually,M is set as 10 because there are
usually ten results on the first page. di denotes the search results
ranked at position i . di can be an organic result or one of different
types of vertical results. We usevi to denote the type ofdi .M binary
random variables (C1,C2, . . . ,CM ) are used to indicate whether the
user click di (Ci = 1) or skip di (Ci = 0). Ci can be observed in
the search log. A click model is usually a probabilistic generative
model of the click sequence (C1,C2, . . . ,CM ) that models the joint
distribution P(C1,C2, . . . ,CM ).

Originally, click models were proposed to explain the position
bias that users are more likely to click top-ranked results because
these results are more likely to be examined. To model this bias
caused by differences in examination likelihood at different ranks,
the Examination Hypothesiswas formulated by Richardson et al. [21]
in predicting the click-through rate of ads and Craswell et al. [6] in
modeling the position bias in web search. This hypothesis assumes
that a user will click a search result if and only if she examined the
result and was attracted by it:

Ci = 1 ⇐⇒ Ei = 1 ∧Ai = 1 (1)

Ei andAi are binary random variables. UnlikeCi , they are latent
variables that can not be observed directly from search logs. Ei = 1
indicates the user examined di and otherwise Ei = 0. Ai = 1means
the search result can attract the user’s click whenever she examines
it. Ai is usually considered as fully determined by the relevance
between query q and result di :

P(Ai = 1) = αq,di (2)

Therefore, Ai is independent of Ei and the click probability of di
can be computed as:

P(Ci = 1) = P(Ei = 1) · P(Ai = 1) (3)

A series of click models have different implementations of P(Ei ).
For example, the cascade model proposed by Craswell et al. [6]
assumes a user will examine the search results sequentially from top
to bottom until she clicks a result. Therefore, P(Ei = 1) = 1,∀i ≤ j,
where j is the rank of last clicked results in the session. Guo et al. [9]
extended the cascademodel to multi-click sessions by assuming that
the user will continue to examine next results after clicking a result
at position i with a probability of λi . Dupret and Piwowarski [7]
proposed User Browsing Model (UBM), which assumes that P(Ei )
depends on the current position i and its distance d to a previously
clicked result:

P(Ei = 1) = γi,d (4)
Chapelle and Zhang [1] used additional binary variables Si to de-
note the user’s satisfaction after clicking a result. If di is clicked
(Ci = 1), Si only depends on the query q and result di and is con-
sidered as an additional signal for relevance.

P(Si = 1|Ci = 0) = 0 (5)

P(Si = 1|Ci = 1) = sq,di (6)



They also assumed that a user will scan the SERP linearly but they
allowed the user to leave the SERP, not examining lower ranked
search results, when she is satisfied by a result di (Si = 1) or choose
to abandon the query with a probability 1 − γ :

P(E1 = 1) = 1 (7)

P(Ei = 1|Si−1 = 1) = 0 (8)

P(Ei = 1|Ei−1 = 0) = 0 (9)

P(Ei = 1|Si−1 = 0,Ei−1 = 1) = γ (10)
With the emergence of vertical results and federated search,

some existing efforts in desktop web search tried to incorporate
the influence of different vertical results into click models. Chen et
al. [2] considered the attention bias that if di is a vertical result, it
may have a higher examination probability P(Ei = 1) and the ex-
ploration bias that the user may choose not to examine any organic
results if she clicked a vertical with a certain probability e(s) in the
session s . Chuklin et al. [4] addressed this problem by assuming that
a session is associated with a pre-defined intent I (s). This intent
and the type of result vi will affect the examination probability
P(Ei ) and click attractiveness P(Ai ). One can incorporate the influ-
ence of intents and result types into a click model that follows the
examination hypothesis (Equation 1). For example, the UBM can
be enhanced in the following way:

P(Ei = 1) = γi,d (I (s),vi ) (11)

P(Ai = 1) = αq,di (I (s)) (12)
The Vertical-aware Click Model (VCM) proposed byWang et al. [24]
further modeled how the presence of different types of verticals
affects both the examination probabilities and examination order of
the results on SERP. However, VCM can only model the influence
of the first vertical result on the SERP, making it not suitable for
the mobile search scenario where a SERP usually contains multiple
vertical results.

These studies all focused on modeling how vertical results affect
the examination probability P(Ei ) but none of them addressed the
problem that some types of vertical results can satisfy users without
requiring any clicks. Such skips on good results with low click
necessity are rather common in mobile search, which motivates
us to propose a new click model to cope with the corresponding
click necessity bias and examination satisfaction bias in mobile
environment.

3 MOBILE CLICK MODEL
3.1 Modeling Biases
We first formally introduce the click necessity bias and examination
satisfaction bias as well as how we incorporate them into click
models.

• Click Necessity Bias: Some types of search results (e.g. the
knowledge graph and direct answer results) have low click
necessity because they can satisfy users’ information needs
without requiring any clicks, which will lower the click proba-
bilities of these results.

To model the click necessity bias, we introduce a binary variable
Ni for each result di . Ni = 1 indicates that a user needs to click the
result to get useful information and Ni = 0 indicates that a user
can be satisfied directly by reading or interacting with the snippet

on the SERP. We extend the examination hypothesis (Equation 1)
as:

Ci = 1 ⇐⇒ Ei = 1 ∧Ai = 1 ∧ Ni = 1 (13)

A user will click a search result if and only if: 1) she examined it; 2)
it is attractive; and 3) she needs to click it to get useful information.

We further assume that Ni only depends on the type of search
results vi :

P(Ni = 1) = βvi (14)

We acknowledge that P(Ni = 1) may also be affected by other
factors such as user intent and relevance between the query and
result, but we choose to use this simplified assumption and leave
the exploration of how to model P(Ni = 1) for future work.

By incorporating the click necessity bias, we can avoid the nega-
tive feedback caused by the good skips on the results with low click
necessity. However, we also need to define a positive signals, other
than clicks, for these results. Therefore, we propose the examination
satisfaction bias.

• Examination Satisfaction Bias: A user can feel satisfied
and leave the SERP after examining a search result that is both
attractive and with low click necessity.

We use a binary variable SEi to denote whether the user is satis-
fied just by examining result di (examination satisfaction), SCi to
denote whether the user is satisfied after clicking it (click satisfac-
tion). We further use Si to denote user’s state of satisfaction after
position i . We assume that: 1) a user will stay satisfied once she
encountered either an examination satisfaction event (SEi = 1) or
a click satisfaction event (SCi = 1); 2) if the user is in the satisfied
state Si = 1, she will not examine follow-up results. Therefore, we
have:

Si = 1 ⇐⇒ Si−1 = 1 ∨ (SEi = 1 ∨ SCi = 1) (15)

P(Ei = 1|Si−1 = 1) = 0 (16)

Because Si = 1 ⇒ Si+1 = 1, we have ∀j > i, P(Ej = 1|Si =
1) = 0. By adding the satisfaction state variable Si , we allow the
click/examination satisfaction event at position i (SCi and SEi ) to
influence all the follow-up examination events (Ej , where j > i).

The click satisfaction (SCi = 1) can happen when a result is
clicked while the examination event (SEi = 1) can only occur when
a result is examined (Ei = 1), attracts user’s attention (Ai = 1), and
it does not need to be clicked (Ni = 0). Similar to DBN, we assume
that SEi and SCi are governed by the parameters that associate with
the relevance between q and di .

P(SCi = 1|Ci = 1) = sCq,di (17)

P(SEi = 1|Ei = 1,Ai = 1,Ni = 0) = sEq,di (18)

By incorporating the examination satisfaction bias, we can give
credits to the search results that have low click necessity but can
provide relevant and useful information for users when there is
no clicks below it. We hope that capturing this signals can help us
rank the results with low click necessity more properly in mobile
search.
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Figure 2: The Bayesian network structure of Mobile Click
Model (MCM). Ci is the only observed variable.

3.2 Mobile Click Model
Besides incorporating the click necessity bias and examination sat-
isfaction bias, we can use different functions for P(Ei ) and P(Ai ),
which will be equivalent to incorporating the click necessity bias
and examination bias into different click models. In this work, we
use UBM’s implementation of P(Ai ) and P(Ei ) (Equation 2 and 4)
because: 1) it performs well in the click prediction task; 2) the com-
putation of P(Ei = 1) is fully determined by observable variables
Cj , j < i , which simplifies the inference of posterior.

We call the derived model Mobile Click Model (MCM) and illus-
trate it in Figure 2. In this model, only Ci can be observed in logs
and only Si will influence users’ further behavior. The conditional
probabilities of Ci and the latent variables {Ei ,Ai ,Ni , S

E
i , S

C
i , Si }

are given as follows:

P(Ei = 1|Si−1 = 1) = 0 (19)
P(Ei = 1|Si−1 = 0) = γi,d (20)
P(Ai = 1) = αq,di (21)
P(Ni = 1) = βvi (22)
Ci = 1 ⇐⇒ Ei = 1 ∧Ai = 1 ∧ Ni = 1 (23)

P(SEi = 1|¬(Ei = 1 ∧Ai = 1 ∧ Ni = 0)) = 0 (24)

P(SEi = 1|Ei = 1 ∧Ai = 1 ∧ Ni = 0) = sEq,di (25)

P(SCi = 1|Ci = 0) = 0 (26)

P(SCi = 1|Ci = 1) = sCq,di (27)

Si = 1 ⇐⇒ Si−1 = 1 ∨ (SEi = 1 ∨ SCi = 1) (28)

The parameters of MCM are {α , β,γ , sE , sC }. The maximum like-
lihood estimates of these parameters can be learned from click
logs by using the Expectation-Maximization (EM) algorithm. Please
refer to the Appendix for a detailed derivation of the E-step and
M-step.

After learning the parameters, we can use them to compute
a relevance score for each mobile search result in the logs. This
score can be used to rank the search results according to users’
implicit relevance feedbacks. We define the relevance score as the
probability of becoming satisfied when a user examines a result di

Table 1: Comparisons betweenMCMand some existing click
models. (*The exploration bias found by [2] assumes that af-
ter the user clicks a vertical result, she may choose not to
click any organic results, which is similar to “satisfaction
after click”.)

D
BN

[1
]

U
BM

[7
]

Ch
en

et
al
.[2

]

Ch
uk

lin
et

al
.[4

]

W
an
g
et

al
.[2

4]

M
CM

allow skip examination ✓ ✓ ✓ ✓ ✓

click satisfaction ✓ ✓* ✓

attention bias ✓ ✓ ✓

search intent bias ✓

click necessity bias ✓

examination satisfaction ✓

of type vi :

score(q,di ) ≜ P(Si = 1|Ei = 1)

= αq,di [βvi s
C
q,di
+ (1 − βvi )s

E
q,di

] (29)

3.3 Comparisons with Existing Click Models
We compare the behavioral assumptions of MCM and some existing
click models in Table 1.

First, we compare MCMwith two widely used click models: DBN
and UBM. Compared to UBM,MCM takes the click and examination
satisfaction into consideration. Therefore, in MCM, the examination
probability P(Ei = 1) is not only dependent on users’ click behavior
on previous results (C1,C2, . . . ,Ci−1) but also influenced by the
relevance of these results captured by the satisfaction parameters
sCq,dj

and sEq,dj , for all j < i . Compared to DBN, MCM relaxes the
strict cascade hypothesis in examination that Ei−1 = 0 ⇒ Ei = 0.
Instead, MCM allows skips in an examination sequence as the UBM
does. From this perspective, MCM can be regarded as an effort to
unify these two classic click models.

We also compare MCM with previous efforts on incorporating
the heterogeneity of search results into click models [2, 4, 24]. The
existing studies in desktop search mainly focused on modeling the
influence of heterogeneous results on users’ examination behavior
(attention bias) and the preference to a certain type of vertical re-
sults caused by different search intents (search intent bias). None of
them addressed the click necessity bias and examination satisfaction
bias that are more common in mobile search.

4 EXPERIMENTS
We conduct a series of experiments on large-scale search logs col-
lected from a popular Chinese mobile search engine to answer the
following research questions:

• RQ1: Does MCM have better click prediction ability in the
mobile environment than the baseline models?

• RQ2: Can MCM provide better relevance estimations of mo-
bile search results than the baseline models?

• RQ3: How does MCM model the click necessity and ex-
amination satisfaction probability of heterogeneous mobile
search results?



Table 2: The statistics of two datasets used in this study.
Dataset-C Dataset-R

#unique queries 3,358,199 4,373
#sessions 6,613,393 1,631,756
#unique vertical_ids 2,382 612
#unique URLs 20,548,153 65,827

4.1 Experimental Setup
4.1.1 Datasets. The search logs used in this study were sampled

from real mobile search logs of Sogou.com, a popular Chinese
search engine. The search log for a session s consists of a query
q, ten URLs of search results, a 10-dimensional binary click vector
(C1,C2, . . . ,C10), and ten vertical_ids for the search results. In
this study, we use the corresponding vertical_id to indicate the
type (vi ) of a search result (di ). We note that this is a fine-grain
categorization of search results because there are thousands of
unique vertical_ids in the logs. A different vertical_id may
mean that the corresponding result has a different presentation
style or comes from a different source. Organic results have a set of
special vertical_ids, so we can also use them to separate organic
results from vertical results.

We use two datasets, Dataset-C for the click prediction task
(Section 4.3) and Dataset-R for relevance estimation task (Section
4.4), because relevance annotations are needed for the latter task.
The detailed statistics for the two datasets are shown in Table 2.

Dataset-C was generated by sampling about 5% sessions from
two consecutive weekdays. In the click prediction task, we use
the sessions on the first day as the training data and those on the
second day as the test data. Dataset-R was generated through the
following process: 1) We first randomly sampled 12,000 unique
queries from a one-month search log; 2) We then sampled all the
sessions associated with those queries in a single day, which may
only cover a proportion of those 12,000 queries; 3) We also crawled
the SERPs for 12,000 queries for further relevance annotations (See
Section 4.4 for more details). In the relevance estimation task, we
will use the whole Dataset-R as training set, and evaluate MCM
and baseline models using the collected relevance annotations.

4.1.2 Baseline Models. We use three basic click models that
do not take the type of search results into consideration, and two
vertical-aware click models originated from desktop search, as the
baseline models. We refer to Chuklin et al. [4] for the implementa-
tions of the baselinemodels andmake some necessarymodifications
to adapt them for a fair comparison on our dataset.

The three basic click models are the following:
• UBM: User Browsing Model proposed by Dupret and Pi-
wowarski [7] (See Equation 2–4 in Section 2.2).

• DBN:Dynamic BayesianNetworkmodel proposed byChapelle
and Zhang [1] (Equation 5-10).

• DCM: Dependent Click Model proposed by Guo et al. [9].
Two vertical-aware baseline models are:
• EB-UBM: UBM with the exploration bias modification pro-
posed by Chen et al. [2].

• UBM-layout: UBM that has different γi,d parameters for
search results with different layouts (i.e. different types of
results). This model was designed by Chuklin et al. [4]. Note
that here we can not use UBM-IA model proposed in the
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Figure 3: The distribution of vertical results on desktop and
mobile.
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Figure 4: The Click Through Rate (CTR) of vertical and or-
ganic results on desktop and mobile.
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Figure 5: The Click Through Rate (CTR) of Top 10 results on
desktop and mobile.

same paper because we do not have a pre-define classifica-
tion of the search intent for each query. The original UBM-
layout model only considers two types of results: fresh (i.e.
news verticals) and web (i.e. organic results). We modify the
model to make it work with arbitrary number of result types
defined by the vertical_ids. This modification improves
UBM-layout model’s performance in click prediction and
relevance estimation. Therefore, we only report the perfor-
mance of the modified UBM-layout model in this paper.



4.2 Comparison between Mobile and Desktop
Before training click models on the mobile search logs, we want
to empirically demonstrate the differences between users’ click
behavior in mobile and desktop search. So we randomly sampled
10,000 mobile search sessions from Dataset-C and 10,000 desktop
search sessions from the same commercial search engine to conduct
a comparison analysis.

We first show the ratios of vertical results among the Top 1,
3, 5, 10 results in Figure 3. We can see that the ratios of vertical
results in mobile search are higher than those in desktop search
(all the differences are statistically significant at p < 0.01 level,
independent t-test, two-tailed). On mobile SERPs, 28.1% of Top 10
results and over 40% of the first search results are vertical, showing
a prevalence of heterogeneous results in mobile search.

The click-through rates (CTRs) of both vertical and organic re-
sults are shown in Figure 4. For organic results, the click-through
rates on mobile and desktop are comparable. For Top 1 results, the
click-through rates are not significantly different (p = 0.14). For
Top 3, Top 5, and Top 10 results, the click-through rates on mobile
are slightly but significantly (all p < 0.01) higher than those on
desktop with the absolute differences of 2.3%, 2.8%, and 2.0%. How-
ever, for vertical results, the click-through rates in mobile search
are significantly lower than (all p < 0.01) those in desktop search
with relatively large margins of 12.0%, 3.5%, 10.5%, and 8.3% for Top
1, Top 3, Top 5, and Top 10 results respectively. The differences in
click-through rates on vertical results in mobile and desktop search
imply that a large number of vertical results on mobile SERPs are
designed to directly satisfy users without being clicked, which em-
phasizes the importance of modeling the click necessity bias in
mobile context.

We also compare the position biases of click-through rates on
mobile and desktop. From Figure 5, we can see that: 1) the click-
through rate for the first mobile results is lower than that for the
first desktop results, which can be explained by that over 40% of
the first mobile results are vertical and a large proportion of them
can satisfy users without clicks. 2) the click-through rates for the
second and third results on mobile are higher than those on the
desktop. This finding is consistent with Lagun et al.’s finding that
mobile users tend to have a longer gaze time for the second and
third results [17]. It can also be explained by the spill-over effect [18]
that a user will pay more attention to the results below a visually
attractive vertical result.

4.3 Click Prediction
Following the convention of previous works [2, 7, 24], we use
two evaluation metrics, log-likelihood (LL) and average perplexity
(AvдPerp), to evaluate models’ performance in the click prediction
task. The average perplexity is the mean of perplexity Perpi over
ten positions:

AvдPerp =
1
10

10∑
i=1

Perpi

Perpi = 2−
1
|S |

∑
s∈S Cs

i log2(q
s
i )+(1−C

s
i ) log2(1−q

s
i )

Here S is the set of all search sessions in test set and qsi is the
predicted click probability of result i in session s ∈ S , given by the
click model. A larger LL indicates a better performance, and the
relative improvement of LL1 over LL2 is given by exp(LL1−LL2)−1).

While the perfect prediction at position i will have a perplexity
Perpi = 1.0, a smaller value of AvдPerp indicates better prediction
accuracy. The relative improvement of perplexity value p1 over p2
is computed as (p2 − p1)/(p2 − 1).

When measuring the click prediction performance on the test
set, we filter out all the queries that have a query frequency less
than 10 in the training set. We first show the overall click prediction
performance on the remaining 915,521 sessions in Table 3. From
the results, we can see that MCM has better click prediction ability
than both the basic and vertical-aware baselines on mobile search
logs, with all the differences in LL and AvдPerp being significant
at p < 0.001 level.

We further compare different models for queries with different
query frequencies. From Table 4, we can see that while the click
performance measured in LL increases as the query frequency for
all models, MCM performs consistently better than all the baseline
models. It is also interesting to see that the relative improvements
of MCM over baseline models are larger for queries that have a
frequency over 100 in the training set. A possible reason for this
phenomenon is that there are more vertical results designed for
and federated into the SERPs of hot queries.

We are also interested in the prediction performance at each
ranking position. So in Figure 6, we plot the relative perplexity
gains of MCM over two basic baseline models, UBM and DBN, as
well as one best performing vertical-aware baseline, UBM-layout. It
is worth noting that two basic click models, UBM and DBN, behave
differently in mobile search. While all the models have comparable
performance at position 1, MCM has larger gains over UBM for po-
sitions 2-4 and over DBN for positions 5-10. UBM performs worse at
positions 2-4 because it can not adjust the examination probability
accordingly when some top-ranked results already satisfy the user.
DBN’s performance drops as the rank increases because the skip ex-
amination behavior is more common at the lower positions, which
violates DBN’s assumption. MCM overcomes these disadvantages
by incorporating examination/click satisfaction and allowing skip
examination. Therefore, it has a consistent improvement over UBM
and DBN at positions 1-9. We speculate that MCM is worse than
UBM at position 10 because the irregularity of click-through rate at
the last position can be easily captured by UBM, but for MCM, the
estimation of examination probability at position 10 (P(E10 = 1)) is
dominated by the satisfaction probability (P(S9 = 1)). The vertical-
aware UBM-layout model has a performance pattern similar to
UBM. Because UBM-layout can capture the attention bias on ex-
amination probability, it consistently outperforms UBM across ten
positions.

Regarding RQ1, we find that MCM has better click prediction
ability than the baseline models in the mobile search environment.
The improvement of MCM is consistent for queries with different
frequencies and for almost all positions in the first page. These
results suggest that incorporating the click necessity bias and ex-
amination satisfaction bias is effective in modeling users’ click
behavior in mobile search.

4.4 Relevance Estimation
To address RQ2, we train MCM and baseline models on Dataset-R
and rank the results according to the predicted relevance score
provided by each model. For example, for MCM, we use Equation
29 to compute the predicted relevance score. The ranking results



Table 3: The overall performance of click prediction mea-
sured in log-likelihood (LL) and average perplexity (Avg-
Perp.) (all improvements are statistically significant at p <
0.001 level, pairwise t-test, two-tailed, n = 915, 521).

LL MCM impr. AvдPerp MCM impr.
MCM -1.866 - 1.218 -
UBM -1.928 +6.38% 1.226 +3.81%
DBN -1.944 +8.09% 1.226 +4.00%
DCM -1.976 +11.68% 1.232 +6.64%
EB-UBM -1.935 +7.15% 1.227 +4.32%
UBM-layout -1.902 +3.64% 1.222 +2.22%

Table 4: Log-likelihood of each model and MCM’s improve-
ment over each baseline model for different query fre-
quency in training set (all improvements are statistically sig-
nificant at p < 0.001 level, pairwise t-test, two-tailed, n =
#Sessions).
Query Freq. [10, 100) [100, 1000) [1000, inf)
#Sessions 512,322 285,277 117,922
Model LL Impr. LL Impr. LL Impr.
MCM -2.168 - -1.709 - -0.935 -
UBM -2.220 +5.31% -1.789 +8.39% -0.995 +6.23%
DBN -2.260 +9.62% -1.780 +7.40% -0.967 +3.26%
DCM -2.250 +8.57% -1.839 +13.97% -1.119 +20.17%
EB-UBM -2.218 +5.14% -1.802 +9.76% -1.028 +9.78%
UBM-layout -2.192 +2.47% -1.762 +5.51% -0.977 +4.26%
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Figure 6: Perplexity gains of MCM for different ranking po-
sitions compared to UBM, DBN, and UBM-layout.

can be evaluated by standard IR evaluation metrics. In this study,
we use NDCG@3 and NDCG@5 [12] as the evaluation metrics for
the relevance estimation task.

To compute NDCG, we randomly sampled 775 queries from the
crawled SERPs in Dataset-R and used the service provided by Baidu
Zhongbao1, a Chinese crowdsourcing platform, to collect relevance
labels for the top 5 results of these queries. Because we assume
that a user can be satisfied directly on the SERP, besides collecting
relevance labels for the landing pages (Relpaдe ), we also collect
relevance labels for the snippets (Relsnippet ) of mobile results by
showing the query and a snapshot of the snippet to the crowd-
sourcing workers. With Relpaдe and Relsnippet labels, we compute
NDCGpaдe and NDCGsnippet . We also compute an average of

1http://zhongbao.baidu.com/

Table 5: Relevance estimation performance measured in
NDCG@3. (*/** indicates the difference with MCM are sig-
nificant at p < 0.005/0.001 level, pairwise t-test, two-tailed,
n = 775.)
Model NDCGsnippet@3 NDCGpaдe@3 NDCGavд@3
UBM 0.807** 0.665** 0.731**
DBN 0.818** 0.668** 0.738**
DCM 0.802** 0.658** 0.724**
EB-UBM 0.816** 0.672* 0.739**
UBM-layout 0.815** 0.667** 0.736**
MCM 0.834 0.692 0.759

Table 6: Relevance estimation performance measured in
NDCG@5. (*/** indicates the difference with MCM are sig-
nificant at p < 0.005/0.001 level, pairwise t-test, two-tailed,
n = 775.)
Model NDCGsnippet@5 NDCGpaдe@5 NDCGavд@5
UBM 0.874** 0.771* 0.824**
DBN 0.880** 0.770** 0.825**
DCM 0.870** 0.764** 0.818**
EB-UBM 0.881** 0.774* 0.828**
UBM-layout 0.880** 0.769** 0.825**
MCM 0.890 0.785 0.839

these two labels Relavд = (Relpaдe + Relsnippet )/2 2, and use it to
compute NDCGavд . A 4-level scale (1: not relevant, 2: somewhat
relevant, 3: fairly relevant, and 4: perfectly relevant) was used for
both Relpaдe and Relsnippet . Each snippet and landing page were
annotated by at least three workers. The weighted κ [5] for Relpaдe
and Relsnippet are 0.58 and 0.39, indicating an acceptable quality
for relevance annotations.

Table 5 and Table 6 show the ranking performance of each model
inNDCG@3 andNDCG@5 separately. From the results, we can see
that the vertical-aware models are generally better than the basic
models in relevance estimation, especially if we compare UBM with
EB-UBM and UBM-layout. These results emphasize the importance
of considering the heterogeneity of search results in the mobile
context. MCM has better performance than the two vertical-aware
baselines, because in mobile environment, the click necessity bias
may have a stronger influence on users’ click behavior than the
attention bias.

To sum up, regarding RQ2, we show that MCM has a better
performance in estimating the relevance of mobile search results
than the baseline models, with all the differences being significant
at p < 0.005 or p < 0.001 levels.
4.5 Parameters Learned by MCM
To see how MCM models the click necessity bias and examination
satisfaction bias in mobile search (RQ3), we analyze the click ne-
cessity parameters β and examination satisfaction parameters sE
learned by MCM.

We first compute the mean of click necessity parameter β for all
organic results and vertical results. M(βver t ical ) on Dataset-C is
0.464 (SD = 0.245), which is significantly lower thanM(βorдanic ) =
0.654 (SD = 0.111). This confirms our observation in Section 4.2 that
the vertical results in mobile search are more likely to have a low

2We also tested the geometric and harmonic mean. The results were similar to the
arithmetic mean, so we only report the results using arithmetic mean in the paper.



Query:双色球开奖结果 (The	result	of	“双色球”,	a popular
lottery in China)

Query: wifi查看密码 (viewing wifi password) Query：焦虑症 (Anxiety	disorder)

Result: A direct answer result showing the result of the latest
lottery and thepayment of theprizes.

Result: A vertical result that provides step-by-step guidanceof
how to view the wifi password on a PC.

Result: An medical knowledgegraph result showing the symptom,
diagnose, and treatment of Anxiety	disorder on the SERP.

𝛽 = 0.0001, 𝑠( = 0.904 𝛽 = 0.0002, 𝑠( = 0.5 𝛽 = 0.0003, 𝑠( = 0.322

Figure 7: Examples of search results that have the lowest click necessity according to MCM (β).
click necessity. However, the mean of examination satisfaction pa-
rameter sE for the vertical resultsM(sEver t ical ) is 0.253(SD = 0.114),
smaller thanM(sEorдanic ), which equals to 0.276 (SD = 0.131). This
result suggests that only a small proportion of vertical results can
directly lead to examination satisfaction.

We further conduct a case study to inspect the relationship be-
tween the model parameters and the search results. Three types of
vertical results with lowest β shown in Figure 7. For each vertical
type, we select an result and the corresponding query from the logs
as an example3. We can see that these examples all demonstrate
useful information directly in the snippet. A user can get informa-
tion from them without click, which is captured by the β parameter
of MCM. We also show the estimation of sE for each query-result
pair. We can see that the learned sE can reflect the examination
satisfaction to some extent. Users are likely to be satisfied by the
result in the first example, if they just want to know the latest lot-
tery result. This can be reflected by a high sE of 0.904. On the other
hand, if a user wants to get sufficient information about Anxiety
Disorder, although the medical knowledge graph result in the last
example can provide a good overview, it is less likely for the user
to be satisfied by this single result. Therefore, the corresponding
sE estimated by MCM is only 0.322.

We acknowledge that these examples also reveal a limitation of
MCM, which is that sE may not be a valid relevance indicator in
the complex, informational tasks. Merely incorporating the exami-
nation satisfaction bias can not fully solve the problem of assigning
positive feedbacks to the results that were not clicked. In future
work, we can further explore the possibilities of using viewport
time and gestures as additional features in estimating the relevance
of the results with low click necessity.

5 CONCLUSIONS AND FUTUREWORK
Observing that in mobile search, some vertical results, such as di-
rect answer results and knowledge graph results, have low click
necessity, and therefore, will be discriminated by most existing
click models, we propose a simple yet effective Mobile Click Model

3The snippet of result is crawled by us, which may be different from the result viewed
by the user in the search log, even if they share the same URL and vertical_id.

(MCM) to incorporate the related click necessity bias and examina-
tion satisfaction bias in mobile search. Theoretically, the proposed
MCM extends the examination hypothesis and can be regarded
as a unified generalization of two most widely-used click models,
DBN and UBM. Empirically, extensive experiments on large-scale
mobile search logs demonstrate that MCM achieves substantial per-
formance gains over the baseline models in both the click prediction
task and relevance estimation task.

In terms of future work, we note that MCM can be further ex-
tended in many ways. First, we can use richer behavioral features,
such as the viewport time and gestures, to better calibrate the es-
timation of the behavioral latent variables Ei , SEi , and S

C
i . Second,

while the click necessity parameters β are fully learned from click
logs in this study, we can introduce external knowledge into MCM
to further improve its effectiveness by defining the prior of β for
each type of vertical result accordingly. Finally, as we mentioned
in Section 4.5, the current definition of examination satisfaction
may fail to reflect the relevance of results in complex search tasks.
Instead of always attributing satisfaction to the last-clicked or last-
examined result, we can explore new ways to properly measure
the contribution of every search result. It is also worth noting that
while this study is motivated by the difference between mobile and
desktop search, the click necessity bias and examination satisfac-
tion bias may exist in desktop search, too. We will try to adopt
MCM to the desktop environment in future work.
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APPENDIX
In the Appendix, we will first introduce how to update the param-
eters of MCM {α , β,γ , sE , sC } in the M-step using the posterior
distributions of the latent variables {Ei ,Ai ,Ni , S

E
i , S

C
i , Si }. After

that we will give some details about how to compute the posterior
distributions using a forward-backward alogrithm.

M-step
Suppose we have a set of search sessions S and each session s ∈ S
is associated with a query qs and M search results (ds1 , . . . ,d

s
M )

with types (vs1 , . . . ,v
s
M ).We denote Es ,As ,N s , SE,s , SC,s the vector

of latent variables in a session s . The updates of the parameters
{α , β,γ , sE , sC } are as follows:

αq,d = argmax
α

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d)

[P(Asi = 1|Cs ) log(α) + P(Asi = 0|Cs ) log(1 − α)]

βv = argmax
β

∑
s ∈S

M∑
i=1

I (vsi = v)

[P(N s
i = 1|Cs ) log(β) + P(N s

i = 0|Cs ) log(1 − β)]

γr,d = argmax
γ

∑
s ∈S

M∑
i=1

I (i = r , i − Pos(lastClick, i) = d)

[P(Esi = 1, Ssi−1 = 0|Cs ) log(γ )
+ P(Esi = 0, Ssi−1 = 0|Cs ) log(1 − γ )]

sCq,d = argmax
sC

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d)

[P(SC,si = 1,Csi = 1|Cs ) log(sC )

+ P(SC,si = 0,Csi = 1|Cs ) log(1 − sC )]

sEq,d = argmax
sE

∑
s ∈S

M∑
i=1

I (qs = q,dsi = d)

[P(SE,si = 1,Esi = 1,Asi = 1,N s
i = 0|Cs ) log(sE )

+ P(SE,si = 0,Esi = 1,Asi = 1,N s
i = 0|Cs ) log(1 − sE )]

E-step
Because MCM assumes that the latent variable in last step Si−1
may determine Ei and Si , we need to use the forward-backward
algorithm to infer the posterior distributions of the latent variables
in each search session s4. We define the following variables:

fi (x) = P(Si = x ,C1,C2, . . . ,Ci )

bi (x) = P(Ci+1, . . . ,CM |Si = x)

These two variables can be computed recursively:
fi+1(x) =

∑
x ′∈{0,1}

fi (x
′)P(Si+1 = x ,Ci+1 |Si = x ′)

bi−1(x) =
∑

x ′∈{0,1}
bi (x

′)P(Si = x ′,Ci |Si−1 = x)

With fi (x) and bi (x) we can compute the posterior distributions
needed in the E-step. For example, the posterior distributions needed
in the update of sEq,d can be calculated as follows:

P(SEi = 1,Ei = 1,Ai = 1,Ni = 0|C1,C2, . . . ,CM )

=
fi−1(0)bi (1)P(SEi = 1,Ei = 1,Ai = 1,Ni = 0,Ci |Si−1 = 0)∑

x ∈0,1 fi (x)bi (x)

=
fi−1(0)bi (1)∑
x ∈0,1 fi (x)bi (x)

I (Ci = 0)γi,dαq,di (1 − βvi )s
E
q,di

P(SEi = 0,Ei = 1,Ai = 1,Ni = 0|C1,C2, . . . ,CM )

=
fi−1(0)bi (0)P(SEi = 0,Ei = 1,Ai = 1,Ni = 0,Ci |Si−1 = 0)∑

x ∈0,1 fi (x)bi (x)

=
fi−1(0)bi (0)∑
x ∈0,1 fi (x)bi (x)

I (Ci = 0)γi,dαq,di (1 − βvi )(1 − sEq,di
)

4We omit the superscript s here for convenience
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