
Make It a Chorus: Knowledge- and Time-aware Item Modeling
for Sequential Recommendation

Chenyang Wang, Min Zhang∗, Weizhi Ma, Yiqun Liu, and Shaoping Ma
Department of Computer Science and Technology, Institute for Artificial Intelligence,

Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing, 10084, China

wangcy18@mails.tsinghua.edu.cn,z-m@tsinghua.edu.cn

ABSTRACT
Traditional recommender systems mainly aim to model inherent
and long-term user preference, while dynamic user demands are
also of great importance. Typically, a historical consumption will
have impacts on the user demands for its relational items. For in-
stance, users tend to buy complementary items together (iPhone
and Airpods) but not substitutive items (Powerbeats and Airpods),
although substitutes of the bought one still cater to his/her pref-
erence. To better model the effects of history sequence, previous
studies introduce the semantics of item relations to capture user
demands for recommendation. However, we argue that the tempo-
ral evolution of the effects caused by different relations cannot be
neglected. In the example above, user demands for headphones can
be promoted after a long period when a new one is needed.

Tomodel dynamic meanings of an item in different sequence con-
texts, a novel method Chorus is proposed to take both item relations
and corresponding temporal dynamics into consideration. Chorus
aims to derive the embedding of target item in a knowledge-aware
and time-aware way, where each item will get its basic represen-
tation and relation-related ones. Then, we devise temporal kernel
functions to combine these representations dynamically, according
to whether there are relational items in history sequence as well as
the elapsed time. The enhanced target item embedding is flexible
to work with various algorithms to calculate the ranking score and
generate recommendations. According to extensive experiments in
three real-world datasets, Chorus gains significant improvements
compared to state-of-the-art baseline methods. Furthermore, the
time-related parameters are highly interpretable and hence can
strengthen the explainability of recommendation.

CCS CONCEPTS
• Information systems→ Recommender systems;

KEYWORDS
Recommender system; Item relations; Knowledge-aware recom-
mendation; Temporal dynamics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401131

is Substitute of

time

iPhone case

Huawei Mate

Buy Powerbeats

time

Dynamic Effects on Demands for AirPods after Buying Powerbeats

Short Term Long TermMid Term

Positive

Negative

Neutral

Positive

Negative

Neutral

is Complement of

Dynamic Effects on Demands for AirPods after Buying iPhone

Short Term Long TermMid Term

Buy iPhone

Next

Sequence Context

AirPods

AirPods

Next

Sequence Context

Figure 1: Illustration for temporal effects of previous rela-
tional consumptions on the demands for AirPods. Current
consumption for an iPhone may have positive effects in the
short term, but the impact is oppositely negative if the user
has just purchased Powerbeats. The positive effect of com-
plement decays with time, while the negative effect of sub-
stitute can turn to positive after a period of time.

ACM Reference Format:
Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma.
2020. Make It a Chorus: Knowledge- and Time-aware Item Modeling for
Sequential Recommendation. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3397271.3401131

1 INTRODUCTION
With the overload of information on the Internet, the recommender
system has been playing an increasingly important role in daily
life. It not only provides information catering to users’ tastes but
also helps to discover their intrinsic preference [1]. Traditional
recommendation methods mainly focus on user preference model-
ing [11, 13, 19, 33]. For example, the latent factor model [21] embeds
both users and items into a latent space, where the embeddings of
users represent the preference in various aspects, which will not
change when making recommendations at different times.

However, although user preference is static most of the time,
user consuming demands are actually dynamic and changeable.
The same item will have different meanings to a user in different

* Corresponding author.

https://doi.org/10.1145/3397271.3401131
https://doi.org/10.1145/3397271.3401131

contexts. Actually, sequential consuming behavior can be seen as
a process to fulfill user demands in distinct aspects. A consump-
tion for an item may have impacts on other relational items, and
such effects of distinct relations also differ from each other. Take
complementary and substitutive relations as example, Figure 1 il-
lustrates how the effects of purchasing different relational items
change with time. For complements: assuming a user purchases
an iPhone currently, he/she may want to buy AirPods (i.e. a com-
plement of the iPhone) in the short term. But the positive effect will
be lowered after a period of time (the user may already have head-
phones, and the recommender system should not present AirPods
continually). For substitutes: if what he/she has just consumed is a
substitute for AirPods, such as Powerbeats, the short-term impacts
are mainly expected to be negative because the user does not need
another headphone immediately. While the negative effect can turn
to positive in the mid term, since the user may need to buy a new
headphone, and the newly released AirPods could be an attraction.
Such positive effects will also gradually decrease, in which case the
user may have lost interests in this kind of headphones or have
purchased another one by other means.

From the above illustration, we can see that current consump-
tions for distinct relational items have different impacts on the
target item. More crucially, the temporal trends also differ from
each relation. There are also studies introducing item relations into
recommender systems [16, 40, 44, 45], but they do not take temporal
dynamics of different relations into consideration. Although some
work addresses long-term and short-term preference [16], the item
relations are only used to model short-term item transitions, lack-
ing in the modeling of continuous evolution of different relations’
effects. Another recent work investigates the temporal dynamics of
repeat consumption [41]. However, a consumption will influence
not only the same item itself but also relational items. Thus, both
item relations and corresponding temporal dynamics are critical to
capture the dynamic meanings of an item in different contexts.

In this paper, we propose a novel method Chorus, aiming to get
knowledge- and time-aware target item embeddings. To the best
of our knowledge, we are the first to explicitly model the evolu-
tion of different relations’ effects with time, which helps to better
capture the meaning of each item in different sequence contexts.
In particular, Chorus assigns a basic representation and various
relational ones for each item based on translation-based graph
embedding methods. Then, these representations are combined dy-
namically by temporal kernel functions, depending on the elapsed
time since relational consumptions, which is the reason why it is
named Chorus. The proposed temporal kernel functions enable
relational representations to contribute differently to the final item
embedding. As a result, Chorus is capable of obtaining knowledge-
and time-aware item embeddings dynamically, which are easy to
be leveraged by various recommendation algorithms. Furthermore,
the highly interpretable time-related parameters make it possible
to explain recommendation results at different time periods. The
main contributions of this work can be summarized as follows:

• We propose to take both item relations and corresponding
temporal dynamics into consideration. To the best of our
knowledge, we are the first to explicitly model the continu-
ous temporal evolution of different relations’ effects.

• We devise a novel and flexible method Chorus, which en-
hances target item modeling by dynamically combining dif-
ferent representations when the target item acts as distinct
roles in the sequence. The final item embedding can easily
work with various recommendation algorithms.

• Comparative experiments in three real-world datasets show
the effectiveness of Chorus, and the highly interpretable
parameters further help to enhance model explainability.

2 RELATEDWORK
2.1 Sequential Recommendation
Different from traditional recommendation methods, sequential
recommendation utilizes sequential data to predict a user’s next
consumption based on Markov chains, which assume that the next
action depends on the previous action sequence [34, 37]. Rendle
et al. [34] combines Matrix Factorization (MF) [21] and factorized
Markov Chains to make next-basket recommendation given the
previous basket items. More recently, there has been a lot of work
utilizing Recurrent Neural Network (RNN) [36] to encode interac-
tion history to hidden vectors [6, 12, 23, 27, 32, 38]. Hidasi et al.
[12] first introduce RNN to sequential recommendation and achieve
impressive performance gain. Loyola et al. [27] and Pei et al. [32]
both apply attention mechanism [39] to RNN for more effective
recommendation. Besides, numerous follow-up studies focus to
extend the capacity of the RNN-based model.

Despite the great expressiveness of RNN-based sequential recom-
mendation methods, they still cannot well model sophisticated user
demands for the lack of external knowledge, and substantially suffer
from the interpretability issue [26]. Differently, our method obvi-
ously addresses both item relations and corresponding temporal
dynamics to better capture user demands.

2.2 Item Relation Modeling
In real-world applications, there are typically multiple relations
between items that have concrete semantics. Some recent work has
been focusing on how to introduce item relations into recommender
systems [16, 28, 30, 40, 44, 45], most of which utilize Knowledge
Graph (KG) [42] to represent item relations. CFKG [45] introduces
user to item relation graph as entities and view the action buy as
another relation, and then uses TransE [3] to represent the hetero-
geneous information network and makes recommendations. Xin
et al. [44] propose a general recommendation task that incorpo-
rates multiple relations between items, and integrate relational data
to Collaborative Filtering (CF) [35]. Ma et al. [28] propose a joint
learning framework to integrate the induction of explainable rules
from knowledge graph.

However, all these methods assume the effects of relational item
consumptions are static and independent with temporal informa-
tion, in which case complements may be persistently recommended
after a long time, even if the user does not need them.

2.3 Temporal Dynamics Modeling
There are mainly two lines of work taking temporal information
into consideration. On the one hand, some work aims to take tempo-
ral information as context features. TimeSVD++ [20] divides time
into slots and devises time-related parameters. TransFM utilizes

FM to include timestamp as an extra context feature [31]. Besides,
tensor factorization is also a major method [2, 17], where time is
viewed as the third dimension of user-item interaction cube. On
the other hand, some work focuses to model temporal decay effects
of historical interactions. In this line of work, Hawkes Process (HP)
[8] is always utilized to model mutual-exciting characteristics of
user consumption sequence [7, 22, 24, 41]. Du et al. [7] first ap-
ply Hawkes Process to time-sensitive recommendation. SLRC [41]
combines Hawkes Process and Collaborative Filtering to model
temporal dynamics of repeat consumption.

However, these methods do not consider the temporal dynamics
of different relations. As a result, to better model dynamic user
demands, we creatively take both item relations and corresponding
temporal evolution into consideration.

3 PRELIMINARIES
3.1 Task Definition

Definition 3.1 (Problem Definition). Given user u ∈ U and inter-
action history Su = {(i1, t1), (i2, t2), · · · , (iNu , tNu)} ∈ S with Nu
interactions (tn < tn′ for any n < n′ < Nu), the recommendation
task is: considering the interaction sequence before the target time
t , denoted as Stu , generating an ordered list containing k items that
the user may be interested in at t .

Besides, let R be the set of all item relations, and each relation
r ∈ R has a matrix I r ∈ NM×M , where M is the total number of
items and I r (i, j) = 1 if relation r holds for item i and j, otherwise
0. Relation r can be is_complement_of, is_substitute_of and so on.

3.2 Knowledge Graph Embedding
The information of item relations can be viewed as a knowledge
graph, and the component is a set of triplets (i, r , j), where i and j
denote different items and r denotes relation types. For instance,
(AirPods, is_complement_o f , iPhone) means Airpods is a comple-
ment of iPhone. Note that sometimes the opposite for a triplet may
not hold (e.g. iPhone is not a complement of AirPods), hence the
relation graph is directional.

To introduce structural information of relation graph into recom-
mender systems, it is important to get embeddings with semantic
meanings of item relations. Among various embedding methods,
translation-based models [3, 25, 43] stand out for their efficiency
and effectiveness. The inherent idea is embedding items and rela-
tions into the same latent space and finding a translation function
to minimize the scoring function:

min
Θ

f (i, r , j) = D (Trans(i,r), j) , (1)

where D(·) is a metric function to measure the distance (usually
l2-norm). Trans(i,r) is an arbitrary translation function, which can
be a simple translation operation or a specially designed neural
network. A lot of work has been focusing on extending the capacity
of translation function, such as TransE [3], TransH [43], TransR [25]
and so on. In the case of TransE [3], the translation function is
Trans(i,r) = i + r , and the scoring function for any triplet (i, r , j)
when applying l2-norm is f (h, r , t) = | |h + r − t | |2.

To learn item and relation embeddings from relation graph, a
margin-based loss [45] is minimized as follows:

Lr el =
∑

(i,r, j, j′)

[
f (i, r , j) − f (i, r , j ′) + γ

]
+

+
∑

(i,r, j,i′)

[
f (i, r , j) − f (i ′, r , j) + γ

]
+
.

(2)

For every triplet, the tail item is replaced by a random sampled item
j ′ to make sure (i, r , j ′) is not observed in the knowledge graph.
Similarly, the head item is replaced by i ′ and (i ′, r , j) does not hold.
The above objective function aims to discriminate the observed
triplets from the corrupted ones, and the embeddings will be forced
to retain relations between items.

3.3 Base Methods for Recommendation
The item modeling method proposed in this work is flexible to
work with various recommendation algorithms. For the reason
that Bayesian Personalized Ranking (BPR) [33] is a widely used
matrix factorization method and Generalized Matrix Factorization
(GMF) [11] is a state-of-the-art method based on neural networks,
we choose them as base recommendation models to verify the
effectiveness of our method.

Here we briefly review these two collaborative filtering methods.
CF methods assume similar users like similar items. In the case of
BPR, there is a K-dimensional latent factor for each user and item,
and the ranking score is calculated as follows:

ŷui = u
T i + bu + bi , (3)

where bu and bi are bias of each user and item, respectively.
In the case of GMF, the ranking score is derived by a multi-layer

neural network, which can be formulated as

ŷui = ϕout
(
ϕX

(
· · ·ϕ2

(
ϕ1

(
uT , iT

))
· · ·

))
, (4)

where ϕout and ϕx respectively denote the mapping function for
the output layer and x-th neural collaborative filtering layer, and
there are X neural CF layers in total. Then, candidate items are
ranked according to the predicted score ŷui .

To learn parameters in recommendation model, a pair-wise rank-
ing loss [33] can be optimized as follows:

Lr ec = −
∑
u ∈U

Nu∑
i=1

logσ
(
ŷui − ŷuj

)
, (5)

where σ denotes the sigmoid function and a negative item j < Su is
randomly sampled for each training instance.

4 CHORUS MODEL
4.1 Model Overview
Chorus is a two-stage model, which integrates both item relations
and their specific temporal effects. Figure 2 demonstrates the over-
all model structure. At the first stage (Relation Modeling), graph
embedding is utilized to encode structural information of item
relations into embeddings. Various translation-based methods de-
scribed in Section 3.2 are flexible to be leveraged here. The results
of relation graph embedding will be used to derive the basic and
relational representations in our Chorus model.

Powerbeats

AirPods

Apple Watch

iPhone

is_substitute_of

is_
complem

ent_of

?
Δts

Δtc

Trans(AirPods, is_complement_of) ≈ iPhone

ib

κi
r(Δtr)

iChorus = ib + ∑
r∈ℛ

κi
r(Δtr) ⋅ ir

Dynamic Integration

Relation Modeling Dynamic Item Representation

Samsung Phone

Temporal kernel function
of complement

Δtc Δts

User Consumption Sequence

iChorus

Temporal kernel function
of substitute

AirPodsiPhonePowerbeats

⋯ir

κi
c κi

s

Figure 2: Chorusmodel overview. At the first stage (RelationModeling), graph embedding is utilized to learn basic embeddings
of items and relations. At the second stage (Dynamic ItemRepresentation), Chorus gives each item extra relational representa-
tions. Then, these representations are dynamically combined according to the sequence contexts. The final knowledge-aware
dynamic item embedding can be used for recommendation in various algorithms (e.g. BPR and GMF).

At the second stage (Dynamic Item Representation), there
are two key modules: (1) dynamic integration, and (2) design of
temporal kernel functions. First, each item will get |R | relational
representations besides the basic one based on the translation func-
tion, which denote the representations of the target item when
acting as different roles in the context. Then, these representations
are dynamically integrated according to whether there are corre-
sponding relational consumptions in the history sequence as well
as the elapsed time. To incorporate temporal dynamics of each
relation, we propose relation-specific temporal kernel function to
control the polarity and intensity of effects. As a result, relational
representations contribute differently to the final item embedding
in distinct contexts, leading to knowledge-aware dynamic item em-
beddings. Finally, the enhanced item embeddings can be leveraged
by many algorithms to calculate ranking scores and make recom-
mendations. In the remainder of this section, we elaborate the key
modules of Chorus at the second stage.

4.2 Dynamic Integration
First, we define basic representation (denoted as ib) and relational
ones (denoted as ir for relation r ∈ R) for each item based on
the result of relation graph embedding. The basic representation
encodes the inherent characteristics of an item, so the item embed-
dings learned at the first stage are used to initialize ib . Then, the
translation function is utilized to get relational representations:

ir = Trans(ib,er) , (6)

where er is the relation embedding for r ∈ R. In this way, the
relational representations integrate the semantic information cor-
responding to each relation.

After getting basic and relational item representations, here we
focus on how to combine them dynamically according to different
contexts, which is the core idea of our Chorus model. Note that the
relational representations are knowledge-aware but still static. We
aim at deriving a context-aware coefficient fr for each relational
representation, reflecting the actual degree of effects in current
context. The final context- and knowledge-aware item embedding
iChorus is proposed to be represented as follows:

iChorus = ib +
∑
r ∈R

fr (S
t
u , t , i) · ir . (7)

It consists of two parts: a basic item representation and scaled
relational ones, where the contexts (history sequence Sut , time t ,
and target item i) serve as the input of coefficient fr . Next we focus
on how to get reasonable fr given the context.

Intuitively, some relational representations may have no effect or
even negative effects in some cases. Figure 3 gives some examples
on how these representations are expected to contribute to the final
embedding in different contexts. The three angles of the triangle
stand for different representations of the target item. When there
are no relational consumptions (context A), the final embedding is
just basic item representation, and the other two relational ones
take no effects. When Powerbeats or iPhone is just bought (con-
text B and C), the corresponding relational representation should

? + +
+

?
+ +
+

?
+ +
+

?
+ +
+

−−−−− −

⋯
+ +
+

+ +
+

Powerbeats

iPhone

(A) No relational items in historical sequence

(B) Is a substitute of what have just been bought

(C) Is a complement of what have just been bought

(D) Is a substitute of what have been bought long ago

Basic representation

Complement representation

Substitute representation

Negative effects of
substitute relation in
the short term

Positive effects of
complement relation
in the short term

Positive effects of
substitute relation
in the long term

AirPods

AirPods

AirPods

AirPods

Powerbeats

Figure 3: Illustration of how different representations are
combined dynamically depending on the sequence context.

have negative and positive effects, respectively. While if the substi-
tute is bought long ago (context D), the substitute representation
may pose positive effects on the final embedding. Besides, when
there are many different relational items in the sequence, the three
representations will all take effect in different degrees.

To incorporate such temporal dynamics of different relations, we
innovatively devise temporal kernel function for each relation, which
is a continuous function of the lag time between consumptions.
Temporal kernel function aims to control the degree of influence
for each previous relational consumption. The polarity of function
value denotes the polarity of effects. Assuming we have obtained
temporal kernel function κir (∆t), indexed by item i and relation r
(the concrete design and related discussions are left in the next Sec-
tion), we propose to define the relational coefficient fr as follows:

fr (S
u
t , t , i) =

∑
(i′,t ′)∈S tu

I r (i, i
′)κir (t − t ′) , (8)

where I r is the relation matrix. Each previous consumption with
relation r to the target item i will have additive effects to the coef-
ficient fr , controlled by the kernel function κir (·). In this way, the
relational coefficients enable distinct representations to contribute
to the final embedding in different degrees, unlike previous studies
that assign static item embeddings. Due to the temporal kernel
function, a relational representation may barely take effect because
of the long-time gap, or even has a negative effect under some cir-
cumstances. As a result, the Chorus embeddings can better capture
the meanings of items in different contexts, and thus better model
users’ changing demands with time.

Besides, for simplicity and efficiency, we can consider only the
latest relational item in history sequence, in which case Equ. (7)
can be directly represented as:

iChorus = ib +
∑
r ∈R

κir (∆tr) · ir , (9)

where ∆tr represents the elapsed time since the latest item con-
sumption having relation r with the current item. If there is no
relational item in history sequence for a relation, we assume there
is one with a positive infinity time gap (i.e. ∆tr = +∞). Provided the
temporal kernel function approaches zero with time, corresponding
relational embedding will take no effects.

4.3 Design of Temporal Kernel Function
Next, we focus on how to design the temporal kernel function
for each relation. Actually, the concrete form of temporal kernel
function can be seen as a kind of human intervention to the model.
On the one hand, we can design the function according to the
characteristics of each relation. For example, as shown in Figure
1, complementary relation has positive impacts in a short period,
and such effects decay with time. On the other hand, we can design
it based on subjective requirements on the system. If we want
substitutes to also appear in the recommendation list in the short
term, the temporal kernel function can be designed to have positive
initial value and decay quicker. In this work, wemainly focus on two
relations: is_complement_of and is_substitute_of. As an example,
we subsequently design corresponding temporal kernel functions
according to general perceptions and characteristics of these two
relations.

For complements, besides the overall decrease trend, the positive
effects generally hold for a while and then begin decaying in daily
life. As a result, instead of the intuitive exponential distribution,
which decays too quickly, we choose normal distribution with zero
mean to be its temporal kernel function:

κic (∆t) = N (∆t | 0,σz(i)c) , (10)

where N (∆t |µ,σ) is a normal distribution of ∆t with µ mean and
σ standard deviation. Note that the parameter σz(i)c here is related
to z(i), which denotes the category of item i . We do not estimate
item-specific parameters because category is usually amore suitable
level to model characteristics of a cluster of items. And item-specific
parameters may also suffer from data sparsity issues.

For substitutes, the impact is expected to turn from negative to
positive, because we do not need another item with similar utility
in the short term but would like to change to a new one when its
lifetime runs out [41]. As a result, we use two opposite normal
distributions to model such characteristics:

κis (∆t) =

neдative︷ ︸︸ ︷
−N (∆t | 0,σz(i)s1)+

posit ive︷ ︸︸ ︷
N (∆t | µ

z(i)
s ,σ

z(i)
s2) , (11)

which is a superposition of (1) short-term restrain (negative) and (2)
life-time promotion (positive). The negative normal distribution is
designed to have zeromean because the retraining effect is generally
the strongest just after the substitute consumption. In the positive
one, the parameter µz(i)s represents the lifetime of this category in
some way, meaning the effect will peak at this time.

Illustrations of these two temporal kernel functions are shown
in Figure 2. One can also design other forms of temporal kernel
functions to meet different needs. Besides, Chorus is not restricted
to these two relations. Many relations can be incorporated, such
as same_brand, same_producer and so on. The only thing to do is
designing a corresponding temporal kernel function based on prior

Table 1: Comparison between baselines and Chorus.

Model Temporal Dynamics Sequential Info Relation Modeling

Tensor ✓
GRU4Rec ✓
CFKG ✓
SLRC’ ✓ ✓

Chorus ✓ ✓ ✓

knowledge, and we find an exponential distribution basically works
well for general relations.

Here we have got the final knowledge-aware dynamic item em-
beddings. Then various algorithms can be utilized to make recom-
mendations by replacing origin target item embeddings with ours.
Different from previous models, Chorus simultaneously integrates
sequential information, item relations modeling, and corresponding
temporal dynamics. The recently proposed CFKG and SLRC either
focus on only item relations or temporal dynamics in consump-
tion sequence. Table 1 lists the difference between related methods
and our Chorus model. More details about these baselines will be
described in Section 5.1.3.

4.4 Parameter Learning
To get better and robust performance, a two-stage training proce-
dure is applied to learn model parameters: first, we optimize Lr el
to get item and relation embeddings with structural information,
which are utilized to initialize basic item representations and re-
lation embeddings at the second stage; then we minimize Lr ec to
learn all parameters of the model. At the second stage, we do not
freeze the embeddings learned before. Experiments show that opti-
mizing with Lr ec yields better results. On the other hand, it is also
possible to corrupt the meaningful embeddings at the beginning
of training. Therefore, we scale down the learning rate by 0.1 for
basic item representations and relation embeddings at the second
stage. Adam [18] is utilized as the learning algorithm at each stage
due to its success in many recommendation models.

5 EXPERIMENTS
5.1 Experimental Settings

5.1.1 Datasets. Experiments are conducted on publicly acces-
sible Amazon dataset [9]. Besides the user interaction sequences
with timestamps, it also has item metadata, including the list of
also_view, also_buy and category information. Following previous
studies [28, 29], we take also_view as substitutes and also_buy as
complement relation. Differently, in our work the relation means
is_complement_of and is_substitute_of. Hence the direction of the
original also_view, also_buy relation should be reversed.

We adopt three representative sub-datasets:Grocery and Gourmet
Food (Grocery), Cellphones and Accessories (Cellphones), and Home
and Kitchen (Home). Table 2 summarizes the statistics of the three
datasets. Note that in the Home dataset, the ratio of test cases that
are relational to historical items is low and the relational data is
comparatively sparse.

Table 2: Statistics of datasets.

Dataset #user
(|U|)

#item
(|I |)

#entry
(
∑
u Nu)

#triplet
(
∑
r | |Ir | |1)

relational ratio
in test set

Grocery 14.7k 8.5k 145.8k 372.1k 27.8%
Cellphones 27.9k 10.3k 193.2k 247.5k 30.0%
Home 66.5k 27.2k 541.6k 924.6k 16.6%

5.1.2 Evaluation Protocols. We adopt the leave-one-out eval-
uation, which is widely used in the literature [4, 10, 15]. For each
consumption sequence Su ∈ S, we use the most recent interaction
of each user for testing, the second recent item for validation, and
the remaining items for training. Considering it is time-consuming
to rank all items for some methods when the dataset is large, we
randomly sample 99 items that the target user has not interacted
with and rank the ground-truth item together with these negative
items. This method is also widely adopted [11, 41, 44].

To evaluate recommendation quality, we use Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG) [14] as evaluation
metrics. HR@k measures whether the ground-truth item appears
in the top-k recommendation list, while NDCG@k concerns about
the position in the ranking list. We repeat each experiment 5 times
with different random seeds and report the average score.

5.1.3 Baseline Methods. We compare our Chorus model to
seven baseline methods in different aspects, including traditional
collaborative filtering, sequential recommendation, and methods
incorporating item relations or temporal dynamics:

• BPR [33]: This method proposes to apply a pairwise ranking
loss to optimize matrix factorization model.

• GMF [11]: This is a state-of-the-art collaborative filtering
method that utilizes a multi-layer neural network.

• Tensor [17]: This method splits time into bins and factorizes
a three-dimensional tensor (user-item-time).

• GRU4Rec [12]: This is a sequential recommendation model
that applies GRU [5] to derive the ranking score.

• NARM [27]: This model utilizes GRU and attention mecha-
nism to improve the performance of sequential recommen-
dation, which is a state-of-the-art session-based method.

• CFKG [45]: This method takes various item relations into
consideration and views buy as another relation between
users and items. Then, TransE is utilized to learn graph
embeddings and make recommendations.

• SLRC’ [41]: SLRC combines Hawkes and CF to model tempo-
ral dynamics of repeat consumption. Considering that repeat
consumptions have been removed in Amazon dataset, we
extend its setting to the effects of relational items, named
SLRC’. But it still lacks semantic modeling of item relations.

5.1.4 Implement Details. We implement all the models in
PyTorch. The implementation codes have been released1. For fair
comparison, the embedding size is set to 64 for all models. All the
hyper-parameters are tuned to get the best results in the validation
dataset. For CFKG, we consider also_view and also_buy relations

1https://github.com/THUwangcy/ReChorus

Table 3: Test results in three datasets.We repeat each experiment five timeswith different random seeds and report the average
score. Best baseline on each metric is underlined, and ** means significantly better than the strongest baseline (p < 0.01).

Method
Grocery and Gourmet Food Cellphones and Accessories Home and Kitchen

k=5 k=10 k=5 k=10 k=5 k=10

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

BPR 0.3242 0.2223 0.4315 0.2571 0.3260 0.2349 0.4364 0.2705 0.2542 0.1718 0.3701 0.2091
GMF 0.3051 0.2089 0.4100 0.2429 0.2866 0.2030 0.3910 0.2367 0.2500 0.1671 0.3693 0.2055
Tensor 0.3478 0.2623 0.4471 0.2943 0.3560 0.2489 0.4888 0.2917 0.2897 0.1941 0.4216 0.2366

GRU4Rec 0.3704 0.2643 0.4721 0.2972 0.4112 0.2956 0.5453 0.3389 0.2953 0.2025 0.4187 0.2423
NARM 0.3590 0.2573 0.4634 0.2910 0.4092 0.2938 0.5440 0.3373 0.2901 0.1976 0.4137 0.2375

CFKG 0.4337 0.3081 0.5628 0.3499 0.4465 0.3264 0.5677 0.3656 0.2609 0.1760 0.3801 0.2144
SLRC’ 0.4513 0.3329 0.5649 0.3698 0.4440 0.3433 0.5414 0.3747 0.3275 0.2452 0.4346 0.2797

ChorusBPR 0.4754∗∗ 0.3448∗∗ 0.5998∗∗ 0.3852∗∗ 0.4593∗∗ 0.3439 0.5784∗∗ 0.3824∗∗ 0.3405∗∗ 0.2473∗∗ 0.4572∗∗ 0.2849∗∗

ChorusGMF 0.4748∗∗ 0.3467∗∗ 0.5960∗∗ 0.3861∗∗ 0.4623∗∗ 0.3481∗∗ 0.5809∗∗ 0.3863∗∗ 0.3350∗∗ 0.2461∗ 0.4433∗∗ 0.2811∗∗

consistent with ours. For SLRC’ and Chorus, we find there are few
interactions that have two or more relational items in the history
sequence. Thus, for simplicity and efficiency, we consider the latest
relational interaction in the sequence without loss of generality and
performance. Besides, TransE is utilized as the translation function
in Chorus. All the time-related parameters are initialized with 1 for
numeric stability, and the other parameters are normally initialized
with 0 mean and 0.01 standard deviation.

5.2 Overall Performance
Table 3 shows the performance of all baselines and our Chorus
model when utilizing BPR and GMF to calculate the ranking score,
denoted as ChorusBPR and ChorusGMF respectively.

First, different kinds of baselines demonstrate obvious perfor-
mance gaps. For collaborative filtering methods (i.e. BPR and GMF),
they serve as benchmarks because the only information they have
is user-item interactions. Tensor outperforms basic CF methods
by taking temporal dynamics into consideration. Sequential rec-
ommendation methods (i.e. GRU4Rec and NARM) further achieve
better performance, which demonstrates the importance of dynamic
user demands conveyed by recently consumed items. CFKG gets
fair results and becomes the best baseline in terms of some metrics,
which indicates that item relation is indeed helpful to recommen-
dation. With regard to SLRC’, it generally gets the best results
among baselines because of its explicit modeling of mutual-exciting
characteristics in consumption sequence.

Second, our Chorus model performs consistently better than
other baselines in all the datasets, which benefits from addressing
both item relations and their temporal dynamics. This shows the
proposed model is capable of better capturing dynamic user de-
mands and the meaning of items in different contexts. Compared
with CFKG, Chorus not only considers item relations but also in-
tegrates their temporal dynamics. Compared with SLRC’, Chorus
is able to model semantic meaning and category-specific temporal
effects of each relation. The basic form of Hawkes in SLRC’ may
focus more on the impacts of relational items, and hence hurts
performance on normal cases when there is no previous relational

consumption (more discussions in Section 5.4). Differently, Cho-
rus integrates item relations into knowledge-aware dynamic item
representations, which is more effective and flexible.

On the other hand, notice that in the Home dataset, the im-
provement is comparatively small. The possible reason is that the
relational information is too sparse and not that reliable. We uti-
lize similar relation graph embedding method of CFKG and it also
performs badly in this dataset. Although TransE works well in
the other datasets, the relations in the Home dataset may be so
sophisticated that TransE is insufficient to model accurately. More
evidences are provided in related discussion in Section 5.3.

5.3 Ablation Study
To verify the effects of relation modeling and temporal dynamics
addressed in our model, we compare Chorus with two variants:

• Chorus\R. This model assigns separate item embeddings
for each relation and estimates all parameters by optimiz-
ing Lr ec . The results of graph embedding are not used to
initialize basic representation and derive relational ones.

• Chorus\T. This model does not take temporal dynamics of
relations into consideration and assumes all the temporal
kernel functions (i.e. κir (∆t)) are constant with value 1.

Figure 4 shows NDCG@10 of ChorusBPR and its variants, as well as
SLRC’. It can be concluded that both relationmodeling and temporal
dynamics are of great importance. The lack of anymodule of Chorus
results in performance loss. Furthermore, we have the following
observations:

First, item relations are indeed helpful. Chorus\R brings the
greatest performance loss in the Grocery and Cellphones datasets,
which indicates the importance of modeling structural information
of relations, as well as our translation-based method of deriving
relational representations through graph embeddings.

Second, it is important to model the temporal dynamics of dif-
ferent relations. Without temporal information, Chorus\T results
in a moderate loss of performance in the first two datasets. This
does not mean the temporal dynamics addressed in our model is

0.386 0.381 0.2820.2850.3820.385

Figure 4: Ablation study. Performance comparison between Chorus and its variant without relationmodeling (Chorus\R), and
variant without temporal dynamics (Chorus\T).

not important. Literally, relations between items have a greater
influence on users when making consumption decisions. Thus,
it is reasonable that modeling item relations leads to larger im-
provements than modeling temporal dynamics. On the other hand,
Chorus achieves consistent improvements compared to Chorus\T,
especially in Home, which shows the usefulness of moving forward
to take temporal dynamics of item relations into consideration.

Third, the relation graph embedding does not work well in the
Home dataset, where Chorus\T leads to the greatest performance
loss, but not Chorus\R. This is another evidence of the inadequate
relation modeling. Although TransE is a natural choice for transla-
tion function and generally works well on the other two datasets,
we find it may be insufficient under scenarios in the Home dataset,
where CFKG also performs badly with TransE as its graph embed-
ding method. Figure 4 (c) shows the performance does not decline
too much without relation modeling (Chorus\R). But if there is
relation modeling but no temporal kernel functions (Chorus\T), the
performance will be hurt by inappropriate embeddings of items and
relations. This also shows the temporal dynamics addressed in our
model can help to adaptively avoid probably bad effects of messy
relational ones, which demonstrates the usefulness and necessity
of taking temporal dynamics into consideration.

5.4 Performance in Different Scenarios
Besides the overall performance improvement, we also want to
figure out where does the improvement comes from. Here we inves-
tigate the performance of models in different scenarios. Specifically,
we construct three subsets of the test dataset according to whether
there are corresponding relational consumptions in the history
sequence. Normal means there are no relational items previously.
Complement means the target item is a complement of some items
in the history sequence. Similarly, Substitute is the case when there
are previous consumptions serving as substitutes. A test case may
be in Complement and Substitute group simultaneously when there
are both kinds of relational items before. Figure 5 shows NDCG@10
of different models (lines) and the number of cases (bars) in the
three subsets of Cellphones dataset. We can see although there are
fewer cases in Complement and Substitute groups, models tend to
perform better on these cases. They may inherently demonstrate

some patterns, so that all the models achieve better performance
compared to normal cases, even for BPR that does not explicitly
take item relations into consideration.

Besides, Chorus is able to combine the advantages of different
kinds of methods, and hence achieve the best performance on aver-
age. Notice that for SLRC’ and CFKG, they both have their strengths
and weakness. Although SLRC’ performs well on relational cases,
especially in the Substitute group, it is even worse than BPR on
normal cases. This shows SLRC’ is prone to overfit the relational
cases, which in turn hurts the performance of normal cases. On the
other hand, although CFKG performs well in the Normal group, it
is less powerful than SLRC’ on relational cases because SLRC’ ex-
plicitly models the temporal characteristics of each relation. As for
Chorus, it captures both item relations and their category-specific
temporal dynamics. It is noteworthy that on normal cases, Chorus
is similar to CFKG; and on complement cases, Chorus is a little
better than SLRC’, which are both the best baseline in each sce-
nario. Although Chorus is not as strong as SLRC’ in the Substitute
group, it gets obvious improvement compared to CFKG. As a result,
Chorus gains significantly better results on average, which shows
the importance of integrating both item relations and fine-grained
temporal dynamics.

5.5 Parameter Interpretability
Here we want to validate whether the time-related parameters have
interpretable meanings as we design the temporal kernel function.
Note that these parameters are indexed by item category, which
represents how the impacts of previous relational consumptions
on this category drift with time. Although the overall trends for a
specific relation are similar because of the functional form, their
concrete forms reveal the characteristics of the category. Figure
6 shows the temporal kernel functions for some representative
categories learned in the Cellphones dataset.

The left figure is corresponding to is_complement_of relation in
terms of Headsets and Replacement Parts. As shown in the figure,
the effect on headsets decays much quicker than replacement parts.
On the one hand, after purchasing a cellphone, it is reasonable
to recommend headsets to the user as a complement. But if the
user does not interact with the recommended headsets, he/she may

Figure 5: Performance comparisonwhen test cases are in dif-
ferent scenarios (Normal: no historical relational consump-
tions; Complement: the target item is a complement of some
items in the history sequence; Substitute: the target item is
a substitute of some items in the history sequence).

already have a headset or have purchased one from somewhere
else. Therefore, the positive effect of complement is expected to
decay quickly, otherwise persistent recommendation for headsets
may be a bother to the user. On the other hand, for replacement
parts like backup batteries, the positive effect of complementary
consumption will last for a while. Because users often purchase a
backup battery after a period of time when the original device’s
battery runs out.

The right figure shows the impact of is_substitute_of relation
for Basic Cases, International Chargers, and Cellphones. Despite the
general forms all consist of two opposite normal distributions, the
temporal kernel function for basic cases is quite different from the
other two, where the component for the restraining effect is almost
flatten. This indicates that when users buy a case, there will not
exist strong negative effects because we often change phone cases
for various reasons, such as a broken edge or just wanting to try a
new style. For international chargers and cellphones, their temporal
kernel functions both demonstrate obvious negative effects and
positive peaks. It is reasonable because we generally do not need an-
other charger or cellphone if we have just bought one. Interestingly,
the time gaps corresponding to the peak of these two kinds of items
are similar, which reflects the fact that the change of cellphone
often leads to the change of matching chargers. Moreover, com-
pared to chargers, the curve is smoother for cellphones. The reason
may be that we could change our cellphones for various causes but
seldom change chargers if one works. Thus a new cellphone can
be consumed after a wide range of time gaps.

To sum up, the time-related parameters in our Chorus model
are highly interpretable and well reflect the characteristics of items
in different categories. These parameters can help recommender
systems to give explanations to the recommendation results. For
example, when a user bought an iPhone previously and it is time
when the temporal kernel function for cellphones peaks, the recom-
mendation for a new cellphone can be explained as "Your cellphone
has been on service for a long time, how about having a look at
some new products?"

(a) is_complement_of (b) is_substitute_of

Figure 6: Case study of the learned temporal kernel func-
tions of is_complement_of (left) and is_substitute_of (right)
relation. Each line represents that when a corresponding re-
lational item is consumed at the origin point, how its effect
on items of this category changes with time.

6 CONCLUSION AND FUTUREWORK
In this work, we propose a novel method Chorus for knowledge-
and time-aware item modeling. To the best of our knowledge, we
are the first to explicitly model the evolution of different relations’
effects with time, and incorporate such information into item em-
beddings. We use graph embedding to learn structural information
from item relation graph, and then derive different relational rep-
resentations for each item. The temporal dynamics of relations
are controlled by specifically designed temporal kernel functions,
and the relational representations are dynamically combined based
on time gaps between the target item and relational items in the
history sequence, leading to a knowledge-aware dynamic item rep-
resentation. Besides, the design of temporal kernel function can
be seen as a kind of human intervention to the model and can be
used to meet different requirements on the recommendation re-
sults. Due to the flexibility of Chorus, it can easily leverage various
embedding-based algorithms to calculate ranking scores and make
recommendations. Extensive experimental results show that Cho-
rus is superior to state-of-the-art baselines, which demonstrates
that both item relations and their temporal evolutionary effects
are of great importance. Moreover, the time-related parameters in
Chorus are highly interpretable and hence can help to enhance the
explainability of recommendation.

This model still has some limitations, such as predefined tempo-
ral functions and the two-stage learning proces. Besides, although
translation-based methods generally work well, we find they are
insufficient in some cases, which need to be further studied. In the
future, we will investigate how to adaptively estimate the temporal
evolutionary effects of different relations, and try to design more
suitable methods to tightly integrate item relation modeling and
recommendation.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Devel-
opment Program of China (2018YFC0831900) and Natural Science
Foundation of China (Grant No. 61672311, 61532011). Dr Weizhi
Ma has been supported by Shuimu Tsinghua Scholar Program. We
would like to thank Maarten de Rijke for his valuable comments of
this work.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next gen-

eration of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge &Data Engineering 6 (2005), 734–749.

[2] Preeti Bhargava, Thomas Phan, Jiayu Zhou, and Juhan Lee. 2015. Who, what,
when, andwhere: Multi-dimensional collaborative recommendations using tensor
factorization on sparse user-generated data. In Proceedings of the 24th Interna-
tional Conference onWorldWideWeb. International WorldWideWeb Conferences
Steering Committee, 130–140.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems. 2787–2795.

[4] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval. ACM,
335–344.

[5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[6] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. 2016. Recurrent marked temporal point processes:
Embedding event history to vector. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. ACM, 1555–1564.

[7] Nan Du, Yichen Wang, Niao He, and Le Song. 2015. Time-sensitive recom-
mendation from recurrent user activities. In International Conference on Neural
Information Processing Systems. 3492–3500.

[8] Alan G Hawkes. 1971. Spectra of some self-exciting and mutually exciting point
processes. Biometrika 58, 1 (1971), 83–90.

[9] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. International World Wide
Web Conferences Steering Committee, 507–517.

[10] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and
Tat-Seng Chua. 2018. NAIS: Neural attentive item similarity model for recom-
mendation. IEEE Transactions on Knowledge and Data Engineering 30, 12 (2018),
2354–2366.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 173–182.

[12] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[13] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. Ieee, 263–272.

[14] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[15] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item simi-
larity models for top-n recommender systems. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
659–667.

[16] Wang-Cheng Kang, Mengting Wan, and Julian McAuley. 2018. Recommendation
Through Mixtures of Heterogeneous Item Relationships. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management.
ACM, 1143–1152.

[17] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.
2010. Multiverse recommendation: n-dimensional tensor factorization for context-
aware collaborative filtering. In Proceedings of the 4th ACM conference on Recom-
mender systems. ACM, 79–86.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. Computer Science (2014).

[19] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filteringmodel. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 426–434.

[20] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 447–456.

[21] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[22] Takeshi Kurashima, Tim Althoff, and Jure Leskovec. 2018. Modeling Interdepen-
dent and Periodic Real-World Action Sequences. arXiv preprint arXiv:1802.09148
(2018).

[23] Guokun Lai, Wei Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
Long- and Short-Term Temporal Patterns with Deep Neural Networks. (2018).

[24] Sha Li, Xiaofeng Gao, Weiming Bao, and Guihai Chen. 2017. FM-Hawkes: A
Hawkes Process Based Approach for Modeling Online Activity Correlations.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. ACM, 1119–1128.

[25] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In Twenty-ninth
AAAI conference on artificial intelligence.

[26] Juntao Liu and Caihua Wu. 2017. Deep learning based recommendation: a survey.
In International Conference on Information Science and Applications. Springer,
451–458.

[27] Pablo Loyola, Chen Liu, and Yu Hirate. 2017. Modeling user session and intent
with an attention-based encoder-decoder architecture. In Proceedings of the 11th
ACM Conference on Recommender Systems. ACM, 147–151.

[28] Weizhi Ma, Min Zhang, Yue Cao, Chenyang Wang, Yiqun Liu, Shaoping Ma,
Xiang Ren, et al. 2019. Jointly Learning Explainable Rules for Recommendation
with Knowledge Graph. arXiv preprint arXiv:1903.03714 (2019).

[29] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks
of substitutable and complementary products. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining. ACM,
785–794.

[30] Chanyoung Park, Donghyun Kim, Jinoh Oh, and Hwanjo Yu. 2017. Do Also-
Viewed Products Help User Rating Prediction?. In Proceedings of the 26th Interna-
tional Conference onWorldWideWeb. International WorldWideWeb Conferences
Steering Committee, 1113–1122.

[31] Rajiv Pasricha and Julian McAuley. 2018. Translation-based factorization ma-
chines for sequential recommendation. In Proceedings of the 12th ACM Conference
on Recommender Systems. ACM, 63–71.

[32] Wenjie Pei, Jie Yang, Zhu Sun, Jie Zhang, Alessandro Bozzon, and David MJ
Tax. 2017. Interacting attention-gated recurrent networks for recommendation.
In Proceedings of the 2017 ACM on conference on information and knowledge
management. ACM, 1459–1468.

[33] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the 25th conference on uncertainty in artificial intelligence. AUAI Press, 452–461.

[34] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. ACM, 811–820.

[35] Badrul Munir Sarwar, George Karypis, Joseph A Konstan, John Riedl, et al. 2001.
Item-based collaborative filtering recommendation algorithms. Www 1 (2001),
285–295.

[36] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[37] Guy Shani, David Heckerman, and Ronen I Brafman. 2005. An MDP-based
recommender system. Journal of Machine Learning Research 6, Sep (2005), 1265–
1295.

[38] Elena Smirnova and Flavian Vasile. 2017. Contextual sequence modeling for rec-
ommendation with recurrent neural networks. In Proceedings of the 2ndWorkshop
on Deep Learning for Recommender Systems. ACM, 2–9.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[40] Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Repre-
senting and Recommending Shopping Baskets with Complementarity, Compat-
ibility and Loyalty. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. ACM, 1133–1142.

[41] Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2019.
Modeling Item-Specific Temporal Dynamics of Repeat Consumption for Recom-
mender Systems. In The World Wide Web Conference. ACM, 1977–1987.

[42] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[43] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Twenty-Eighth AAAI confer-
ence on artificial intelligence.

[44] Xin Xin, Xiangnan He, Yongfeng Zhang, Yongdong Zhang, and Joemon Jose.
2019. Relational Collaborative Filtering: Modeling Multiple Item Relations for
Recommendation. arXiv preprint arXiv:1904.12796 (2019).

[45] Yongfeng Zhang, Qingyao Ai, Xu Chen, and Pengfei Wang. 2018. Learn-
ing over knowledge-base embeddings for recommendation. arXiv preprint
arXiv:1803.06540 (2018).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Item Relation Modeling
	2.3 Temporal Dynamics Modeling

	3 Preliminaries
	3.1 Task Definition
	3.2 Knowledge Graph Embedding
	3.3 Base Methods for Recommendation

	4 Chorus Model
	4.1 Model Overview
	4.2 Dynamic Integration
	4.3 Design of Temporal Kernel Function
	4.4 Parameter Learning

	5 Experiments
	5.1 Experimental Settings
	5.2 Overall Performance
	5.3 Ablation Study
	5.4 Performance in Different Scenarios
	5.5 Parameter Interpretability

	6 Conclusion and Future Work
	Acknowledgments
	References

