
Beyond User Embedding Matrix: Learning to Hash for
Modeling Large-Scale Users in Recommendation

Shaoyun Shi1, Weizhi Ma1, Min Zhang1*, Yongfeng Zhang2, Xinxing Yu3, Houzhi Shan3,
Yiqun Liu1, and Shaoping Ma1

1Department of Computer Science and Technology, Institute for Artificial Intelligence,
Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China

2Department of Computer Science, Rutgers University, NJ, USA
3Zhihu, Beijing, China

shisy17@mails.tsinghua.edu.cn, z-m@tsinghua.edu.cn

ABSTRACT
Modeling large scale and rare-interaction users are the two ma-
jor challenges in recommender systems, which derives big gaps
between researches and applications. Facing to millions or even
billions of users, it is hard to store and leverage personalized pref-
erences with a user embedding matrix in real scenarios. And many
researches pay attention to users with rich histories, while users
with only one or several interactions are the biggest part in real
systems. Previous studies make efforts to handle one of the above
issues but rarely tackle efficiency and cold-start problems together.

In this work, a novel user preference representation called Pref-
erence Hash (PreHash) is proposed to model large scale users, in-
cluding rare-interaction ones. In PreHash, a series of buckets are
generated based on users’ historical interactions. Users with simi-
lar preferences are assigned into the same buckets automatically,
including warm and cold ones. Representations of the buckets are
learned accordingly. Contributing to the designed hash buckets,
only limited parameters are stored, which saves a lot of memory for
more efficient modeling. Furthermore, when new interactions are
made by a user, his buckets and representations will be dynamically
updated, which enables more effective understanding and modeling
of the user. It is worth mentioning that PreHash is flexible to work
with various recommendation algorithms by taking the place of
previous user embedding matrices. We combine it with multiple
state-of-the-art recommendation methods and conduct various ex-
periments. Comparative results on public datasets show that it not
only improves the recommendation performance but also signif-
icantly reduces the number of model parameters. To summarize,
PreHash has achieved significant improvements in both efficiency
and effectiveness for recommender systems.

CCS CONCEPTS
• Information systems→ Recommender systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401119

KEYWORDS
User Preference Modeling, Recommender System, Neural Recom-
mendation, Cold Start Problem, Efficiency and Effectiveness
ACM Reference Format:
Shaoyun Shi, Weizhi Ma, Min Zhang, Yongfeng Zhang, Xinxing Yu, Houzhi
Shan, Yiqun Liu, and Shaoping Ma. 2020. Beyond User Embedding Matrix:
Learning to Hash for Modeling Large-Scale Users in Recommendation. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’20), July 25–30, 2020, Virtual
Event, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3397271.3401119

1 INTRODUCTION
Recommender system has become essential in various web services.
However, due to millions or even billions of users and recommen-
dation candidates every day, it is not easy to design an efficient and
effective recommendation algorithm in real scenarios.

The personalized preference feature vector for each user is the
key to the recommendation. Most of the previously proposed mod-
els generate a preference feature vector for each user and store them
together as a feature matrix. For example, Matrix Factorization (MF)
based Collaborative Filtering (CF) methods usually represent each
user as a specific vector [16, 22, 23]. Some recent deep recommen-
dation models also use an embedding layer to map each user to a
preference vector [14, 25, 39] (the featurematrix is in the embedding
layer). Most of them achieved excellent performance.

However, these methods can hardly apply to real-world recom-
mender systems due to the massive number of users. Different
from CF models proposed in research, most of the current deep
neural models in large-scale real-world recommender systems are
feature-based models, like Wide&Deep [5] proposed by Google
and DeepFM [8] by Huawei. The reason is that storing such a user
embedding matrix has too many parameters, which brings unac-
ceptable memory cost and significantly slows down the model. On
the other hand, there are always users with few interactions (Cold-
Start Problem). Feature vectors of cold users may result in poor
effectiveness, and for most algorithms, we cannot update users’
feature vectors unless retraining the whole model.

In previous studies, considering the efficiency, somemodels, such
as FISM [20] and AutoRec [33], represent each user as a set of items

* Corresponding Author
This work is supported by the National Key Research and Development Program of
China (2018YFC0831900) and Natural Science Foundation of China (Grant No. 61672311,
61532011). Dr Weizhi Ma has been supported by Shuimu Tsinghua Scholar Program.

https://doi.org/10.1145/3397271.3401119
https://doi.org/10.1145/3397271.3401119
https://doi.org/10.1145/3397271.3401119

he/she has interacted. For example, a simple way to form the user
preference vector is by summing up vectors of items the user has
interacted with. But in the cold scenario, there is limited interaction
history to capture user preferences. To tackle this problem, some
researchers try to utilize some side information, such as content
features [34] and social information [18], to learn a representation
of the user. However, side information is not always available and
cannot fully show his/her personal preferences. Some hybrid al-
gorithms combine content features with personalized user vectors
(usually stored in a user preference matrix), while they still have
unacceptable memory and time cost.

Different from previous studies that focus on handling one of the
challenges, we propose a user preference representation methodol-
ogy called Preference Hash (PreHash) to tackle the two problems
together. It is not an independent but a flexible module that takes
the place of user embedding matrices in various previous models.
PreHash learns a user’s preference vector in a new way, which has
two parts: the history part and the hash part. Both parts represent
user preferences in a more efficient way than using a feature matrix.
The history part uses an attention network to find information
related to the target item in the user’s history interactions and then
forms a user history preference vector. It dynamically captures user
preferences in different aspects. In the hash part, there are some
buckets, and each of them stores the preferences of similar users.
The most important function of the hash part is that for each input
user, it tries to find some warm users who have interacted with
similar items as the target user who might have rare interacts. In
this way, the model makes better preference modeling by referring
to the interaction history of warm users for target ones no matter
whether they are cold not not. It helps in real applications where
warm users only take a small proportion of the total.

Furthermore, PreHash stores a much smaller matrix of prefer-
ence vectors rather than an entire user vector matrix. Also, by
representing users as their interacted items and some similar warm
users, their representations are updated online (without retraining
the model), which also shows the efficiency of our model. In the
experiments conducted on different large-scale datasets, by taking
the place of the user embedding matrix, PreHash is verified to be
helpful to multiple models in different scenarios. In summary, Pre-
Hash not only significantly reduces the number of parameters but
also help improves the recommendation performance.

The main contributions of this work are listed as follows:
(1) PreHash is a flexible user preference representation module

that helps previous models to deploy in real-world systems. It sig-
nificantly reduces the model parameters and works well on both
rich-history and rare-interaction users. Thus it is a meaningful trial
to bridge the gap between research and industry applications.

(2) In the proposed PreHash, users’ preferences are dynamically
updated when they make new interactions, and no re-train is re-
quired as fix user embedding matrix does in previous work. It not
only boosts the performance of normal users but also handles with
cold-start ones.

(3) Experimental results onmultiple large-scale real-world datasets
show that PreHash is flexible to work with various recommenda-
tion algorithms and is able to improve the recommendation per-
formances significantly. It helps various models apply in the real
large-scale recommendation scenario.

2 RELATEDWORK
2.1 User Preferences in Traditional

Recommendation Algorithms
Traditional recommendation algorithms include two major ap-
proaches, i.e., Collaborative Filtering (CF) and Content-Based (CB)
methods. CFmethods are based on the user-item interactions, which
can either use explicit user feedback [23, 32] or implicit user feed-
back [15, 16, 31]. Matrix Factorization (MF) is the most typical
implementation of CF. Some famous recommendation algorithms
such as BiasedMF [23] and SVDPP [22] are all based on MF. Prefer-
ences of users are stored in the user embedding matrix, which is not
suitable for large-scale users, as well as users with rare interactions.

The main idea of CB methods is to take advantage of the con-
tent information of the users and items, such as income & occu-
pations of users, textual descriptions of books, melodies of music,
and names of items. By analyzing the interaction data, CB meth-
ods model the latent relationship between those features and user
preferences [30]. For example, Basu et al. use hybrid features that
combine elements of social and content-based information, making
it possible to achieve more accurate recommendations [1]. However,
CB methods usually perform no better than CF methods, which
directly model user preferences by history interactions.

Although traditional recommendation algorithms have achieved
excellent performance and been widely used for many years, they
are weak in modeling non-linear high-order feature interactions.
2.2 User Representation in Deep

Recommendation Models
Deep neural networks can model non-linear features and their high-
order interactions. In recent years, the influence of deep learning
has spread to the areas of information retrieval and recommenda-
tion. It helps to enhance the ability of traditional methods to model
the non-linearity in data. For example, Convolutional Neural Net-
works (CNN) helps model the visual information [9, 11]. Recurrent
Neural Networks (RNN) can be used to model the text data [24, 43].
They all can help form better user representations. But most of
them embed user preferences into the ID embeddings. A huge user
embedding matrix limits the application of these models in real-
world recommender systems with millions or even billions of users.
Besides, they are also suffering from the cold-start problem.

There also exist some models which take both content features
as well as end-to-end ID embeddings as input features. For example,
Wide&Deep [5] proposed by Google combines the deep neural
network with a linear model. In the NFM [12] and DeepFM [8],
both sparse IDs and content features are embedded into vectors to
model feature interaction. These methods have shown remarkable
performance on many datasets. However, in practical large-scale
industrial systems, they cannot take user IDs as inputs for the
model size and efficiency. Although better modeling the content
features is helpful, collaborative filtering is important for effective
recommendations to capture personalized user preferences.
2.3 Cold-Start Recommendation
The cold-start problem must be carefully considered. There are usu-
ally a large number of users with only a few historical interactions,
which makes it hard for the model to capture their preferences.
Many approaches utilize user content information and combine

the CF and CB to handle the cold-start problems [29, 37]. Some
proposed models adaptively balance the importance of different
types of information for each user-item pair [34].

There are also other kinds of information that can be used to
improve the cold-start recommendation, such as social relationships
between users, cross-domain, and cross-media information. Based
on the idea that users who have social relationships may have
similar preferences, many efforts have been made to make use of
social information [2, 18, 42]. Transfer learning methods try to
learn users’ preferences from other domains and apply them to the
current domain, and some remarkable improvements have been
achieved [7, 26, 28, 40]. Besides, Ma et al. [27] introduce users’
content information from other platforms (user posts on Twitter) to
learn extra user features for the recommendation. Their proposed
model outperforms other methods in cold-start scenarios.

However, although these methods with side information help,
side information is not always available. Besides, most of the men-
tioned models make predictions in a hybrid way, which do not
consider memory and time cost in real-world systems.

3 USER PREFERENCE HASH
3.1 General Idea
The basic idea of PreHash is to learn a user’s preference vector in
two ways:

(1) Items that the user interacted recently.
(2) Other users that have similar preferences to this user.

Specially, PreHash uses a history part to model a user’s history
preferences (user history vector) from his/her interaction history.
An attention network is used to retrieve the preferences related to
the target item. Besides, to find users have similar preferences to
this user, we design a hash part to model his/her hash preference
vector (user hash vector). Finally, a Route Attention is adopted to
combine the two parts (history vector and hash vector) and get the
final user preference vector.

Note that in PreHash, it is unnecessary to maintain all users’
feature vectors. For each warm user, the hash vector directly comes
from a specific bucket vector. It is just like the lookup of an embed-
ding matrix. But different from one-to-one user embedding matrix,
in PreHash, users with fewer interactions will also store their pref-
erences in these buckets (training the embeddings). Allocating each
warm user with one fixed bucket reduces the conflicts of storing
their preferences and provides more stable and dense CF. Sharing
buckets of warm users with others helps recommend to users with-
out sufficient history. Detail information will be introduced in the
next sessions.

PreHash is more about a module that improves existing deep
models to be able to work in the real large-scale environment. In
which case is more flexible than previously proposed methods. To
introduce the proposed PreHash and how it works with previous
recommendation methods clearly, we take BiasedMF [23] as the
base model and propose PreHash enhanced BiasedMF, which is
noted as BiasedMFPreHash. Note that BiasedMFPreHash is an example
for introducing PreHashmodule, PreHash is able to work with other
models too. Figure 1 is an overview of BiasedMFPreHash.

In recommendation tasks, suppose there are a set of n users
U = {ui } and a set ofm items V = {vj }. We use the bold fonts to

represent vectors, such as u and v are the vectors of useru and item
v respectively. The original prediction of BiasedMF comes from the
dot product of user vector u and item vector v, plus the biases:

p = u⊤v + bu + bv + bд (1)

where bu , bv , bд are the user, item, and global bias respectively.
BiasedMF stores a user preference matrix U, in which each column
is a user’s preference vector. The proposed PreHash improves the
BiasedMF by substituting the function of the user vector matrix
and generating a user representation u′ to replace u. In this way,
PreHash saves a large number of parameters and helps generate
better preference vectors for each user.

In the following subsections, we will introduce the two parts in
PreHash module one by one.
3.2 History Part
As shown in Figure 1, PreHash generates user history vectors ac-
cording to their interaction history in History Part. For each user
u, the l items he/she has interacted with are noted as vu1 ...v

u
l . The

history part builds a history vector of each user to capture his/her
preferences from interacted items. Considering that items reveal
different aspects of user preferences. For a specific target item, user
history interactions have different importance. So PreHash uses an
attention network (History Attention) to adaptively weight-sum
the item vectors:

wl
j =

exp(v⊤vuj)∑l
k=1 exp(v

⊤vuk)

uv =
√
l

l∑
j=1

wl
jv
u
j

(2)

where v is the vector of the target item,wl
j is the attention weight of

the j-th interacted item in the user history. The user history vector
uv comes from the weighted sum of the interacted items’ vectors.
√
l is the history length normalization by taking the number of his-

torical interactions into consideration. We believe that embedding
the richness information of user history into their vectors is helpful,
especially to consider whether he/she is a warm user.

Our PreHash has mainly two advantages of taking this kind of
attention:

• Items, which a user interacted with, are consistent with user
preferences to a different extent. Some items are typical representa-
tives, but others may not. For example, buying some clothes may
reveal a user’s favorite color, but buying some daily necessities, like
a bottle of water, contains less information.

• To predict whether a user likes a target item, it is corresponding
to some specific aspects in the user preferences. The attention
network is right suitable here to adaptively select the relevant
items in the user history to capture the user preference to the target
item. For example, if the model wants to predict whether a user
likes iPhone or not, it should better consider the digital products
the user bought but not books.

Note that as the user interacting with more items, new users will
become rare-interaction users and finally warm users. The history
part directly takes user history as input, so there is no need to
retrain the model, which is a significant difference with the user
preference matrix based methods. The user history vector uv is

𝐯

item id

𝐮

user id

𝑑𝑜𝑡

𝐮&𝐯

𝑏𝑖𝑎𝑠

𝑝

+

BiasedMF

user history

𝐯,- 𝐯.- 𝐯/-…

𝐮𝒗

𝐮′

History
Attention

Route
Attention 𝐮2

𝒂, 𝒂. 𝒂4

0.1

𝒂5

0.20.3 0.4

0.60.4

Weighted Sum

1.0

PreferenceHashModule

Hierarchical Hash

Preference Hash Vector

Hash Buckets

Top-K Related Buckets

Item
Matrix

User
Matrix

Replace

History Part Hash Part

Figure 1: An example of BiasedMFPreHash (PreHash enhanced BiasedMF).

then fed into the hash part for further use. Besides, it is a part of
the final generated user preference vector too.
3.3 Hash Part
Only with the history vector is not enough to capture the user
preference, as some fresh users do not have sufficient historical
feedback (their history vectors provide limited information). So we
design a hash part to get a user’s additional preference features
based on previous warm users who interact with similar items to
the target user. Warm users are users who have interacted with
a lot of items, and the system knows their preferences well. The
function of the hash part is to store and calculate the preferences
of all users with limited spaces.

In the hash part, users with similar preferences share some buck-
ets to store their preferences. In this way, these warm users are
referenced when there come other users. It will be very helpful
when there are rare-interaction users. Besides, as the user inter-
acting with more items, his/her hash vectors will also dynamically
change. It is different from the user embedding matrix and sig-
nificantly reduces the requirements and costs for retraining the
model.

The hash part mainly consists of three components, namely hash
buckets, hierarchical hash, and top-k weighted. The workflow is
shown in Figure 1, and we will introduce them one by one.
3.3.1 Hash Buckets. Suppose we have h(h ≪ n) buckets A = {ai },
and their vectors are a1...ah (h = 4 in Figure 1). The buckets are
used to store the preferences of some similar users. Firstly, we bind
each bucket ai with a warm user uai . We call these selected warm
users “Anchor User” and their final hash vectors directly comes
from the corresponding hash buckets ai , i.e.:

uhj =

{
ai , uj is an anchor user
hash(uvj), otherwise

(3)

where hash(·) is the hash part which can be regarded as a function
that takes the user history vector as input and output the user hash
vector. We bind each bucket an anchor user for mainly the following
reasons:

• These buckets provide references for users to enrich their pref-
erence representations. We need sufficient information (preferences
of warm users) stored in each bucket.

• Warm users have plenty of history interactions, and their
preferences usually have more clear difference with each other
than among other users. Using one bucket to store multiple warm
users affects the accuracy of modeling preferences of these users.

• In the user matrix of BiasedMF and many other similar models,
there are a large number of vectors of rare-interaction users con-
tains little information, which wastes a lot of resources. Obtaining
the vector of anchor users is similar to the user embedding matrix
that maps a user to a vector, but PreHash only builds that matrix
for anchor users. Besides, we know that CF works better in dense
data than sparse data. Conducting CF among anchor users are more
efficient and effective. In this way, PreHash significantly reduces the
model parameters but remains the CF process between the anchor
users.

• Other users with fewer history interactions are dynamically
hashed to different buckets as they interact with more and more
items, and we should not fix their hash vectors. But these warm
users have more stable history preferences, and it will not bring
too much deviation if we fix their preference vectors.

These warm users can be predefined in various ways, whether
manually selecting or by some clustering methods. For simplicity,
we choose the users with the most interactions in our implementa-
tion here.

For other users, PreHash uses a hierarchical hash to find the
top related buckets, and weight-sums these bucket vectors to form
the preference hash vector. Vectors of buckets are also trained by
interactions of these users, so their preferences are distributed in
the corresponding buckets. The difference to the anchor users is
that each of them does not have a specific fixed bucket to store
their preferences but shares with others. And their buckets may
dynamically change as they interacted with more items.

3.3.2 Hierarchical Hash. To better calculate a specific user’s pref-
erence vector, we design a hierarchical hash structure in PreHash.
The structure will be able to find useful buckets that store the
preferences of users who have interacted with similar items.

With the history vector uv of a user as the input, hierarchical
hash works like a fully-connected tree where the root node allocates
its weight to children nodes and finally leaves (various buckets).
Let nij denotes the j-th node in layer i . Each node nij has a decision
vector nij , and it inherits a relevance weight r

i
j from its parent node.

Suppose that node nij has c children nodes (ni+1k ...n
i+1
k+c−1), then it

allocates the weight r ij to them by:

r i+1k+x = r
i
j

exp(uv⊤nj+1k+x)∑c−1
y=0 exp(u

v⊤nj+1k+y)
, x = 0, ..., c − 1 (4)

where r i+1k+x is the relevance weight of the x-th child. Note that
relevance weights of all nodes on the same level have a total of
1, e.g.,

∑
j r

i
j = 1, and initially, on the root r11 = 1. The number of

leaves equals to the number of buckets, and finally, the relevance
weights of leaves are the weights of buckets corresponding to the
current user history. The decision nodes here are somehow similar
to the keys in memory networks. The functions of them are both
to get the relevance weights of all the buckets (memory slots). Note
that the designed hash structure is different from existing memory
networks in various aspects. The detailed comparison is shown in
Section 3.3.4.

As there are often thousands and even more representative an-
chor users in large-scale data, it is a little hard to differentiate these
buckets in one step. So we propose a hierarchical hash structure to
spread the load and achieve the goal step by step. It automatically
clusters the users at different levels. We use three layers in our
experiments. More or fewer layers are also tried, but this setting
provides a more stable result.
3.3.3 Top-K Weighted Sum. To form the user preference hash vec-
tor, instead of the weighted sum of all the buckets, PreHash only
considers the most related K buckets. The reason is that it takes
much time and space to weight-sum such a large number of bucket
vectors. It is also unnecessary because the weights usually have
long-tail small values (which contribute little even considering
them but significantly increase the cost of back-propagation). Let
r j from the last layer in the hierarchical hash denote the relevance
weight of bucket aj . When making predictions, the intuitive idea is
to calculate the preference hash vector of user u as follows:

uh =
1∑K

j=1 rtj

K∑
j=1

rtj atj (5)

where t1...tK are the indexes of the largestK relevance weights and
thus at0 ...atK are the most relevant K bucket vectors. K is usually
much smaller than the number of hash buckets, i.e., K ≪ h.

However, if we keep always considering the top-K relevant buck-
ets during the training process, we observe that the module tends
to visit only a small number of buckets and performs badly. We
think the reason is that some well-trained bucket vectors get higher
weights than others. If the module always focuses on the vectors
with the largest weights during training, they will be trained to
store the preferences of too many users. Thus, many other buck-
ets are never visited, and their corresponding decision nodes are
rarely trained. These buckets have no chance to be updated and
keep irrelevant. To tackle the problem, PreHash chooses K random
buckets when training each sample:

uh =
1∑K

j=1 rsj

K∑
j=1

rsj asj (6)

where t1...tK are K randomly selected indexes. In this way, for each
training sample, PreHash explores some random buckets for the
target user. The module is then trained to increase the weights
of relevant buckets and decrease those irrelevant. The procedure
can be regarded as an exploration of trying different buckets. Each
sample visits different buckets in different epochs. The hash part
takes the user history vectors as input, so better hashing a user also

improves the users with similar preferences. Finally, the module is
expected to calculate the relevance for all the buckets properly.

3.3.4 Comparison with Memory Networks. The hash part has simi-
lar functions as some memory networks [4, 17, 35]. Both of them
find some relevant buckets/slots and weight-sum the corresponding
vectors to generate a new vector. However, there are five major
differences between the hash part and a memory network:

(1) Regular key-value memory networks in recommendation
usually have no more than one hundred of slots [4, 17, 36]. The
number of buckets in the hash part is more than thousands, which
is much larger. (2) Each anchor user is bound to a specific bucket
and skips the hierarchical hash procedure. Memory networks have
no such direct visit (e.g., anchor users will get their hash vectors
directly). (3) Due to a large number of hash buckets, the hash process
has a hierarchical design. Memory networks usually use one layer
of memory keys, which directly map to slots. (4) The hash part
weight-sums some of the buckets for the efficiency. Otherwise, it
will take much more time to train and run the module. Memory
networks usually take all the memory slots. (5) During the training,
the hash part selects the buckets randomly rather than according
to the hash weights. This way provides an exploration of different
hash buckets. Otherwise, the performance of the hash cannot be
guaranteed. Memory networks always refer to the relevance weight.

From the comparison, it can be concluded that a regular memory
network cannot achieve the same functions as the hash part. Each
bucket of the hash part refers to a cluster. The hash part is more
suitable for storing a large number of clusters and estimating which
buckets the inputmay belong to. Memory networks are usually used
to store and retrieve information. Information in memory networks
are heterogeneous, and slots have different latent meanings.
3.4 Module Output
To generate the final user preference vector, PreHash uses an at-
tention network (named as Route Attention) to combine the vector
of uv from History Part and uh from Hash Part. The user history
vector uv records the preferences from the items the user has in-
teracted with. The user hash vector uh provides preferences of
other users who have interacted with similar items. For a user with
plenty of historical feedbacks, uv may be enough to capture his/her
preferences. But for new users, it is better to utilize the uh so as to
explicitly reference the history of other users. It is reasonable and
essential to use the Route Attention to adjust sources of the user
preference vector dynamically.

We combine the two vectors to form the final user representation
u′ in the following steps.

evu = hT f (Wuv + b), ehu = hT f (Wuh + b)

wv
u =

exp(evu)

exp(evu) + exp(e
h
u)
= 1 −wh

u

u′ = wv
u u

v +wh
uu

h

(7)

where W ∈ Rt×d , b ∈ Rt , h ∈ Rt are the parameters of attention
network, and t denotes the hidden layer size of the attention net-
work and d is the user vector size. f is the non-linear activation
function and we use relu in our implementation.

The user preference u′ is the final output of PreHash.

3.5 Cooperating with Different Models
PreHash works for models that have a user embedding matrix to
store user vectors. Taking BiasedMF as an example, we replace
the user feature matrix U in BiasedMF with the proposed PreHash
module, as shown in Figure 1. When the preference vector of user
u is needed, instead of searching u from user matrix, PreHash will
calculate u′ for him/her. The loss function and training strategy of
BiasedMFPreHash are the same as BiasedMF.

PreHash also works similarly for other models. For example, in
Wide&Deep [5], if it takes the user ID as one of the features, there
must be an embedding layer which contains the corresponding
weight matrix. PreHash replaces the user matrix or embedding
layer, which has the same function as taking user IDs as inputs and
outputting the user preference vectors but fewer parameters. The
module parameters include the bucket vectors {ai }, hash decision
node vectors {nij }, and the Route Attention parameters. They all
can be randomly initialized and trained together with these models
with no changes to their loss functions. In the next sections, we
will verify if the proposed PreHash is able to boost the performance
of combined recommendation algorithms.
4 EXPERIMENTAL SETTINGS
4.1 Datasets
We conduct experiments on four public datasets from Amazon in
different categories [10] and the public dataset in RecSys Challenge
2017. Some detailed information of the datasets is shown in Table 1.

Table 1: Statistics of evaluation datasets.

Dataset #Interaction #User #Item
Grocery & Gourmet Food 1,297,156 768,438 166,049

Pet Supplies 1,235,316 740,985 103,288
Video Games 1,324,753 826,767 50,210

Books 22,507,156 8,026,324 2,330,066
RecSys Challenge 2017 6,470,857 1,497,020 1,306,054

• Amazon Dataset is a public e-commerce dataset. The dataset
contains reviews and ratings of items given by users on Amazon, a
popular e-commerce website. We use four sub-datasets of different
categories in the whole dataset: Grocery & Gourmet Food, Pet
Supplies, Video Games, and Books. Note that the Books dataset is
much large than others, which is used to verify the efficiency of
PreHash in our experiments.

• RecSys Challenge 2017 (RSC2017) focuses on the job recom-
mendation task. The provided dataset contains plenty of both users
and items features, which is an excellent evaluation scenario for
some features based models like Wide&Deep and ACCM.
4.2 Baselines
In our experiments, PreHash is cooperated and compared with the
following models:

• BiasedMF [23]. It is a famous matrix factorization model.
• NeuMF [14]. It conducts CF with a neural network. It is one

of the most famous neural collaborative filtering models.
• Wide&Deep [5]. It combines the deep neural network and

linear models and takes both content features and ID embeddings
https://www.amazon.com/
http://jmcauley.ucsd.edu/data/amazon/index.html
http://www.recsyschallenge.com/2017/

as inputs. Wide&Deep is verified as one of the best deep neural
recommendation models in many different scenarios.

• ACCM [34]. It is a state-of-the-art model works on both warm
and cold scenarios by combining the CF and CB.

Besides, we also compared the BiasedMFPreHash andNeuMFPreHash
with some CF models which also take user history as inputs:

• FISM [20]. It is a state-of-the-art item-based CFmodel in which
the user preference vector comes from the sum of historical item
vectors instead of a user embedding matrix.

• SVD++ [22]. It is a well-known CF method that integrates both
explicit and implicit feedback.
4.3 Training and Evaluation
Each dataset is split into training, validation, and test sets. We
ensure that all users in the validation and test sets have at least
one interaction in the training set. We leave the last two positive
interactions of at most 100,000 users into validation and test sets,
respectively. It is called the leave-one-out evaluation in recommen-
dation, which is widely used in literature [3, 13, 20].

Our experiments are conducted on top-n recommendation tasks.
We use the pair-wise training strategy [31] to train all the models,
including baselines. Pair-wise training is a commonly used training
strategy in many ranking tasks which usually performs better than
point-wise training. For each positive interaction v+, we randomly
sample an item the user dislikes or has never interacted with before
as the negative sample v− in each epoch. Then, the loss function of
the models is:

L = −
∑
v+

log
(
siдmoid(p(v+) − p(v−))

)
+ λΘ∥Θ∥2F (8)

where p(v+) and p(v−) are the prediction results of v+ and v−,
respectively, and λΘ∥Θ∥2F is the ℓ2-regularization. The loss function
encourages the predictions of positive interactions to be higher than
the negative samples.

In evaluation, we leave the last positive interaction of at most
100,000 users, and sample 100 v− for each v+. The models are
evaluated according to the rank of v+ in these 101 candidates. This
method is widely adopted by previous works [14, 38, 41].

We adopt NDCG@10 [19] to evaluate the top-10 lists of models
and NDCG@1 to assess whether the positive item is ranked first.
Note that NDCG@1 actually equals to Precision@1 (P@1 for short).
4.4 Implementation Details
All the models, including baselines, are trained with Adam [21]
in mini-batches at the size of 128. The learning rate is 0.001, and
early-stopping is conducted according to the performance on the
validation set. Models are trained at most 200 epochs. To prevent
models from overfitting, we use both ℓ2-regularization and dropout.
The weight of ℓ2-regularization λΘ is set between 1×10−7 to 1×10−5
and dropout ratio is set to 0.2. Vector sizes of all the user, item, and
feature vectors are 64. The number of buckets (anchor users) h is
1024, and we select K = 128 of them to form the hash preference
vectors without particular illustrations. For the hierarchical hash,
we use a 3-layer structure with [1-64-1024]. We run the experiments
with 5 different random seeds and report the average results. All
models are trained with a GPU (NVIDIA GeForce GTX 1080Ti)
with 11GB GPU memory. Codes are provided at https://github.com/
THUIR/PreHash.

https://www.amazon.com/
http://jmcauley.ucsd.edu/data/amazon/index.html
http://www.recsyschallenge.com/2017/
https://github.com/THUIR/PreHash
https://github.com/THUIR/PreHash

Table 2: Performance on Amazon datasets.

Grocery & Gourmet Food Pet Supplies Video Games Books
NDCG@10 P@1 NDCG@10 P@1 NDCG@10 P@1 NDCG@10 P@1

BiasedMF [23] 0.4014 0.2386 0.4667 0.2733 0.4919 0.2849 Out Of Memory1
NeuMF [14] 0.3788 0.2174 0.4334 0.2442 0.4410 0.2401 Out Of Memory
SVD++ [22] 0.3990 0.2372 0.4717 0.3030 0.4857 0.3106 Out Of Memory
FISM [20] 0.4143 0.2553 0.4911 0.3047 0.4929 0.2921 0.4669 0.3198
NeuMFPreHash 0.3772 0.2373 0.4829 0.3062 0.5391 0.3448 0.4687 0.3259
BiasedMFPreHash 0.4127 0.2647* 0.5102* 0.3310* 0.5720* 0.3772* 0.5265* 0.3842*

1. Out of GPU memory during the training process, same for other tables.
*. Significantly better than the other models with p < 0.05, same for other tables.

5 EXPERIMENTAL RESULTS AND ANALYSIS
We conduct some experiments on various datasets to answer the
following research questions:

RQ1 Does the proposed PreHash improve the recommendation
effectiveness?

RQ2 Does PreHash improve the model efficiency?
RQ3 Does PreHash work for different models?
RQ4 Does PreHash provide better recommendations for rare-interaction

users?

5.1 Effectiveness of PreHash
To answer RQ1 and verify PreHash improves the performance of
recommendation models, we combine the PreHash with BiasedMF
and NeuMF.

The overall performance of BiasedMFPreHash and NeuMFPreHash
in Amazon datasets, compared with other baselines, is shown in
Table 2. Due to the lack of content features in Amazon datasets, it
is unsuitable for applying feature-based deep models (Wide&Deep,
ACCM) here. So the comparison between them will be conducted
on the RSC2017 dataset. As the space is limited, the performances
of all models on RSC2017 dataset will be reported in Section 5.3.

First, as for the baselinemodels, it is clear that the original NeuMF
and BiasedMF perform worst among the models. The reason is that
CF methods usually are effective with sufficient feedbacks. How-
ever, the datasets in our experiments all have a sparsity larger than
99.99%, so a naive MF method cannot handle such sparse datasets.
SVD++, which takes all the user historical feedbacks into consid-
eration, performs slightly better than BiasedMF. It indicates that
explicitly modeling the user history is helpful. FISM outperforms
other baselines significantly. It has no such a user preference matrix
as BiasedMF & SVD++ and makes recommendations based on item
similarities. The good performance of FISM verifies that MF based
methods perform badly on large-scale sparse data, and it is essential
to consider representing user preferences in other ways. Besides,
FISM is based on item similarity, whose results show that repre-
senting users as their interacted items sometimes performs better
than using a user embedding matrix. It is also verified by recent
findings that ItemKNN works better than many state-of-the-art
neural models [6].

Then, looking into the performance of our model, we can see
that if we replace the user preference vectors in BiasedMF with
the PreHash, the model achieves the best results on all the datasets
except the NDCG@10 on Grocery & Gourmet Food (compara-
ble, not significantly worse). And in all scenarios, BiasedMFPreHash

(NeuMFPreHash) makes great improvements to the original BiasedMF
(NeuMF) and other baselines, showing the effectiveness of PreHash.
The reason is that for all users, the history part of PreHash dynami-
cally retrieves the preferences related to the target item in the user
history. And for each target user, the hash part helps find some
related buckets storing the preferences of users interacted with
similar items. Their history helps recommend to the target user,
especially for those rare-interaction users. In this way, PreHash
improves the performance of both rich-history and rare-interaction
users. PreHash makes greater improvements on Video Games be-
cause the dataset has much fewer items than the others. With
sufficient interactions, all items representations are learned well
and help better form the user preference vector in PreHash. Note
the origin BiasedMF and NeuMF cannot be trained on our devices
because of the limitation of GPU memory. But BiasedMFPreHash and
NeuMFPreHash significantly reduces the number of model parame-
ters, especially on the datasets in which users are much more than
items.

5.2 Efficiency of PreHash
To better verify the efficiency of PreHash (RQ2), we show the num-
ber of model parameters and training time per epoch on Amazon
datasets in Table 3. The following observations can be made. Firstly,
PreHash reduces the model parameters of BiasedMF and NeuMF
at a large margin. On some datasets with many more users than
items, it saves more than 90% of parameters because there is no
more a huge user preference matrix. It will directly affect the cost
of training, deploying, and running of recommender algorithms in
real-world systems. Secondly, although PreHash trades some time
for space, results show that models with PreHash take only slightly
more time than the original ones. (The statistics may have small
fluctuations due to the busyness of the running devices.) PreHash
is slower than indexing a vector from a user matrix, but the signifi-
cant reduction of parameters and improvements of performance
deserve the small cost. Thirdly, BiasedMF, NeuMF, and SVD++ can-
not be trained on the Books dataset because the GPU memory size
exceeded. Although they can be trained on CPUs, the time cost
will be unacceptable. It means that we need many more resources
to run these models on large datasets. In real-world recommender
systems, the issue is more prominent. FISM, BiasedMFPreHash and
NeuMFPreHash finish the training because they have no such a huge
user vector matrix. BiasedMFPreHash and NeuMFPreHash even have
fewer parameters than the FISM (saved lots of memory resource)
and take comparable time to finish an epoch, which verifies the
efficiency of PreHash.

Table 3: Number of parameters and training time per epoch on Amazon datasets.

Grocery & Gourmet Food Pet Supplies Video Games Books
#Para Time/epoch #Para Time/epoch #Para Time/epoch #Para Time/epoch

SVD++ [22] 71.4M 0.10h 61.5M 0.08h 60.2M 0.09h 822M Out Of Memory
FISM [20] 22.2M 0.10h 14.1M 0.08h 7.3M 0.08h 309M 2.74h
NeuMF [14] 119.6M 0.14h 108.1M 0.13h 112.3M 0.11h 1326M Out Of Memory
NeuMFPreHash 21.4M 0.14h 13.3M 0.12h 6.5M 0.12h 298M 2.69h
BiasedMF [23] 60.7M 0.10h 54.9M 0.07h 57.0M 0.07h 673M Out of Memory
BiasedMFPreHash 10.9M 0.11h 6.8M 0.11h 3.4M 0.10h 152M 2.83h

Table 4: PreHash enhanced models on RSC2017.

Model #Para NDCG@10 P@1
SVD++ 266M 0.7696 0.6190
FISM 170M 0.7819 0.6477
NeuMF 359M 0.7756 0.6371
NeuMFPreHash 167M 0.7851* 0.6550*
BiasedMF 182M 0.7834 0.6465
BiasedMFPreHash 85M 0.7978* 0.6680*
Wide&Deep 182M 0.8285 0.7144
Wide&DeepPreHash 85M 0.8396* 0.7278*
ACCM 182M 0.8297 0.7215
ACCMPreHash 85M 0.8351* 0.7267*

5.3 Flexibility of PreHash
As introduced in Section 3.5, PreHash is not designed for a specific
model. We have combined PreHash with some MF based models
(BiasedMF, NeuMF) in previous sections. Now we are going to
verify if deep neural algorithms (Wide&Deep, ACCM) with various
content features and sparse user ID features as inputs can consider
being enhanced by PreHash (RQ3). The Amazon datasets contain
few content features of users or items, which are not suitable for
feature-based deep models. We use RSC2017 dataset to evaluate
these models, because the dataset provides plenty of both user and
item content features for the model to capture user preferences and
item characteristics. Previous MF based models and baselines are
also reported here.

Results in Table 4 show that on RSC2017, all of the models are
enhanced by PreHash and achieve significant improvements, in-
cluding the two feature-based deep models. It verifies that PreHash
is flexible to be applied to various models, no matter traditional
models or deep neural models, no matter MF models or feature-
based models. Wide&Deep and ACCM perform significantly better
than other models because they utilize more content features.

Note that BiasedMF, Wide&Deep, and ACCM have a similar
number of parameters because the user and item embedding matrix
dominates the parameters. Although hundreds of content features
and fully-connected deep layers bring tens of thousands of param-
eters, they are negligible comparing to the huge user and item
embedding matrix. The remaining parameters in the PreHash en-
hanced models are most item embeddings. These embeddings are
replaceable by item vectors learned from plenty of item features in
real-world recommender systems.
5.4 Performance of Rare-Interaction Users
To study whether PreHash improves the recommendation perfor-
mance for rare-interaction users (RQ4), we use the RSC2017 to

evaluate all of the models on different groups of users (RSC2017
is applied to include feature-based deep models for comparison).
The users in the test set of RSC2017 are divided into three groups
according to howmany items they have interacted with in the train-
ing set. Users who have less than 3 interacted items are regarded
as rare-interaction users (l ≤ 3), and rich-history users are those
who have 10 or more historical interactions (l ≥ 10). Other users
are normal users (3 < l < 10). We evaluate models with or without
PreHash separately on these three groups of users.

Table 5: Performance (NDCG@10) of users with different
number of history interactions l on RSC2017.

Model l ≤ 3 3 < l < 10 l ≥ 10
NeuMF 0.7215 0.7919 0.8029
NeuMFPreHash 0.7336* 0.8071* 0.8254*
BiasedMF 0.7325 0.8013 0.8109
BiasedMFPreHash 0.7428* 0.8149* 0.8285*
Wide&Deep 0.7793 0.8405 0.8581
Wide&DeepPreHash 0.7871* 0.8563* 0.8787*
ACCM 0.7828 0.8429 0.8563
ACCMPreHash 0.7883* 0.8556* 0.8615*

Experimental results are shown in Table 5. It is clear that all
models perform better on rich-history users than rare-interaction
users. It is reasonable because warm users have more history in-
teractions that help models capture their preferences. Among the
baseline models without PreHash, NeuMF and BiasedMF perform
the worst, especially on rare-interaction users, because they do
not utilize the content features as the other two deep models. The
four models achieve significant improvements on all three groups
of users after enhanced by PreHash. It is not easy to make such
improvements for rare-interaction users without utilizing external
information. PreHash is powerful, for the hash part explicitly takes
the preferences of warm users who have interacted with similar
items of target users to help make recommendations. Together with
the history part, it also provides more accurate preference modeling
for warm users by filtering the noises in history and modeling item
relevance.
6 FURTHER ANALYSIS
6.1 Ablation Study
To better understand the influence of different parts in PreHash,
we conduct an ablation study on Video Games dataset. Results are
shown in Table 6.

If we weight-sum the historical item vectors with the History At-
tention, and replace the user preference vector in BiasedMFwith the

Table 6: Results of ablation study on Video Games.

Model NDCG@10 P@1
BiasedMF 0.4919 0.2849
BiasedMFHistory Part 0.5613 0.3668
BiasedMFJaccard 0.5609 0.3679
BiasedMFK-means 0.5595 0.3629
BiasedMFPreHash 0.5720* 0.3772*

output history vector uv of History Part in PreHash (without Hash
Part), i.e., BiasedMFHistory Part, it makes significant improvements.
The reason is that the latent vectors in the MF-based CF model
can hardly capture the user history and preferences when the data
is super sparse. Besides, different items contain distinct amounts
of information about user preferences, and they are related to the
target item in various degrees. The History Attention helps capture
these differences among the items adaptively. To compare PreHash
with some clustering/matching methods, we adopt K-means on the
user history to form h clusters, and use the cluster-ID to represent
the users (BiasedMFK-means). We also try that after select h warm
users as anchors, for each non-anchor user, we calculate the Jaccard
similarities between he/she and every anchor user based on their
interacted items. And we assign the non-anchor user to the anchor
user (bucket) with the largest Jaccard similarity (BiasedMFJaccard).
Either K-means and Jaccard can replace the hash part, but they both
perform worse than PreHash, which shows the effectiveness of Pre-
Hash to model similar user preferences. Finally, with a Hash Part,
the BiasedMF enhanced by the entire PreHash (BiasedMFPreHash)
achieves the best results. The Hash Part improves the ability of the
model to handle users without sufficient history, especially those
rare-interaction users, which is one of the toughest problems in
real-world recommender systems.
6.2 Parameter Study

0 8 16 32 64 128 256 512 1024 2048

h - Number of Hash Buckets

0.550

0.555

0.560

0.565

0.570

0.575

0.580

T
es

t
N

D
C

G
@

10

1 16 32 64 128 256 512

K - Top / Random Exploration Number

0.550

0.555

0.560

0.565

0.570

0.575

0.580

T
es

t
N

D
C

G
@

10

Figure 2: Performance of BiasedMFPreHash on Video Games
with different amounts of hash buckets.

We also study the performances when BiasedMFPreHash with dif-
ferent numbers of hash buckets and different top numbers in the
hashing process (or random exploration number in the training
process). The results on Video Games dataset are shown in Figure 2
(K is no larger than 128 when changing h, and h is fixed to 1024
when changing K). h = 0 means there is no hash part, and the
history vector uv replaces the user vectors in BiasedMF. As shown
in the figure, a small number of hash buckets even work worse than
no hash buckets. We think the reason is that storing too many users’
preferences in a bucket vector makes the vectors overload and prob-
ably chaotic. As the number of hash buckets increasing, the model
performance keeps improving. It is because these buckets store
different categories of users, and thus, more buckets differentiate
more categories of users. These buckets help model the preferences

of different users without enough historical information. The per-
formance stops growing when the number of hash buckets is larger
than thousands. The reason is that too many buckets increase the
difficulty of the hash process, and a more powerful hash strategy
is needed in such cases. Similarly, by exploring and considering
more hash buckets (larger K), the performance grows because of
more accurate preference modeling and stops increasing when the
K is large enough. We finally use h = 1024 and K = 128 for both
effectiveness and efficiency.
6.3 Case Study

Bucket No. 999

Item No. 14267 Item No. 17756 Item No. 18431 Item No. 21336 Item No. 19250

Bucket No. 1000

Item No. 26205 Item No. 21671 Item No. 22485

Figure 3: Case study on Video Games.

To find out what PreHash has learned in the buckets, we take
some buckets (No.999 and No.1000) as examples. We collect the
history of users in each bucket and rank items according to how
many users in the bucket bought the item. Figure 3 are the most
popular items in the two buckets (in the provided metadata, we can
only find information of three items among the top five). It is clear
that after the hierarchical hash, the two buckets are related but
different from each other. Popular items in the bucket No.999 are
CDs of games on Sony Play Station 2/3, and most of them are about
fighting. Items in the bucket No.1000 are hardware devices such
as Sony Play Station 3 and its matching handles and chargers. The
results show the effectiveness of PreHash, which stores different
kinds of preferences in different buckets.

7 CONCLUSIONS
The main idea of the paper comes up when we try to deploy some
deep CF models on an industry recommender system. Most of these
models build a user embedding matrix that needs unacceptable
computing resources. So we attempt to represent all the users with
limited embeddings (hash buckets). In this work, a novel Prefer-
ence Hash (PreHash) module is proposed to model large-scale users
including rare-interaction ones in the recommendation. Previous
studies rarely tackle efficiency and cold-start problems together. Be-
sides, PreHash can cooperate with various recommendation models
by replacing the user vector matrix. Our experiments show that
PreHash not only improves the performance of different models but
also reduces the parameters. It is an efficient and effective module
that helps apply previously proposed models to large-scale real-
world recommender systems.

In the future, we consider improving PreHash by designing bet-
ter anchor user selection methods. It is important to consider the
typicality of anchor users and how to place them in different buck-
ets. Besides, how to improve the item representation together with
users is also an interesting problem.

http://snap.stanford.edu/data/amazon/productGraph/metadata.json.gz

http://snap.stanford.edu/data/amazon/productGraph/metadata.json.gz

REFERENCES
[1] Chumki Basu, Haym Hirsh, and William Cohen. 1998. Recommendation as classi-

fication: using social and content-based information in recommendation. In Pro-
ceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative
Applications of Artificial Intelligence. American Association for Artificial Intelli-
gence, 714–720.

[2] Chong Chen, Min Zhang, Chenyang Wang, Weizhi Ma, Minming Li, Yiqun Liu,
and Shaoping Ma. 2019. An Efficient Adaptive Transfer Neural Network for
Social-aware Recommendation. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM,
225–234.

[3] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval. ACM,
335–344.

[4] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In Proceedings of the 11th ACM International Conference on Web Search and Data
Mining. ACM, 108–116.

[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[6] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we
really making much progress? A worrying analysis of recent neural recommen-
dation approaches. In Proceedings of the 13th ACM Conference on Recommender
Systems. ACM, 101–109.

[7] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
learning approach for cross domain usermodeling in recommendation systems. In
Proceedings of the 24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 278–288.

[8] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence.
AAAI Press, 1725–1731.

[9] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In Proceedings
of the 25th International Conference on World Wide Web. ACM, 507–517.

[10] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. International World Wide
Web Conferences Steering Committee, 507–517.

[11] Ruining He and Julian McAuley. 2016. VBPR: visual Bayesian Personalized
Ranking from implicit feedback. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence. AAAI Press, 144–150.

[12] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 355–364.

[13] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and
Tat-Seng Chua. 2018. NAIS: Neural attentive item similarity model for recom-
mendation. IEEE Transactions on Knowledge and Data Engineering 30, 12 (2018),
2354–2366.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. ACM, 173–182.

[15] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-
trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, 549–558.

[16] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining. IEEE Computer Society, 263–272.

[17] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced mem-
ory networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. ACM, 505–514.

[18] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In Proceedings of the
4th ACM Conference on Recommender systems. ACM, 135–142.

[19] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[20] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item simi-
larity models for top-n recommender systems. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
659–667.

[21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[22] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 426–434.

[23] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[24] Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. 2017. Neural
rating regressionwith abstractive tips generation for recommendation. In Proceed-
ings of the 40th International ACM SIGIR conference on Research and Development
in Information Retrieval. ACM, 345–354.

[25] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via marginal-
ized denoising auto-encoder. In Proceedings of the 24th ACM International Confer-
ence on Information and Knowledge Management. ACM, 811–820.

[26] Zhongqi Lu, Erheng Zhong, Lili Zhao, Evan Wei Xiang, Weike Pan, and Qiang
Yang. 2013. Selective transfer learning for cross domain recommendation. In
Proceedings of the 2013 SIAM International Conference on Data Mining. SIAM,
641–649.

[27] Weizhi Ma, Min Zhang, Chenyang Wang, Cheng Luo, Yiqun Liu, and Shaoping
Ma. 2018. Your Tweets Reveal What You Like: Introducing Cross-media Content
Information into Multi-domain Recommendation.. In IJCAI. 3484–3490.

[28] Seungwhan Moon and Jaime G Carbonell. 2017. Completely Heterogeneous
Transfer Learning with Attention-What And What Not To Transfer.. In IJCAI.
2508–2514.

[29] Seung-Taek Park andWei Chu. 2009. Pairwise preference regression for cold-start
recommendation. In Proceedings of the third ACM conference on Recommender
systems. ACM, 21–28.

[30] Michael J Pazzani and Daniel Billsus. 2007. Content-based recommendation
systems. In The adaptive web. Springer, 325–341.

[31] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the 8th Conference on Uncertainty in Artificial Intelligence. AUAI Press, 452–461.

[32] Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo. In Proceedings of the 25th Interna-
tional Conference on Machine learning. ACM, 880–887.

[33] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th
International Conference on World Wide Web. ACM, 111–112.

[34] Shaoyun Shi, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Attention-based
Adaptive Model to Unify Warm and Cold Starts Recommendation. In Proceed-
ings of the 27th ACM International Conference on Information and Knowledge
Management. ACM, 127–136.

[35] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end memory
networks. In Advances in Neural Information Processing Systems. 2440–2448.

[36] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric
learning via memory-based attention for collaborative ranking. In Proceedings of
the 2018 World Wide Web Conference. International World Wide Web Conferences
Steering Committee, 729–739.

[37] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. DropoutNet: address-
ing cold start in recommender systems. In Proceedings of the 31st International
Conference on Neural Information Processing Systems. Curran Associates Inc.,
4964–4973.

[38] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2019.
Modeling Item-Specific Temporal Dynamics of Repeat Consumption for Recom-
mender Systems. In The World Wide Web Conference. ACM, 1977–1987.

[39] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1235–1244.

[40] Lin Xiao, Zhang Min, Zhang Yongfeng, Liu Yiqun, and Ma Shaoping. 2017. Learn-
ing and transferring social and item visibilities for personalized recommendation.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. ACM, 337–346.

[41] Xin Xin, Xiangnan He, Yongfeng Zhang, Yongdong Zhang, and Joemon Jose.
2019. Relational Collaborative Filtering: Modeling Multiple Item Relations for
Recommendation. arXiv preprint arXiv:1904.12796 (2019).

[42] Tong Zhao, Julian McAuley, and Irwin King. 2014. Leveraging social connections
to improve personalized ranking for collaborative filtering. In Proceedings of the
23rd ACM international conference on conference on information and knowledge
management. ACM, 261–270.

[43] Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint deep modeling of users
and items using reviews for recommendation. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining. ACM, 425–434.

	Abstract
	1 Introduction
	2 Related Work
	2.1 User Preferences in Traditional Recommendation Algorithms
	2.2 User Representation in Deep Recommendation Models
	2.3 Cold-Start Recommendation

	3 User Preference Hash
	3.1 General Idea
	3.2 History Part
	3.3 Hash Part
	3.4 Module Output
	3.5 Cooperating with Different Models

	4 Experimental Settings
	4.1 Datasets
	4.2 Baselines
	4.3 Training and Evaluation
	4.4 Implementation Details

	5 Experimental Results and Analysis
	5.1 Effectiveness of PreHash
	5.2 Efficiency of PreHash
	5.3 Flexibility of PreHash
	5.4 Performance of Rare-Interaction Users

	6 Further Analysis
	6.1 Ablation Study
	6.2 Parameter Study
	6.3 Case Study

	7 Conclusions
	References

