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ABSTRACT
Knowledge graph (KG) contains well-structured external informa-
tion and has shown to be effective for high-quality recommendation.
However, existing KG enhanced recommendation methods have
largely focused on exploring advanced neural network architec-
tures to better investigate the structural information of KG. While
for model learning, these methods mainly rely on Negative Sam-
pling (NS) to optimize the models for both KG embedding task and
recommendation task. Since NS is not robust (e.g., sampling a small
fraction of negative instances may lose lots of useful information), it
is reasonable to argue that these methods are insufficient to capture
collaborative information among users, items, and entities.

In this paper, we propose a novel Jointly Non-Sampling learning
model for Knowledge graph enhanced Recommendation (JNSKR).
Specifically, we first design a new efficient NS optimization algo-
rithm for knowledge graph embedding learning. The subgraphs are
then encoded by the proposed attentive neural network to better
characterize user preference over items. Through novel designs of
memorization strategies and joint learning framework, JNSKR not
only models the fine-grained connections among users, items, and
entities, but also efficiently learns model parameters from the whole
training data (including all non-observed data) with a rather low
time complexity. Experimental results on two public benchmarks
show that JNSKR significantly outperforms the state-of-the-art
methods like RippleNet and KGAT. Remarkably, JNSKR also shows
significant advantages in training efficiency (about 20 times faster
than KGAT), which makes it more applicable to real-world large-
scale systems.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
With the vigorous development of the Internet, recommender sys-
tems have been widely deployed in Web applications to address the
information overload issue [4, 26]. Among the various recommen-
dation methods, Collaborative Filtering (CF) [16, 18, 19, 25] gains
significant attentions from researchers due to its elegant theory
and good performance. However, conventional CF methods suffer
from the inability of modeling side information [5, 38] such as user
demographics, item attributes, and contexts, thus perform poorly
in sparse situations where users and items have few interactions.

To provide more accurate recommendations, it is a trending topic
to go beyond modeling user-item interactions and take side infor-
mation into account [5, 13, 22, 38, 42, 48]. As shown in Figure 1,
in real-world applications, there typically exist multiple relations
(e.g., Categorization) between items and information values (e.g.,
Fast-food), and they are also particularly helpful to infer user pref-
erence. To consider both the relation type and information value,
several recent efforts have attempted to leverage the graph of item
side information, aka. Knowledge Graph (KG) [37] to construct
recommendation models [3, 17, 34, 38, 40, 47]. The general assump-
tion is that the item from recommender system can be linked to an
entity in a knowledge graph, and the knowledge graph can provide
extra information to generate more accurate item embeddings for
recommendation.

However, it is challenging to effectively integrate KG into recom-
mender systems. For both KG and implicit recommendation data
(e.g., browsing histories, click logs), the true facts are rather limited,
and non-observed instances, which are taken as negative examples
in model learning, are of a much larger scale [16, 37]. To increase
computational efficiency, existing methods mainly rely on negative
sampling [25] for optimization. However, sampling a fraction of
non-observed data as negative for training may ignore other use-
ful examples, or lead to insufficient training of them [7, 9, 15, 43].
Essentially, sampling is biased, making it difficult to converge to
the optimal ranking performance regardless of how many update
steps have been taken. Moreover, KG enhanced methods usually
need to optimize the loss function for both KG embedding task and
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Figure 1: Illustration of the knowledge graph enhanced rec-
ommendation task,where the relation type and information
value are both considered to construct the recommendation
model. Item acts as the bridge to link user-item interactions
and knowledge graph.

recommendation task. This produces a much larger randomness in
total. As such, it is more difficult for sampling-based methods to
achieve optimal performance.

Although several recent works have studied KG enhanced recom-
mendation, they either focus on exploring advanced neural network
architectures (e.g., Attention [42], Recurrent Neural Network (RNN)
[30, 39], and Graph Neural Network (GNN) [38]) to regularize the
model learning, or infer user preference by utilizing handcrafted
meta-paths over KG [45]. Despite their success, these methods can
not sufficiently express the complex relations among users, items,
and entities due to the inherent weakness of negative sampling
learning strategy.

Motivated by the above observations, we propose to apply non-
sampling learning strategy for KG enhanced recommendation. In
contrast to sampling, non-sampling strategy computes the gradient
over the whole data (including all non-observed data). As such,
it can easily converge to a better optimum in a more stable way
[6–8, 15, 16, 43]. The difficulty in applying non-sampling strategy
lies in the expensive computational cost. Although some studies
have been made to explore efficient non-sampling CF methods for
recommendation task [7, 15, 19, 46], they only focus on optimizing
user-item relationships. Extending existing method to learn knowl-
edge graph embedding, which consists of entity-relation-entity
triplets, is not a trivial task.

In this paper, we design a novel Jointly Non-Sampling learning
model for Knowledge graph enhanced Recommendation (JNSKR).
To cope with the efficiency challenges caused by non-sampling
strategy, we first design a new efficient optimization method to
learn entity embeddings from KG. Motivated by the recent progress
of representation learning [31, 38, 42], we then aggregate an item’s
surrounding entities with attention mechanism to learn more accu-
rate item representation. Lastly, the two tasks (KG embedding and
recommendation) are associated with a joint learning framework
to simultaneously model the fine-grained connections among users,
items, and entities. Our JNSKR is conceptually advantageous to
existing KG enhanced recommendation methods in: 1) effective
and stable non-sampling learning due to the consideration of all
samples in each parameter update, and 2) much faster training
process with the new proposed efficient optimization algorithm.
To evaluate the recommendation performance and training effi-
ciency of our model, we apply JNSKR on two public benchmarks

with extensive experiments. The results indicate that our model
significantly outperforms the state-of-the-art methods like Rip-
pleNet and KGAT, while maintaining a much simpler structure
and fewer model parameters. Moreover, JNSKR shows significant
advantages in training efficiency, which makes it more practical in
real E-commerce scenarios.

The contributions of this work are summarized as follows:

(1) We highlight the importance of building KG enhanced recom-
mendation models without negative sampling, and derive an
efficient optimization method to learn from the whole knowl-
edge graph with a controllable time complexity.

(2) We propose a novel end-to-end model JNSKR, which creatively
addresses the KG enhanced recommendation task from the basic
but important perspective of model learning. To the best of our
knowledge, this is the first non-sampling learning method for
KG enhanced recommendation.

(3) Extensive experiments on two public benchmarks show that
JNSKR consistently and significantly outperforms the state-of-
the-art models in terms of both recommendation performance
and training efficiency. The source code of JNSKR and datasets
used in the paper have been made available1.

2 RELATEDWORK
2.1 Knowledge Graph enhanced

Recommendation
Incorporating a knowledge graph as side information has proven
to be helpful for improving the performance of recommender sys-
tems. Some studies leverage the connections of entities in KG for
embedding learning. For instance, Zhang et al. [47] adopt TransR
[21] to learn item embeddings with the involvement of KG. Cao et
al. [3] and Ai et al. [1] propose to jointly learn the models of rec-
ommendation and KG to achieve better recommendation accuracy.
Wang et al. [35] propose a multi-task feature learning approach
for knowledge graph enhanced recommendation. Another line of
research proposes to perform propagation over the whole KG to
assist in recommendation. Specifically, RippleNet [34] extends the
user’s interests along KG links to discover her potential interests.
KPRN [39] automatically extracts paths connecting user-item pairs,
and then models these paths via Recurrent Neural Network (RNN)
for user preference modeling. KGCN [36] studies the utilization of
Graph Convolutional Networks (GCN) for computing embeddings
of items via propagation among their neighbors in KG. More re-
cently, KGAT [38] recursively performs propagation over KG via
Graph Neural Networks (GNN) and attention mechanism to refine
entity embeddings.

Through the literature review above, it can be found that existing
methods have largely focused on leveraging advanced neural net-
work architectures to incorporate KG information. While for model
learning, these works typically rely on the non-robust negative
sampling strategy. Although significant improvements have been
achieved, the performance of these methods can still be limited by
the inherent weakness of negative sampling. In existing methods,

1https://github.com/chenchongthu/JNSKR
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there is a lack of in-depth exploration of the basic but very impor-
tant learning strategy, which is the main concern of our JNSKR
model.

2.2 Non-sampling Learning for Top-K
Recommendation

For implicit data, the observed interactions are rather limited, and
non-observed examples are of a much larger scale. To learn from
such a sparse data, there are generally two optimization strate-
gies: 1) negative sampling strategy [5, 14, 25] and 2) non-sampling
(whole-data based) strategy [7, 15, 16]. The first strategy samples
a fraction of negative instances from non-observed entries, while
the second one sees all the non-observed data as negative. In pre-
vious work (especially neural recommendation studies), negative
sampling is widely adopted for efficient training. However, some
recent studies have shown that sampling would inevitably limit
the recommendation performance as it can ignore some important
examples, or lead to insufficient training of them [7, 15, 43, 46].
In contrast, non-sampling strategy leverages the whole data with
a potentially better coverage, but inefficiency can be an issue [7].
Some efforts have been devoted to resolving the inefficiency issue of
non-sampling learning. For instance, Pilaszy et al. [24] describe an
approximate solution of Alternating Least Squares (ALS). He et al.
[15] propose an efficient ALS with non-uniform missing data. Some
researchers [43, 46] study fast Batch Gradient Descent (BGD) meth-
ods. Recently, Chen et al. [7, 8] derive a flexible non-sampling loss
for neural recommendation models, which achieves both effective
and efficient performance.

Despite the success of existing non-sampling studies, theymainly
focus on CF methods that only consider the two-element relation-
ship between users and items. It is non-trivial to directly apply
these methods for learning KG enhanced recommendation which
consists of entity-relation-entity triplets. To the best of our knowl-
edge, this is the first work to study efficient non-sampling method
for KG enhanced recommendation.

3 PRELIMINARIES
We first introduce the key notations and problem formulation, and
then provide an introduction to the efficient non-sampling collabo-
rative filtering methods.

3.1 Notations and Problem Formulation
Table 1 depicts the notations and key concepts. We denote the user
and item sets as U and V, respectively. The user-item interaction
matrix is denoted as Y = [yuv ] ∈ {0, 1}, indicating whether u has
an interaction with item v . In addition to the user-item matrix, we
have knowledge graph information for items (e.g., item attributes
and external knowledge), which is defined as an undirected graph
G = (E,R). Formally, it is presented as {(h, r , t)|h, t ∈ E, r ∈ R},
where each triplet describes that there is a relationship r between
entity h and entity t . Given a target user u, the KG enhanced rec-
ommendation task is to recommend a list of items that u may be
interested in, which is formally defined as:

Input: Users U, items V, user-item interactions Y, and knowledge
graph G.

Table 1: Summary of symbols and notations.

Symbol Description
U,V Set of users and items, respectively
E,R Set of entities and relations, respectively
B Batch of items
Y User-item interactions
Y Set of user-item pairs whose values are non-zero
G Knowledge graph
G Set of entity-relation-entity triplets whose values

are non-zero
cuv Weight of entry yuv
whr t Weight of entry дhr t
pu , qv Latent vectors of user u and item v , respectively
eh, et Latent vectors of entities h and t , respectively
rk Latent vectors of relation k
d Latent factor number

Output: A ranked item list based on the probability ŷuv that user
u would interact with item v (from high to low).

3.2 Efficient Non-sampling Collaborative
Filtering

Recently, some studies have realized that the non-sampling strat-
egy is much helpful for achieving optimal recommendation per-
formance [7, 15, 16, 46]. We make a brief introduction to efficient
non-sampling collaborative filtering methods, which is designed for
learning user preferences over items. For implicit data, a commonly
used non-sampling loss is to minimize the differences between user
feedback yuv and predicted result ŷuv [16]:

L(Θ) =
∑
u ∈U

∑
v ∈V

cuv (yuv − ŷuv )
2

(1)

where cuv denotes the weight of entry yuv . In implicit feedback
learning, missing entries are usually assigned a zero yuv value but
non-zero cuv weight.

The time complexity of computing this loss isO(|U| |V|d), which
is generally computationally prohibitive as |U| |V| can easily reach
billion level or even higher in real life. To address the inefficiency
issue of non-sampling learning, several methods have been pro-
posed [7, 15, 43, 46]. Specifically, Chen et al. [7, 8] derive an efficient
loss for generalized Matrix Factorization (MF), and prove that for
a generalized matrix factorization framework whose prediction
function is Eq.(2), the gradient of loss Eq.(1) is exactly equal to that
of Eq.(3) if the instance weight cuv is simplified to cv .

ŷuv = hT (pu ⊙ qv ) (2)

L̃(Θ) =
∑
u ∈U

∑
v ∈V+

(
(c+v − c

−
v )ŷ

2
uv − 2c

+
v ŷuv

)
+

d∑
i=1

d∑
j=1

((
hihj

) (∑
u ∈U

pu ,ipu , j

) (∑
v ∈V

c−vqv ,iqv , j

)) (3)

where pu ∈ Rd and qv ∈ Rd are latent vectors of user u and item
v , h ∈ Rd is the prediction vector, ⊙ denotes the element-wise
product of vectors.
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The complexity of Eq.(3) isO((|U| + |V|)d2 + |Y|d) while that of
Eq.(1) is O(|U| |V|d). Since |Y| is the number of positive user-item
interactions and |Y| ≪ |U| |V| in practice, the complexity is reduced
by several magnitudes. The proof can be made by reformulating
the expensive loss over all negative instances using a partition and
a decouple operation, which largely follows from that in [7, 8] with
little variations. To avoid repetition, it is omitted here.

Considering that existing KG enhanced recommendation works
have largely ignored the study on model learning, we believe it
is of critical importance to develop a method that can learn fine-
grained connectivities among users, items and entities in an efficient
and effective manner. To this end, we take inspiration from the
recent developments of efficient CF methods, and propose a novel
model JNSKR, which is, to the best of our knowledge, the first
non-sampling learning method for KG enhanced recommendation.

4 METHODOLOGY
This section presents our proposed JNSKRmodel. The overall model
architecture is described in Figure 2. From the figure, we first make
a simple high-level overview of our model:

(1) The goal of JNSKR is to make accurate recommendations with
the help of item knowledge graph. In particular, the recom-
mendation and KG parts are jointly optimized through a non-
sampling learning strategy, which is more effective and stable
due to the consideration of all entries in each parameter update.

(2) The input of JNSKR contains user behaviors and item knowl-
edge, which are firstly converted to dense vector representa-
tions through embeddings. Item acts as a bridge to connect
the joint learning process. The output ŷuv is a predicted score
indicating user u’s preference for item v .

(3) The structure of JNSKR consists of three main components:
1) KG embedding part, which learns structural KG informa-
tion through the proposed efficient non-sampling method; 2)
attentive user-item preference modeling part, which infers the
user-item preference score with an attention mechanism; and
3) joint learning part that integrates the above two parts in an
end-to-end fashion.

4.1 Efficient Non-sampling Knowledge Graph
Embedding

Knowledge graph embedding is an effective way to convert enti-
ties and relations as vector representations while preserving the
graph structure. It has been widely used in knowledge enhanced
recommendation algorithms [1, 34, 38]. Existing knowledge graph
embedding methods [2, 21, 44] mainly leverage negative sampling
for model optimization, which however, has been shown not ro-
bust in recent studies [7, 43]. In this paper, we propose to apply
non-sampling strategy for knowledge graph embedding learning.
Specifically, for a batch of entities B, the squared loss in graph
embedding learning is defined as:

LKG (Θ) =
∑
h∈B

∑
t ∈E

∑
r ∈R

whr t (дhr t − д̂hr t )
2

=
∑
h∈B

∑
t ∈E

∑
r ∈R

whr t (д
2
hr t − 2дhr t д̂hr t + д̂

2
hr t )

(4)

h
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Figure 2: Illustration of our Jointly Non-Samplingmodel for
Knowledge graph enhanced Recommendation (JNSKR).

where whr t denotes the weight of entry дhr t , дhr t = 1 if there
is a relation r between h and t , and дhr t = 0 otherwise. Since
дhr t ∈ {0, 1}, it can be replaced by a constant to simplify the
equation. Also, the loss of non-observed data can be expressed by
the residual between the loss of all data and that of positive data.
We have the following derivation:

L̃KG (Θ) = −2
∑
h∈B

∑
t ∈E+

∑
r ∈R+

w+hr t д̂hr t +
∑
h∈B

∑
t ∈E

∑
r ∈R

whr t д̂
2
hr t

=

LPKG (Θ)︷                                                            ︸︸                                                            ︷∑
h∈B

∑
t ∈E+

∑
r ∈R+

(
(w+hr t −w

−
hr t )д̂

2
hr t − 2w

+
hr t д̂hr t

)

+

LAKG (Θ)︷                      ︸︸                      ︷∑
h∈B

∑
t ∈E

∑
r ∈R

w−hr t д̂
2
hr t

(5)

where theΘ-invariant constant value has been eliminated,LP
KG (Θ)

denotes the loss for positive data, and LAKG (Θ) denotes the loss for
all data. The computational bottleneck lies in LAKG (Θ).

As can be seen from Eq.(5), to address the inefficiency issue of
LAKG (Θ), д̂

2
hr t need to be a score function that can be properly

expanded. Translational distance models like TransR [21] do not
meet this requirement since the expansion of д̂2hr t will introduce
new terms. Thus we employ DistMult [44], another state-of-the-
art factorization-based KG embedding method here. It defines the
scoring function as:
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д̂hr t = eTh · diaд(r) · et =
d∑
i
eh,iriet ,i (6)

where diaд(r) denotes a diagonal matrix whose diagonal elements
equal to r correspondingly.

Based on a decouple manipulation for the inner product opera-
tion, the summation operator and elements in eh , et and r can be
rearranged:

д̂2hr t =
d∑
i
eh,iriet ,i

d∑
j
eh, jr jet , j

=

d∑
i

d∑
j
(eh,ieh, j )(ri , r j )(et ,iet , j )

(7)

By substituting Eq.(7) in LAKG (Θ), we can see that if simplify
whr t to a uniform [16] or entity-dependent [15, 20] parameter, the
interaction among eh,i , et ,i , and ri can be properly separated. Then,
the optimization of

∑
h∈Bw

−
h eh,ieh, j ,

∑
t ∈E et ,iet , j , and

∑
r ∈R rir j

are independent from each other, and we can achieve a significant
speed-up by precomputing the three terms. The final efficient non-
sampling loss for KG embedding learning is as follows:

L̃KG (Θ) = L
P
KG (Θ)

+

d∑
i=1

d∑
j=1

((∑
r ∈R

rir j

) (∑
h∈B

w−h eh,ieh, j

) (∑
t ∈E

et ,iet , j

))
(8)

The rearrangement of nested sums in LAKG (Θ) is the key transfor-
mation that allows the fast optimization. The computing complexity
of LAKG (Θ) is reduced fromO(|B| |E| |R|d) toO((|B| + |E| + |R|)d2).

4.2 User-Item Preference Modeling
Next, we build upon the architecture of graph attention network [32,
38] to learn user preference over items. The preference prediction
framework we adopt here is the neural form of MF [14], which is:

ŷuv = hT
(
pu ⊙ qv

)
(9)

where h ∈ Rd is the prediction vector, ⊙ denotes the element-wise
product of vectors. pu and qv are the representations of user u and
item v , respectively. pu is randomly initialized through embedding
and then learnt during model training. Our focus is qv here, as item
acts as a bridge between KG and users.

For an item v , its final representation qv is not only determined
by its own message, but also influenced by the neighbored entities
and relations. Obviously, the relation types and entity values are
both important to characterize an item. For example, a user may
pay more attention to genres when selecting a movie, and among
all the genres, she is more interested in action than romantic. Since
attention mechanism [4, 5, 10, 41] has a superior ability to assign
non-uniform weights according to input instances, it is adopted in
our model to learn fine-grained item embeddings.

We use Nv = {(v, r , t)|дvr t = 1} to denote the neighbored
knowledge triplets of v . To characterize item v , we define:

qv = ev + eNv
= ev +

∑
(v ,r ,t )∈Nv

α(r ,t )et (10)

where α(r ,t ) is the attention weight, indicating how much informa-
tion being propagated from t to v conditioned to relation r . ev is
item’s basic feature vector and eNv represents the information of
v’s knowledge triplets. More precisely, we define α(r ,t ) as:

α∗
(r ,t ) = hTασ (W1et +W2r + b)

α(r ,t ) =
exp(α∗

(r ,t ))∑
(v ,r ′,t ′)∈Nv exp(α∗

(r ′,t ′))

(11)

whereW1 ∈ Rk×d ,W2 ∈ Rk×d , b ∈ Rk , and hα ∈ Rk are parame-
ters of the attention network. k is the dimension of attention size,
and σ is the nonlinear activation function ReLU [23]. Attention
weights across all triplets are normalized by the softmax function.

Now we have completed the modeling of item v . Based on the
learnt representation vectors, the prediction part aims to generate
a score that indicates a user’s preferences for an item. Note that our
prediction part (Eq. (9)) satisfies the requirements of Eq.(3) [7], thus
for a batch of items B, we have the following efficient non-sampling
loss function:

L̃CF (Θ) =
∑
u ∈U+

∑
v ∈B

(
(c+v − c

−
v )ŷ

2
uv − 2c

+
v ŷuv

)
+

d∑
i=1

d∑
j=1

((
hihj

) (∑
u ∈U

pu ,ipu , j

) (∑
v ∈B

c−vqv ,iqv , j

)) (12)

4.3 Jointly Multi-task Learning
To effectively learn parameters for recommendation, as well as
preserve the well-structured information of knowledge graph, we
integrate the recommendation part (i.e., L̃CF (Θ) ) and the knowl-
edge graph embedding part (i.e., L̃KG (Θ) ) in an end-to-end fashion
through a jointly multi-task learning framework:

L(Θ) = L̃CF (Θ) + µL̃KG (Θ) + λ∥Θ∥
2
2 (13)

where L̃CF (Θ) is the recommendation loss from Eq.(12), L̃KG (Θ) is
the KG embedding loss from Eq.(8), and µ is the parameter to adjust
the weight proportion of each term. L2 regularization parameterized
by λ on Θ is conducted to prevent overfitting.

Note that previous KG enhanced recommendation methods [35,
36, 38, 39, 42] typically adopt negative sampling for model learn-
ing. To generate a training batch, these methods need to sample
negative instances for both recommendation task and knowledge
graph embedding task. This produces a much larger randomness
than single-task learning, and would inevitably lead to information
loss. Different from previous work, the parameters in our model
are jointly optimized without negative sampling. The training pro-
cedure of JNSKR is illustrated in Algorithm 1.

To optimize the objective function, we use mini-batch Ada-
grad [11] as the optimizer. Its main advantage is that the learning
rate can be self-adaptive during the training phase, which eases
the pain of choosing a proper learning rate. Dropout is an effective
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Algorithm 1 JNSKR Learning algorithm

Require: Training data {Y,U,V,G,E,R} learning rate η; embed-
ding size d

Ensure: Neural parameters Θ
1: Randomly initialize neural parameters Θ
2: while Stopping criteria is not met do
3: while An epoch is not end do
4: Randomly draw a mini-batch items {B}, training in-

stances {YB,GB}
5: Compute the loss L̃KG (Θ) (Eq.(8))
6: Compute the loss L̃CF (Θ) (Eq.(12))
7: L(Θ) ← L̃CF (Θ) + µL̃KG (Θ)
8: Update model parameters
9: end while
10: end while
11: return Θ

solution to prevent neural networks from overfitting [29], which
randomly drops part of neurons during training. In this work, we
employ the node dropout technique to randomly drop ρ percent of
qv , where ρ is the dropout ratio.

4.4 Discussion
We first discuss the time complexity of our model. The complexity
of our JNSKR can be divided into two parts. For knowledge graph
embedding (Eq.(8)), updating a batch of items takes O((|B| + |E| +
|R|)d2 + |GB |d), where GB denotes positive knowledge triples of
this batch. For recommendation task (Eq.(12)), updating a batch of
items takesO((|B|+ |U|)d2+ |YB |d) (the time overhead of attention
network is rather small and can be ignored), where YB denotes
positive user-item interactions of this batch. Therefore, the total
cost of Algorithm 1 for one batch over all parameters isO((|B|+ |E|+
|R|)d2+|GB |d+(|B|+|U|)d2+|YB |d). For the original regression loss,
it takes O((|B| |E| |R| + |B| |U|)d). Since |GB | ≪ |B| |E| |R|, |YB | ≪
|B| |U|, and d ≪ |B| in practice, the computational complexity of
our model is reduced by several magnitudes.

The proposed efficient learning algorithm of our JNSKR is based
on Eq.(3) [7], which is not applicable for models with non-linear
prediction layers. Thus our current JNSKR framework has a linear
prediction layer on the top. We leave the extensions as future work.
Nevertheless, it is worth mention that compared to the state-of-
the-art deep learning methods — the 1-layer NFM [13], RNN based
RippleNet [34], and GNN based KGAT [38], our JNSKR achieves
significant improvements on Top-K recommendation performance,
while maintaining a much simpler structure, fewer model parame-
ters, and much fast training process. We show the details in Section
5.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Data Description. We experiment with two benchmark
datasets: Amazon-book2 and Yelp20183. The two datasets have

2http://jmcauley.ucsd.edu/data/amazon
3https://www.yelp.com/dataset/challenge

Table 2: Statistical details of the evaluation datasets.

Amazon-book Yelp2018

User-Item
Interaction

#Users 70, 679 45, 919
#Items 24, 915 45, 538
#Interactions 847, 733 1, 185, 068

Knowledge
Graph

#Entities 88, 572 90, 961
#Relations 39 42
#Triplets 2, 557, 746 1, 853, 704

been recently extended for KG enhanced recommendation by the
authors of [38]4. We briefly introduce the two datasets:

• Amazon-book: Amazon datasets have been widely used for
item recommendation [4, 12, 38]. In our experiments, we use
Amazon-book of this collection. The item knowledge of Amazon-
book is constructed by mapping the items into Freebase entities
via title matching if there is a mapping available.
• Yelp2018: This dataset is adopted from the 2018 edition of the
Yelp challenge, which recodes users’ ratings on local businesses
like restaurants and bars. The item knowledge is extracted from
the local business information network (e.g., category, location,
and attribute).

To ensure the KG quality, the two datasets are preprocessed to
filter out infrequent entities (i.e., lower than 10 in both datasets)
and retain the relations appearing in at least 50 triplets. Note that
for objective comparison, in our experiments the two datasets are
exactly the same as those used in [38]. The statistical details of
these datasets are summarized in Table 2.

5.1.2 Baselines. To evaluate the effectiveness, we compare our
proposed JNSKR with plain CF methods (NCF and ENMF), featured-
basedmethod (NFM), and various KG enhancedmethods (regularization-
based CKE and CFKG, path-based RippleNet, and graph neural
network-based KGAT), as follows:

• NCF [14]: This is a deep learning method which uses users’
historical feedback for item ranking. It combines MF with a
multilayer perceptron (MLP).
• ENMF [7, 8]: Efficient Neural Matrix Factorization is a newly
proposed non-sampling recommendation method. It is a state-
of-the-art method for Top-K recommendation which only based
on the historical feedback information.
• NFM [13]: Neural factorization machine is one of the state-of-
the-art feature-based methods which uses MLP to learn nonlin-
ear and high-order interaction signals.
• CKE [47]: This is a representative regularization-based method,
which exploits semantic embeddings derived from TransR [21]
to enhance matrix factorization [25].
• CFKG [1]: The model applies TransE [2] on the unified graph
including users, items, entities, and relations, casting the rec-
ommendation task as the prediction of (u, r , v) triplets.
• RippleNet [34]: This is one of the state-of-the-art path-based
models, which enriches user representations by adding that of
items within paths rooted at each user.

4https://github.com/xiangwang1223/knowledge_graph_attention_network
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Table 3: Performance of different models on three datasets. ** denotes the statistical significance for p < 0.01, compared to the
best baseline. “RI” indicate the average relative improvements of our JNSKR over the corresponding baseline.

Models Amazon-book

Recall@10 Recall@20 Recall@40 NDCG@10 NDCG@20 NDCG@40 RI

NCF 0.0874 0.1319 0.1924 0.0724 0.0895 0.1111 +17.03%
ENMF 0.1002 0.1472 0.2085 0.0797 0.0998 0.1215 +5.49%

NFM 0.0891 0.1366 0.1975 0.0723 0.0913 0.1152 +14.44%
CKE 0.0875 0.1343 0.1946 0.0705 0.0885 0.1114 +17.14%
CFKG 0.0769 0.1142 0.1901 0.0603 0.077 0.0985 +32.62%
RippleNet 0.0883 0.1336 0.2008 0.0747 0.0910 0.1164 +13.99%
KGAT 0.1017 0.1489 0.2094 0.0814 0.1006 0.1225 +4.31%

JNSKR 0.1056** 0.1558** 0.2178** 0.0842** 0.1068** 0.1271** –

Models Yelp2018

Recall@10 Recall@20 Recall@40 NDCG@10 NDCG@20 NDCG@40 RI

NCF 0.0389 0.0653 0.1060 0.0603 0.0802 0.1087 +14.28%
ENMF 0.0403 0.0711 0.1109 0.0611 0.0877 0.1097 +9.15%

NFM 0.0396 0.0660 0.1082 0.0603 0.0810 0.1094 +13.03%
CKE 0.0399 0.0657 0.1074 0.0608 0.0805 0.1091 +13.13%
CFKG 0.0288 0.0522 0.0904 0.0450 0.0644 0.0897 +44.27%
RippleNet 0.0402 0.0664 0.1088 0.0613 0.0822 0.1097 +11.90%
KGAT 0.0418 0.0712 0.1128 0.0630 0.0867 0.1129 +7.26%

JNSKR 0.0456** 0.0749** 0.1209** 0.0687** 0.0917** 0.1211** –
The results of KGAT are the same as those reported in [38] since we share exactly the same data splits and experimental settings.

• KGAT [38]: A state-of-the-art KG enhanced model, which em-
ploys graph neural network and attention mechanism to learn
high-order graph-structured data for recommendation.

5.1.3 Evaluation Metrics. For each dataset, we randomly select
80% of interaction history of each user to construct the training
set, and treat the remaining as the test set. From the training set,
we randomly select 10% of interactions as validation set to tune
hyper-parameters. For each user, our evaluation protocol ranks all
the items except the positive ones in the training set. To evaluate
the effectiveness of top-K recommendation, we apply two widely-
used evaluation protocols [5, 7, 38]: Recall@K and NDCG@K .
Recall@K measures whether the ground truth is ranked among the
top K items, while NDCG@K is a position-aware ranking metric.

5.1.4 Parameter Settings. The parameters for all baseline meth-
ods are initialized as in the corresponding papers, and are then
carefully tuned to achieve optimal performances. The learning
rate is tuned amongst [0.005, 0.01, 0.02, 0.05], the coefficient of L2
normalization is searched in [10−5, 10−4 ,..., 10−1, 1]. To prevent
overfitting, the dropout ratio is tuned in [0.0, 0.1, ..., 0.9]. The di-
mension of attention network k and the latent factor number d
are tested in [16, 32, 64]. After the tuning process, the batch size
is set to 512, the learning rate is set to 0.05, the embedding size d
is set to 64, and the attention size k is set to 32. Regarding NFM,
the number of MLP layers is set as 1 with 64 neurons according to
the original paper [13]. For RippleNet, we set the number of hops
and the memory size as 2 and 8, respectively, according to [34]. For
KGAT, we set the depth as 3 with hidden dimension 64, 32, and
16, respectively, as suggested in [38]. For non-sampling methods
ENMF and our JNSKR, the negative weights are calculated based

on the frequency of items [7, 15]. For the optimization objective of
JNSKR, we set the weight parameter µ = 0.01.

5.2 Performance Comparison
The performance comparison results are presented in Table 3. To
evaluate on different recommendation lengths, we set the length K
= 10, 20, and 40 in our experiments. From the results, the following
observations can be made:

First and foremost, our proposed JNSKR achieves the best per-
formance on the two datasets, significantly outperforming all the
state-of-the-art baseline methods with p-values smaller than 0.01.
In particular, compared to KGAT — a recently proposed and very
expressive graph neural network-based model, our JNSKR exhibits
average improvements of 4.31% and 7.26% on Amazon-book and
Yelp2018, respectively. This is very remarkable, since JNSKR is a
shallow framework that has much fewer parameters. The substan-
tial improvement could be attributed to the proposed non-sampling
learning algorithm. The parameters in JNSKR is optimized on the
whole data, while sample-based methods (NCF, NFM, CKE, CFKG,
RippleNet, KGAT) only use a fraction of sampled data which would
ignore important negative examples. Moreover, compared with
the conventional CF methods NCF and ENMF which only consider
user-item interactions, JNSKR shows the effectiveness of knowledge
graph information for user preference modelling.

Second, non-samplingmethods (ENMF and our JNSKR) generally
perform better than sampling-based methods. For example, in Table
3, the performance of ENMF is better than NCF; and our JNSKR
outperforms all the baselines. This is consistent with previous work
[7, 15, 43, 46]. It indicates that negative sampling is a biased learning
strategy and would inevitably lead to information loss.
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Figure 3: Performance comparison over the sparsity dis-
tribution of user groups on Amazon-book and Yelp2018
datasets.

Lastly, we observe that recent studies on KG enhanced recom-
mendation have largely focused on advanced neural network struc-
tures. Although they do achieve better performance than conven-
tional CF methods when adopting the same sampling-based learn-
ing strategy (e.g., KG baselines vs NCF), they are still limited by the
inherent weakness of negative sampling. For example, in Table 3,
even ENMF which utilizes no KG information performs better than
NFM, CKE, CFKG, and RippleNet, and only slightly underperforms
KGAT. It reveals that for recommendation task, a better learning
strategy is even more important than advanced neural network
structures. The performance gap between baselines and our JNSKR
also reflects the value of learning KG enhanced recommendation
without sampling.

5.3 Handling Data Sparsity Issue
Data sparsity is a big challenge in recommendation [33] because it is
hard to establish optimal representations for inactive users with few
interactions. KG enhanced recommendation provides a solution
to alleviate the data sparsity issue. Thus we further investigate
how our JNSKR model performs for the users with few records.
Specifically, we perform experiments over user groups of different
sparsity levels. We divide the test set into four groups based on
interaction number per user, while trying to keep different groups
have the same total interactions. Figure 3 illustrates the results w.r.t.
NDCG@20 on different user groups in Amazon-book and Yelp2018.
From the results, we have the following observations:

First, generally KG enhanced recommendation methods show
better performance than methods using only user-item interactions.
Considering that KG and user-item interactions are correlated, the
information learned from KG can compensate for the shortage of
user feedback on items. As a result, the use of KG produces great
improvement when the training data are scarce. It is also worth-
while pointing out that on Yelp2018 dataset, the state-of-the-art KG
enhanced baselines like RippleNet and KGAT only slightly outper-
form plain CF methods, One possible reason is that the preferences
of users with too many interactions are too general to capture.
High-order connectivity could introduce more noise into the user
preferences, thus leading to the negative effect [38].

Second, our JNSKR consistently outperforms the other models
including the state-of-the-art KG enhanced methods like RippleNet
and KGAT. It verifies the effectiveness of JNSKR in addressing the
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Figure 4: Performance of variants of JNSKR on Amazon-
book and Yelp2018 datasets. The two dotted lines represent
the results ofKGAT (KGenhancedmethod) andENMF (plain
CF method) respectively, which are added as baselines.

Table 4: Performance comparison of joint learning and al-
ternative learning on Amazon-book and Yelp2018 datasets.
* denotes the statistical significance for p < 0.05

Amazon-book Yelp2018

Recall@20 NDCG@20 Recall@20 NDCG@20

JNSKRAlt 0.1532 0.1041 0.0731 0.0896
JSNKR 0.1558* 0.1068* 0.0749* 0.0917*

data sparsity issue by applying non-sampling learning to leverage
KG information.

5.4 Ablation Study
5.4.1 Effect of Knowledge Graph Embedding and Attention
Mechanism. Our JNSKR utilizes a non-sampling strategy to learn
knowledge graph embedding, and an attention mechanism to model
user preference. In this section, we first conduct ablation study to
understand their effect. Specifically, we build two variants of JNSKR:

• JNSKRw/o KGE: The variant model of JNSKR without the knowl-
edge graph embedding part (cf. Eq(8)).
• JNSKRw/o Att: The variant model of JNSKR without using at-
tention mechanism. A constant weight is assigned to item’s
knowledge triplets (cf. Eq(10)).

Figure 4 shows the performance of different variants. The results
of the state-of-art methods ENMF (plain CF method) and KGAT
(KG enhanced method) are also shown as baselines. From Figure 4,
two observations are made:

First, when incorporating the KG embedding part, JNSKR per-
forms better than JNSKRw/o KGE (p<0.01). And when the attention
component is applied, the performances are also improved com-
pared with the constant weight method JNSKRw/o Att (p<0.05). It
indicates that both the two parts are helpful for modelling the
fine-grained connectivity among users, items, and entities.

Second, even without the KG embedding part or attention com-
ponent, our variants JNSKRw/o KGE and JNSKRw/o Att still perform
better than the best baseline KGAT, indicating the effectiveness of
our JNSKR by adopting non-sampling learning for user preference
modelling.
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Figure 5: Effect of µ on Amazon-book and Yelp2018 datasets

5.4.2 Effect of Joint Learning. Previous KG enhanced methods
[35, 38] like KGAT generally optimize LKG and LCF alternatively
to increase computational efficiency. Specifically, in each epoch,
these methods first fix the parameters of LCF to train LKG , and
then fix the parameters of LKG to train LCF . We argue that this is
actually a compromise method to alleviate the expensive compu-
tational cost, which would inevitably lead to insufficient training.
Different from them, the parameters of our JNSKR are jointly op-
timized through the proposed efficient non-sampling framework,
which achieves both effective and efficient performance. To fur-
ther verify the effect of joint learning, we conduct experiments
to test the performance of joint learning and alternative learning.
The results are shown in Table 4, where JNSKRAlt is a variant that
using alternative strategy for training. As shown in the table, the
alternative learning JNSKRAlt performs worth than joint learning
JNSKR. It makes sense since alternative learning fails to sufficiently
and collaboratively model the representation relatedness on the
granularity of users, items, and entities.

The coefficient µ in the joint loss function (cf. Eq(13)) explicitly
guides the learning process of both KG embedding and recommen-
dation, and thus helps to improve the model performance. To test
the impact of µ, we also conduct experiments and the results are
shown in Figure 5. We can see that with the increase of µ, the
performance improves first and then starts to decrease. Since the
primary target of JNSKR is recommendation other than learning
KG embedding, it is necessary to ensure that LCF is the key part
of the total loss.

5.5 Efficiency Study
Many deep learning studies only focused on obtaining better results
but ignored the computational efficiency of reaching the reported
accuracy [27]. However, expensive training cost can limit the appli-
cability of a model to real-world large-scale systems. In this section,
we conduct experiments to explore the training efficiencies of our
JNSKR and four state-of-the-art KG enhanced methods: CKE, CFKG,
RippleNet, and KGAT. All experiments in this section are run on
the same machine (Intel Xeon 8-Core CPU of 2.4 GHz and single
NVIDIA GeForce GTX TITAN X GPU) for fair comparison on the
efficiency. The comparison results among the overall training time
of the above methods are shown in Table 5.

From the table, we can obviously observe that the overall training
time of our JNSKR is several magnitudes faster than the baseline
models. For example, on Amazon-book dataset, our JNSKR only

Table 5: Comparisons of runtime (second/minute/hour
[s/m/h]). “S”, “I”, and “T” represent the training time for a
single iteration, the number of iterations to converge, and
the total training time, respectively.

Model Amazon-book Yelp2018

S I T S I T

CKE 66s 200 220m 75s 200 250m
CFKG 27s 200 90m 45s 200 150m
RippleNet 15m 200 50h 11m 200 37h
KGAT 9m 300 45h 7m 300 35h

JNSKR 14s 200 47m 16s 200 54m

needs 47 minutes to achieve the optimal performance, while the
state-of-the-art models RippleNet and KGAT take about 50 hours
and 45 hours, respectively. This acceleration is over 20 times, which
is highly valuable in practice and is difficult to achieve with sim-
ple engineering efforts. In real E-commerce scenarios, the cost of
training time is also an important factor to be considered [7]. Our
JNSKR shows significant advantages in training efficiency, which
makes it more practical in real life.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel Jointly Non-Sampling learning
model for Knowledge graph enhanced Recommendation (JNSKR).
Different from previous studies which mainly focus on exploring
novel neural networks, we try to address the problem from the
basic but important perspective of model learning. Specifically, we
first design a new efficient non-sampling loss for knowledge graph
embedding learning, whose complexity is reduced significantly.
We then aggregate an item’s surrounding entities with attention
mechanisms to help learn accurate user preference over items. Our
JNSKR is conceptually advantageous to existing methods in: 1)
effective non-sampling learning and 2) efficient model training.
Extensive experiments have been made on two real-life datasets.
The proposed JNSKR consistently and significantly outperforms
the state-of-the-art recommendation models in terms of both rec-
ommendation performance and training efficiency.

This work complements the mainstream sampling-based KG
enhanced recommendation methods, and empirically shows that
a proper learning method is even more important than advanced
neural network structures. In the future, we will explore JNSKR
on other related tasks like knowledge graph representation [21]
and network embedding [28]. Also, we are interested in integrat-
ing more structural information such as social networks [7] and
heterogeneous information networks [45, 49], to further improve
our model.
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