
PREPRINT. UNDER REVIEW. 1

A Survey on Dropout Methods and Experimental
Verification in Recommendation

Yangkun Li, Member, IEEE, Weizhi Ma, Member, IEEE, Chong Chen, Member, IEEE,
Min Zhang, Member, IEEE, Yiqun Liu, Senior Member, IEEE, Shaoping Ma, and Yuekui Yang

Abstract—Overfitting is a common problem in machine learning, which means the model too closely fits the training data while
performing poorly in the test data. Among various methods of coping with overfitting, dropout is one of the representative ways. From
randomly dropping neurons to dropping neural structures, dropout has achieved great success in improving model performances.
Although various dropout methods have been designed and widely applied in past years, their effectiveness, application scenarios, and
contributions have not been comprehensively summarized and empirically compared by far. It is the right time to make a
comprehensive survey.
In this paper, we systematically review previous dropout methods and classify them into three major categories according to the stage
where dropout operation is performed. Specifically, more than seventy dropout methods published in top AI conferences or journals
(e.g., TKDE, KDD, TheWebConf, SIGIR) are involved. The designed taxonomy is easy to understand and capable of including new
dropout methods. Then, we further discuss their application scenarios, connections, and contributions. To verify the effectiveness of
distinct dropout methods, extensive experiments are conducted on recommendation scenarios with abundant heterogeneous
information. Finally, we propose some open problems and potential research directions about dropout that worth to be further explored.

Index Terms—Dropout, Neural Network Model, Recommendation.

F

1 INTRODUCTION

1.1 Backgrounds

O VERFITTING is a common problem in the training pro-
cess of neural network models [1]. Due to the large

number of parameters and strong fitting ability, most neural
models perform well on the training set, while they may
perform poorly on the test set. Some methods have been
proposed in previous studies to address the overfitting
problem, such as adding a regularization term to penalize
the total size of model parameters [2] and applying Batch
Normalization [3] or Weight Normalization [4] to regularize
deep neural networks.

In 2012, Hinton et al. proposed Dropout [5] to cope with
overfitting. The idea is to randomly drop neurons of the
neural network during training. This is, in each parameter
update, only part of the model parameters will be updated.
Through this process, it can prevent complex co-adaptations
of neurons on training data. It is important to note that in the
testing phase, dropout must be disabled, and the whole net-
work is used for prediction. From this beginning, numerous
dropout-based training methods have been proposed and
achieved better performances.

In the beginning, this dropout-based training method
was applied only to fully connected layers [5], [6], [7]. Later,
it is extended to more network structures such as convolu-

• Y. Li, C. Chen, M. Zhang, Y. Liu, S. Ma, and Y. Yang are with Department
of Computer Science and Technology, Institute for Artificial Intelligence,
Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing 100084, China.
E-mail: lyk21@mails.tsinghua.edu.cn, z-m@tsinghua.edu.cn

• W. Ma is with Institute for AI Industry Research (AIR), Tsinghua
University, Beijing 100084, China.

• Y. Yang is also with Tencent AI Platform Department, China.
• Min Zhang is the corresponding author.

tional layers in convolutional neural networks (CNNs) [8],
[9], [10], residual networks (ResNet) [11], [12], [13], recurrent
layers in recurrent neural networks (RNNs) [14], [15], [16],
etc. In terms of the stage where the dropout operation is
performed, there are not only dropout of model structure,
but also dropout of input information [17], [18], [19] and
dropout of embeddings [20], [21], [22]. In terms of contribu-
tions, dropout methods were first used only to prevent over-
fitting. Besides, many studies have been made to explore
other aspects of its usefulness, such as model compression
[23], [24], [25], model uncertainty measurement [26], data
augmentation [27], enhancing data representations in the
pre-training phase [28], and prevention of over-smoothing
problem in graph neural networks [29].

Despite their wide applications, a dropout method that
works for one model structure may have no significant effect
on another. For example, the use of standard dropout in
CNNs does not improve the effect significantly [8]. The
same is true for the direct use of standard dropout to the
recurrent connections of RNNs [15]. Dropout at different
stages of a machine learning task achieves different pur-
poses. Therefore, in this paper, we classify these wide vari-
eties of dropout methods and summarize their effectiveness,
application scenarios, connections, and contributions.

Most of the methods with commonality also fail to com-
pare their results under the same scenario. Since dropout
methods are applied to different forms of input information
and model structures, a proper comparison scenario should
have rich heterogeneous input information and a variety
of different model structures. With the rapid development
of the internet, various recommendation models have been
proposed and widely used to extract user and item features
to improve user experience in many online scenarios [30],

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

20
4.

02
02

7v
2

 [
cs

.L
G

]
 1

4
M

ay
 2

02
2

PREPRINT. UNDER REVIEW. 2

[31]. They utilize various heterogeneous information, such
as: user and item interaction histories, content features, or
social connections [32]. Such a variety of models and hetero-
geneous input information provides a suitable environment
for our comparisons and verification of different dropout
methods. Therefore, we evaluate and compare different
dropout methods under the recommendation scenario to
fairly compare the effect of these dropout methods, provid-
ing references for future works related to dropout.

1.2 Contributions
Our contributions in this paper are three fold:

First, we provide a comprehensive review of more than
seventy dropout methods. We propose a new taxonomy
based on the stage where dropout operations are performed
in machine learning tasks. Each category is then supple-
mented with operation granularity and application scenar-
ios for more detailed classification and discussion.

Second, we discuss the connections between dropout
methods of different categories and summarize their various
contributions other than preventting overfitting.

Third, we experimentally investigate the effect of
dropout methods in recommendation scenarios. The rich
heterogeneous input information makes recommendation
scenarios suitable for the comparison between different
types of dropout methods. We verify and compare dropout
methods’ effectiveness under a unified experimental envi-
ronment. And finally, we provide potential research direc-
tions about dropout methods.

1.3 Outline
The organization of this paper is as follows: Section 2
introduces background concepts of dropout methods and
recommendation systems. In Section 3, we review dropout
methods according to the stage where the dropout operation
is performed in a machine learning task. We summarize
their applications on different neural models and discuss
their connections. In Section 4, we analyze the contribu-
tions of dropout methods other than preventing overfitting.
In Section 5, we present an experimental verification of
dropout methods on recommendation models. In Section
6, we provide further discussions on dropout methods and
analyze potential research directions in this field. Finally, we
conclude the entire paper in Section 7.

2 BACKGROUND CONCEPTS

This section introduces the fundamental knowledge of
dropout and recommender systems by summarizing related
works of these two fields.

2.1 Dropout methods
Dropout is a class of training methods effectively coping
with overfitting. Hinton et al. [5] proposed the original
dropout, whose idea is to randomly drop neurons of the
neural network during training. Through this process, it
prevents complex co-adaptations of neurons on training
data. From this beginning, numerous drop-based methods
have been proposed, achieving better results and higher
performances. For exapmle, DropConnect [33] randomly

drops neuron connections instead of neurons, while An-
nealed Dropout [34] and Curriculum Dropout [35] adjust
dropout ratio throughout the training process.

Besides dropping individual neurons, a series of dropout
methods that drop neuron groups are proposed for cer-
tain neural model structures. For CNNs, SpatialDropout [8]
randomly drops feature map, and DropBlock [36] drops
continuous region of neurons to prevent overfitting. For
RNNs, early applications of dropout [14] only drop feed-
forward connections, in order to preserve the memory abil-
ity of RNN. Later approaches including RNNDrop [16] and
Recurrent Dropout [37] allow dropping recurrent connec-
tions as well. For ResNets, there are also specified dropout
methods such as Stochastic Depth [11] and ShakeDrop [38].

Except for dropping model structure during training,
dropping input information or embeddings of input data
is also applied in several scenarios. DropoutNet [20] and
ACCM [21] drop embeddings of users and items in recom-
mendation scenarios to handle the cold-start problem. BERT
[28] randomly masks tokens at pre-training stage, enhancing
data representations in NLP tasks. CutOut [18] and Grid-
Mask [39] randomly drop part of the input images during
training, serving as a regularization and data augmentation
technique. GraphSAGE [19] and DropEdge [29] randomly
drop nodes or edges during GCN training, preventing over-
fitting and over-smoothing problem in GCN.

The former survey about dropout methods [40] was
made by Labach et al. in 2019, which is the only compre-
hensive survey about this topic. It reviews dropout methods
from the aspect of neural models that dropout methods are
performed on, including fully connected layers, convolu-
tional layers and recurrent layers.

Our work has three major differences with this former
one. First, we cover a wider range of dropout methods,
including those proposed in recent three years. Especially
new methods published in the top AI conferences. Second,
we present a more precise and general classification. In the
former survey, dropout methods were classified according
to the neural models they perform on, which means classifi-
cation requires that when a new model structure appears,
the corresponding dropout methods are classified into a
new category. Nevertheless, dropout methods themselves
may be similar to the ones that already existed before, so it
seems cumbersome to put them into a new category just be-
cause their applications change. Our work classifies dropout
methods according to the stage where dropout operations
are performed in machine learning tasks. With this setting,
new methods must fit into one existing category, making
our classification more reasonable. We also review these
methods from the perspective of application scenarios, their
interconnections, and contributions other than preventing
overfitting. Third, there is no experimental comparison of
the effectiveness of dropout methods in [40], while we
experimentally verify and compare their effectiveness under
recommendation scenarios.

2.2 Recommender Systems

In terms of the input information types, recommender
systems are mainly categrized into collaborative filtering
(CF) based, content-based (CB), and hybrid [41]. CF based

PREPRINT. UNDER REVIEW. 3

Fig. 1. Classification of dropout methods. The number below each box
is referring to the corresponding category of dropout methods.

recommender systems make predictions based on the in-
teraction histories of users and items [42], [43], while CB
recommender systems use content feature of users and
items [44]. Hybrid recommender systems use multiple types
of input information to extract interaction similarity as well
as content similarity, such as users’ social networks [45], [46]
and item reviews [47], [48]. In recent years, some recommen-
dation algorithms specified for certain tasks utilize specific
form of input data, such as in sequential recommendation
the input data is structured as temporal sequences [49], [50],
and in graph recommendation the input data is structured
as graphs [51], [52]. However, the input information in real
world scenarios may not be sufficient for the recommender
systems to make good predictions, and this problem is
called Cold Start. Works addressing cold-start problem have
been emerging in recent years [53], [54], [55], [56], [57], [58].

Such rich variety of input information in recommenda-
tion scenario provides a good environment for the verifica-
tion and comparison of different dropout methods. Besides
conducting a survey on dropout methods, we also do exper-
imental verification and put them under the same scenario
for comparison.

3 SURVEY OF DROPOUT METHODS

In this section, we review papers of dropout methods. Based
on the stage where the dropout operation is performed
in a machine learning algorithm, we classify them into
three main categories: drop model structures (Section 3.1),
drop embeddings (Section 3.2), and drop input information
(Section 3.3) as shown in Figure 1. We introduce how these
methods perform dropout, their effectiveness, and their
applications in different neural models. Finally, we discuss
the interconnections between dropout methods in different
categories (Section 3.4).

3.1 Drop Model Structures
Methods in this category drop model structures, which is,
randomly setting part of neuron outputs to zero or other
value during training. We first introduce methods dropping
individual neurons, then methods dropping neuron groups.

3.1.1 Drop Individual Neurons
Hinton et al. [5] first proposed the standard dropout in 2012,
and further detailed in [6]. Specifically, for a neural network

with L hidden layers, l ∈ 1, . . . , L, z(l) and y(l) are the input
and output of the lth layer respectively, and y(0) is the input
of the network. W (l) and b(l) are the weight matrix and bias
vectors (biases) of the lth layer, respectively. The standard
feed-forward operation when dropout is not performed is

z
(l+1)
i = w

(l+1)
i y(l) + b

(l+1)
i , y

(l+1)
i = f(z

(l+1)
i) (1)

Dropout sets a proportion of p of the neuron outputs to zero
during training, where p ∈ (0, 1) is the dropout ratio. When
performing dropout, the feed-forward operation becomes

r
(l)
j ∼ Bernoulli(p), ỹ(l) = r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i , y

(l+1)
i = f(z

(l+1)
i)

(2)

During testing no dropout is performed so all neurons have
output. To keep training and testing conditions consistent,
all the weights need to be multiplied by p during testing,
i.e., take W

(l)
test = pW(l); or it multiplies all outputs by

1/p during training so that the expected output is consistent
with testing time. Srivastava et al. [6] also mentioned that
besides generating the dropout mask from Bernoulli distri-
bution, it is also possible to generate it from a continuous
distribution with the same expectation and variance, such
as Gaussian distribution N ∼ (1, α), α = p/(1 − p). The
standard dropout has achieved good performance since it
was proposed, and the authors showed the effectiveness of
standard dropout on image classification tasks [59] in 2013.

Following the standard dropout, a series of methods that
randomly drop individual neurons have been proposed.

Ba et al. [7] proposed Standout in 2013. The method
treats dropout as a Bayesian learning process. A Bayesian
network (Belief Network) is added above the original net-
work to control the dropout ratio:

y = f(Wx) ◦m, m ∼ Bernoulli(g(Wsx)) (3)

where Ws and g(·) is the weight and the activation function
of each layer of the Bayesian network. In application the au-
thors find that Ws can be chosen as an affine transformation
of W, and the test output y is computed as

Ws = αW + β, y = f(Wx) ◦ g(Wsx) (4)

Wang and Manning [60] proposed Fast Dropout in 2013.
In standard dropout, only one of the possible network struc-
tures is sampled at a time; a proportion of p neurons are not
trained in each epoch, making the network’s training slower.
Fast Dropout, on the other hand, explains dropout from a
Bayesian perspective, showing that the output of a layer
that has undergone dropout can be considered as sampling
from a potential approximate Gaussian distribution. We can
then sample directly from this distribution to obtain results
or use its parameters to propagate information about the
entire dropout set. This allows for faster training than the
standard dropout and is also known as Gaussian Dropout.

Wan et al. [33] proposed DropConnect in 2013. Com-
pared to standard dropout which randomly zeroes the out-
put of neurons, DropConnect randomly zeroes elements of
the weight matrix of each layer:

y = f((W ◦M)x), mij ∼ Bernoulli(1− p) (5)

This approach removes “connections” in fully connected
layers, hence the name “DropConnect”.

PREPRINT. UNDER REVIEW. 4

TABLE 1
Table of methods that drop model structures.

Method Year Category Brief Description Original
Scenario Source

Dropout [5], [6] 2012 1.1† Randomly drop neurons FCL* JMLR
Standout [7] 2013 1.1 Add a Bayesian NN to control the dropout ratio FCL NeurIPS
Fast Dropout [60] 2013 1.1 Sample outputs directly from a distribution FCL ICML
DropConnect [33] 2013 1.1 Drop weights instead of neurons FCL ICML
Maxout [61] 2013 1.1 Computes several outputs for each input FCL ICML
Annealed Dropout [34] 2014 1.1 Dropout ratio decreases with training epochs FCL SLT
Variational Dropout [62] 2015 1.1 Dropout ratio can be learned in training FCL NeurIPS

Monte Carlo Dropout [26] 2016 1.1 Intepret dropout as a Bayesian approximation
of deep Gaussian process FCL ICML

DropIn [63] 2016 1.1 Pass dropped values directly to the next layer FCL CVPR
Evolutional Dropout [64] 2016 1.1 Calculate dropout ratio from input FCL NeurIPS

Concrete Dropout [65] 2017 1.1 Automatically adjust dropout ratio compared
to Monte Carlo Dropout FCL NeurIPS

Curriculum Dropout [35] 2017 1.1 Dropout ratio increases with training epochs FCL ICCV
Targeted Dropout [25], [66] 2018 1.1 Dropout for neural pruning FCL NeurIPS
Ising-Dropout [67] 2019 1.1 Incorporate Ising model FCL ICASSP
EDropout [68] 2021 1.1 Use EBM to decide pruning state FCL TNNLS
LocalDrop [69] 2021 1.1 Based on local Rademacher complexity FCL TPAMI
SimCSE [70] 2021 1.1 Data augmentation by dropout twice FCL EMNLP
Child-Tuning [71] 2021 1.1 Mask gradient when back-propagation FCL EMNLP
R-Drop [72] 2021 1.1 Dropout twice to regularize FCL arxiv
AS-Dropout [73] 2021 1.1 Adaptive sparse dropout FCL Neurocomput.
SpatialDropout [8] 2015 1.2.1† Drop feature maps in CNN CNN CVPR
Max-pooling Dropout [9] 2015 1.2.1 Drop neurons before pooling layer CNN NN
Convolutional Dropout [9] 2015 1.2.1 Drop neurons before convolutional layer CNN NN
Max-drop [10] 2016 1.2.1 Drop feature maps with high activations CNN ACCV
Stochastic Dropout [10] 2016 1.2.1 Dropout ratio sampled from normal distribution CNN ACCV
DropBlock [36] 2018 1.2.1 Drop contiguous regions on each feature map CNN NeurIPS
Spectral Dropout [74] 2018 1.2.1 Dropout in the frequency domain CNN NN
Drop-Conv2d [75] 2019 1.2.1 Dropout before convolution instead of BN CNN arxiv
Weighted Channel Dropout [76] 2019 1.2.1 Drop weighted feature channels CNN AAAI
CorrDrop [77] 2021 1.2.1 Drop neurons according to feature correlation CNN PR
LocalDrop [69] 2021 1.2.1 Based on local Rademacher complexity CNN TPAMI
AutoDropout [78] 2021 1.2.1 Optimize dropout patterns by RL CNN AAAI
Vanilla drop for RNN [14], [15] 2014 1.2.2† Drop feed-forward connections only RNN ICFHR
RNNDrop [16] 2015 1.2.2 One dropping mask for each layer RNN ASRU
Variational RNN Dropout [79] 2015 1.2.2 Variational inference based dropout RNN NeurIPS
Recurrent Dropout [37] 2016 1.2.2 Drop only the vectors generating hidden states RNN COLING
Zoneout [80] 2016 1.2.2 Residual connections between timestamps RNN ICLR
Weighted-dropped LSTM [81] 2017 1.2.2 Drop weights like DropConnect RNN ICLR

Fraternal Dropout [82] 2018 1.2.2 Train two identical RNNs with different
dropout masks RNN ICLR

Stochastic Depth [11] 2016 1.2.3† Drop blocks and retain only residual connections ResNet ECCV
Shakeout [12] 2016 1.2.3 Assign new weights to neurons ResNet AAAI
Whiteout [13] 2016 1.2.3 Introduce Gaussian noise compared to Shakeout ResNet arxiv

Swapout [83] 2016 1.2.3 A synthesis of standard Dropout and Stochastic
Depth ResNet NeurIPS

DropPath [84] 2016 1.2.3 Drop subpaths in Fractalnet DNN ICLR
Shake-Shake [85] 2017 1.2.3 Assign weights in 3-way ResNet ResNet arxiv
ShakeDrop [38] 2018 1.2.3 Improve Shake-Shake to other form of ResNet ResNet IEEE Access
Scheduled DropPath [86] 2018 1.2.3 Dropout ratio increases linearly DNN CVPR
DropHead [87] 2020 1.2.3 Drop attention heads of Transformer Transformer EMNLP
† 1.1 refers to dropping individual neurons, 1.2.1 dropping 2D neuron groups, 1.2.2 dropping recurrent connections, and 1.2.3 dropping

residual connections or others.
* FCL refers to Fully Connected Layers.

Goodfellow et al. [61] proposed Maxout in 2013. Maxout
is an improvement of standard dropout [5]. Specifically, the
output of each hidden layer is computed as

hi(x) = max
j∈[1,k]

zij , where zij = xTW:ij + bij (6)

where the weight matrix W ∈ Rd×m×k and the bias vector
b ∈ Rm×k are training parameters. x, d, m, and k are
the input, the input dimension, the output dimension, and
Maxout parameter, respectively. As can be seen, unlike in
standard dropout [5] where only one output is computed
for each input at each layer, Maxout computes k outputs

for each input at each layer. Then it takes the maximum
of the k outputs as the output of this layer. This operation
makes Maxout essentially a nonlinear activation function,
which gives the method its name. Maxout has been applied
in computer vision tasks including object detection [88].

Kingma et al. [62] proposed Variational Dropout in 2015.
This work studies Stochastic Gradient Variational Bayesian
Inference (SGVB) problem and found its connection with
dropout: Gaussian Dropout proposed in [6] is a local repa-
rameterization of SGVB. This paper thus proposes Varia-
tional Dropout so that the dropout ratio p is not a pre-

PREPRINT. UNDER REVIEW. 5

set hyperparameter that requires human adjusting but a
parameter that can be learned through training. In [23]
the authors show that Variational Dropout is a efficient
way to perform model compression, which can significantly
reduce the number of parameters of neural networks with a
negligible decrease of accuracy.

Gal and Ghahramani proposed Monte Carlo Dropout
[26] in 2016. The authors interpret dropout as a Bayesian
approximation of deep Gaussian processes. The output of
a deep Gaussian process is a probability distribution, and
using standard dropout in testing phase can estimate some
properties of this potential distribution. For example, the
estimated variance can be used to characterize the uncer-
tainty of the model output, and this estimating method
is called Monte Carlo Dropout. Monte Carlo Dropout has
been applied in a series of works [89], [90], [91], [92]. It can
mitigate the problem of representing uncertainty in deep
learning more efficiently without sacrificing test accuracy.

Smith et al. [63] proposed DropIn in 2016. The feed-
forward operation for each layer performing DropIn is:

ỹ(l) = r(l) ◦ y(l), z(l+1) = W(l+1)ỹ(l) + b(l+1)

y(l+1) = f(z(l+1)) + (1− r(l)) ◦ y(l)
(7)

As can be seen, in addition to passing the kept outputs
(r(l) ◦ y(l)) to the next layer, DropIn also passes the val-
ues of dropped positions ((1 − r(l)) ◦ y(l)) directly to the
next layer without going through the nonlinear activation
function. This operation increases the depth of the network
while avoiding vanishing gradient problem while serving
the same regularization effect as standard dropout.

Li et al. [64] proposed Evolutional Dropout in 2016. Intu-
itively, the importance of neurons corresponding to different
features in a neural network is different, so their correspond-
ing dropout probabilities should be different. This paper
applies this idea to both shallow and deep neural networks:
for shallow networks, the dropout ratio is calculated from
the second-order statistics of the input data features; for
deep networks, the dropout ratio of each layer is calculated
in real-time from the output of that layer of each batch.
Compared with the standard dropout, Evolutional Dropout
improves the accuracy of the results while greatly increasing
the convergence speed.

Gal et al. [65] proposed Concrete Dropout in 2017. Con-
crete Dropout is an improvement on Monte Carlo Dropout
[26]. Monte Carlo Dropout can estimate the model uncer-
tainty, achieved by performing a grid search on the dropout
ratio parameter. This is unfeasible for deeper models (e.g.,
those in computer vision tasks) and reinforcement learning
models because of the excessive computational time and
resources. Based on the development of Bayesian learning,
this paper uses a continuous relaxation of the dropout
discrete mask. Concrete Dropout proposes a new objective
function which allows automatic adjustment of the dropout
parameters on large models, reducing the time required
for experiments. It also allows the agent in reinforcement
learning to dynamically adjust its uncertainty as the training
process goes on and more training data is exposed. Exper-
iments show that Concrete Dropout can decrease the time
of model training by weeks by automatically learning the
dropout probabilities in reinforcement learning compared
to conventional dropout methods.

Rennie et al. [34] proposed Annealed Dropout in 2014.
As the name implies, “annealed” dropout is the decrease of
dropout ratio as the number of training epochs increases:

p[t] = p[t− 1] + αt(θ) (8)
αt(θ) is the parameter that controls the dropout ratio. A
simple approach is to decrease linearly: the initial dropout
ratio is p[0] and decreases to 0 after N rounds:

p[t] = max(0, 1− t

N
)p[0] (9)

The explanation for this approach is that at the beginning
when we are exposed to little training data, we only need to
“explain” the data with a simple model, i.e., we only make
fewer neurons work, and more neurons are dropped out.
Later on, when more training data is exposed, we can allow
a more “complex” model to “explain” the data, reducing the
dropout ratio and making more neurons work.

Morerio et al. [35] proposed Curriculum Dropout in
2017. Inspired by curriculum learning [93], in contrast to An-
nealed Dropout [34], Curriculum Dropout increases dropout
ratio as the number of training epochs increases. The expla-
nation for this approach is to simulate the learning process
from easy to difficult in human learning: the dropout ratio
is small at the beginning, introducing less noise and anal-
ogous to the “easy” task; then the dropout ratio increases,
introducing more noise and making the task “harder”.

Gomez et al. [25], [66] proposed Targeted Dropout in
2018. Neural pruning is a neural network compression
method [94] that can be used to reduce the number of
network parameters and improve training efficiency. The
Targeted Dropout selects and drops those neurons whose
absence can make the model most suitable for neural
network pruning, facilitating model compression. Targeted
Dropout is able to achieve better performance with only
half of total number of parameters compared to the original
networks without dropout.

Salehinejad and Valaee [67] proposed Ising-Dropout in
2019. Borrowing the concept of Ising model in physics,
Ising-Dropout adds an image Ising model to a neural net-
work to detect and drop out those neurons that are least
useful. It could compress the number of parameters up to
41.18% and 55.86% for the classification task on the MNIST
and Fashion-MNIST datasets respectively. The authors also
proposed EDropout [68] working for neural pruning in
2021. It utilizes an Energy-Based Model (EBM) to decide
the pruning state.

In 2020, İrsoy and Alpaydın [95] proposed a dropout
method for hierarchically gated models [96], [97] to prevent
overfitting in decision-tree-like models. Ragusa et al. [98]
employ dropout on Internet of Things (IoT) models.

Gao et al. [70] proposed SimCSE in 2021. SimCSE is a
contrastive learning method for NLP. Specifically, it per-
forms dropout twice for the same instance to get two
positive samples and treats all other in-batch instances as
negative. Performing data augmentation by dropout twice
achieves good results on this contrastive learning task.
Child-Tuning [71] is another application of dropout in NLP.
It randomly masks gradient when back-propagation.

Liang et al. [72] proposed R-Drop (“R” for “Regular-
ized”) in 2021. R-Drop generalized the idea of “dropout
twice” [70] from contrastive learning to general tasks. A

PREPRINT. UNDER REVIEW. 6

training instance goes through the network twice with ran-
dom dropout. On the one hand, we want the two predictions
as close as possible to the label, by which we compute cross-
entropy loss L(CE), on the other hand, we want the two
predictions as close as possible to each other, by which we
compute Kullback-Leibler divergence loss L(KL). Thus we
get final loss function consists of two parts:

L = L(CE) + αL(KL) (10)
and the second part is “regularizing” the first part.

Chen and Yi [73] proposed AS-Dropout (Adaptive
Sparse Dropout) in 2021. AS-Dropout calculates dropout
probability adaptively according to the neuron’s activation
function, such that only a small proportion of neurons are
active in each training epoch.

Dropout methods that drop individual neurons are sum-
marized in Table 1. The application scenario for the dropout
of individual neurons is usually fully connected layers.
The basic operation of this type of methods is easy to
implement and can be applied to a wide range of neural
models. It is likely to lead to a stable improvement on
the model performance in most cases, as will be shown in
Section 5. The generality and effectiveness has made it the
most popular type of dropout methods. However, it is not
suitable for models with specific structure (e.g. CNN, RNN,
Transformer), for which the dropout methods usually drop
neuron groups.

3.1.2 Drop Neuron Groups
Dropout methods in 3.1.1 are mainly performed on fully
connected layers. For neural networks with special struc-
tures, such as convolutional neural networks, residual net-
works, and recurrent neural networks, neurons are aggre-
gated together forming specific structures to perform certain
functions. Directly dropping individual neurons randomly
may not have expected effect on these networks, so a series
of dropout methods have been proposed specified for them.

3.1.2.1 CNNs: Tompson et al. [8] first proposed Spa-
tialDropout specifically for convolutional neural networks
in 2014. In CNNs, for the same feature map, all pixel fea-
tures within the coverage of the same convolutional kernel
are used to compute the output of the next layer, result-
ing a strong gradient correlation between adjacent pixels.
The standard dropout removes individual pixel features
randomly, which has little effect on reducing the interde-
pendence between neurons, and is therefore ineffective. In
contrast, for a feature tensor with size nfeats×height×width,
SpatialDropout selects only nfeats dropout values, i.e., the
whole feature map is either dropped for all or kept for all.
This reduces the interdependence between neurons in CNN
and has a good regularization effect.

Wu and Gu [9] proposed Max-pooling Dropout in 2015.
For a neural network containing convolutional layers and
pooling layers, if the lth layer is immediately followed by a
pooling layer, the feed-forward operation is expressed as

a
(l+1)
j = pool(a

(l)
1 , . . . , a

(l)
i , . . . , a

(l)
n), i ∈ R(l)

j (11)

where R(l)
j is the jth pooling region of the lth layer, a(l)i is

the activation value of each neuron, and pool() is the pooling
function. Two common choices are average pooling, which
averages the outputs of all neurons, and max-pooling, which

Fig. 2. Max-pooling Dropout [9] drops neuron outputs before they are
passed to pooling layer.

takes the maximum of all neuron outputs. The authors take
the latter one. Max-pooling Dropout randomly drops out
the output a(l)i of individual neurons during training phase,
which is then passed into the pooling layer:

â
(l)
i = m

(l)
i ∗ a

(l)
i , m

(l)
i ∼ Bernoulli(p)

a
(l+1)
j = pool(â

(l)
1 , . . . , â

(l)
i , . . . , â

(l)
n), i ∈ R(l)

j

(12)

as shown in Figure 2. This is therefore equivalent to
selecting neuron outputs from a multinomial distribution:

Pr(a
(l+1)
j = a

′(l)
i) = pi = pqn−i, i = 1, 2, . . . , n (13)

If the lth layer is immediately followed by a convolutional
layer, this paper also proposes Convolutional Dropout. The
feed-forward operation in the training phase is

m
(l)
k (i) ∼ Bernoulli(p), â

(l)
k = a

(l)
k ∗m

(l)
k ,

z
(l+1)
j =

n(l)∑
k=1

conv(W
(l+1)
j , â

(l)
k),

a
(l+1)
j = f(z

(l+1)
j).

(14)

where a(l)k is the kth feature map of the lth layer. No dropout
is performed during testing and all neuron outputs need to
be multiplied by the retain probability of the training phase.

In 2016, Park and Kwak [10] makes two improvements
to SpatialDropout [8]. The first is to select and drop out
high activation values on the feature maps or channels; the
second is that the dropout ratio is not a fixed value but
is obtained by sampling from a normal distribution. The
authors refer to these two improved dropout methods as
Max-drop and Stochastic Dropout, respectively.

Ghiasi et al. [36] proposed DropBlock in 2018. For each
layer of the feature map, DropBlock randomly drops mul-
tiple contiguous regions of size block size × block size.
When block size = 1, DropBlock is reduced to standard
dropout; when block size = feature map size, i.e., one
block can cover the whole layer of feature map, DropBlock
is equivalent to SpatialDropout [8].

Khan et al. [74] proposed Spectral Dropout in 2018. A
Spectral Dropout operation is added between two layers of a
CNN. The operation has three steps: transforming activation
values of the previous layer to frequency domain; dropping
the components below a certain threshold in frequency
domain; and changing back to the original value domain.
The feed-forward operation between two layers without
Spectral Dropout is expressed in the following equation:

A′l = f(Fl ⊗Al−1 + bl) (15)

When performing Spectral Dropout, the operation becomes

Al = T −1(M ◦ T (f(Fl ⊗Al−1 + bl))) (16)

PREPRINT. UNDER REVIEW. 7

Fig. 3. Vanilla dropout for RNNs, which only drops feed-forward connec-
tions but not recurrent connections. [15]

where T denotes the frequency transformation and M is
the masking matrix of dropout in frequency domain. This
approach serves to filter input noises and effectively speeds
up the convergence of network training.

In 2019, Cai et al. [75] analyze why standard dropout
does not work in convolutional neural networks: it conflicts
with the effect of Batch Normalization [3]. It is experimen-
tally verified that putting dropout operation before convo-
lution operation instead of batch normalization operation
can effectively improve the dropout effect. Then the authors
proposed Drop-Conv2d method to improve the training
effect by combining dropout at feature-channel level and
dropout at forward-path level in CNN.

Hou and Wang [76] proposed Weighted Channel
Dropout for feature channel dropout in 2019. The operation
steps are in two stages: scoring feature channels and select-
ing feature channels. In the first stage, feature channels are
scored using Global Average Pooling (GAP) method:

scorei =
1

W ×H

W∑
j=1

H∑
k=1

xi(j, k) (17)

In the second stage, the weighted random selection (WRS)
and random number generation (RNG) steps are used to
select feature channels for dropout and retention.

Zeng et al. [77] proposed CorrDrop in 2021. CorrDrop
drops out CNN neurons based on their feature correlation
and can do it in both spatial manner and channel manner.

Lu et al. [69] proposed LocalDrop in 2021. This regu-
larization method is based on theoretical analysis of local
Rademacher complexity and can be applied to both fully
connected layers and convolutional layers.

Pham and Le [78] proposed AutoDropout in 2021. Au-
toDropout uses reinforcement learning to train a controller
selecting the optimal dropout pattern to train the model.
The controller eliminates the need of manually adjusting
dropout patterns as in previous methods such as DropBlock.

3.1.2.2 RNNs: Pachitariu et al. [99] applied stan-
dard dropout directly to RNNs in 2013 to randomly drop
the outputs of neurons in RNNs. Bayer et al. [100], in the
same year, applied Fast Dropout [60] directly to RNN.

Pham et al. [14] first proposed a dropout method spe-
cific to RNN structure in 2014, rather than just applying
random dropout directly to RNNs. Instead of dropping
connections between hidden states at different timestamps
(recurrent connections), only the connections from input to
output direction (feed-forward connections) are dropped.
The dropout is performed in the same way as the standard
dropout, i.e., training with a mask m of Bernoulli distribu-
tion and an elementary multiplication of the hidden state

Fig. 4. RNNDrop (right) outperforms standard dropout (left) by gener-
ating one mask for each layer in RNN and keeping it throughout the
sequence. [16], [40]

vector at each layer, and testing with all neurons working
thus multiplying the output by the retention probability p:

htrain = m� h, htest = ph (18)

Zaremba et al. [15] also elaborated this method more
systematically in 2014. For multilayer LSTMs [101], only the
connections between layers are dropped, not for connections
at different timestamps within the same layer. Let hlt be the
hidden state at moment t of the lth layer, clt be the memory
unit at moment t of the lth layer, and Tn,m : Rn → Rm be
an affine transformation, then performing dropout only to
the connections between layers is:

i
f
o
g

 =

sigm
sigm
sigm
tanh

T2n,4n (D(hl−1t)
hlt−1

)
,

clt = f � clt−1 + i� g, hlt = o� tanh(clt)

(19)

where D is dropout operation matrix, which acts only on
the output hl−1t of previous layer at the same timestamp,
and not on the output hlt−1 at the previous timestamp of
this layer, as shown in Figure 3 [15]. The dashed lines
in Figure 3 indicate the connections to which dropout is
applied and may be dropped, while the solid lines indicate
the connections retained.

The motivation of both the above articles [14], [15] is that
the strength of RNN is its memory capacity, but if recurrent
connections are dropped, the memory capacity of RNN will
be impaired. To test this idea, the authors of [14] did a series
of experiments in [102] 2015 to discuss dropout for RNNs
and where in the network dropout operation should be per-
formed. The authors examined the effect of adding dropout
layers before LSTM input, on LSTM recurrent connection
direction, and after LSTM output, respectively. They found
that in most cases, adding dropout layers on LSTM input
and output directions is better than adding them on recur-
rent connection direction, which experimentally verifies the
ideas in the previous two papers.

Moon et al. [16] proposed RNNDrop in 2015, which
gives a method for dropping recurrent connections between
different timestamps of the same layer. This is done by
generating only one dropping mask for each layer and then
using this one mask at all timestamps of that layer. In this
way, elements that are dropped at the first timestamp will
not be used at subsequent timestamps, and elements that
are kept at the first timestamp will be passed through to
the last timestamp. The schematic is shown in Figure 4
[40]. The left side of the figure shows the dropout of RNNs
using random dropout method, and the right shows how

PREPRINT. UNDER REVIEW. 8

Fig. 5. Comparison of RNNRrop, Variational RNN Dropout and Recur-
rent Dropout [37].

RNNDrop working, with the same colors indicating the
same dropout masks. In this way, the model is regularized
with dropout while retaining RNN memory capability.

Gal and Ghahramani [79] proposed Variational RNN
Dropout in 2015. The authors view dropout as an approxi-
mate inference process in Bayesian neural networks, which
can also perform dropout of both feed-forward connections
and recurrent connections. In this regard, Variational RNN
Dropout can be seen as a variant of RNNDrop [16].

Recurrent Dropout proposed by Semeniuta et al. [37]
in 2016 is another dropout method that preserves memory
capacity of RNNs and generates random dropout masks at
each step, just like standard dropout does [5], [6]. This is
done by dropping only the vectors used to generate hidden
state vectors, but not dropping hidden state vectors them-
selves. Recurrent Dropout is specialized for gated RNNs,
such as LSTM [101] and GRU [103]. For LSTM in Eq. 20,

it
ft
ot
gt

 =

σ(Wi[xt,ht−1] + bi)
σ(Wf [xt,ht−1] + bf)
σ(Wo[xt,ht−1] + bo)
f(Wg[xt,ht−1] + bg)

 ,
ct =ft ∗ ct−1 + it ∗ gt, ht = ot ∗ f(ct)

(20)

Variational RNN Dropout [79] performs dropout as Equa-
tion 21,

it
ft
ot
gt

 =

σ(Wi[xt, d(ht−1)] + bi)
σ(Wf [xt, d(ht−1)] + bf)
σ(Wo[xt, d(ht−1)] + bo)
f(Wg[xt, d(ht−1)] + bg)

 (21)

RNNDrop [16] performs dropout as Equation 22.

ct = d(ft ∗ ct−1 + it ∗ gt) (22)

This method, on the other hand, performs dropout as Equa-
tion 23.

ct = ft ∗ ct−1 + it ∗ d(gt) (23)

Dropout operations performed by RNNDrop [16], Varia-
tional RNN Dropout [79] and Recurrent Dropout are shown
in Figure 5 [37].

Krueger et al. [80] proposed Zoneout in 2016. RNNs
sometimes face the problem of vanishing gradient [104],
[105]. Inspired by dropout of residual networks with the
method Stochastic Depth [11] and Swapout [83], Zoneout
randomly replaces the output at a certain timestamp in
RNN with the output of a previous timestamp. Denote the
hidden state transfer operation as ht = T (ht−1, xt), where
T is often an affine transformation. To perform dropout
operation is to replace the original transfer operation T with
a new operation T̃ . Standard dropout and Zoneout can be
expressed as follows, respectively:

Dropout : T̃ = dt � T + (1− dt)� 0

Zoneout : T̃ = dt � T + (1− dt)� 1
(24)

where dt is a mask vector obeying Bernoulli distribution. In
this way, Zoneout passes the output of previous timestamp
to the next timestamp with probability p instead of dropping
it with probability p. In this way Zoneout solves vanishing
gradient problem while acting as a regularizer.

Merity et al. [81] proposed Weighted-dropped LSTM
in 2017. Borrowing the idea of DropConnect [33], instead
of dropping neuron activations, Weighted-dropped LSTM
drops elements in the weight matrix. That is, for LSTM
in Eq. 20, Weighted-dropped LSTM drops weight matrix
[Wi,Wf ,Wo] instead of hidden state ht−1.

In 2017, Melis et al. [106] did a comprehensive review
about the effectiveness of RNN applications in language
models. The covered dropout methods perform on the input
of RNN, feed-forward connections, recurrent connections,
and the output of the last layer.

Zolna et al. [82] proposed Fraternal Dropout in 2018.
According to Ma et al.’s analysis [107], for networks trained
with dropout, the expected outputs of training and predic-
tion will differ. Using different dropout masks results in
different outputs, i.e., the outputs are related to dropout
masks, which is not what we want. We want model outputs
to be irrelevant to dropout masks, they should be as same
as possible under different masks, and their variance be as
small as possible. Following this idea, Fraternal Dropout,
trains two neural networks with the same structure and
shared parameters. The only difference between them is
their dropout masks. Fraternal Dropout optimize both ob-
jective functions of the two networks and the difference
between their outputs. The authors also prove that the
upper bound of the regularization term here is the objective
function of expected linear dropout in [107].

3.1.2.3 ResNets and others: Residual network
(ResNet) [108] is a structure designed to solve problems
such as vanishing gradient [104], [105] and long training
time caused by excessive network depth. Let the output of
the lth layer of network be hl and the transfer function from
the l − 1th layer to the lth layer be fl() (which may contain
one or more convolution functions, batch normalization
functions, and activation functions), then the feed-forward
operation containing residual block is

hl = ReLU
(
fl(hl−1) + id(hl−1)

)
(25)

where id denotes identity function, i.e., hl−1 is passed to
the lth layer directly. A series of dropout methods are also
proposed for models with ResNet structure.

Huang et al. [11] proposed Stochastic Depth in 2016.
Stochastic Depth randomly drops some operation blocks
and retains only residual connections of that layer:

hl = ReLU
(
blfl(hl−1) + id(hl−1)

)
(26)

where bl ∼ Bernoulli(pl) is retention probability. When
bl = 0, the layer has only one identity function, which
is equivalent to directly copying results of the previous
layer, i.e., the network becomes shallower. In this way, it
is possible to train a network with a desired shallow depth
and use the whole deep network during testing, alleviating
the vanishing gradient problem [104], [105] and the problem
of long training time.

Kang et al. [12] proposed Shakeout in 2016. Different
from standard dropout, Shakeout acts on the neurons not

PREPRINT. UNDER REVIEW. 9

by making them choose between 0 and the original value,
but between two new weights. The authors also show
that Shakeout regularization combines three regularization
terms, L0, L1 and L2.

Li and Liu [13] proposed Whiteout in 2016. Both stan-
dard dropout [5], [6] and Shakeout [12] only introduce
Bernoulli noise, while Whiteout introduces Gaussian noise
into training process. This is done by adding additive or
multiplicative Gaussian noise to the output of each neuron.
Whiteout is the first noise injection regularization technique
(NIRT) that imposes an extensive Lγ , γ ∈ (0, 2) sparse
regularization without involving L2 regularization.

Gastaldi [85] proposed Shake-Shake in 2017. Shake-
Shake is used for three-way ResNet. The original feed-
forward operation is

xi+1 = σ(xi + F(xi,W(1)
i) + F(xi,W(2)

i)) (27)

Shake-Shake introduces random variables αi ∼ U(0, 1) to
assign weights to the two-way transfer function:

xi+1 = σ(xi + αiF(xi,W(1)
i) + (1− αi)F(xi,W(2)

i)) (28)

It takes a weight of 0.5 for each path when testing:

xi+1 = σ(xi + 0.5F(xi,W(1)
i) + 0.5F(xi,W(2)

i)) (29)

Yamada et al. [38] proposed ShakeDrop in 2018. Stochas-
tic Depth [11] simply drops or retains a layer, Shake-Shake
[85] can assign weights to different pathways but is applied
only to a three-way ResNet. ShakeDrop combines both
functions. It has two parameters α and βl to control the
assigned weights. bl ∼ Bernoulli(pl) is the dropout ratio.
ShakeDrop is expressed as

G(x) =

x+ (bl + α− blα)F (x), in train-fwd
x+ (bl + β − blβ)F (x), in train-bwd
x+ E[bl + α− blα]F (x), in test

(30)

Larsson et al. [84] proposed DropPath in 2016. The
authors first proposed a network structure Fractalnet, which
achieves extremely deep neural networks based on self-
similarity of structure. It is shown that Fractalnet can also
alleviate vanishing gradient problem in deep neural net-
works, just as ResNet does. The authors then proposed a
regularization approach for Fractalnet, which is randomly
dropping sub-paths between input and output within each
fractal block. Just as standard dropout can reduce depen-
dencies between neurons, this operation reduces dependen-
cies between sub-paths to act as a regularizer [84].

Zoph et al. [86] proposed Scheduled DropPath in 2018 as
an improvement to DropPath [84]. Dropout ratio increases
linearly with the number of training epochs rather than a
fixed value, and Scheduled DropPath achieves better per-
formance than the original DropPath.

Singh et al. [83] proposed Swapout in 2016, a synthesis
of standard dropout and Stochastic Depth. Let X be the
input of a block in neural network, and the block computes
the output Y = F (X). The output of the uth neuron in
the block is noted as F (u)(X). Θ is a tensor with the same
shape as F (X) whose elements obey Bernoulli distribution.
Standard dropout makes the output of each neuron choosed
from {0, F (u)(X)}. Stochastic Depth is such that the output
of each neuron is choosed from {X(u), X(u) + F (u)(X)}.

Swapout, on the other hand, extends the range of possible
output values. For a layer with N blocks F1, . . . , FN , define
N independent Bernoulli tensor Θ1, . . . ,ΘN such that the
output is computed as

Y =
N∑
i=1

Θi � Fi(X) (31)

In this way, the output of each neuron has 2N possible
values. Consider the simplest case of N = 2 in ResNet,

Y = Θ1 �X + Θ2 � F (X) (32)

The output of each neuron can take 4 values: {0, X(u),
F (u)(X), X(u) + F (u)(X)}. Each value corresponds to neu-
ron’s state as

1) 0: dropped
2) X(u): skipped by the residual connection
3) F (u)(X): normal
4) X(u) + F (u)(X): a complete residual unit
Zhou et al. proposed DropHead [87] in 2020, dropping

attention heads in multi-head attention mechanism, which
is a core component of Tranformer. It also adaptively adjusts
dropout ratio during training to achieve better performance.

Dropout methods that drop neuron groups are sum-
marized in Table 1. The application scenarios of dropping
neuron groups are usually the models with certain struc-
tures such as CNN, RNN, ResNet, or Transformer. This
type of dropout methods can boost the performance of
these models, while its implementation is also subject to the
model structures.

3.2 Drop Embeddings

In some machine learning tasks, the input data is first
converted to embeddings then goes through the model.
Dropout methods introduced in this section drop embed-
dings during training. For example, in recommendation,
some dropout methods drop embeddings of user and item
interaction histories during training to cope with the cold-
start problem, while others randomly drop user and item
feature embeddings to handle the possible missing informa-
tion problem in real scenarios.

Volkovs et al. [20] proposed DropoutNet in 2017. The
embedding matrices of users and items are noted as U
and I. The embedding vectors of the uth user and ith
item are Uu and Ii, respectively. The context information
matrices of users and items are ΦU and ΦI , respectively.
DropoutNet proposed a new form of objective dealing with
the problem of missing interaction history. Previous models
would add extra terms of context information into objective,
hoping these newly added terms can be useful when the
terms of interaction history are not available. However, it is
difficult to determine the weights of these two components.
DropoutNet’s objective handles this problem automatically:

L =
∑
u,i

(
UuI

T
i − fU (Uu,Φ

U
u)fI(Ii,Φ

I
i)T

)2
(33)

During training, DropoutNet randomly drops a portion of
input Uu or Ii by setting them to zero. For training instances
that are kept, the objective will make the model ignore
context information part (ΦU and ΦI) as much as possible

PREPRINT. UNDER REVIEW. 10

like Equation 33 shows. For training instances with user or
item inputs dropped, the objective will make the model rely
as much as possible on context information part, as shown
in Equation 34.

u cold start: Lui =
(
UuI

T
i − fU (0,ΦUu)fI(Ii,Φ

I
i)T

)2
i cold start: Lui =

(
UuI

T
i − fU (Uu,Φ

U
u)fI(0,ΦIi)T

)2
(34)

Shi et al. [21] proposed ACCM model in 2018. Dropout-
Net [20], while automatically processing both interaction
history information and context information, is imple-
mented in such a way that its objective function is com-
pletely backward to one side. When interaction history is
available, the model tends to completely rely on it and
ignore attribute information; when interaction history is
missing, the model tends to completely rely on attribute
information. ACCM model, on the other hand, achieves
flexible control of the weights of the two components by
using attention mechanism [131].

The model contains a user part and an item part. Each
part computes embeddings by both interaction history and
context information. For the user part, the attention network
computes attention weights for two kinds of information
separately, and then obtains the final embedding u:

huCF = hT tanh(WuCF + b), huCB = hT tanh(WuCB + b)

auCF =
exp(huCF)

exp(huCF) + exp(huCB)
= 1− auCB

u = auCFuCF + auCBuCB
(35)

Item embedding v is generated in the same way as u. The
model prediction is

y = bg + bu + bv + uv (36)

Like DropoutNet, the interaction history embeddings are
randomly dropped during training, replaced with random
vectors:

u = auCF [(1− cu)uCF + cuur] + auCBuCB

v = avCF [(1− cv)vCF + cvvr] + avCBvCB

y = bg + cubu + cvbv + uv

(37)

where cu, cv ∼ Bernoulli(p), p is the dropout probability.
ur,vr are random vectors with the same initial distribution
of user and item vectors. By using attention mechanism and
randomly dropping embddings, ACCM better solves cold
start problem in recommendation.

Similar to missing interaction history, missing content
information is sometimes encountered in recommendation.
Since cold-start problem can be better solved by embed-
ding dropout and attention mechanism together, missing
attribute problem can also be solved in a similar way, which
is the idea of AFS (Adaptive Feature Sampling) [22]. AFS
drops a portion of user and item context information ran-
domly during training to simulate missing attribute values,
making the model more robust when testing.

Dropout methods that drop embeddings are summa-
rized in Table 2. Recommendation models are usually the
application scenarios of dropping embeddings, whose input
information usually needs to be converted into vector rep-
resentations for model operations. Dropping embeddings
can be effective in such scenarios, while it can only be used
when there are embeddings of input data.

3.3 Drop Input Information
Some dropout methods drop part of input information
directly during training, which serves for various pur-
poses under different scenarios, such as regularization, data
augmentation, or data representation enhancement of pre-
training stage.

3.3.1 One-dimensional Information
Sennrich et al. [17] in 2016 use WordDropout in machine
translation to drop out words from input data.

Ghazvinine et al. [109] proposed Mask-Predict in 2019.
While most machine translation systems generate text from
left to right, Mask-Predict uses a masking approach to train
the model. It first predicts all target words and then iter-
atively masks and regenerates a subset of words in which
the model has least confidence. Unlike BERT [28], this paper
does not use masked language model for pre-training but
uses it directly with Mask-Predict to generate text.

Zhang et al. [115] in 2020 proposed Token Drop mecha-
nism for neural network machine translation. WordDropout
[17] randomly drops words from sentences, while Token
Drop method drops tokens.

Devlin et al. [28] proposed BERT in 2019. In the pre-
training phase, 15% of the tokens are randomly masked.
These masked tokens are then predicted in both directions
using a self-attentive transformer to enhance the data repre-
sentation in pre-training phase. After BERT came out, many
BERT-like or BERT-based methods have been proposed for
enhancing data representation in NLP pre-training.

Cui et al. [111] in 2019 proposed Whole Word Masking
for Chinese language models. BERT randomly masks words
for English language models, but randomly masking Chi-
nese characters is less appropriate because Chinese char-
acters may not be a complete semantic unit. Whole Word
Masking masks words instead of Chinese characters when
training Chinese language models.

Sun et al. [110] proposed ERNIE in 2019. ERNIE in-
troduces human knowledge into word vector training. It
achieves this by considering masking operations of three
levels. The first level, like BERT, randomly masks English or
Chinese words. The second level randomly masks phrases
identified by existing toolkits, incorporating phrase infor-
mation into training. The third level randomly masks en-
tities pre-defined by human, incorporating prior human
knowledge into the training of word vectors.

Wu et al. [112] proposed Mask and Infill in 2019. The pre-
training phase is divided into a masking phase and a filling
phase used to accomplish the task of sentiment transfer.

Ye et al. [113] proposed AMS method in 2019. A general
knowledge Q&A dataset is generated through ConceptNet
[132], and the general knowledge concepts in each utterance
of this dataset are masked and predicted so that the model
learns general knowledge through this process.

Zhang et al. [114] in 2019 proposed PEGASUS for sum-
mary generation tasks. During pre-training, not only word
tokens are randomly masked, but also important sentences.
These sentences are part of the summary to be generated
and need to be predicted by the model.

Wang et al. [133] in 2019 imitates BERT to introduce
dropout in speech recognition, which randomly masks
acoustic signals and features in the input audio.

PREPRINT. UNDER REVIEW. 11

TABLE 2
Table of methods that drop embeddings or input information.

Method Year Category Brief Description Original
Scenario Source

DropoutNet [20] 2017 2† Randomly drop interactions Recom. NeurIPS
ACCM [21] 2018 2 Drop interactions & use attention mechanism Recom. CIKM
AFS [22] 2019 2 Drop interactions and attribute values Recom. CIKM
WordDropout [17] 2016 3.1† Drop words in machine translation NLP WMT16
BERT [28] 2018 3.1 Mask and predict tokens in pre-training phase NLP NAACL
Mask-Predict [109] 2019 3.1 Mask and regenerate words in machine translation NLP EMNLP
ERNIE [110] 2019 3.1 Incorporate human knowledge into pre-training NLP arxiv
Whole Word Masking [111] 2019 3.1 Randomly mask chinese words NLP arxiv
Mask and Infill [112] 2019 3.1 Mask and infill tokens in pre-training NLP IJCAI
AMS [113] 2019 3.1 Incorporate general knowledge using ConceptNet NLP arxiv
PEGASUS [114] 2019 3.1 Mask sentences for summary generation NLP ICML
Token Drop [115] 2020 3.1 Drop tokens instead of words NLP COLING
Selective Masking [116] 2020 3.1 Introduce a task-guided pre-training stage NLP EMNLP
S3-Rec [117] 2020 3.1 Enhance interaction sequence like BERT Recom. CIKM
CutOut [18] 2017 3.2† Drop a square region on the input image CV arxiv
Random Erasing [118] 2017 3.2 Drop a rectangular region on the input image CV AAAI
Hide-and-Seek [119] 2017 3.2 Drop several square regions CV ICCV
Mixup [120] 2017 3.2 Take linear interpolations of training instances as input CV ICLR
Manifold Mixup [121] 2019 3.2 Generalize Mixup to feature level CV ICML
CutMix [122] 2019 3.2 Replace regions of one image with another’s CV ICCV
GridMask [39] 2020 3.2 Drop regularly tiled square regions CV arxiv
Attentive CutMix [123] 2020 3.2 Improve CutMix with attention mechanism CV ICASSP
MAE [124] 2021 3.2 Mask and reconstruct patches of input images CV arxiv
GraphSAGE [19] 2017 3.3† Randomly sample nodes Graph NeurIPS
FastGCN [125] 2018 3.3 Sample nodes from the whole graph Graph ICLR
AS-GCN [126] 2018 3.3 Node sampling layer by layer Graph NeurIPS
GAT [127] 2018 3.3 Attention on edges Graph ICLR
LADIES [128] 2019 3.3 Adaptively sample nodes by layer Graph NeurIPS
GRAND [129] 2020 3.3 Random propagation on graph Graph NeurIPS
SGAT [130] 2020 3.3 Learn sparse attention coefficients on graph Graph TKDE
DropEdge [29] 2020 3.3 Randomly drop edges Graph ICLR
† 2 refers to dropping embeddings, 3.1 dropping one-dimensional information, 3.2 dropping two-dimensional information, and 3.3

dropping graph information.

Selective Masking [116] proposed by Gu et al. in 2020 in-
troduced a task-guided pre-training stage between general
pre-training and fine-tuning stage.

There are similarities between the input of sequential
recommendation and the input of NLP tasks, for both of
them are temporal one-dimensional information. So there
are also recommendation models that borrows the idea
of BERT: Zhou et al. [117] proposed S3-Rec in 2020. It
divides the recommendation task into a pre-training stage
and a fine-tuning stage just like BERT. S3-Rec randomly
masks a portion of item ids and attributes in pre-training
phase to enhance the representation between item ids, item
attributes, and item sequences.

Dropout methods that drop one-dimentional input infor-
mation are summarized in Table 2, which are mainly applied
in NLP or sequential recommendation tasks, where input
data is organized as temporal one-dimensional sequences.

3.3.2 Two-dimensional Information

Existing data enhancement methods can be broadly clas-
sified into three categories: spatial transformation, color
distortion, and information dropping. Dropping two-
dimensional input information is generally regarded as a
data enhancement method of information dropping.

DeVries and Taylor [18] proposed CutOut in 2017. For
every training image, CutOut randomly selects a square
region and sets the pixel values within this region to zero.
The difference of CutOut with methods in Section 3.1.2
such as SpatialDropout [8] or DropBlock [36] is that CutOut

is performed at the level of input information. Compared
to dropping model structure, it is easier to implement by
directly dropping a part of the input image. In addition,
dropping input information is equivalent to generating a
new training sample, so there is no need to multiply the
neuron output by a factor to eliminate the bias during
testing as the methods in Section 3.1 does.

Zhong et al. [118] proposed Random Erasing in 2017.
Similar to CutOut [18], the training image is covered with a
rectangular box with random position and random size. The
pixel values within the rectangular box are also random.

Singh et al. [119] proposed Hide-and-Seek in 2017.
CutOut [18] and Random Erasing [118] drop only one
rectangular region for each input image, while Hide-and-
Seek divides the image into S×S small squares, each square
is dropped with phide probability. The purpose of Hide-and-
Seek is to let the model be capable of extracting features
from other parts of the image after the most discriminative
part has been dropped, preventing the model from relying
too much on certain parts.

Chen et al. [39] proposed GridMask in 2020. Dropout
pattern of GridMask is a number of equally spaced square
regions tiled on a plane, determined by four parameters
(r, d, δx, δy). The dropout pattern of GridMask is more
regular compared to CutOut, Random Erasing and Hide-
and-Seek. Compared to AutoAugment [134] which employs
reinforcement learning to search for dropout patterns, Grid-
Mask consumes much less training cost. The above four
methods are schematically shown in Figure 6.

PREPRINT. UNDER REVIEW. 12

Fig. 6. Comparison of dropout patterns of CutOut [18], Random Erasing
[118], Hide-and-Seek [119] and GridMask [39].

Dropping input data can also be seen as introducing noise
to input data, while this noise is Bernoulli noise. Some of
the following data enhancement methods do not necessarily
drop input data, but introduce noise to input data.

Zhang et al. [120] proposed Mixup in 2017. Mixup
augments data in a simple way: the linear interpolations
of training instances are also taken as training instances.
Specifically, for training instances (xi, yi) and (xj , yj),

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(38)

Mixup takes (x̃, ỹ) as a training instance as well.
Verma et al. [121] proposed Manifold Mixup in 2019.

Manifold Mixup generalizes Mixup [120] operation to fea-
ture level. The motivation is that features have higher-order
semantic information, and interpolation in feature level
could yield more meaningful samples.

Yun et al. [122] proposed CutMix in 2019, which is an
improvement on Mixup [120] and Cutout [18]. Cutout fills
part of the image with meaningless regions, which is not
conducive to the model making full use of training data.
Mixup uses linear interpolation to augment the data, how-
ever these newly produced images are not natural images.
CutMix, on the other hand, randomly selects some rectangu-
lar regions of the image xA and replaces them with regions
at the same locations of image xB . The corresponding labels
are replaced by a combination of the two images:

x̃ = M� xA + (1−M)� xB

ỹ = λyA + (1− λ)yB
(39)

where M is the masking matrix. Walawalkar et al. [123]
proposed Attentive CutMix in 2020, which further improved
CutMix by using an attention mechanism to select the
most discriminative regions for replacement. Operations of
Mixup, CutOut, CutMix and Attentive CutMix are shown
in Figure 7 from the original paper [123].

He et al. [124] proposed Masked Autoencoders (MAE)
in 2021. It randomly masks patches of the input image and
reconstructs the missing pixels during pre-training.

Dropout methods that drop two-dimensional informa-
tion are summarized in Table 2. They are mainly applied
in computer vision tasks, where input data is organized as
pixel matrices.

3.3.3 Graph Information
Graph neural networks (GNNs) have a wide range of appli-
cations in various tasks such as node classification, cluster
detection, and recommender systems [135], [136], [137]. In
the training of GNNs, some methods randomly drop nodes
or edges and use only part of graph information for training,
serving as a regularization technique.

Fig. 7. Comparison of dropout patterns of Mixup [121], CutOut [18],
CutMix [122] and Attentive CutMix. [123]

3.3.3.1 Drop Nodes: Hamilton et al. [19] proposed
GraphSAGE (SAmple and AGGreGatE) in 2017. Before this,
GCNs were generally trained in the way of transductive
learning, which requires all nodes to be visible at training
time and needs to calculate a node’s embedding by all its
neighbors. GraphSAGE, on the other hand, adopts inductive
learning, which requires only some of the neighbors to pre-
dict a node’s embedding. To achieve this, GraphSAGE does
not directly train node embeddings but trains aggregation
functions, which compute node embeddings from its neigh-
bors. When a new node is added to the graph during testing,
the trained aggregation functions can predict its embedding
from its neighbors. Parameters of the aggregation functions
are trained with an unsupervised learning objective that
makes the representations of closer nodes more similar and
farther nodes less similar,

JG(zu) =− log
(
σ(zTu zv)

)
−Q · Evn∼Pn(v) log

(
σ(−zTu zvn)

) (40)

v is some node reachable within a fixed number of steps
near u. Pn is the negative sampling distribution, andQ is the
number of negative samples. This objective can be replaced
with any task-specific objective for other downstream tasks.
This training method of sampling only some nodes makes
GCN more generalizable, reduces the computational com-
plexity of training, and improves the model performance.

A series of node-dropout training methods have been
proposed after GraphSAGE. Chen et al. [125] proposed
FastGCN in 2018, whose idea is similar to GraphSAGE [19].
The difference is that FastGCN randomly samples all nodes
in the whole graph, not only the neighbors of a certain node.
Considering node sampling efficiency, FastGCN is signifi-
cantly faster than the original GCN as well as GraphSAGE,
while maintaining comparable prediction performance.

Huang et al. [126] proposed AS-GCN in 2018. Again,
the nodes are sampled during training; its differences with
GraphSAGE [19] and FastGCN [125] are threefold: AS-GCN
samples nodes layer by layer instead of independently; the
sampler is adaptive; and AS-GCN skips some edges when
transferring information between two nodes with long dis-
tances, enhancing the efficiency of information propagation.
The experiments on running time show that AS-GCN is
faster than the original GCN and the former node-wise
sampling methods.

PREPRINT. UNDER REVIEW. 13

Zou et al. [128] proposed LADIES in 2019. The previous
single-node-based sampling methods suffer from the prob-
lem of too many neighbors, while the layer-based sampling
methods suffer from too sparse connections. LADIES also
samples layer by layer, but it calculates the importance of
each node in the next layer and samples the most critical
nodes among them. This alleviate the problem of sparse
connections while limiting the number of neighbors.

Feng et al. [129] proposed GRAND in 2020. It performs
data augmentation using Random Propagation method. For
the graph feature matrix, the authors compare two dropout
methods: random dropout of matrix elements and random
dropout matrix rows. The former is equivalent to a standard
dropout in feature level, while the latter is dropping nodes.
The latter performs better in experimental comparison.

3.3.3.2 Drop Edges: Veličković et al. [127] proposed
GAT (Graph ATtention Networks) in 2017. GAT uses at-
tention mechanism to compute the importance of different
edges and train GNN using more important information. In
2021 Ye and Ji [130] improved on GAT and proposed SGAT.
SGAT learns sparse attention coefficients on the graph and
produces an edge-sparsified graph.

Rong et al. [29] proposed DropEdge in 2020. GCN train-
ing process is prone to overfitting and over-smoothing prob-
lems. Over-smoothing is a phenomenon that representations
of all nodes on the graph tend to be the same, occurring
when GCN is too deep. The authors address these two
problems by randomly dropping edges during training:
dropping edges can be seen as a data augmentation method
introducing noise into input data to prevent overfitting;
dropping edges also reduces the information propagation
through edges, thus prevents the over-smoothing problem.

Dropout methods that drop graph information are
widely used in GCN, and we summarize them in Table 2.

Dropping input information can be an effective way of
data augmentation or regularization. As will be shown in
5, it is a good way of augmenting sequences in recommen-
dation. It can be applied to a wide range of scenarios as all
machine learning tasks have input information. Meanwhile,
it is not performed on model parameters but input data, so
its regularization effectiveness is not as stable as dropping
model structures.

3.4 Summary and Interconnections between Dropout
Methods
Based on where in a machine learning task the dropout
operation performs, we classify commonly used dropout
methods into three major categories: dropping model struc-
tures, dropping embeddings and dropping input informa-
tion. Dropping model structures is divided into two subcate-
gories of dropping individual neurons and dropping neuron
groups, according to the granularity of dropout operation.
Dropping input information is divided into three sub-
categories of dropping one-dimensional information, two-
dimensional information, and graph information according
to the form of input information.

The three types of dropout methods, dropout of model
structure, dropout of input information, and dropout of
embedding, can be represented as ¬, , and ® in Figure
8, respectively. They are performed at three different stages
of the training process, which is our classification criteria.

Fig. 8. Training procedure and dropout position in neural models. We
classify dropout methods into three major category based on where their
operations perform in a training process: dropping input information (¬),
dropping embeddings (), and dropping model structures (®).

Within each block, there may also be different layers.
For example, for the model part, if we use a deep network,
we can perform dropout in every layer or just do it for some
layers. If we use a recurrent neural network, we can perform
dropout in its feed-forward direction, its recurrent direction,
or part of the layers. Since a common implementation of
dropout is to zero the neuron outputs, if the output of
layer l is considered as the input data of layer l + 1, then
dropping neurons of layer l can be considered as dropping
the input data of layer l+ 1. Thus dropping model structure
and dropping input data are not clear-cut, they are highly
correlated. This is more clear in computer vision tasks where
convolutional neural networks are used: methods in Section
3.1.2.1 and Section 3.3.2 operate at different levels, but their
actual implementations are highly similar. By performing
dropout operation in Section 3.1.2.1 on the input image
level, it becomes the operation in Section 3.3.2.

4 CONTRIBUTIONS OF DROPOUT METHODS

In Section 3, we classify commonly used dropout methods
into three major categories according to the stage at which
the dropout operation is performed, discuss their applica-
tions in neural models and analyze their interconnections.
In this section, we discuss the contributions of dropout
methods from the perspective of effectiveness and efficiency.

4.1 Improving Effectiveness

Dropout makes models to better utilize training data and
promotes model effectiveness in many ways.
• Preventing overfitting. Most of the dropout methods are
used as regularization methods [138], [139] to prevent over-
fitting. For the methods of dropping model structure, during
the training process, a part of neurons is dropped randomly
to reduce the interdependence between neurons and pre-
vent overfitting. The method of dropping input information
enhances the robustness of the model by introducing noise
into the input data. Meanwhile, many dropout methods
have contributions other than preventing overfitting.
• Simulating testing phase. Some methods are used to
simulate the possible situations in the testing phase [20],
[21], [22]. The testing phase may face an information deficit,
and the model needs to give predictions under the absence
of information. Therefore, these methods drop part of the
information at training time so that the model does not

PREPRINT. UNDER REVIEW. 14

rely excessively on this possibly missing information and
improves the performance of the testing phase.
• Data augmentation. Some methods are used for data aug-
mentation [18], [27], [39], [118], [122]. Noise is introduced
into the input data to create more training samples and
improve the training effect of the model. Dropping training
data can be seen as introducing Bernoulli noise into data.
• Enhancing data representation. Some methods are used
to enhance data representation in pre-training phase [110],
[112], [114], [117]. These BERT [28] based methods randomly
mask part of the input data and use the unmasked part to
predict the masked part to enhance data representation.
• Preventing over-smoothing. Dropout methods in graph
neural networks can also solve the over-smoothing problem
[29]. Over-smoothing occurs when GCN is too deep that
the representation of all nodes on the graph tends to be
the same. Randomly dropping edges during training can
reduce information propagation through edges and prevent
the over-smoothing problem.

4.2 Improving Efficiency
Besides improving model effectiveness, some dropout meth-
ods can also improve model efficiency for certain tasks.
• Accelerating GCN training. In GCN scenarios, node sam-
pling technique proposed by GraphSAGE [19] efficiently
accelerates GCN training. It only needs some of the nodes
to perform the training process instead of needing all node
neighbors. Later works like FastGCN [125] and AS-GCN
[126] improve this sampling technique, making it faster or
sample in an adaptive way.
• Model compression. Some methods are used for model
compression [23], [24], [25], [66], [67], [68]. These methods
make the model structure easier to compress after random
dropout of neurons, e.g., easier to perform neural pruning.
Model compression reduces model parameters, which can
improve training efficiency and prevent overfitting.
•Model uncertainty measurement. Some methods are used
to measure the model uncertainty [26], [65], [89], [92]. These
methods view dropout as a Bayesian learning process. For
example, in Monte Carlo Dropout [26], the authors interpret
dropout as a Bayesian approximation of a deep Gaussian
process. Monte Carlo Dropout estimates the uncertainty
of the model output by performing a grid search on the
dropout rate, which is almost unusable for deeper models
(those in computer vision tasks) and reinforcement learning
models because of the excessive computational time and
computational resources consumed. Thanks to the develop-
ment of Bayesian learning, Concrete Dropout [65] uses a
continuous relaxation of the dropout discrete mask. A new
objective function is proposed to automatically adjust the
dropout rate on large models, reducing the time required
for experiments. It also allows the agent in reinforcement
learning to dynamically adjust its uncertainty as the training
process proceeds and more training data is observed.

5 DROPOUT EXPERIMENTS IN RECOMMENDATION
MODELS

We have reviewed multiple types of dropout methods and
discussed their interconnections and contributions. How-
ever, each work has its own experiments to verify the effect

of its dropout method, so the methods’ effectiveness actually
has not been investigated under a unified framework and
evaluation system. In this section, we experimentally inves-
tigate four classes of dropout methods on recommendation
models. Choosing recommendation models as our experi-
ment scenario is because they utilize various heterogeneous
information, which are transformed into different forms,
from input data, to embeddings, and to model structures,
covering the range of dropout operations we reviewed in
Section 3. Such a variety of information sources and forms
provides a suitable environment for our comparisons and
verification of different dropout methods.

We first introduce the selected recommendation models,
the implementations of the four dropout methods on each
of them (Section 5.1), the datasets and experimental settings
(Section 5.2). Then, we analyze the experimental results and
present comparison to evaluate the effectiveness of each
dropout method (Section 5.3). Finally, we explore the effect
of dropout ratio on model performances (Section 5.4).

5.1 Recommendation Models and Implementations of
Dropout Methods
We choose five recommendation models belonging to four
classes:
• Traditional recommendation model: BPRMF [140]
• Neural recommendation model utilizing context in-

formation: NFM [141]
• Sequential recommendation model: GRU4Rec [49]

and SASRec [50]
• Graph recommendation model: LightGCN [52]
The four dropout methods are dropout of model struc-

ture, dropout of input information, dropout of embeddings,
and dropout of graph information. Since there are signifi-
cant differences between graph information and other input
information in recommender systems, we treat them as
different methods. We elaborate on the implementations of
the four dropout methods on each recommendation model
in Appendix B.

5.2 Datasets and Experiment Settings

TABLE 3
Dataset Statistics

#user #item #interaction density(%)

MovieLens-1M 6040 3883 1000209 4.26
ml1m-cold 6040 3883 797675 3.40
Amazon Baby 5-core 19445 7050 160792 0.117

We use two datasets for experiments: MovieLens-1M-
cold and Amazon Baby 5-core [142], [143].

MovieLens-1M-cold is obtained by artificially creating
a cold-start condition based on MovieLens-1M [144]. Each
user in MovieLens-1M has at least 20 interactions, so there
is no cold-start scenario for users. To make our experimental
environment closer to real-world recommendation, we ran-
domly select 10% of users and 10% of items and remove all
of their interactions in training set, constructing a group of
cold-start users and items. We also randomly select user and
item attributes and set the value to zero (unknown) so that
unknown attribute values in the dataset account for 10% of

PREPRINT. UNDER REVIEW. 15

Fig. 9. NDCG@10 on Amazon Baby 5-core

all attribute values. After this process, the resulting dataset
is named MovieLens-1M-cold, or ml1m-cold for short.

The statistics of the datasets are shown in Table 3. The
density of Amazon Baby 5-core is only 1/30 of ml1m-
cold. We choose a dense and a sparse dataset to make our
experiment results more general.

We consider Top-N recommendation task. The param-
eter values taken for all models in common are shown in
Table 5 in Appendix C. This ensures a consistent evalua-
tion environment and comparability of evaluation results.
According to the analysis of Krichene et al. [145], negative
sampling during testing can bias the results. Therefore, we
conduct non-sampling evaluation for all our experiments.
Parameters specific to each model are shown in Table 6 in
Appendix C. The training batch size is set to 1024 on ml1m-
cold for faster training.

We searched L2-coefficient and choose 1e−6 for all mod-
els on ml1m-cold dataset. On Amazon Baby 5-core, we
choose 1e−5 for BPR, NFM, and GRU4Rec; 1e−6 for SASRec;
and 1e−4 for LightGCN.

5.3 Results and Analysis
5.3.1 Overall Results

TABLE 4
Overall NDCG@10 results

Origin Drop Model
Structure

Drop Input
Info

Drop
Embedding

Amazon Baby 5-core
BPR 0.00969 0.00973 0.00888** 0.00916*
NFM 0.00657 0.00737** 0.00654 0.00647
GRU4Rec 0.01071 0.01146 0.01777** 0.01096
SASRec 0.01428 0.01562* 0.02143** 0.01502
LightGCN† 0.01392 0.01392 0.01275 0.01420

ml1m-cold
BPR 0.0339 0.0364** 0.0331 0.0332
NFM 0.0335 0.0353* 0.0334 0.0354**
GRU4Rec 0.0964 0.1010** 0.1084** 0.1013**
SASRec 0.1064 0.1092** 0.1093 0.1063
LightGCN† 0.0377 0.0388 0.0361** 0.0376

*: p < 0.05, **: p < 0.01, compared to the origin value (not using
any dropout methods)
†: Drop graph info for LightGCN on Amazon Baby 5-core is 0.01403,
on ml1m-cold is 0.0383

We present the overall results of NDCG@10 in Table
4, and each value in the table is the best result for one
dropout method on one model with the dropout ratio
among {0.1, 0.2, 0.3}. We plot the results in lines showing
in Figure 9 and 10. All detailed experimental results of other

Fig. 10. NDCG@10 on ml1m-cold

evaluation metrics (NDCG@5, 20, 50; HR@10, 20) and each
dropout ratio are in Appendix D.

According to the experimental results, we summarize the
effect of different dropout methods in the five recommenda-
tion models.

For traditional recommendation models that do not use
neural networks, dropping model structure can have a
regularizing effect and improve model performance. Drop-
ping input information and dropping embeddings can be
detrimental to the performance of the model.

For neural network models using contextual informa-
tion, both dropping model structure and dropping embed-
dings can improve the model performance. This can be
because the former acts as a regularizer, and the latter allows
the model to take advantage of multiple aspects of informa-
tion to better cope with cold start situations. Dropping input
information does not affect model effectiveness.

For sequential models, all three dropout methods lead to
improved model effects. Among them, dropping input in-
formation has the most significant improvement if dropout
ratio is properly chosen. This is because dropping items
in input sequences can be viewed as a type of sequence
augmentation [146]. Dropping model structure has the most
stable improvement. Dropping embeddings also allows the
model to get improved or, at least, remain unchanged.

For the graph recommendation model, this paper only
explores the lightweight model LightGCN, which contains a
small quantity of parameters thus does not require too much
regularization according to the original paper. So all the four
dropout methods do not affect the model performance, or
even have a detrimental effect.

5.3.2 Discussion on the Applications of the Four Dropout
Methods
As described in Section 3, the four dropout methods belong
to different levels and may have different contributions,
and Section 5.3.1 shows their performances vary in different
scenarios. Therefore, it is not feasible to simply determine
which of them is better or worse generally, but we can ana-
lyze their features. This section provides some analysis and
discussions on the properties of the four dropout methods.

Dropping model structure is the most stable dropout
method in our experiment. It makes the model performance
gain or at least unchanged for all models, where most of
them have significant improvement. This reveals that this
classical dropout method is still the most effective way
of regularization, and dropout according to the structural
properties of the model can achieve good results, except for

PREPRINT. UNDER REVIEW. 16

Fig. 11. Effect of dropout ratio on Amazon Baby 5-core

the model with very few parameters (like LightGCN) which
does not need much regularization.

Dropping input information has significant side effects
on the performance of traditional models and graph recom-
mendation models, and has no effect on the neural model
utilizing contextual information. This indicates that recom-
mendation models utilizing less information and having
fewer parameters, such as BPRMF and LightGCN in this
paper, do not need too much regularization, and dropping
input information will harm their performances. However, it
significantly improves sequential recommendation models
and is the most effective one among the four methods. This
is because dropping input information of sequential models
can be viewed as a way of sequence augmentation.

Dropping embedding has no significant effect on model
performance in most cases, while slightly improves NFM.
The method of embedding dropout is from [21], [22], which
use the attention mechanism to make the model select the
information to be exploited automatically. Then the model
can automatically rely on the information that is kept after
dropping part of the embeddings. In contrast, the model
used in this experiment does not have this attention mecha-
nism, so the improving effect is limited.

For dropping edges in graph, there is neither an im-
provement nor a decrease on model performance. This is
determined by the nature of LightGCN [52], which only has
a small quantity of parameters. Dropping edges or nodes
may be effective to other models with a larger number of
parameters such as NGCF [147].

5.4 Effect of Dropout Ratio
In this section, we analyze the parameter sensitivity: how
does dropout ratio affect model performances?

For each dataset, each model, and each evaluation met-
ric, we test dropout ratios of {0.1, 0.2, 0.3}. We plotted the
values of NDCG@10 in Figure 11 and 12.

As can be seen in Figure 11 and 12, the orange line keeps
staying above the blue line, indicating that dropping model
structure almost always leads to a stable improvement on
model performances. For the two sequential recommenda-
tion models, GRU4Rec and SASRec, the red line is higher

Fig. 12. Effect of dropout ratio on ml1m-cold

than the other three colored lines, indicating that dropping
input information has the most significant improvement ef-
fect on sequential recommendation models, when choosing
dropout ratio properly. The appropriate range of dropout
rate for SASRec on ml1m-cold is low, and 0.2 and 0.3 are too
large, causing its performance to decline. The purple line
improves NFM on ml1m-cold because ml1m-cold contains
rich contextual information, and dropping embeddings al-
lows NFM to utilize multifaceted information more robustly.

6 FUTURE DIRECTIONS

Based on our review and experiments, in this section, we
further discuss several topics about dropout and analyzes
some potential research directions in this field.

6.1 Transfer of Dropout Strategies in Different Domains
Most dropout methods that drop input information are
domain specific, designed for a certain domain like NLP or
CV, as we have reviewed in Section 3.3. However recently,
MAE [124] brought the randomly masking strategy from
NLP pre-training to CV and achieved good results. Some
dropout methods dropping model structure are also linked
to the ideas of other domain. SimCSE [70] adopted dropout
in NLP self-supervised learning tasks, in a way like the data
augmentation techniques in self-supervised learning in CV.
This indicates that the applications of dropout methods in
different domain could be embarking on similar trajectories.

6.2 Selection of Dropout Methods
Though specific dropout methods achieve impressive im-
provement on certain neural models, deciding which type
of dropout method to use is not an easy task. Based on our
experimental results in Section 5, distinct dropout methods
work best for various types of models, like dropping input
information for sequential recommendation models, drop-
ping embedding for recommendation models that utilize
contextual information, and dropping model structure for
all models. But can we determine which dropout method
should be used according to the characteristic of the model
before we conduct experiments? If so, lots of time on enu-
merating dropout methods during training could be saved.

PREPRINT. UNDER REVIEW. 17

6.3 Hyperparameter Optimization of Dropout
In the beginning, dropout methods require manually set-
ting dropout ratio and patterns. Standard Dropout [5] and
DropConnect [33] need manually setting dropout ratio, and
the dropout patterns of the methods like DropBlock [36]
and GridMask [39] need to be deliberately designed. Some
later methods make progress to automate this process to
some extent. As more data is exposed throughout the train-
ing process, Variational Dropout [62], Concrete Dropout
[65], and Curriculum Dropout [35] can automatically ad-
just dropout ratio towards more suitable values. Instead
of randomly dropping neurons, Targeted Dropout [25] and
Ising-Dropout [67] calculate the most suitable neurons to
drop, making the dropout pattern design more automatic.
AutoDropout [78] uses reinforcement learning to train a
controller, which decides the dropout patterns in CNN and
Transformers. In the future, more efficient ways of optimiz-
ing dropout hyperparameters could be explored.

6.4 Efficient Dropout
Besides effectiveness, efficiency is also needed to be con-
sidered when using dropout, since the dropout operation
itself takes time. Some aforementioned methods in Section 3
add additional attention parts to calculate dropout patterns,
which may prolong the training time; edge dropping opera-
tion in Section 5 slows down the training; and the methods
that use reinforcement learning [78] requires excessive com-
putational time and resources.

Fast Dropout [60] takes the first step of improving the
efficiency of dropout operation itself, and many methods
have tried to improve dropout efficiency: Concrete Dropout
optimizes the model uncertainty estimation process of
Monte Carlo Dropout; the series of GCN-based dropout
methods [19], [126], [129] have been making improvement
on node-dropping training. However, as more complicated
and time-consuming techniques like reinforcement learning
have been adopted for dropout, improving their efficiency
to speed up the dropout operation is still worth to be further
explored.

6.5 Understanding Dropout Theoretically
The effectiveness of dropout has been irrefutably verified by
experiments of hundreds of works. However, mathematical
proofs of the validity of dropout has been rare. Baldi and
Sadowski in 2013 gave a mathematical formality of dropout
and use it to analyze the averaging and regularization
properties of dropout [148]. Gal and Ghahramani in 2016
cast dropout network training as approximate inference
of Bayesian neural networks, achieving a significant im-
provement in experiment results without increasing time
complexity [149]. Gal and Ghahramani’s other works [26],
[79] also perform mathematical derivation on the validity
of proposed dropout methods. In the future, proving the
effectiveness of dropout not only from intuitive explanation
and experimental verification but also from mathematical
proof could be a challenging research direction.

7 CONCLUSIONS

In this paper, we investigate more than seventy dropout
methods in neural network models and classify them into

three major categories and six subcategories according to the
stage where the dropout operation is performed. We discuss
their applications in neural models, their contributions and
interconnections.

We conduct experiments on five recommendation mod-
els to verify the effectiveness of each type of dropout
method under our classification framework, and find that
dropping model structure has the most general and stable
improvement effect on the models, while dropping input
information and dropping embeddings are model-specific.

Finally, we present some open problems and potential
research directions, hoping to promote the research in this
field. Dropout methods are basic and universally used
training techniques in today’s neural model, helping with
our steps towards better machine learning and artificial
intelligence. We hope this survey paper can help readers
better understand the works in this research area.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and
Development Program of China (2018YFC0831900), Natural
Science Foundation of China (Grant No. 62002191, 61672311,
61532011) and Tsinghua University Guoqiang Research In-
stitute.

REFERENCES

[1] T. Dietterich, “Overfitting and undercomputing in machine learn-
ing,” ACM computing surveys (CSUR), vol. 27, pp. 326–327, 1995.

[2] T. Van Laarhoven, “L2 regularization versus batch and weight
normalization,” arXiv:1706.05350, 2017.

[3] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML.
PMLR, 2015, pp. 448–456.

[4] T. Salimans and D. P. Kingma, “Weight normalization: a simple
reparameterization to accelerate training of deep neural net-
works,” in 30th NeurIPS, 2016, pp. 901–909.

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv:1207.0580, 2012.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” JMLR, vol. 15, pp. 1929–1958, 2014.

[7] L. J. Ba and B. Frey, “Adaptive dropout for training deep neural
networks,” in 26th NeurIPS-Volume 2, 2013, pp. 3084–3092.

[8] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler,
“Efficient object localization using convolutional networks,” in
CVPR, 2015, pp. 648–656.

[9] H. Wu and X. Gu, “Towards dropout training for convolutional
neural networks,” Neural Networks, vol. 71, no. C, pp. 1–10, 2015.

[10] S. Park and N. Kwak, “Analysis on the dropout effect in convolu-
tional neural networks,” in ACCV. Springer, 2016, pp. 189–204.

[11] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in ECCV, 2016, pp. 646–661.

[12] G. Kang, J. Li, and D. Tao, “Shakeout: a new regularized deep
neural network training scheme,” in 30th AAAI, 2016.

[13] Y. Li and F. Liu, “Whiteout: Gaussian adaptive noise regulariza-
tion in deep neural networks,” arXiv:1612.01490, 2016.

[14] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout
improves recurrent neural networks for handwriting recogni-
tion,” in 14th ICFHR. IEEE, 2014, pp. 285–290.

[15] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural
network regularization,” arXiv:1409.2329, 2014.

[16] T. Moon, H. Choi, H. Lee, and I. Song, “Rnndrop: A novel
dropout for rnns in asr,” in IEEE Workshop on ASRU, 2015.

[17] R. Sennrich, B. Haddow, and A. Birch, “Edinburgh neural ma-
chine translation systems for wmt 16,” in WMT16, 2016.

[18] T. DeVries and G. W. Taylor, “Improved regularization of convo-
lutional neural networks with cutout,” arXiv:1708.04552, 2017.

PREPRINT. UNDER REVIEW. 18

[19] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in 31st NeurIPS, 2017.

[20] M. Volkovs, G. Yu, and T. Poutanen, “Dropoutnet: addressing
cold start in recommender systems,” in 31st NeurIPS, 2017.

[21] S. Shi, M. Zhang, Y. Liu, and S. Ma, “Attention-based adaptive
model to unify warm and cold starts recommendation,” in 27th
ACM CIKM, 2018, pp. 127–136.

[22] S. Shi, M. Zhang, X. Yu, Y. Zhang, B. Hao, Y. Liu, and S. Ma,
“Adaptive feature sampling for recommendation with missing
content feature values,” in 28th ACM CIKM, 2019, pp. 1451–1460.

[23] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout
sparsifies deep neural networks,” in 34th ICML, 2017.

[24] K. Neklyudov, D. Molchanov, A. Ashukha, and D. Vetrov, “Struc-
tured bayesian pruning via log-normal multiplicative noise,” in
31st NeurIPS, 2017, pp. 6778–6787.

[25] A. N. Gomez, I. Zhang, K. Swersky, Y. Gal, and G. E. Hinton,
“Targeted dropout,” 2018 CDNNRIA Workshop at the 32nd Confer-
ence on NeurIPS, 2018.

[26] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning,” in ICML.
PMLR, 2016, pp. 1050–1059.

[27] X. Bouthillier, K. Konda, P. Vincent, and R. Memisevic, “Dropout
as data augmentation,” arXiv:1506.08700, 2015.

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proceedings of NAACL-HLT, 2019, pp. 4171–4186.

[29] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards
deep graph convolutional networks on node classification,” in
ICLR, 2019.

[30] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in 22nd
ACM SIGKDD, 2016, pp. 353–362.

[31] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph
based recommendation fusion over heterogeneous information
networks,” in 23rd ACM SIGKDD, 2017, pp. 635–644.

[32] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging meta-
path based context for top-n recommendation with a neural co-
attention model,” in 24th ACM SIGKDD, 2018, pp. 1531–1540.

[33] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regular-
ization of neural networks using dropconnect,” in ICML, 2013.

[34] S. J. Rennie, V. Goel, and S. Thomas, “Annealed dropout training
of deep networks,” in SLT Workshop. IEEE, 2014, pp. 159–164.

[35] P. Morerio, J. Cavazza, R. Volpi, R. Vidal, and V. Murino, “Cur-
riculum dropout,” in IEEE ICCV, 2017, pp. 3544–3552.

[36] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: a regularization
method for convolutional networks,” in 32nd NeurIPS, 2018.

[37] S. Semeniuta, A. Severyn, and E. Barth, “Recurrent dropout
without memory loss,” in COLING, 2016, pp. 1757–1766.

[38] Y. Yamada, M. Iwamura, T. Akiba, and K. Kise, “Shakedrop
regularization for deep residual learning,” IEEE Access, vol. 7,
pp. 186 126–186 136, 2019.

[39] P. Chen, S. Liu, H. Zhao, and J. Jia, “Gridmask data augmenta-
tion,” arXiv:2001.04086, 2020.

[40] A. Labach, H. Salehinejad, and S. Valaee, “Survey of dropout
methods for deep neural networks,” arXiv:1904.13310, 2019.

[41] G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions,” TKDE, vol. 17, no. 6, pp. 734–749, 2005.

[42] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, 2009.

[43] Z. Li, J. Tang, and T. Mei, “Deep collaborative embedding for
social image understanding,” TPAMI, vol. 41, no. 9, 2018.

[44] Z. Sun, Q. Guo, J. Yang, H. Fang, G. Guo, J. Zhang, and R. Burke,
“Research commentary on recommendations with side infor-
mation: A survey and research directions,” Electronic Commerce
Research and Applications, vol. 37, p. 100879, 2019.

[45] P. Massa and P. Avesani, “Trust-aware recommender systems,” in
ACM RecSys, 2007, pp. 17–24.

[46] M. Jamali and M. Ester, “Trustwalker: a random walk model for
combining trust-based and item-based recommendation,” in 15th
ACM SIGKDD, 2009, pp. 397–406.

[47] L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling of users
and items using reviews for recommendation,” in WSDM, 2017.

[48] Y. Xu, Y. Yang, J. Han, E. Wang, F. Zhuang, and H. Xiong,
“Exploiting the sentimental bias between ratings and reviews for
enhancing recommendation,” in ICDM, 2018, pp. 1356–1361.

[49] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-
based recommendations with recurrent neural networks,”
arXiv:1511.06939, 2015.

[50] W.-C. Kang and J. McAuley, “Self-attentive sequential recommen-
dation,” in ICDM. IEEE, 2018, pp. 197–206.

[51] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, “Knowledge graph
convolutional networks for recommender systems,” in WWW’19.

[52] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Light-
gcn: Simplifying and powering graph convolution network for
recommendation,” in 43rd ACM SIGIR, 2020, pp. 639–648.

[53] Y. Xu, L. Zhu, Z. Cheng, J. Li, Z. Zhang, and H. Zhang, “Multi-
modal discrete collaborative filtering for efficient cold-start rec-
ommendation,” TKDE, 2021.

[54] T. Qian, Y. Liang, Q. Li, and H. Xiong, “Attribute graph neural
networks for strict cold start recommendation,” TKDE, 2020.

[55] Y. Zhu, J. Lin, S. He, B. Wang, Z. Guan, H. Liu, and D. Cai, “Ad-
dressing the item cold-start problem by attribute-driven active
learning,” TKDE, vol. 32, no. 4, pp. 631–644, 2019.

[56] Y. Zhang, I. Tsang, H. Yin, G. Yang, D. Lian, and J. Li, “Deep
pairwise hashing for cold-start recommendation,” TKDE, 2020.

[57] J. Li, K. Lu, Z. Huang, and H. T. Shen, “On both cold-start and
long-tail recommendation with social data,” TKDE, vol. 33, no. 1,
pp. 194–208, 2019.

[58] Y. Lu, Y. Fang, and C. Shi, “Meta-learning on heterogeneous
information networks for cold-start recommendation,” in 26th
ACM SIGKDD, 2020, pp. 1563–1573.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” Advances in
NeurIPS, vol. 25, pp. 1097–1105, 2012.

[60] S. Wang and C. Manning, “Fast dropout training,” in ICML, 2013.
[61] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and

Y. Bengio, “Maxout networks,” in ICML, 2013, pp. 1319–1327.
[62] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout

and the local reparameterization trick,” in NeurIPS, 2015.
[63] L. N. Smith, E. M. Hand, and T. Doster, “Gradual dropin of layers

to train very deep neural networks,” in CVPR, 2016.
[64] Z. Li, B. Gong, and T. Yang, “Improved dropout for shallow and

deep learning,” in 30th NeurIPS, 2016, pp. 2531–2539.
[65] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in 31st

NeurIPS, 2017, pp. 3584–3593.
[66] A. N. Gomez, I. Zhang, S. R. Kamalakara, D. Madaan, K. Swersky,

Y. Gal, and G. E. Hinton, “Learning sparse networks using
targeted dropout,” arXiv:1905.13678, 2019.

[67] H. Salehinejad and S. Valaee, “Ising-dropout: A regularization
method for training and compression of deep neural networks,”
in ICASSP. IEEE, 2019, pp. 3602–3606.

[68] H. Salehinejȧd and S. Valaee, “Edropout: Energy-based dropout
and pruning of deep neural networks,” IEEE TNNLS, 2021.

[69] Z. Lu, C. Xu, B. Du, T. Ishida, L. Zhang, and M. Sugiyama,
“Localdrop: A hybrid regularization for deep neural networks,”
IEEE TPAMI, 2021.

[70] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning
of sentence embeddings,” arXiv:2104.08821, 2021.

[71] R. Xu, F. Luo, Z. Zhang, C. Tan, B. Chang, S. Huang, and
F. Huang, “Raise a child in large language model: Towards
effective and generalizable fine-tuning,” in EMNLP, 2021.

[72] X. Liang, L. Wu, J. Li, Y. Wang, Q. Meng, T. Qin, W. Chen,
M. Zhang, and T.-Y. Liu, “R-drop: Regularized dropout for neural
networks,” arXiv:2106.14448, 2021.

[73] Y. Chen and Z. Yi, “Adaptive sparse dropout: Learning the
certainty and uncertainty in deep neural networks,” Neurocom-
puting, vol. 450, pp. 354–361, 2021.

[74] S. Khan, M. Hayat, and F. Porikli, “Regularization of deep neural
networks with spectral dropout.” Neural Networks: the Official
Journal of the INNS, vol. 110, pp. 82–90, 2018.

[75] S. Cai, Y. Shu, G. Chen, B. C. Ooi, W. Wang, and M. Zhang,
“Effective and efficient dropout for deep convolutional neural
networks,” arXiv:1904.03392, 2019.

[76] S. Hou and Z. Wang, “Weighted channel dropout for regular-
ization of deep convolutional neural network,” in AAAI, vol. 33,
no. 01, 2019, pp. 8425–8432.

[77] Y. Zeng, T. Dai, B. Chen, S.-T. Xia, and J. Lu, “Correlation-based
structural dropout for convolutional neural networks,” Pattern
Recognition, p. 108117, 2021.

[78] H. Pham and Q. Le, “Autodropout: Learning dropout patterns to
regularize deep networks,” in AAAI, vol. 35, no. 11, 2021.

PREPRINT. UNDER REVIEW. 19

[79] Y. Gal and Z. Ghahramani, “A theoretically grounded application
of dropout in recurrent neural networks,” in 30th NeurIPS, 2016.

[80] D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R.
Ke, A. Goyal, Y. Bengio, A. Courville, and C. Pal, “Zoneout:
Regularizing rnns by randomly preserving hidden activations,”
arXiv:1606.01305, 2016.

[81] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and opti-
mizing lstm language models,” in ICLR, 2018.

[82] K. Zolna, D. Arpit, D. Suhubdy, and Y. Bengio, “Fraternal
dropout,” in ICLR, 2018.

[83] S. Singh, D. Hoiem, and D. Forsyth, “Swapout: learning an
ensemble of deep architectures,” in 30th NeurIPS, 2016, pp. 28–36.

[84] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-
deep neural networks without residuals,” arXiv:1605.07648, 2016.

[85] X. Gastaldi, “Shake-shake regularization,” arXiv:1705.07485,
2017.

[86] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transfer-
able architectures for scalable image recognition,” in IEEE CVPR,
2018, pp. 8697–8710.

[87] W. Zhou, T. Ge, F. Wei, M. Zhou, and K. Xu, “Scheduled drop-
head: A regularization method for transformer models,” in 2020
EMNLP: Findings, 2020, pp. 1971–1980.

[88] H. Zhou, Z. Li, C. Ning, and J. Tang, “Cad: Scale invariant
framework for real-time object detection,” in ICCV Workshops.
IEEE, 2017, pp. 760–768.

[89] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, De-
partment of Engineering, University of Cambridge, Sept. 2016.

[90] L. Zhu and N. Laptev, “Deep and confident prediction for time
series at uber,” in ICDM Workshop. IEEE, 2017, pp. 103–110.

[91] A. Jungo, R. McKinley, R. Meier, U. Knecht, L. Vera, J. Pérez-
Beteta, D. Molina-Garcı́a, V. M. Pérez-Garcı́a, R. Wiest, and
M. Reyes, “Towards uncertainty-assisted brain tumor segmenta-
tion and survival prediction,” in International MICCAI Brainlesion
Workshop. Springer, 2017, pp. 474–485.

[92] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensem-
bles,” in 31st NeurIPS, 2017, pp. 6405–6416.

[93] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in 26th ICML, 2009, pp. 41–48.

[94] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” arXiv:1510.00149, 2015.

[95] O. İrsoy and E. Alpaydın, “Dropout regularization in hierarchical
mixture of experts,” Neurocomputing, vol. 419, pp. 148–156, 2021.

[96] M. K. Titsias and A. Likas, “Mixture of experts classification using
a hierarchical mixture model,” Neural Computation, vol. 14, no. 9,
pp. 2221–2244, 2002.

[97] G.-J. Qi, “Hierarchically gated deep networks for semantic seg-
mentation,” in IEEE CVPR, 2016, pp. 2267–2275.

[98] E. Ragusa, C. Gianoglio, R. Zunino, and P. Gastaldo, “Random-
based networks with dropout for embedded systems,” Neural
Computing and Applications, vol. 33, no. 12, pp. 6511–6526, 2021.

[99] M. Pachitariu and M. Sahani, “Regularization and nonlinear-
ities for neural language models: when are they needed?”
arXiv:1301.5650, 2013.

[100] J. Bayer, C. Osendorfer, D. Korhammer, N. Chen, S. Urban, and
P. van der Smagt, “On fast dropout and its applicability to
recurrent networks,” arXiv:1311.0701, 2013.

[101] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[102] T. Bluche, C. Kermorvant, and J. Louradour, “Where to apply
dropout in recurrent neural networks for handwriting recogni-
tion?” in 2015 13th ICDAR. IEEE, 2015, pp. 681–685.

[103] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,”
in NeurIPS Workshop on Deep Learning, 2014.

[104] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen net-
zen,” Master’s thesis, Institut für Informatik, Technische Univer-
sität München, 1991.

[105] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE transactions
on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[106] G. Melis, C. Dyer, and P. Blunsom, “On the state of the art of
evaluation in neural language models,” in ICLR, 2018.

[107] X. Ma, Y. Gao, Z. Hu, Y. Yu, Y. Deng, and E. Hovy, “Dropout with
expectation-linear regularization,” arXiv:1609.08017, 2016.

[108] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE CVPR, 2016, pp. 770–778.

[109] M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Mask-
predict: Parallel decoding of conditional masked language mod-
els,” in EMNLP-IJCNLP, 2019, pp. 6114–6123.

[110] Y. Sun, S. Wang, Y. Li, S. Feng, X. Chen, H. Zhang, X. Tian, D. Zhu,
H. Tian, and H. Wu, “Ernie: Enhanced representation through
knowledge integration,” arXiv:1904.09223, 2019.

[111] Y. Cui, W. Che, T. Liu, B. Qin, Z. Yang, S. Wang, and G. Hu,
“Pre-training with whole word masking for chinese bert,”
arXiv:1906.08101, 2019.

[112] X. Wu, T. Zhang, L. Zang, J. Han, and S. Hu, “” mask and
infill”: Applying masked language model to sentiment transfer,”
arXiv:1908.08039, 2019.

[113] Z.-X. Ye, Q. Chen, W. Wang, and Z.-H. Ling, “Align, mask and
select: A simple method for incorporating commonsense knowl-
edge into language representation models,” arXiv:1908.06725,
2019.

[114] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “Pegasus: Pre-training
with extracted gap-sentences for abstractive summarization,” in
ICML. PMLR, 2020, pp. 11 328–11 339.

[115] H. Zhang, S. Qiu, X. Duan, and M. Zhang, “Token drop mecha-
nism for neural machine translation,” in 28th COLING, 2020, pp.
4298–4303.

[116] Y. Gu, Z. Zhang, X. Wang, Z. Liu, and M. Sun, “Train no evil:
Selective masking for task-guided pre-training,” in 2020 EMNLP,
2020, pp. 6966–6974.

[117] K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang,
Z. Wang, and J.-R. Wen, “S3-rec: Self-supervised learning for
sequential recommendation with mutual information maximiza-
tion,” in 29th ACM CIKM, 2020, pp. 1893–1902.

[118] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” in AAAI, vol. 34, no. 07, 2020.

[119] K. K. Singh and Y. J. Lee, “Hide-and-seek: Forcing a network to be
meticulous for weakly-supervised object and action localization,”
in 2017 IEEE ICCV. IEEE Computer Society, 2017, pp. 3544–3553.

[120] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” arXiv:1710.09412, 2017.

[121] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas,
D. Lopez-Paz, and Y. Bengio, “Manifold mixup: Better represen-
tations by interpolating hidden states,” in ICML, 2019.

[122] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in IEEE/CVF ICCV, 2019, pp. 6023–6032.

[123] D. Walawalkar, Z. Shen, Z. Liu, and M. Savvides, “Attentive
cutmix: An enhanced data augmentation approach for deep
learning based image classification,” in ICASSP, 2020.

[124] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick,
“Masked autoencoders are scalable vision learners,” arXiv
preprint arXiv:2111.06377, 2021.

[125] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph
convolutional networks via importance sampling,” in ICLR, 2018.

[126] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling
towards fast graph representation learning,” in 32nd NeurIPS,
2018, pp. 4563–4572.

[127] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” arXiv:1710.10903, 2017.

[128] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-
dependent importance sampling for training deep and large
graph convolutional networks,” Advances in NeurIPS, 2019.

[129] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang,
E. Kharlamov, and J. Tang, “Graph random neural networks for
semi-supervised learning on graphs,” NeurIPS, 2020.

[130] Y. Ye and S. Ji, “Sparse graph attention networks,” TKDE, 2021.
[131] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in 31st NeurIPS, 2017, pp. 6000–6010.

[132] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: an open
multilingual graph of general knowledge,” in AAAI, 2017.

[133] C. Wang, Y. Wu, Y. Du, J. Li, S. Liu, L. Lu, S. Ren, G. Ye, S. Zhao,
and M. Zhou, “Semantic mask for transformer based end-to-end
speech recognition,” Proc. Interspeech 2020, pp. 971–975, 2020.

[134] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le,
“Autoaugment: Learning augmentation strategies from data,” in
IEEE/CVF CVPR. IEEE Computer Society, 2019, pp. 113–123.

PREPRINT. UNDER REVIEW. 20

[135] Y. Weng, X. Chen, L. Chen, and L. Wei, “Gain: Graph attention &
interaction network for inductive semi-supervised learning over
large-scale graphs,” TKDE, 2020.

[136] Z. Huan, Y. Quanming, and T. Weiwei, “Search to aggregate
neighborhood for graph neural network,” in 37th ICDE, 2021.

[137] Z. Wang, T. Xia, R. Jiang, X. Liu, K.-S. Kim, X. Song, and
R. Shibasaki, “Forecasting ambulance demand with profiled hu-
man mobility via heterogeneous multi-graph neural networks,”
in 37th ICDE. IEEE, 2021, pp. 1751–1762.

[138] S. Wager, S. Wang, and P. Liang, “Dropout training as adaptive
regularization,” in 26th NeurIPS-Volume 1, 2013, pp. 351–359.

[139] D. P. Helmbold and P. M. Long, “On the inductive bias of
dropout,” JMLR, vol. 16, no. 1, pp. 3403–3454, 2015.

[140] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“Bpr: Bayesian personalized ranking from implicit feedback,” in
25th UAI, 2009, pp. 452–461.

[141] X. He and T.-S. Chua, “Neural factorization machines for sparse
predictive analytics,” in 40th ACM SIGIR, 2017, pp. 355–364.

[142] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-
based recommendations on styles and substitutes,” in 38th ACM
SIGIR, 2015, pp. 43–52.

[143] R. He and J. McAuley, “Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering,”
in 25th WWW, 2016, pp. 507–517.

[144] F. M. Harper and J. A. Konstan, “The movielens datasets: History
and context,” ACM TIIS, vol. 5, no. 4, pp. 1–19, 2015.

[145] W. Krichene and S. Rendle, “On sampled metrics for item recom-
mendation,” in 26th ACM SIGKDD, 2020, pp. 1748–1757.

[146] Z. Liu, Z. Fan, Y. Wang, and P. S. Yu, “Augmenting sequential rec-
ommendation with pseudo-prior items via reversely pre-training
transformer,” arXiv:2105.00522, 2021.

[147] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in 42nd ACM SIGIR, 2019, pp. 165–174.

[148] P. Baldi and P. Sadowski, “Understanding dropout,” in 26th
NeurIPS-Volume 2, 2013, pp. 2814–2822.

[149] Y. Gal and Z. Ghahramani, “Bayesian convolutional neural
networks with bernoulli approximate variational inference,”
arXiv:1506.02158, 2015.

Yangkun Li is currently pursuing a Ph.D. de-
gree in Department of Computer Science and
Technology at Tsinghua University. He received
his B.E. from Department of Computer Science
and Technology, Tsinghua University in 2021.
His research interests focus on personalized rec-
ommender systems, user modeling, and data
mining.

Weizhi Ma is currently a research assistant pro-
fessor at the Institute for AI Industry Research
(AIR), Tsinghua University. He received his
Ph.D. from Tsinghua University in 2019. His ma-
jor research interests are in recommender sys-
tems, user modeling, and information retrieval.
He has served as PC member for top confer-
ences including KDD, WSDM, AAAI, theWeb-
Conf, SIGIR, EMNLP, COLING, and CIKM, and
as reviewer for journals including TKDE, TOIS,
and TNNLS.

Chong Chen is now a final year Ph.D. student
in Dept. of Computer Science and Technology in
Tsinghua University. He received his B.E. from
Tsinghua University in 2017. He has over 10
publications appeared in top conferences and
journals including AAAI, WSDM, theWebConf,
SIGIR, and TOIS. His research interests include
deep learning, user modeling, and recommen-
dation.

Min Zhang is currently an associate professor
of Dept. of Computer Science and Technology,
Tsinghua University. She received her Ph.D. in
Tsinghua University in 2003. Her research inter-
ests include web information retrieval and rec-
ommendation, user behavior analysis and pro-
filing, machine learning, and data mining. She
is currently serving as Editor-in-Chief of ACM
TOIS, and has served as co-chair, senoir PC
member, or area chair for top conferences in-
cluding WSDM, theWebConf, SIGIR, and CIKM.

Yiqun Liu is working as a professor and de-
partment co-chair at Dept. of Computer Science
and Technology in Tsinghua University. He re-
ceived his Ph.D. in Tsinghua University in 2007.
His major research interests are in web search,
user behavior analysis, and information retrieval.
He serves as co-Editor-in-Chief of FnTIR and
has served as co-chair, senior PC member, or
area chair for top conferences including IJCAI,
theWebConf, SIGIR, CIKM, and NTCIR.

Shaoping Ma is a professor of Dept. of Com-
puter Science and Technology in Tsinghua Uni-
versity. He received his Ph.D. in Tsinghua Uni-
versity in 1997. He devotes his life to exploring
and researching intelligent information process-
ing, including information retrieval, recommen-
dation and machine learning. He has authored
over 300 book chapters, journals, and top con-
ference papers in his research area.

Yuekui Yang is currently pursuing an Eng.D.
degree in Department of Computer Science and
Technology, Tsinghua University. He received
his B.E. from Taiyuan University of Technology
in 2006. His research interests focus on recom-
mendation systems and computational advertis-
ing. He is now working as a director in Tencent
AI Platform Department.

PREPRINT. UNDER REVIEW. 21

Fig. 13. Dropout on BPR.

APPENDIX A
PROTOCOL USED IN THE SELECTION PROCESS OF
THE ARTICLES IN THIS SURVEY

We searched with the query “dropout” on Google Scholar,
selected the papers that were about dropout methods in
neural models by checking the title and abstract of the
articles, and we got around 200 articles. We further con-
sidered each article carefully, selecting the articles that met
the following requirements:
• The article was published on top AI conferences or

journals.
• The article had proposed new dropout methods, not

just applied existing dropout methods.
• Some articles available on arxiv but not published on

conferences or journals, which have proposed good dropout
methods with some citations, were also included.

Then we checked the references of these articles, added
the articles they cited and meeting the above requirements
but missed by the search engine into our list. In this way, we
finally got the current about 80 articles.

We sort the articles first according to our classification
taxonomy. Within the same category, the articles are sorted
mainly based on their publication date. Some highly related
papers which are introduced together are placed in adjacent
positions.

APPENDIX B
IMPLEMENTATION DETAILS OF DROPOUT METHODS
ON RECOMMENDATION MODELS

We first introduce the criterion we adopt to select the
implementations of dropout methods, then we introduce
the implementation details of dropout methods on each
recommendation model.

B.1 Criterion of the Implementations

For dropping model structures, we implement dropout ac-
cording to the original papers of the recommendation mod-
els: NFM [141], GRU4Rec [49], SASRec [50], and LightGCN
[52]. Because dropping model structure is a universal type
of dropout, all the neural recommendation models have
the corresponding implementations. The original paper of
BPR [140] is published before dropout was proposed, so
we randomly drops the parameters in BPR model, which is
consistent with the definition of dropping model structure.
Our implementation of dropping graph information is also

Fig. 14. Dropout on NFM.

according to the original paper of LightGCN, which referred
its implementation to NGCF [147].

For dropping embeddings, we implement dropout ac-
cording to the original papers (ACCM [21] and AFS [22])
where embedding dropout was first proposed as a formal
method.

For dropping input information, we implement dropout
according to the definition of “input information” in recom-
mendation models, i.e., user ids, item ids, and features.

Following subsections are the implementation details of
dropout methods on each recommendation model.

B.2 Dropout on BPR

• Drop model structure: standard dropout, achieved by
adding a dropout layer after the user and item embedding
matrix.
• Drop input information: randomly set some of the user
and item numbers in each batch to random numbers.
•Drop embedding: randomly set the user and item embed-
dings in each batch to random embeddings.

The schematic diagram is shown in figure 13. The ¬

in the figure indicates the dropout of model structure,

indicates the dropout of input information, and ® indicates
the dropout of embeddings.

B.3 Dropout on NFM

• Drop model structure: standard dropout, achieved by
adding a dropout layer after the ReLU layer in the deep
part.
• Drop input information: randomly drops the attribute
information of users and items in each batch by setting them
to random values.
• Drop embedding: randomly drops the embeddings corre-
sponding to the attribute information of users and items in
each batch by setting them to random embeddings.

The schematic diagram is shown in figure 14. The ¬

in the figure indicates the dropout of model structure,

indicates the dropout of input information, and ® indicates
the dropout of embeddings.

PREPRINT. UNDER REVIEW. 22

Fig. 15. Dropout on GRU4Rec.

Fig. 16. Dropout on SASRec.

B.4 Dropout on GRU4Rec

•Drop model structure: randomly dropout of feed-forward
connections, following Zaremba et al. [15].
• Drop input information: randomly set some of the user
and item numbers in each batch to random numbers.
•Drop embedding: randomly set the user and item embed-
dings in each batch to random embeddings.

The schematic diagram is shown in figure 15. The ¬

in the figure indicates the dropout of model structure,

indicates the dropout of input information, and ® indicates
the dropout of embeddings.

B.5 Dropout on SASRec

• Drop model structure: adding dropout layers within the
self-attentive block to dropout neuron outputs, following
the original article [50].
• Drop input information: randomly set some of the user
and item numbers in each batch to random numbers.
•Drop embedding: randomly set the user and item embed-
dings in each batch to random embeddings.

The schematic diagram is shown in figure 16. The ¬

in the figure indicates the dropout of model structure,

indicates the dropout of input information, and ® indicates
the dropout of embeddings.

B.6 Dropout on LightGCN

• Drop model structure: add a dropout layer after the user-
item embedding matrix.
• Drop input information: randomly set some of the user
and item numbers in each batch to random numbers.

Fig. 17. Dropout on LightGCN.

•Drop embedding: randomly set the user and item embed-
dings in each batch to random embeddings.
• Drop graph information: for each batch, randomly drop
some edges in the graph. This can be achieved by randomly
dropping elements of the symmetrically normalized adja-
cency matrix Ã [52].

The schematic is shown in figure 17. The ¬ in the figure
indicates the dropout of model structure, indicates the
dropout of input information, ® indicates the dropout of
embeddings, and ¯ indicates the dropout of the edges.

APPENDIX C
EXPERIMENTAL SETTINGS AND MODEL PARAME-
TERS

Parameter values taken for all models in common are shown
in Table 5. Parameters specific to each model are shown in
Table 6.

TABLE 5
Global Parameters

Parameter Value

Learning rate 0.001
Optimizer Adam
Batch size 128
Early stop 50
Validation metrics NDCG@10
Evaluation metrics NDCG@5,10,20,50; HR@10,20
Neg. sample during training 1
Neg. sample during testing all [145]
Embedding size 64
Loss function BPR loss [140]

We grid search all main parameters and choose the pa-
rameter set that achieves the best performance on validation
set. We use leave-one-out strategy to get the validation set
and the test set. We adopt early stop, stopping training when
model performance has not increased on validation set for
50 epochs. We run each experiment for ten times with ten
random seeds, and do significance test using t-test.

APPENDIX D
EXPERIMENT DATA

PREPRINT. UNDER REVIEW. 23

TABLE 6
Parameters specific to each model

Model Parameter Value

NFM Number of layers 1
Hidden state size 64

GRU4Rec
User history length 20
Number of layers 2

Hidden vector size 64

SASRec User history length 20
Number of self-attention heads 1

LightGCN Number of layers 3

TABLE 7
Detailed results for dropout methods on BPRMF, ml1m-cold dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.0251 0.0339 0.0458 0.0667 0.0678 0.1155

Drop Model
Structure

0.1 0.0258 0.0355* 0.0479* 0.0697** 0.0718* 0.1213*
0.2 0.0267* 0.0359** 0.0487** 0.0709** 0.0715** 0.1225**
0.3 0.0267** 0.0364** 0.0488** 0.0701** 0.0721** 0.1220**

Drop Input
Info

0.1 0.0233** 0.0324* 0.0444* 0.0658 0.0668 0.1148
0.2 0.0241* 0.0331 0.0448 0.0660 0.0671 0.1138
0.3 0.0217** 0.0294** 0.0394** 0.0573** 0.0586** 0.0988**

Drop
Embedding

0.1 0.0236* 0.0324* 0.0450 0.0660 0.0658 0.1162
0.2 0.0236* 0.0330 0.0451 0.0660 0.0672 0.1155
0.3 0.0241 0.0332 0.0453 0.0658 0.0672 0.1154

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers
are the best results of each column.

TABLE 8
Detailed results for dropout methods on BPRMF, Amazon Baby 5-core dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.00709 0.00969 0.01300 0.01936 0.01942 0.03263

Drop Model
Structure

0.1 0.00693 0.00935 0.01253 0.01946 0.01872 0.03145
0.2 0.00723 0.00973 0.01311 0.01991 0.01943 0.03292
0.3 0.00706 0.00959 0.01311 0.01984* 0.01907 0.03315

Drop Input
Info

0.1 0.00631* 0.00888** 0.01229* 0.01892 0.01839* 0.03202
0.2 0.00610** 0.00839** 0.01180** 0.01836** 0.01720** 0.03078*
0.3 0.00544** 0.00761** 0.01077** 0.01671** 0.01581** 0.02844**

Drop
Embedding

0.1 0.00664* 0.00916* 0.01271 0.01933 0.01864 0.03283
0.2 0.00641** 0.00900** 0.01241** 0.01943 0.01868* 0.03231
0.3 0.00661 0.00911* 0.01241* 0.01914 0.01862 0.03177

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers are the
best results of each column.

PREPRINT. UNDER REVIEW. 24

TABLE 9
Detailed results for dropout methods on NFM, ml1m-cold dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.0246 0.0335 0.0454 0.0664 0.0680 0.1153

Drop Model
Structure

0.1 0.0255 0.0350* 0.0472* 0.0682** 0.0708* 0.1193*
0.2 0.0260* 0.0353* 0.0473* 0.0687** 0.0704* 0.1184
0.3 0.0257* 0.0352** 0.0474** 0.0684** 0.0705* 0.1191*

Drop Input
Info

0.1 0.0242 0.0334 0.0457 0.0678** 0.0677 0.1167
0.2 0.0240 0.0332 0.0458 0.0675* 0.0670 0.1172
0.3 0.0135** 0.0184** 0.0244** 0.0371** 0.0369** 0.0608**

Drop
Embedding

0.1 0.0259** 0.0354** 0.0473** 0.0691** 0.0716** 0.1188*
0.2 0.0251 0.0345 0.0470 0.0686** 0.0695 0.1193*
0.3 0.0231** 0.0326 0.0449 0.0666 0.0667 0.1159

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers
are the best results of each column.

TABLE 10
Detailed results for dropout methods on NFM, Amazon Baby 5-core dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.00458 0.00657 0.00926 0.01444 0.01376 0.02451

Drop Model
Structure

0.1 0.00515* 0.00715* 0.01010** 0.01592** 0.01496** 0.02677**
0.2 0.00518* 0.00737** 0.01046** 0.01618** 0.01545** 0.02778**
0.3 0.00499 0.00705 0.00985 0.01534 0.01475 0.02588

Drop Input
Info

0.1 0.00460 0.00643 0.00898 0.01441 0.01357 0.02386
0.2 0.00465 0.00654 0.00923 0.01489 0.01388 0.02469
0.3 0.00468 0.00649 0.00899 0.01467 0.01379 0.02381

Drop
Embedding

0.1 0.00424 0.00610 0.00858 0.01348 0.01264 0.02255
0.2 0.00460 0.00640 0.00892 0.01440 0.01352 0.02359
0.3 0.00473 0.00647 0.00913 0.01479 0.01369 0.02435

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers are the
best results of each column.

TABLE 11
Detailed results for dropout methods on GRU4Rec, ml1m-cold dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.0752 0.0964 0.1196 0.1496 0.1818 0.2739

Drop Model
Structure

0.1 0.0782* 0.1003** 0.1233** 0.1536** 0.1892** 0.2805**
0.2 0.0792** 0.1010** 0.1245** 0.1544** 0.1895** 0.2830**
0.3 0.0780* 0.1004** 0.1239** 0.1538** 0.1902** 0.2834**

Drop Input
Info

0.1 0.0859** 0.1084** 0.1323** 0.1625** 0.2012** 0.2957**
0.2 0.0829** 0.1056** 0.1297** 0.1598** 0.1973** 0.2931**
0.3 0.0811** 0.1024** 0.1255** 0.1555** 0.1904** 0.2818**

Drop
Embedding

0.1 0.0791** 0.1013** 0.1246** 0.1552** 0.1911** 0.2840**
0.2 0.0784** 0.1012** 0.1245** 0.1554** 0.1925** 0.2852**
0.3 0.0779* 0.1007** 0.1248** 0.1557** 0.1920** 0.2875**

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers
are the best results of each column.

PREPRINT. UNDER REVIEW. 25

TABLE 12
Detailed results for dropout methods on GRU4Rec, Amazon Baby 5-core dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.00762 0.01071 0.01487 0.02261 0.02199 0.03856

Drop Model
Structure

0.1 0.00786 0.01132* 0.01555* 0.02337* 0.02347** 0.04036
0.2 0.00810 0.01146 0.01579* 0.02342 0.02374* 0.04101*
0.3 0.00800 0.01138* 0.01565** 0.02348* 0.02340** 0.04043**

Drop Input
Info

0.1 0.01013** 0.01383** 0.01864** 0.02698** 0.02781** 0.04700**
0.2 0.01185** 0.01622** 0.02170** 0.03073** 0.03257** 0.05440**
0.3 0.01318** 0.01777** 0.02343** 0.03301** 0.03543** 0.05797**

Drop
Embedding

0.1 0.00817 0.01129 0.01556 0.02327 0.02311 0.04010
0.2 0.00792 0.01109 0.01536 0.02311 0.02294 0.03991
0.3 0.00785 0.01096 0.01514 0.02275 0.02255 0.03926

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers are the
best results of each column.

TABLE 13
Detailed results for dropout methods on SASRec, ml1m-cold dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.0840 0.1064 0.1296 0.1593 0.1981 0.2903

Drop Model
Structure

0.1 0.0864* 0.1092** 0.1326* 0.1627** 0.2013 0.2941
0.2 0.0852 0.1077 0.1308 0.1606 0.1996 0.2912
0.3 0.0836 0.1059 0.1290 0.1585 0.1961 0.2878

Drop Input
Info

0.1 0.0868* 0.1093 0.1330* 0.1632* 0.2019 0.2957*
0.2 0.0816* 0.1041* 0.1282 0.1589 0.1942* 0.2901
0.3 0.0705** 0.0915** 0.1142** 0.1445** 0.1742** 0.2645**

Drop
Embedding

0.1 0.0835 0.1063 0.1301 0.1606 0.1980 0.2923
0.2 0.0814* 0.1042 0.1278 0.1588 0.1962 0.2901
0.3 0.0797* 0.1022* 0.1259* 0.1572 0.1935 0.2876

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers
are the best results of each column.

TABLE 14
Detailed results for dropout methods on SASRec, Amazon Baby 5-core dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.01039 0.01428 0.01913 0.02787 0.02889 0.04824

Drop Model
Structure

0.1 0.01048 0.01468 0.01990 0.02873 0.03016 0.05100*
0.2 0.01140** 0.01542* 0.02067** 0.02961** 0.03076* 0.05170**
0.3 0.01145* 0.01562* 0.02095** 0.03004** 0.03154* 0.05277**

Drop Input
Info

0.1 0.01308** 0.01783** 0.02375** 0.03326** 0.03600** 0.05961**
0.2 0.01595** 0.02119** 0.02714** 0.03750** 0.04182** 0.06563**
0.3 0.01612** 0.02143** 0.02768** 0.03828** 0.04207** 0.06701**

Drop
Embedding

0.1 0.01045 0.01440 0.01964 0.02849 0.02934 0.05020*
0.2 0.01071 0.01484 0.01985 0.02904 0.03010 0.05008
0.3 0.01094 0.01502 0.02009 0.02950* 0.03030 0.05056*

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers are the
best results of each column.

PREPRINT. UNDER REVIEW. 26

TABLE 15
Detailed results for dropout methods on LightGCN, ml1m-cold dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.0281 0.0377 0.0504 0.0722 0.0748 0.1255

Drop Model
Structure

0.1 0.0287 0.0385 0.0510 0.0732 0.0761 0.1261
0.2 0.0291* 0.0388 0.0516 0.0737* 0.0765 0.1277
0.3 0.0286 0.0384 0.0513 0.0730 0.0757 0.1273

Drop Input
Info

0.1 0.0264** 0.0361** 0.0484** 0.0705** 0.0721** 0.1213**
0.2 0.0254** 0.0347** 0.0466** 0.0674** 0.0690** 0.1163**
0.3 0.0239** 0.0328** 0.0443** 0.0642** 0.0653** 0.1113**

Drop
Embedding

0.1 0.0280 0.0376 0.0505 0.0723 0.0748 0.1259
0.2 0.0272 0.0371 0.0497 0.0709 0.0741 0.1242
0.3 0.0264* 0.0361** 0.0482** 0.0696** 0.0724* 0.1205*

Drop Graph
Info

0.1 0.0282 0.0380 0.0508 0.0723 0.0754 0.1265
0.2 0.0284 0.0383 0.0511 0.0729 0.0764 0.1273
0.3 0.0283 0.0380 0.0509 0.0727 0.0756 0.1269

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers
are the best results of each column.

TABLE 16
Detailed results for dropout methods on LightGCN, Amazon Baby 5-core dataset.

Dropout
Methods

Dropout
Ratio

NDCG
@5

NDCG
@10

NDCG
@20

NDCG
@50

HR
@10

HR
@20

Origin - 0.01032 0.01392 0.01843 0.02738 0.02779 0.04577

Drop Model
Structure

0.1 0.01017 0.01392 0.01835 0.02743 0.02809 0.04577
0.2 0.01001 0.01370 0.01807 0.02730 0.02763 0.04502
0.3 0.01001 0.01357 0.01811 0.02703 0.02693 0.04509

Drop Input
Info

0.1 0.00936** 0.01275** 0.01710** 0.02598** 0.02559** 0.04301**
0.2 0.00872** 0.01207** 0.01651** 0.02532** 0.02435** 0.04209**
0.3 0.00824** 0.01140** 0.01583** 0.02456** 0.02321** 0.04095**

Drop
Embedding

0.1 0.01043 0.01402 0.01866 0.02754 0.02781 0.04633
0.2 0.01034 0.01420 0.01869 0.02773* 0.02853 0.04651
0.3 0.01029 0.01389 0.01841 0.02757 0.02798 0.04595

Drop Graph
Info

0.1 0.01020 0.01403 0.01838 0.02733 0.02821 0.04552
0.2 0.01005* 0.01375 0.01811* 0.02722 0.02766 0.04503
0.3 0.01021 0.01395 0.01843 0.02736 0.02799 0.04584

* for p < 0.05, ** for p < 0.01, compared to the origin (not using any dropout methods). Bold numbers are the
best results of each column.

	1 Introduction
	1.1 Backgrounds
	1.2 Contributions
	1.3 Outline

	2 Background Concepts
	2.1 Dropout methods
	2.2 Recommender Systems

	3 Survey of Dropout Methods
	3.1 Drop Model Structures
	3.1.1 Drop Individual Neurons
	3.1.2 Drop Neuron Groups

	3.2 Drop Embeddings
	3.3 Drop Input Information
	3.3.1 One-dimensional Information
	3.3.2 Two-dimensional Information
	3.3.3 Graph Information

	3.4 Summary and Interconnections between Dropout Methods

	4 Contributions of Dropout Methods
	4.1 Improving Effectiveness
	4.2 Improving Efficiency

	5 Dropout Experiments in Recommendation Models
	5.1 Recommendation Models and Implementations of Dropout Methods
	5.2 Datasets and Experiment Settings
	5.3 Results and Analysis
	5.3.1 Overall Results
	5.3.2 Discussion on the Applications of the Four Dropout Methods

	5.4 Effect of Dropout Ratio

	6 Future Directions
	6.1 Transfer of Dropout Strategies in Different Domains
	6.2 Selection of Dropout Methods
	6.3 Hyperparameter Optimization of Dropout
	6.4 Efficient Dropout
	6.5 Understanding Dropout Theoretically

	7 Conclusions
	References
	Biographies
	Yangkun Li
	Weizhi Ma
	Chong Chen
	Min Zhang
	Yiqun Liu
	Shaoping Ma
	Yuekui Yang

	Appendix A: Protocol used in the selection process of the articles in this survey
	Appendix B: Implementation Details of Dropout Methods on Recommendation Models
	B.1 Criterion of the Implementations
	B.2 Dropout on BPR
	B.3 Dropout on NFM
	B.4 Dropout on GRU4Rec
	B.5 Dropout on SASRec
	B.6 Dropout on LightGCN

	Appendix C: Experimental Settings and Model Parameters
	Appendix D: Experiment Data

