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User intention is an important factor to be considered for recommender systems, which always changes dy-
namically in different contexts. Recent studies (represented by sequential recommendation) begin to focus on
predicting what users want beyond what users like, which are better at capturing user intention and have at-
tracted a surge of interest. However, user intention modeling is non-trivial, because it is generally influenced
by various factors, among which item relations and their temporal evolutionary effects are of great impor-
tance. For example, consumption of a cellphone will have varying impacts on the demands for its relational
items: For complements, the demands are likely to be promoted in the short term; while for substitutes, the
long-term effect may take advantage, because users do not need another cellphone immediately. Moreover,
the temporal evolutions of different relational effects vary across different domains, which makes it challeng-
ing to adaptively take them into consideration. As a result, most existing studies only loosely incorporate
item relations by encoding their semantics into embeddings, neglecting fine-grained time-aware effects.

In this work, we propose Knowledge-aware Dynamic Attention (KDA) to take both relational effects and
their temporal evolutions into consideration. Specifically, to model dynamic impacts of historical relational
interactions on user intention, we aggregate the history sequence into relation-specific embeddings, where
the attention weight consists of two parts. First, we measure the relational intensity between historical items
and the target item to model the absolute degree of influence in terms of each relation. Second, to model how
the relational effects drift with time, we innovatively introduce Fourier transform with learnable frequency-
domain embeddings to estimate temporal decay functions of different relations adaptively. Subsequently,
the self-attention mechanism is leveraged to derive the final representation of the whole history sequence,
which reflects the dynamic user intention and will be applied to generate the recommendation list. Extensive
experiments in three real-world datasets indicate the proposed KDA model significantly outperforms the
state-of-the-art methods on the Top-K recommendation task. Moreover, the proposed Fourier-based method
opens up a new avenue to adaptively integrate temporal dynamics into general neural models.
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1 INTRODUCTION

Recommender systems have been widely applied to various web services to address the issue of
information overload, such as e-commerce platforms, news feeds, social media applications, and
so on. It not only can largely reduce users’ efforts in finding things of interest but also bring more
profits to the platforms [8, 53]. Traditional studies about recommender systems [10, 26, 33, 35, 47]
mainly concentrate on predicting intrinsic user preference, which is consistent as time goes by.
For example, the typical latent factor models [35, 47] embed both users and items into the same
latent space. The embeddings of users represent their preferences in various aspects, which will
not change when making recommendations in different contexts, while in real-world scenarios,
user intention is also an influential factor beyond user preference, which is influenced by recent
interactions. The same item can have different meanings to a user in different contexts. Thus, more
and more recommender systems begin to focus on not only what users like (user preference) but
also what users want (user intention).

Sequential recommendation algorithms [16], which aim to predict a user’s next action based
on the context of recent interactions, are good at capturing user recent intention and recently
have been gaining growing interest. Representative methods include Markov Chain-based ap-
proaches [19, 20, 48] and Recurrent Neural Network (RNN) [12] based models [24, 25, 51]. In-
spired by Transformer [53] in machine translation, attention-based methods also begin to emerge
in recent years [30, 38, 45]. There is also research aiming to understand user intention by incor-
porating extra information, such as item relations and timestamps. Knowledge-enhanced recom-
mendation introduces different relations between items (e.g., complements and substitutes), which
contribute to better recommendation performance [41, 55, 60]. Time-aware recommendation takes
the timestamp of each interaction into consideration, which is capable of modeling the drift of user
intention. Some studies directly utilize timestamp as an additional context feature [44], and some
others try to use continuous functions to model the temporal evolution [56].

However, when considering the effects of previous relational interactions on user intention, we
find the relational intensity and adaptive temporal evolution are seldom taken into consideration
in current methods. The relational intensity refers to the intensity that there exists a specific rela-
tion between interacted items and the target item. For example, AirPods are generally perceived
to be a complement of iPhone (high relational intensity), and use of an iPhone will greatly pro-
mote the demand for AirPods. With regard to consumption of a HUAWEI phone, it will also have
positive effects on AirPods (even if the relation between them could be missing in the knowledge
base). But such positive effects are tiny, since the relational intensity between them is compar-
atively low. In addition, the effects of previous relational interactions change dynamically with
time, and the temporal evolution can differ from each other for different relation types. For ex-
ample, after buying a cellphone, the demands for accessories are in the short term. Such positive
effects will decay quickly, since the user may already have these complementary items, while for
substitutes, the long-term effect may become more prominent, because users do not tend to con-
sume substitutes immediately. Therefore, relational intensity and adaptive temporal evolution are
of great importance to understand dynamic user intention.
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Although there are previous studies that considers both item relations and corresponding tem-
poral dynamics [55, 56], there are two main weaknesses: (1) they do not take relational intensity
into consideration and rigidly determine whether there exist relations between items, which ig-
nore potentially missing relations in the relation graph. (2) Previous studies cannot adaptively
estimate temporal evolutions in distinct domains but rely on manually defined functions, which
makes them face challenge to be directly applied to real-world scenarios with different temporal
dynamics. For example, SLRC [56] only considers repeat consumption as a relation and uses a com-
bination of exponential and normal distributions to control the time-sensitive effects. Chorus [55]
further incorporates various item relations but ignores relational intensities. The temporal decay
functions also need to be predefined by prior knowledge.

To model relational intensity and achieve adaptive estimation of temporal evolution, there are
mainly two challenges: (1) Though existing datasets or knowledge graphs contain some item rela-
tions, the exact relational intensities of seen and unseen item pairs are unknown. (2) The tempo-
ral evolutionary effects of different item relations vary dramatically in different scenarios, which
needs domain-free approaches to capture the dynamic effects automatically. To deal with these
challenges, we present Knowledge-aware Dynamic Attention (KDA) to achieve a better un-
derstanding of dynamic user intention. The main idea of KDA is to adaptively aggregate the his-
tory sequence into multiple relation-specific embeddings (named relational dynamic history em-
bedding). The attention weights depend on both relational intensities and time intervals between
interacted items and the target item. Then user intention is captured by modeling the mutual in-
fluence of these relational dynamic history embeddings.

First, we model item-item relations and their intensities via a knowledge graph embedding
task. The matching scores of relational item pairs are maximized to encode semantic meanings
of item relations into embeddings. Then, the score function will be used to measure the relational
intensities between interacted items and the target item, which subsequently determine partial
attention weights of historical items. More importantly, we innovatively introduce Fourier
transform to model the varying temporal effects of different relational interactions. In particular,
based on our empirical study, we assume that for each relation type in the dataset, there is a
latent and continuous temporal decay function of time intervals, which determines the temporal
evolution of relational effects on the target item. Then, we parameterize the frequency domain
representation of each temporal decay function via Discrete Fourier Transform (DFT), called
frequency embeddings. In this way, the temporal decay functions can be estimated adaptively
without predefined functional forms. The function values of unseen time intervals will be easily
obtained by applying Inverse Discrete Fourier Transform (IDFT) on corresponding frequency
embeddings, which provides a general approach to incorporate latent and continuous temporal
effects in neural models.

In addition to the design of knowledge-aware dynamic attention, we use self-attention and pool-
ing layer to mutually absorb the information captured in each relational dynamic history embed-
ding. As a result, the final history representation well reflects the dynamic user intention regard
for the target item. Finally, we optimize the recommendation task and the knowledge graph em-
bedding task with a joint-learning framework. Extensive experiments in three real-world public
datasets demonstrate the effectiveness of our proposed model. The consistent improvements in
different datasets indicate that the adaptive modeling of item relations and their temporal evolu-
tionary effects in KDA can scale to different application scenarios.

Our main contributions are summarized as follows:

e Based on the empirical study in three datasets with different recommendation scenarios, we
reveal that the effects of previous relational interactions have different temporal evolutions
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across datasets and relations, which is important for better understanding dynamic user
intention in the sequential recommendation.

e KDA is presented to model item relations and their temporal evolutionary effects. We
devise relational intensity and frequency-domain embeddings to adaptively determine
the importance of historical interactions. The Fourier-based estimation of temporal de-
cay functions further opens up a new avenue to integrate temporal dynamics into neural
models.

e Comparative experiments are performed in three real-world datasets, covering different
application scenarios and interaction densities. The results demonstrate that KDA signifi-
cantly and consistently outperforms state-of-the-art methods by more than 7.1%, 13.6%, and
2.4% in the three datasets, respectively.

The rest of this article is organized as follows. In the next section, some related work is reviewed.
In Section 3, we introduce the preliminaries about this work. Then we conduct an empirical study
to analyses the temporal evolution of relational effects in Section 4. Next our Knowledge-aware
Dynamic Attention model is elaborated in Section 5. In Section 6, we present the experimental
results and corresponding analyses. Subsequently, some limitations and future directions are dis-
cussed in Section 7. We conclude this work in Section 8.

2 RELATED WORK

In this section, some classical methods of sequential recommendation are introduced first. Then,
we review two lines of work relevant to ours, namely knowledge-enhanced recommendation and
time-aware recommendation.

2.1 Sequential Recommendation

Different from traditional recommendation methods [9, 23, 47], sequential recommender systems
leverage the user’s historical interaction sequence to better capture current user intention. Some
models view the sequential data as Markov chains, which assume that the next action depends
on previous action sequence [48, 50]. For example, FPMC [48] combines Matrix Factorization
(MF) [35] and factorized Markov Chains to make next-basket recommendation given the previ-
ous basket items. FISM [29] and SVD++ [33] use the summation of historical item embeddings
to represent the user. The main ideas behind these methods are similar, they focus on capturing
item-item transition matrices to predict the next item.

More recently, with the development of deep learning, there has been a lot of work utilizing RNN
or Convolution Neural Network (CNN) to encode interaction history to hidden vectors [14, 25,
36, 45, 51, 64]. GRU4Rec [25] first introduces RNN to the sequential recommendation and achieves
impressive performance improvements. NARM [37] further applies attention mechanism [53] to
RNN for more effective recommendation. NextItNet [64] utilizes holed CNN layers to increase
the receptive fields and model long-range dependencies. Besides, the attention mechanism, which
is shown to be effective in various tasks [3, 61], have also been used in the sequential recom-
mendation. SASRec [30] applies self-attention to model the mutual influence between historical
items, achieving state-of-the-art results. MARank [63] considers the most recent items and applies
multi-order attention to capture individual- and union-level item dependency. Despite the great ex-
pressiveness of deep-learning sequential recommendation methods, they still cannot well model
sophisticated user intention for the lack of external knowledge, and most of them substantially
suffer from the interpretability issue [40].
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2.2 Knowledge-enhanced Recommendation

In real-world scenarios, there are multiple relations between items that have concrete semantics.
Recent work has been focusing on introducing item relations into recommender systems [31, 41,
43, 54, 60, 66], most of which leverage Knowledge Graph (KG) [57] to represent relations between
different items.

On the one hand, some work introduces users into KG to build a user-item graph. CFKG [66]
views the action buy as another relation and then uses TransE [5] to represent the heterogeneous
information network and make recommendations. However, most studies focus on modeling the
item-item graph solely as a supplement to the recommendation task. In this line of work, there are
mainly two kinds of methods: path-based and embedding-based method. The path-based method
introduces meta-path to extract knowledge from KG, which is more explicable and is popular in the
beginning. For instance, Ma et al. [41] propose a joint learning framework to integrate the induc-
tion of explainable rules from KG. The embedding-based method gains more attractions in recent
years, which leverages KG embedding methods to obtain embeddings in the recommendation task.
Some representative studies include CKE [65] and KSR [27]. Recently, RCF [60] is proposed as a
joint-learning framework that incorporates multiple relations between items, achieving remark-
able performance improvements. But item embedding is generally the only connection between
recommendation task and KG embedding task in these studies, which ignore relational intensities
between items and yield loose incorporation of item relations.

2.3 Time-aware Recommendation

Users’ preference and items’ popularity may change dynamically, which is known as concept
drift [59]. Time-aware recommendation tries to incorporate temporal information (e.g., times-
tamps) to model dynamic user intention. There are typically two lines of work taking temporal
information into consideration. On the one hand, some studies view time as context information,
aiming to model user preference at different times. TimeSVD++ [34] partitions timelines into peri-
ods and designs time-related parameters on the basis of SVD++. Tensor factorization is also a major
approach in this line of work [4, 31], where discretized time is viewed as the third dimension of
user-item interaction cube. Some other work utilizes content-based models like Factorization
Machine (FM) to include the timestamp as an extra context feature [22, 44]. On the other hand,
some studies focus on modeling temporal decay effects of historical interactions. Intuitively, in-
teractions that occur long ago are less important than recent ones and should be underweighted
somehow. Ding et al. [13] first introduces a user-specific and item-specific time weighting scheme
for a similarity-based collaborative filtering approach. Sanchez et al. [49] further improve the simi-
larity metric between users with a temporal decay function and sequential information. Some other
methods introduce Hawkes Process [17] to the recommendation and model temporal decay with
the kernel function [14, 15, 56]. SLRC [56] combines Hawkes Process and collaborative filtering to
model temporal dynamics of repeat consumption. The short-term and life-time effects are modeled
with exponential and normal distributions, respectively. TiSASRec [38] encodes time intervals into
embeddings based on self-attention mechanism. Most recently, Chorus [55] proposes to model the
temporal effects of different relations with specifically designed temporal kernel functions.

However, either of these two lines of work has its own drawbacks. Taking time as context in-
formation naturally faces the challenge of predicting future behavior at unseen periods. Although
estimating temporal effects is more applicable, most of these models need a predefined functional
form of the temporal decay, which makes it inflexible to capture different temporal dynamics in
different domains. As a result, we introduce Fourier transform to adaptively learn temporal decay
functions, which greatly enlarges the application scope of the proposed model.
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Table 1. Notations

Notation Description
Uu the set of users

I the set of items

R the set of item relation triplets

Sy the interaction sequence of user u

M the number of relation types

N the point of DFT

pu € R4 the embedding for user u

q € R4 the embedding for item i

x; € R4 the embedding for relation type 7

z, € R4 the embedding for relation value v

sir € RY  the relational dynamic history embedding in terms of the target item i and
relation type ©

m, ; € R the final KDA history representation of user u in terms of the target item i

() the temporal decay function for relation type 7

F, € CN  the complex frequency embedding of f;(:)

3 PRELIMINARIES

In this section, we first formulate the time-aware sequential recommendation problem with item
relations and introduce some definitions. Then we describe the datasets we use for the empirical
study and experiments. Our main notations are summarized in Table 1.

3.1 Problem Formulation

Let U and I represent the user and item set, respectively. For each user u € U, we are given the
interaction history S, = {(i1, t1), (iz, t2), - - ., (in,, tn, )}, and each element contains the interacted
item i € I and the timestamp t € N* (¢, < t,, forany 1 < n < n’ < N,). Besides, a set of relational
triplets R is also given, representing the relations between items, where each element is an item
pair (i,j) and their relation r, denoted as (i,j,r). Then our task is as follows: Considering the
interaction sequence before the target time T, denoted as S,{ , as well as the item relations set R,
generating an ordered list that the user may be interested in at T.

With regard to the external knowledge R, there are mainly two kinds of relations between
items: (1) natural item relations and (2) attribute-based item relations. The former naturally exists
in the datasets in general, such as also_buy and also_view. While the latter is extracted from item
metadata. Any item pair with the same discrete value of an attribute can be seen to have a relation
between them, such as shared_brand and similar_price. In the meantime, compared to natural item
relations, attribute-based item relations usually have more detailed semantics (e.g., the concrete
brand Apple that the two items share). To capture such fine-grained meanings of a relation, we
follow the setting in previous study [60] and define the item relation with a concept of two-level
hierarchy r =< 7, v >, where 7 denotes the relation type and v is the relation value.

Definition 3.1 (Relation Type). The relation type describes how items are related to each other
in an abstract way, such as shared_brand, similar_price, also_buy, and so on.

Definition 3.2 (Relation Value). The relation value provides details or attributes of the relation,
such as Apple for the relation type shared_brand.
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Note that the relation value may be not applicable for some item relations (e.g., also_buy,
also_view), because they do not have related details. For these relation types without fine-grained
values, we set their relation values to a special value None. In this way, all kinds of item relations
can be represented with a tuple < 7,v >.

With this two-level hierarchy, relations with the same type will keep similar representations,
and the relation values empower the representation fidelity of different relations. It is beneficial to
capture fine-grained user preference, since a user could weigh different values of a relation type
differently. For example, for the same relation type shared_brand, a user may be more loyal to
Apple than other relation values. More discussions and limitations of this representation method
will be presented in Section 6.4 and Section 7.

To facilitate the understanding of our empirical study, we additionally define the relational
neighbor of a given interaction in the user sequence, which refers to the most recent relational
historical interaction for a specific relation r.

Definition 3.3 (Relational Neighbor). For relation r and a user’s interaction sequence S, (i,t) €
Sy is arelational neighbor of the target interaction (i*,t*) € S, ifand only ift < t* and (i, i*,r) € R,
meanwhile there is no interaction (i’,t’) € S, satisfying t < t’ < t* and (i’,i*,r) € R.

3.2 Dataset Description

We choose three real-world public datasets with various scenarios and different densities. The
basic information of these datasets is described below.

e MovieLens-100k !: This is a widely adopted benchmark dataset for evaluating recommen-
dation algorithms, which contains users’ ratings of movies as well as side information about
users and items. We use the MovieLens-100k dataset and extract item relations based on the
year and genre of movies.

e Amazon Electronics ? [21, 42]: This is an e-commerce dataset containing a large corpus
of product ratings, reviews, and metadata, collected from Amazon.com from May 1996 to
July 2014. It includes natural item relations such as also_buy, also_view, buy_together. And
we facilitate the brand, price, and top-level category attributes of items.

e RecSys2017 3: RecSys Challenge 2017 is a competition for job recommendation, whose
dataset includes users’ interactions with different job postings on XING.com. We use the
click records in the offline phase of the competition as user-item interaction data. The career
level, discipline, industry, and region of job postings are utilized to generate item relations.

We follow the preprocessing procedure of previous work [19, 60]. For user-item interactions
data, we treat a rating or a click as implicit feedback (interaction without explicit rating score),
and order interactions by timestamps. Only the last one of duplicate interactions is retained and
others are removed. Items with fewer than five interactions will be filtered out.

For item-item relations data, item attributes with continuous values (only price in our datasets)
will be discretized into five bins, and the pivots are determined by quantiles of the overall value
distribution. For items and relation values that only appear once in the relation set R, the related
triplets will be removed. The statistics of these datasets after preprocessing are listed in Table 2.

In summary, the chosen datasets cover three different recommendation scenarios. MovieLens-
100k contains fewer interactions and is the densest dataset, while the other two datasets are on a
larger scale and much more sparse.

!http://grouplens.org/datasets/movielens/100k/.
2http://jmcauley.ucsd.edu/data/amazon/.
Shttp://www.recsyschallenge.com/2017/.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 16. Publication date: December 2020.


http://grouplens.org/datasets/movielens/100k/
http://jmcauley.ucsd.edu/data/amazon/
http://www.recsyschallenge.com/2017/

16:8 C. Wang et al.

Table 2. Dataset Statistics

Dataset MovieLens-100k  Amazon Electronics  RecSys2017
#user 943 192,403 382,097
User-Item #item 1,349 63,001 38,496
Interactions  #interaction 99,287 1,689,188 1,381,829
density 7.805% 0.014% 0.009%
Item-Item #type 2 6 4
Relations #value 34 1,888 67
#triplet 886K 2,844M 1,285M

4 EMPIRICAL STUDY

Item relations have been shown to be useful in recommendation algorithms [7, 60], but there are
few studies investigating the temporal evolutionary effects of previous relational interactions. In
this section, we make several observations about the temporal evolutionary effects of item relations
in three real-world datasets, which serve as the foundation of our model design.

Intuitively, recent interactions will have greater impacts on the user intention, which is also
known as recency effect [2]. For instance, after purchasing a cellphone, the demands for comple-
mentary items (e.g., cases, headphones) mainly center in the short term. The positive effects will
decay quickly, since users could already have these complementary items, in which case the rec-
ommender system should not present these recommendations consistently. However, the effects
of some relations may be promoted after a period, such as the substitute relation. Users’ demands
for substitute items will rise when the lifetime of the previous one runs away.

As a result, here we want to verify how the effects of historical relational interactions vary with
time in real-world datasets. Considering that it is hard to directly observe the temporal effects of
relational interactions, we resort to study the distribution of time intervals between interactions in
the user sequence and their relational neighbors (the most recent relational interaction according
to Definition 3.3). Actually, this distribution is a good indicator of temporal evolutionary effects.
For example, if (cellphone, cases, also_buy) holds in R, and a lot of users purchase cases one day
after the previous consumption of a cellphone, the effects in terms of also_buy may also have a
spike when the time interval is one day.

Due to the fact that time intervals generally demonstrate long-tail distributions, we normalize
the time interval At (in seconds) with a log transformation:

At, = max(0,log,(At/60)). (1)

All the following time intervals are normalized in the same way. Then, for each relation r in the
dataset, we can traverse all the interactions in each user sequence to find their relational neighbors
and derive corresponding time interval distribution.

4.1 Temporal Evolution in Different Domains

First, we focus on the global time interval distribution in each dataset, which is derived by inte-
grating the time interval distributions of all the relations in this dataset. The global time interval
distribution reflects the characteristics of different recommendation scenarios. Figure 1 shows the
distribution® in each dataset. We can see the temporal evolution of relational effects in different
domains varies dramatically.

4The x-axis represents normalized time intervals, and the y-axis values are divided by the maximum number in the dataset.
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Fig. 1. The global distribution of time intervals between interactions and their relational neighbors in each
dataset. The overall temporal evolution varies dramatically across different domains.

In MovieLens-100k, the time interval distribution exhibits an exponential-decay form, which in-
dicates that users usually watch relational movies in a continuous way. Most users may just browse
a series of movies with the same genre/year to examine their interests. This explains the high frac-
tion of time intervals in minutes (the first few bins). Besides, after vanishing in the mid term, a few
cases appear around the 13th bin (corresponding time interval is about one week), which shows
users also tend to find some similar movies after a week’s work. In the context of e-commerce
(Amazon Electronics), the time interval distribution looks like a skewed normal distribution (the
mean is corresponding to about half a year). It is reasonable, because users seldom consume rela-
tional electronic items continuously in the short term. As for the scenario of browsing job postings
in RecSys2017, the distribution demonstrates a more complex pattern. There are several spikes in
the short, mid, and long term. On the one hand, users may click similar job postings in a single
session, especially for jobs with the same career level or region. On the other hand, users could
tend to recap or compare with previously clicked postings in the mid term. And browsing relevant
postings may be needed after a series of interviews in the long term.

4.2 Temporal Evolution for Different Relation Types

Apart from the obvious differences between datasets, we also investigate the time interval distri-
bution across different relations. Considering that time interval distribution of each relation may
have few supports, we integrate distributions of relations with the same relation type (regard-
less of relation values) to investigate characteristics of different relation types. Figure 2 shows the
distributions of some representative relation types in Amazon Electronics and RecSys2017.
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Fig. 2. The distribution of time intervals between interactions and their relational neighbors in terms of
different relation types. Although the overall trends in the same dataset are similar, the concrete distribution
of each relation type differs from each other, which relies on the characteristics of the relation type.

For relation types also_buy and also_view in Amazon Electronics, although the overall trends
are similar, the negative skewness (left tail) of also_view is stronger. Note that the time intervals
in x-axis are under log transformation. The time interval corresponding to the peak of also_buy
lies in the range from half a year to a year; while also_view centers around the 20th bin (around
2 years). So the realistic time difference between the peaks of these two relation types is about
1.5 year, which demonstrates obviously different temporal patterns. Literally, these two relation
types reflect the functionality between items to some extent. For example, if (i, j, also_buy) holds,
j is likely to be a complement of i; while (i, j, also_view) probably indicates j is a substitute of
i. Therefore, the difference of distribution skewness between the two relation types conveys
the message that the demands for substitutes rise later compared with complements, which is
reasonable, because users seldom purchase substitutes immediately.

In RecSys2017, the difference also exists between shared_industry and shared_region. The short-
term effects are much stronger for shared_region, because users are usually interested in jobs with
the same region in a single attempt but barely deliver several resumes to the same industry. Mean-
while, the temporal effects for shared_industry take advantage in the long term. At this time, users
may need to compare other jobs in this industry given the new application status.

4.3 Concluding Remarks

In summary, previous relational interactions indeed have time-related impacts on user intention
toward the target item. Besides, the temporal evolution of the effects varies dramatically across
different domains and even relation types. Therefore, to better understand dynamic user inten-
tion, it is essential to adaptively take both item relations and their temporal evolutionary effects
into consideration, which calls for a domain-free approach to capture characteristics of different
relation types in various scenarios.

5 KNOWLEDGE-AWARE DYNAMIC ATTENTION MODEL

In this section, we elaborate our Knowledge-aware Dynamic Attention model, which mainly con-
sists of two parts: (1) Item Relation Modeling and (2) User Intention Modeling. Figure 3 demonstrates
the overall structure of our KDA model.

First, we organize the relational data between items as a knowledge graph and learn a graph
embedding task in Item Relation Modeling. This module primarily aims to encode semantics of
item relations into embeddings, so that the score function can measure relational intensities be-
tween items. Second, to capture various effects of historical relational items, we aggregate history
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Fig. 3. Overall structure of KDA. There are mainly two modules: (1) Item Relation Modeling learns a knowl-
edge graph embedding task to keep semantics of item relations into embeddings; (2) User Intention Modeling
derives several relation-specific history embeddings, where we devise relational intensity and Fourier-based
temporal evolution to determine the dynamic effects of historical interactions. Then self-attention is utilized
to capture the mutual influence of different history embeddings and derive the final KDA history represen-
tation, which will be used to generate the ranking list.

sequence under the view of different relation types in User Intention Modeling. For each relation
type, there will be a relational dynamic history embedding and the attentional aggregation weight
consists of two parts: (1) relational intensity and (2) Fourier-based temporal evolution. Finally, the
self-attention mechanism is adopted to model the mutual influence of different history embed-
dings, and the final KDA history representation is viewed as a part of the user representation to
generate the recommendation list.
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To make it easier to understand our KDA model, we first describe the overall structure of User In-
tention Modeling in Section 5.1. As relational dynamic history aggregation is a vital part in User In-
tention Modeling and also the main contribution of this study, we introduce it in detail in Section 5.2.
The methods used in Item Relation Modeling are introduced in Section 5.3. Next, we describe the
multi-task learning strategy and analyze model complexity in Section 5.4. The characteristics of
our KDA model and some connections to existing methods are discussed in Section 5.5.

5.1 User Intention Modeling

Given a target item, user intention is largely influenced by his/her recent interaction sequence,
especially historical items that are relational to the target item. Besides, for different relations, the
degrees and temporal evolution of the effects also differ from each other. Thus, it is important to
understand users’ perceptions of the history sequence under the view of different relation types, as
well as the mutual influence of these relations. In this module, we will introduce how we integrate
these factors to calculate the final ranking score.

The basic idea of the KDA model is to derive a history representation m,_ ; € R¢ given the
history sequence S! of user u and the target item i, which integrates relational and dynamic effects
of historical interactions. Then the final ranking score 7, ; is calculated as follows:

Ju,i = (pu + mu,i)qiT + b, (2)

where p,,q; € R? are embeddings for the user and item, respectively, and b; is the bias term for
each item. The user embedding p,, reflects the long-term preference, and m,, ; encodes short-term
user intention. Subsequently, we focus on how to obtain the KDA history representation m,, ;.

To better understand dynamic user intention, a two-level aggregation architecture is devised:
We first dynamically aggregate the embeddings of interacted items under the view of different
relation types and then move forward to aggregate these relation-specific history embeddings s; .
to obtain the final KDA history representation m,, ;.

5.1.1 Relational Dynamic History Aggregation. First, we focus on the relational dynamic his-
tory aggregation in terms of each relation type (first-level aggregation). Specifically, for the given
history sequence S! and the target item i, we derive a relational dynamic history embedding s; ,
for each relation type 7 as follows:

sie = ), INT(,j.0)fr (At) - s (3)

U tj)€Se

where q; is the embedding of the historical item, and the attention weight consists of a relational
intensity score INT(i, j, 7) € [0,1] and a temporal decay f;(At,) € [0,1]. Here the time interval
At =T —t; between the historical item and target item is normalized with Equation (1), denoted
as At,. The relational dynamic history embedding encodes the specific meaning of the history
sequence for each relation type, which will serve as the foundation to obtain the final KDA history
representation m,, ;. The two components of the attention weight will be elaborated in Section 5.2.

5.1.2  Cross-relation Influence Modeling (Self-attention Layer). Assume we have obtained the re-
lational dynamic history embeddings s; ,, the self-attention mechanism is leveraged to capture the
mutual influence between relations (second-level aggregation). Generally, the common adopted
scaled dot-product attention [53] can be defined as:

Attention(Q, K, V) = softmax (Q\/K; ) v, (4)
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Fig. 4. Illustration of the self-attention mechanism in our KDA model. We leverage self-attention to capture
the mutual influence between different relations. There are totally K layers of self-attention, and we adopt
dropout, residual connection, and layer normalization in each layer.

where Q, K, V represent queries, keys and values, respectively, and d is the hidden size of the at-
tention space. It calculates a weighted sum of all values, where the weight depends on the inner
product of queries and keys. The scale factor Vd is to avoid overly large values of the inner prod-
uct. As for self-attention, the query, key, and value all come from the same object. Then the new
representation of this object is able to absorb the information of other objects. In our case, the
objects refer to different relational dynamic history embeddings s; ;. We stack s; ; for all the M
kinds of relation types as S; € RM*4:

T . .T T
S; = (si’ﬁ;si’Tz;...;si,m). (5)
Then the query, key, and value are obtained by linear projections:
Q=5W2 K=S;WKv=swW", (6)

where the projection matrices WCe WK WV e R4 Next we can obtain the attentional repre-
sentations A; € RMxd;

A; = Attention(Q, K, V). (7)
Besides, we can stack several self-attention layers to extend the model capacity. To endow non-
linearity to each layer, we apply feed-forward network with a ReLU activation function:

FFN(A;) = ReLU(A;W; + b;)W, + by, (8)

where W1, W, € R4 and b, b, € RY. We use the same linear transformations in different self-
attention layers to achieve parameter sharing.

In the meantime, stacking self-attention layers may cause problems such as over-fitting and
vanishing gradients. We adopt dropout regularization, residual connections, and layer normaliza-
tion techniques to solve these problems inspired by previous work [38, 53] (as shown in Figure 4):

Sgkﬂ) = LayerNorm(SEk) + Dropout(FFN(AEk)))), )
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where Agk) is obtained from Sgk) and SEO) is defined as SEO) = S;. We first apply dropout on the
output of the feed-forward network. Dropout [52] is proposed to randomly set the output of the
previous layer to zero with probability p, which is shown to be beneficial to alleviate the over-
fitting problem. Then the representation of the last layer is added by residual connections [18] to
propagate low-layer features to higher layers. Finally, layer normalization [1] is used to normalize
the outputs of a layer with zero mean and unit variance. It is useful to stabilize and accelerate
neural network training. Assume x is an output vector of the previous layer, layer normalization

is defined as:

LayerNorm(x) = o i+ R 10

y X =ae® N B (10)

where ® represents element-wise product, y and ¢ are the mean and variance of x, & and B are

learned scaling factors and bias terms. We do not apply layer normalization on Agk) like Trans-

former, because this may ruin the meaningful weighted sum of relational dynamic history embed-

dings in the beginning. Experimental results also demonstrate the intermediate layer normaliza-
tion leads to a little worse performance.

5.1.3 Pooling Layer. Assume the total number of self-attention layers is K, we can get the final
relational dynamic history embeddings SgK). Then we use a pooling layer to derive the final KDA
history embedding m,, ; € R¢ as the target-aware history representation. The concrete method can
be (1) average pooling, (2) max pooling, or (3) attention pooling. In the case of average pooling,
we simply average the embeddings for all the relation types:

LM
my ; = M Sgizn (11)
m=1
While max pooling applies element-wise maximum across these embeddings:
(K) (K) sK) ) (12)

m, ; = max (si,fl,si’fz, S
The attention pooling method considers that users may pay different attentions to different relation

types according to users’ characteristics:
m,, ; = softmax ([a(u, 71), a(u, 72), . . ., a(u, Tar)]) SEK), (13)
where a(u, 7) is the attention score between user u and relation type . We define it as follows:
a(u,7) = hT (tanh ((p, ® x;)W3 + bs)). (14)

The linear transformation W3 € R%<! by € R/ projects the element-wise product of user and re-
lation type embeddings into the attention space, where [ is the hidden size of the attention space.
h € R subsequently projects the hidden vector into attention score. We will compare the per-
formance when using different pooling methods in the experiments, and average pooling is the
default method in our model.

At this stage, we have obtained the final KDA history representation m,, ;. Then we can calculate
the ranking score according to Equation (2), and g, ; will be used to rank candidate items and
generate the Top-K recommendation list.

5.2 Relational Dynamic History Aggregation

Here we focus on how to determine the attention weight in Equation (3) (first-level aggregation),
which is the key innovative point in KDA. Remind that the aggregation weight consists of a rela-
tional intensity score INT(i, j, 7) and a temporal decay f; (Aty). For the first one, we calculate the
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relevance degree between interacted items and the target item. For the other, we estimate tem-
poral decay functions based on Fourier transform to control the temporal evolution of different
relational effects.

5.2.1 Relational Intensity. First, we discuss the design of relational intensity score. Generally,
the relational data is organized as KG, and knowledge graph embedding is a popular method to
learn signals from relational data, which aims at embedding knowledge graph into a continuous
vector space. In the knowledge graph embedding task, a score function Rel, (i, j) is usually learned
to measure the plausibility of a triplet (i, j, 7). The true triplets in R will get higher scores compared
with corrupted ones that do not exist in the knowledge graph.

From another point of view, the score Rel, (j, i) between historical item j and the target item
i can also be seen as a sign of relational intensity. Interactions with higher relational intensities
in terms of a specific relation type should play more important roles in corresponding relational
dynamic history embedding. Thus, we directly use the same score function in the knowledge graph
embedding task to calculate the relational intensity score INT(i, j, 7):

exp (Rel, (j, 1))
Zj’esg exp (Rel,(j’, l)) '

In this way, historical items can be aggregated according to how much they are relational to the
target item. As for the concrete definition of the score function, we leave it to Section 5.3.

Notice that the score function Rel, (j, i) relies on relation r, which consists of both relation type
7 and relation value v in our setting. But the relation intensity score INT(i, j, 7) only determine the
relation type. To solve this problem, for relation types with multiple relation values, we introduce
the corresponding attributes of the target item i as relation values. Then the relational intensity
measures whether the historical item shares the same attribute with the target item. While for
relation types with no detailed values (e.g., also_buy), the relation value will be the specific value
None as described in Section 3.1.

INT(i, j, 7) = (15)

Previous knowledge-enhanced studies with a joint-learning framework generally only share
embeddings between the recommendation task and knowledge graph embedding task, ignoring
the model capacity to predict relational intensities learned in the KG. Here, the shared score func-
tion acts as a second bridge besides the shared embeddings, which enables our KDA model to fully
exploit the knowledge learned in the KG. Another advantage of relational intensity is that it can
handle missing relations in the knowledge graph. For example, in Figure 3, the also_buy relation is
probably missing between the HUAWEI phone and AirPods 2. But when deriving s; , for also_buy
relation, the attention score of the previous consumption for the HUAWEI phone should still be
higher than other items (except for iPhone), since HUAWEI phone is in a similar position with
iPhone in the KG to some extent. Benefited from relational intensity, the KDA model can better
generalize the knowledge learned in the KG to softly aggregate the entire history sequence with
knowledge-aware weights.

5.2.2  Fourier-based Temporal Evolution. Besides relational intensities between historical items
and the target item, the time interval also plays an important role. In the example above, although
the relational intensity of the HUAWEI phone is high, its final contribution to corresponding re-
lational dynamic history embedding will be lowered because of the long time interval.

Based on the empirical study in Section 4, we assume the temporal evolution for each relation
type 7 can be cultivated by a latent and continuous temporal decay function f; (At,). The tempo-
ral decay function controls how the relational effects drift as the time interval increases, which
determines the attention weight in Equation (3) together with relational intensity. An intuitive so-
lution is estimating a relation-specific function with a predefined functional form. But as analyzed
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in the empirical study, the temporal evolutions of different item relations vary dramatically across
datasets and relation types. Hence a predefined functional form of temporal evolutions can hardly
generalize to different application domains.

The main problem here is that the temporal decay function is assumed to be continuous in the
time domain, which cannot be directly optimized in the neural network. If a continuous function
can be encoded to a fixed-size vector, then the model can learn the temporal evolution from data
without any prior knowledge. Inspired by DFT [6], our key insight is to transform f; (At,) to the
frequency domain F,[w]:

Fr(Aty) & F,[w]. (16)
Given the point of DFT N, DFT can convert a finite sequence of equally spaced samples of a
continuous function f(t) into a same-length sequence, which is a complex-valued function F[w]
of N equal-spaced frequencies:

21
=—%k, k=0,1,...,N—1. 17
Wi N ( )

F[wy] contains information about the amplitude and phase of the sinusoid wave of frequency wy
in f(t). In this way, a continuous function in time domain can be represented as a discrete function
in frequency domain. This is equivalent to encoding the time-domain function to a complex-valued
embedding, which we call frequency embedding. Given the frequency embedding, we can get the
value of f(t) for any input ¢ via IDFT. Next we describe the details about parameterizing frequency-
domain representation F;[w] for each temporal decay function f; (At,).

In our KDA model, we give each relation type 7 a frequency embedding F, € CV as the
frequency-domain representation, which can be randomly initialized and will be optimized by
the loss function together with other parameters. Subsequently, for any time interval At,, we can
get f; (At,) by applying IDFT on F:

1 N-1 )
Fe(Btn) = 5 > Felwele/ 8, (18)
k=0

To facilitate the advantage of Fast Fourier Transform, we assure N to be the integral power of 2.
Besides, since the values of temporal decay functions are real numbers, we only retain the semi-
positive frequencies (i.e., the first N/2 elements of F;). When transforming back to the time do-
main, we compute the complex conjugates F; [wy] of these frequencies and pad them at the end.
This ensures that the IDFT produces real values as well. Formally, Equation (18) will be changed

to:
N/2-1

fr(bty) =+ D (Pl FiTJe o). (19)
With frequency embeddings, we have already got the continuous temporal decay function in the
attention weight. Besides, we can also leverage information in data to optimize the initialization
of frequency embeddings. Although temporal decay function can not be directly observed from
data, the distribution of time intervals between interactions in user sequences and their relational
neighbors (shown in Section 4) can be seen as an equidistant sampling of f;(At,). Thus, we can
apply DFT on the time interval distribution for each relation type to initialize F, in the beginning.
Assume the distribution of time intervals between interactions and their relational neighbors in
terms of the relational type 7 is #;[x], where x is the index of the time interval slot and ¥ [x]
is the corresponding number of cases in data. We discrete the normalized time intervals At, into
slots as follows:
x = | At,] = | max (0, log,(At/60))]. (20)
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Fig.5. lllustration of the Fourier-based method to estimate the temporal decay function. The complex-valued
frequency embedding serves as a bridge in frequency domain to adaptively learn different temporal evolu-
tions, and it will be optimized together with other parameters according to the objective function.

The total number of slots is denoted as X. Then given the point of DFT N > X, we can apply DFT
on the periodic extension of ¥, [x] (ie., 7 [x + X] = F[x]):

N-1
Felwel = ) Felnle ™, (21)
n=0

The above DFT results will be used to initialize F, before training. Figure 5 gives an illustration of
this DFT-based method to estimate temporal decay functions. We normalize the maximum value
of the time interval distribution ¥ [x] to 1, which ensures the output of IDFT is on the same scale.
We will compare the results with different initialization methods in Section 6.3, and the results of
DFT on the time interval distribution are used to initialize F; by default.

In summary, the proposed DFT-based estimation method can be seen as a general approach to
encode latent and continuous temporal functions into frequency-domain embeddings, which is
easy to be incorporated in most neural models. For instance, if we additionally want to model the
user-specific perceptions on temporal evolution, we can define a user-specific embedding F,, and
represent the temporal decay function as:

Z

-1
fralBtn) = = 3" (Felw] + Fulwil) e (22)
0

o~
Il

In our experiments, we find adding user-specific frequency embeddings yields similar results with
Equation (18), hence we choose to only model relation-specific frequency embeddings F,. But
similar ideas can be adopted in other applications and model designs.

5.2.3 Remarks. At this stage, we have clearly defined the two components of the first-level
aggregation weight. From another point of view, the derivation of relational dynamic history
embeddings can also be seen as a variant of multi-head attention. The query is the target item; the
key and value are historical items; the head is corresponding to each relation type. Differently, here
each head has explicit meanings compared with the original multi-head attention. And attention
scores are knowledge-aware and dynamic, which integrate both relational intensity and their
temporal evolutionary effects. Meanwhile, unlike directly applying self-attention on historical
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interactions that faces the problem of variant sequence lengths, the fixed number of relation types
makes the subsequent self-attention layer can fully exploit the mutual influence of relations.

Besides, note that we isolate the temporal decay f; (At,) as a scaling factor, instead of including
itinto the calculation of the relational intensity score with softmax. The rationale behind is that the
temporal decay effects are absolute but not relative. If the historical interactions all occurred long
ago, then the temporal decay of their relational effects should not be similar to the situation that
all the interactions happened recently. Experiments also show that isolating the temporal decay
as a scaling factor leads to significant performance improvements.

5.3 Item Relation Modeling

Now the remaining part is the item relation modeling module referred to in Section 5.2.1. In this
module, we learn a knowledge graph embedding task to retain semantic meanings into item em-
beddings. The main target is to define the score function Rel, (i, j) to measure the plausibility of a
triplet (i, j, r). Following the setting in previous work [60], we use the summation of the two-level
hierarchy components of the relation as its embedding. Precisely, the representation of relation
r =< r,v > is formulated as:
r=X;+2Zy. (23)
In this way, relations with the same type keep similar representations, and the value embeddings
empower the model fidelity to tackle the situation that the same relation type has different val-
ues. Meanwhile, many popular methods [5, 39, 58, 62] for knowledge graph embedding task can
be adopted under this setting, such as translation-based methods (e.g., TransE [5]) and semantic
matching methods (e.g., DistMult [62]). The difference between these two methods mainly lies in
the symmetry of the score function. For TransE, Rel, (i, j) # Rel,(j, i), while DistMult is symmet-
ric. Considering the fact that most item relations extracted from attributes are undirected (i.e., the
shared brand of Apple holds for both (iPhone, AirPods) and (AirPods, iPhone)), we use DistMult
by default. Besides, many other state-of-the-art knowledge embedding methods can be leveraged,
we leave this as the future work.
In the case of DistMult, it captures relation-specific interactions between item pairs. The score
function is defined as:
Rel, (i, /) = q] diag(r)g;, (24)
where diag(r) denotes a diagonal matrix whose main diagonal elements are equal to r.
To learn semantics in the item relations graph, we want to maximize Rel, (i, j) for observed
triplets and minimize it for unobserved ones. Based on that, a pairwise loss is optimized:

Lrer = — Z log o (Rel, (i, j) — Rel,(i",j7)) . (25)
(i,j,r)eR
For each triplet in R, we randomly corrupt the head item or tail item and make sure (i7,j7,r) ¢
R. If the head item is corrupted, then i~ is a randomly sampled item and j~ = j, vice versa. The
probability of corrupting the head item is set to 0.5 in our model.

5.4 Multi-task Learning

To effectively learn parameters for the recommendation, as well as integrate the relational struc-
ture between items, we jointly learn the main recommendation task and the knowledge graph
embedding task through a multi-task learning framework.

For the recommendation task, we optimize a pairwise ranking loss [47] as follows:

Ny
Lree =~ Z Z log(f (gu,i - gu,i’) s (26)
uel i=2
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ALGORITHM 1: Learning algorithm for KDA

Input: user-item interactions data | J, cqs Sy; item-item relational data R; point of DFT N; self-attention
layer number K; learning rate 7; embedding size d; attention hidden size [; knowledge embedding loss
coefficient y; 12-normalization coefficient A

Output: model parameters ©

1: Randomly initialize all parameters ©

2: for relation type r do

3: Calculate time interval distributions ¥ [x]

4: F; « DFT(¥;[x],N)

5: end for

6: while stopping criteria is not met do

7: Draw a mini-batch (u,i,i7, T, SZ) from Uy eqs Su

8: Draw a mini-batch (i, j,i~,j~, r) from R with the same batch size
9: Compute L,¢. according to Equation (26)
10: Compute £, .; according to Equation (25)
11: L LrectyLrer + MOl
12: Update model parameters © according to £ and optimizer
13: end while
14: return ©

where o denotes the sigmoid function and we randomly sample a negative item i~ ¢ S,, for each
training instance. The index of i starts from 2, because sequential recommendation should have at
least one historical interaction.

Then the joint objective function is defined as:

m(;n -£ = Lrec + Y—l:rel + A”@”Z’ (27)

where O is the parameter space, y is the coefficient of the knowledge graph embedding task, and
A is the regularization coefficient.

With regard to the learning procedure, we first calculate the time interval distribution of each
relation type and save the DFT results. The frequency-domain embeddings F, are initialized with
these DFT results before training. Since ||R]|| can be very large under our two-level hierarchy
setting, we iterate the training data based on user-item interactions in the recommendation task. At
each training step, we draw a mini-batch from R with the same batch size of the recommendation
task. The overall training procedure of KDA is illustrated in Algorithm 1.

Finally, we analyze the time complexity of our model. Now consider all the computations for a
single training instance. For the recommendation task, if the maximum length of history is H, ag-
gregating the historical interactions for a specific relation type takes O((N + d)H), corresponding
to the IDFT operation and relational intensity calculation for each previous interaction. While the
subsequent self-attention with K layers takes O(KM?2d) . As for the prediction layer and knowledge
graph embedding task, they are all controlled within O(d), which can be ignored on the whole.
Therefore, the total time complexity for a training instance is

O(M(N + d)H + KM?*d). (28)

Generally, the number of relation type M is not large (less than 10 in our cases), hence the time
complexity for learning KDA is acceptable compared to other state-of-the-art models.

5.5 Discussion

Here we discuss the connections between KDA and other related recommendation models.
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5.5.1 Conventional Sequential Recommendation. For conventional sequential models such as
FISM [29] and SVD++ [34], the main idea is to capture item-based collaborative similarity; thus,
they use the dot product between historical and target item embeddings to make recommenda-
tions. Our KDA model can easily generalize these conventional CF methods. If there is only a

single latent relation type 7o whose aggregation weight is 1/4/|SZ|, and there is no self-attention
layer, then the KDA history representation will become

1
mi= ==,
NEAREH

which leads to the same ranking function as FISM. In fact, compared to traditional sequential
recommendation methods, the item relations and their temporal evolutionary effects addressed in
history aggregation weights empower KDA to be better at understanding dynamic user intention.

(29)

5.5.2  Knowledge-enhanced Recommendation. Item relations have been shown to be useful in
many studies, and embedding-based methods attract more and more attention due to the scalabil-
ity. Most popular knowledge-enhanced methods loosely connect the knowledge graph embedding
task and recommendation task with shared entity embeddings, such as CKE [65], KTUP [7], and
RCF [60]. Some of them move one step forward to consider the relationship between historical
items and the target item, such as RCF and Chorus [55]. However, they need to explicitly deter-
mine whether the historical item is relational to the target one, which is not only inefficient but
also easy to be affected by the incompleteness of the knowledge graph (missing relations). Dif-
ferently, we introduce relational intensity and share the score function in the knowledge graph
embedding task. This enables our KDA model to generalize the knowledge learned in KG, so as to
softly determine the relational effect of each previous interaction. Previous methods that directly
divide the history sequence according to relations to the target item can also be seen as a special
case of our relational intensity attention. As a result, the relational intensity connects the two tasks
more tightly, which is a better approach to exploit the information in the item relations graph.

5.5.3 Time-aware Recommendation. As for the models with temporal information, KDA follows
the idea of underweighting the effects of historical interactions. Unlike incorporating temporal in-
formation as contextual features, the temporal decay effects can handle unseen time periods and
hence gain better generalization ability. However, most existing methods predefine the functional
form of the temporal decay effects (e.g., exponential and normal distribution in SLRC and Cho-
rus), which is not scalable and needs domain-specific knowledge. Our key insight about temporal
evolution is to transform the continuous temporal decay function to a discrete representation in
frequency domain based on DFT. The learnable frequency embedding for each relation type en-
ables KDA to capture the temporal evolution of different item relations in a domain-adaptive way.
This can also serve as a general approach to estimate continuous functions with discrete embed-
dings in neural models, because it is easy to be integrated into the learning procedure and achieves
promising results even with randomly initialized values.

6 EXPERIMENTS

In this section, we present our experimental settings and results. Our experiments are designed to
answer the following research questions:

e RQ1: How effective is our proposed KDA model in different datasets compared to state-of-
the-art methods on the Top-K recommendation task?
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e RQ2: Does our Fourier-based method successfully model the temporal evolutionary effects
of historical relational interactions?

e RQ3: What are the impacts of the relational intensity and different knowledge graph em-
bedding methods?

e RQ4: How do the hyper-parameter settings influence the performance, such as the coeffi-
cient of the KG embedding loss and the number of self-attention layers?

6.1 Experimental Settings

6.1.1 Datasets and Evaluation Protocols. We use the same datasets described in Section 3.2,
covering various recommendation scenarios. Following the leave-one-out strategy in the litera-
ture [11, 29, 53], we use the most recent interaction of each user for testing, the second recent item
for validation, and the remaining items for training. Considering it is time-consuming to rank all
the items for some methods when the dataset is large, we randomly sample 99 negative items (i.e.,
not in S,,) and rank the ground-truth item together with these items. This approach is also widely
adopted in other work [38, 55].

To evaluate the quality of the recommendation, we use Hit Ratio (HR) and Normalized Dis-
counted Cumulative Gain (NDCG) [28] as evaluation metrics. HR@K measures whether the
ground-truth item appears in the Top-K recommendation list, while NDCG@XK concerns the rank-
ing position of the ground-truth item. Let g,, € [1,100] denote the rank of the ground-truth item
for each user u, then HR@K and NDCG@K can be defined as follows under our experimental
settings:

1
HR@K = — Y I(g, < K),
W',;‘x (9 )

Igu < K) (30)

NDCG@K = — Z
UT £ Tog,(gu +1)°

where I(-) is an indicator function and returns 1 when the condition is true, otherwise 0. We repeat
each experiment 5 times with different random seeds and report the average score.

6.1.2 Baseline Methods. To evaluate the performance of our KDA model, we compare it with
8 baselines. These methods include traditional factorization-based methods (BPR, FISM), neural
sequential recommendation (NARM, SASRec), and knowledge-enhanced/time-aware methods
(TiSASRec, TransFM, Chorus, RCF).

e BPR [47]. This method applies Bayesian Personalized Ranking objective function to opti-
mize the Matrix Factorization model.

e FISM [29]. This is a factorization-based sequential recommendation model with mean ag-
gregation of the interacted item embeddings.

e NARM ([37]. It is a neural model with attention mechanism applied on the hidden states of
Gated Recurrent Units [12] to better capture the sequential dependency.

e SASRec [29]. This method utilizes self-attention [53] to exploit the mutual influence be-
tween historical interactions, which is a state-of-the-art neural sequential model.

e TiSASRec [38]. This is a improved version of SASRec, which considers time intervals be-
tween historical interactions when performing self-attention.

e TransFM [44]. This is a knowledge-enhanced method with combination of translation-
based approaches and FM [46]. It incorporates temporal information as context features,
leading to time-aware recommendation.
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Table 3. Comparison of Baseline Methods and KDA

Characteristics BPR FISM NARM SASRec TiSASRec TransFM Chorus RCF KDA

Sequential Model v v v v v v v v
Neural Model v v v v v
Domain Adaptive v v v v v v v v
Knowledge-aware v v v v
Time-aware v v v v

e Chorus [55]. It is a state-of-the-art method with item relations and temporal evolution.
But it only concerns whether there is relational consumption previously, and needs hand-
crafted forms of temporal decay functions.

e RCEF [60]. This model presents a joint-learning framework to incorporate item relations in
the sequential recommendation with a two-level neural attention network.

The comparison of our KDA model and these baseline methods are shown in Table 3.

6.1.3 Implement Details. We implement our model with PyTorch and the implementation codes
are publicly available.> All the models are optimized by Adam optimizer, which is shown to be
effective in neural model training. Early stop is adopted if NDCG@5 on the validation dataset
does not improve for 10 epochs. For fair comparisons, the batch size is set to 256; the embedding
size is set to 64, and the attention hidden size is set to 10. We consider a maximum of 20 most
recent interactions as the historical sequence for all models.

We tune hyper-parameters according to the performance in the validation set. All baseline meth-
ods are carefully tuned to achieve optimal performances. The learning rates 1 are tuned within
[1072,1073,107*]. The I12-normalization coefficients A are tuned amongst [107%,1075,107°, 0]. For
SASRec, TiSASRec and KDA, the number of self-attention layers is tuned within [1,2, 3,4, 5].
For RCF and KDA, the coefficient of knowledge graph embedding task y is tuned between
[0.01,0.1, 1, 5, 10]. For KDA, the point of DFT is set to 64. DistMult and average pooling are used by
default for the score function and pooling method, respectively. All the parameters are normally
initialized with 0 mean and 0.01 standard deviation. The sensitivity of some key hyper-parameters
will be further explored in Section 6.5. All the experiments are conducted with a single GTX-1080
Ti GPU.

6.2 Performance Comparison (RQ1)

Table 4 shows the Top-K recommendation performance of all methods, as well as the relative im-
provements of the best-performing KDA model over corresponding baseline. For our KDA model,
we report the results when utilizing three kinds of pooling methods (Section 5.1.3): average pool-
ing, max pooling, and attention pooling, denoted as KDA,yg, KDApax, and KDAgyy, respectively.
Among all baselines, RCF generally achieves promising performance due to the target-aware
and knowledge-enhanced history aggregation. In dense dataset (i.e., MovieLens-100k), SASRec
and TiSASRec gain outstanding results because of their strong ability to capture the latent mutual
influence of sequential interactions. With regard to item relations, knowledge-aware methods
(i.e., TransFM, Chorus, RCF) generally outperform traditional sequential models, especially
in Amazon Electronics. But item relations seem to be less useful in RecSys2017. Temporal
information also plays an important role, and the performance of TiSASRec is remarkable in all

Shttps://github.com/THUwangcy/ReChorus.
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Table 4. Performance of Different Models

MovieLens-100k

Model NDCG@5 HR@5 NDCG@10 HR@10 Improv.
BPR 0.3830 0.5175 0.4320 0.6691 +20.17%
FISM 0.3588 0.5228 0.4135 0.6903 +22.38%
NARM 0.3716 0.5345 0.4300 0.7137 +18.47%
SASRec 0.4285 0.6002 0.4752 0.7434 +7.09%
TiSASRec 0.4271 0.5938 0.4767 0.7444 +7.34%
TransFM 0.3925 0.5525 0.4487 0.7253 +14.13%
Chorus 0.3959 0.5492 0.4462 0.7032 +15.05%
RCF 0.4043 0.5652 0.4514 0.7094 +13.05%
KDAan 0.4550** 0.6288** 0.5020** 0.7731* —

KDA ax 0.4703** 0.6320™ 0.5174" 0.7762** —

KDAattn 0.4455** 0.6246™ 0.4906** 0.7625** —

Amazon Electronics

Model NDCG@5 HR@5 NDCG@10 HR@10 Improv.
BPR 0.3003 0.4067 0.3389 0.5262 +35.29%
FISM 0.3432 0.4615 0.3838 0.5872 +19.55%
NARM 0.3399 0.4584 0.3810 0.5855 +20.35%
SASRec 0.3587 0.4805 0.4000 0.6083 +14.82%
TiSASRec 0.3594 0.4813 0.4006 0.6086 +14.66%
TransFM 0.3564 0.4832 0.4000 0.6181 +14.40%
Chorus 0.3635 0.4865 0.4019 0.6154 +13.62%
RCF 0.3635 0.4852 0.4045 0.6121 +13.66%
KDAavg 0.4201** 0.5544" 0.4603" 0.6795" —

KDA hax 0.4081** 0.5410* 0.4493** 0.6685"* —

KDAtin 0.3947** 0.5223** 0.4358™* 0.6495** —

RecSys2017

Model NDCG@5 HR@5 NDCG@10 HR@10 Improv.
BPR 0.8069 0.8546 0.8164 0.8837 +11.95%
FISM 0.8792 0.9166 0.8859 0.9373 +3.95%
NARM 0.8263 0.8786 0.8363 0.9095 +9.08%
SASRec 0.8863 0.9173 0.8930 0.9381 +3.49%
TiSASRec 0.8961 0.9282 0.9021 0.9465 +2.42%
TransFM 0.8382 0.8994 0.8514 0.9399 +6.70%
Chorus 0.8434 0.9025 0.8543 0.9358 +6.46%
RCF 0.8688 0.9270 0.8779 0.9549 +3.73%
KDAan 0.9136™* 0.9467** 0.9219** 0.9722** —

KDA % 0.9076** 0.9404* 0.9135** 0.9585** —

KDA ttn 0.9146™ 0.9505" 0.9225" 0.9743" —

The best-performing method is in bold, and the second best method is underlined. ** means significantly
better than the strongest baseline (p < 0.01). “Improv.” means the relative improvement of the best KDA
model over corresponding baseline (averaged across all metrics).
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Fig. 6. Ablation study about temporal evolution. KDA\T means there is no temporal evolution; KDA-fit de-
notes utilizing the Weibull distribution to fit temporal decay functions; KDA-g means the temporal evolution
is global but not relation-specific; KDA-rand means the frequency embeddings are randomly initialized.

three datasets. TiSASRec becomes the strongest baseline in RecSys2017, probably because of the
complex temporal patterns of this dataset shown in Section 4. But it only captures time intervals
within historical interactions, ignoring the temporal decay up to the target item. Besides, it is
noteworthy that although Chorus introduces both item relations and temporal dynamics, it only
performs well in Amazon Electronics. The main reason is that the temporal decay functions in
Chorus need a predefined functional form, which may be not scalable to different domains.

Our proposed KDA model improves over the best baseline methods by a large margin in all
datasets. The rationale behind lies in three parts: (1) We use relational intensity score to softly
aggregate historical interactions, rather than directly dividing the sequence like RCF. We will
show that utilizing the method of RCF will lead to poor results in Section 6.4; (2) we devise a
Fourier-based method to adaptively incorporate temporal evolutionary effects into model train-
ing, which is not only effective but also flexible. (3) The mutual influence between relations is
further explored with the self-attention mechanism. Besides, notice that the performances of dif-
ferent pooling methods vary across different datasets, and the best choices are not consistent.
The average pooling method generally gets promising results, but max pooling is extremely pow-
erful in MovieLens-100k. And attention pooling is a little better than the others in RecSys2017,
but performs worse in the other two datasets (still better than baseline methods). As a result, the
concrete method needs to be determined according to the dataset, which may rely on data scale
and the number of relations. According to our experiences, average pooling and max pooling are
generally stable, hence we use average pooling by default in the following experiments.

6.3 Temporal Evolution Analyses (RQ2)

In this section, we investigate the impacts of temporal information and our Fourier-based estima-
tion method. Some modifications of our KDA model are compared here:

e KDA\T. This model removes the temporal decay f;(At,) in Equation (3). The historical
interactions are aggregated only by the relational intensity score.

o KDA-fit. This model estimates temporal decay functions by fitting a specific distribution
with relation-specific parameters. Weibull distribution is shown to be flexible and effective
in our experiments, in which case Equation (18) will become

k At, k-1 ]
fT(AtH;ATy kr) = A_T ( 1 ) e_(Atn//lr)k .

e KDA-g. This model assumes the temporal evolution is not relevant to relation types, and
only has a global frequency embedding for all relation types.
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Fig. 7. Visualization of the averaged temporal decay functions learned by different methods, and global time
interval distributions in data (above). The temporal decay functions of KDA are the most consistent with
data. Randomly initializing frequency embeddings (KDA-rand) yields similar results with KDA, while fitting
a predefined distribution (KDA-fit) can hardly capture multi-modal effects and scale to different datasets.

e KDA-rand. This model does not initialize frequency embeddings with the DFT results of
time interval distributions in data. The real and imaginary part of F, are normally initialized
with 0 mean and 0.01 standard deviation like other embeddings.

Figure 6 shows NDCG@5 of the KDA model and these variants in all three datasets. We mainly
have the following observations:

1) Temporal evolution of relational effects is indeed helpful to understand dynamic user inten-
tion. KDA\T performs the worst among these variants in all three datasets. The consistent perfor-
mance drop demonstrates the usefulness of taking temporal evolutionary effects into considera-
tion. This verifies the observations in Section 4 that the effects of previous relational interactions
are actually sensitive to time intervals. Comparatively, the impact of temporal information is the
largest in MovieLens-100k, which is consistent with previous studies in this dataset [34].

2) The Fourier-based estimation of temporal decay functions is effective. Although Weibull dis-
tribution is flexible compared to other common distributions, the performances of KDA-fit are still
not stable across different datasets. It performs similarly with our KDA model in Amazon Elec-
tronics, since the time interval distribution in this dataset is comparatively simpler and suitable
for Weibull distribution. While in the other two datasets, KDA-fit yields worse results, especially
in MovieLens-100k. This indicates that estimating temporal decay functions with predefined func-
tional form suffers from the scalability problem. Differently, our Fourier-based method achieves
stable and promising results in all three datasets.

3) The frequency-domain embedding can serve as a general strategy to model temporal evolu-
tion. It is noteworthy that KDA-rand yields similar results with KDA, which demonstrates that the
model can jointly learn temporal evolution in data without prior knowledge. In this way, other neu-
ral models can easily incorporate temporal evolution with a simple embedding, which is domain-
free and flexible. Besides, notice that KDA-g results in consistent performance drop, which shows
the importance of relation-specific frequency embeddings. As discussed in Section 5.2, it is also
easy to include the influence of other factors such as user characteristics with specific embed-
dings. However, KDA still outperforms KDA-rand in MovieLens-100k and RecSys2017, indicating
the usefulness of the information conveyed by time interval distributions in data, which should be
taken into consideration if possible.

Furthermore, Figure 7 visualizes the temporal decay functions learned by different variants of
KDA in Amazon Electronics and RecSys2017. The function values for all relation types in the
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Fig. 8. Impacts of item relation modeling. KDA\I means there is no relational intensity, and historical inter-
actions are directly divided by their relations to the target item like RCF; KDA\V discards relation values in
the relation representation; In KDA-Trans, TransE is used as the score function instead of DistMult.

dataset are averaged to observe the global trend, and the maximum value is normalized to 1 for
each function. The global time interval distribution is also shown above each figure. It can be seen
that the temporal decay functions of KDA are the most consistent with data, since the frequency
embeddings are initialized by the DFT results of time interval distributions. But there are still some
differences after parameter learning. For example, the short-term effect is enhanced in RecSys2017
compared to the original distribution. More interestingly, frequency embeddings with randomly
initialized values (KDA-rand) yield similar functional forms with KDA, which demonstrates the
scalability and effectiveness of our Fourier-based method. In this way, we can directly define fre-
quency embeddings without concern about the real distributions in data, and the performance loss
is slight in the meantime. With regard to KDA-fit, although the Weibull distribution can be learned
to have roughly similar trends with actual distributions, it can hardly capture multi-modal effects
in different datasets. For instance, restricted by the functional form, it cannot reflect the long-term
effects in RecSys2017. We also find KDA-fit is quite sensitive to the initial values of distribution pa-
rameters. Improper parameter initialization will lead to bad performance, which makes it hard to
be adopted in real-world applications. Differently, our Fourier-based frequency embedding method
does not have this problem and is a more flexible choice.

6.4 Impacts of Item Relation Modeling (RQ3)

Here we further explore the influence of different item relation modeling methods. For one thing,
we want to investigate whether relational intensity is useful. For another, we aim to compare
different methods to represent and model item relations. Thus, we disign the following variants of
KDA:

e KDA\L This model divides historical interactions according to their relations to the target
item, and only aggregates corresponding relational items when deriving relational dynamic
history embeddings, which ignores relational intensities as RCF.

e KDA\V. This model removes relation values and only retain relation types (i.e., r = x;).
Item pairs with different attribute values will be seen to have the same relation.

e KDA-Trans. In this model, TransE is utilized as the score function instead of DistMult in
KDA (i.e, Rel, (i.j) = ~|lq; + 1 — qjll2).

Figure 8 shows NDCG@5 of KDA and these variants, as well as the results of RCF. It can be con-
cluded that our item relation modeling methods in KDA (relational intensity, two-level hierarchy
representation, and DistMult score function) together contribute to the best performance in all
three datasets.
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Fig. 9. Performance of KDA and RCF with regard to the coefficient y of the knowledge graph embedding
task in the objective function. The best-performing result for each method is annotated.
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Fig. 10. Performance of KDA and SASRec with regard to the number of self-attention layers K. The best-
performing result for each method is annotated.

First, except for Amazon Electronics, KDA\I results in the largest decline of performance gen-
erally, indicating the importance of softly aggregating historical interactions with relational in-
tensity. KDA\I directly divides the history sequence according to their relations to the target item,
which neglects some items that are probably relational in the history sequence. Differently, rela-
tional intensity can fully exploit the knowledge learned in the KG. With the shared score function,
it can handle missing relations and determine the aggregation weight according to relational in-
tensities, leading to tight integration of recommendation and item relation modeling.

Second, KDA\V leads to consistent performance loss in all three datasets. This demonstrates the
two-level hierarchy representation of relations can enlarge the model capacity, which helps our
KDA model to capture fine-grained characteristics about item relations. The observation about the
benefit of introducing relation values is consistent with previous work [60].

Third, KDA-Trans generally performs worse than KDA with DistMult, especially in Amazon
Electronics. This may be caused by the fact that most item relations in our datasets are undirected
as discussed in Section 5.3. TransE can hardly handle such symmetric relations, while DistMult
is simple but more suitable in this case. Amazon Electronics has the largest number of relation
triplets, which may account for the bad performance of KDA-Trans in this dataset.

6.5 Hyper-parameter Analyses (RQ4)

In this section, we conduct several experiments to investigate the impacts of some main hyper-
parameters in our KDA model, including the coefficient of the knowledge graph embedding loss
v, the number of self-attention layers K, and the point of DFT N.
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Table 5. Performance of KDA Model When the Point of DFT Takes
Different Values

Amazon Electronics

N NDCG@5 HR@5 NDCG@10 HR@10
32 0.4186 0.5523 0.4594 0.6782
64 0.4201 0.5544 0.4603 0.6795
128 0.4207 0.5537 0.4622 0.6819
256 0.4190 0.5523 0.4602 0.6793

6.5.1 Multi-task Learning Coefficient. The coefficient y in Equation (27) controls the weight
of the knowledge graph embedding task in the total loss, which reflects the importance of item
relation modeling. Figure 9 shows the NDCG@5 of KDA and RCF with respect to the multi-task
learning coefficient y. We annotate the result of the best-performing setting for each method in
the dataset. From the figure, we can make the following observations.

First, item relation modeling can actually benefit the main recommendation task. Compared to
the situations when y = 0, both KDA and RCF achieve better performance under proper settings
of y in all three datasets. This indicates the importance of modeling the semantics of item rela-
tions. Besides, the overall trends generally increase first and then decrease. The best setting varies
across datasets, which may rely on the scale and quality of relational data. In MovieLens-100k
and RecSys2017, the coefficients are better to be at a lower level. While for Amazon Electronics,
the relational data are not only large scale but also high quality, and hence y can be set to larger
values.

Second, the knowledge graph embedding task is more useful to our KDA model. The figure
also shows the relative improvements of KDA and RCF compared to corresponding cases when
y = 0. We can see our KDA model achieves larger relative improvements in all three datasets. This
verifies the statement that KDA can integrate the knowledge graph embedding task more tightly
with the shared score function. In practice, the specific value of the multi-task learning coefficient
can be determined by cross-validation.

6.5.2  Number of Self-attention Layers. Here we conduct experiments to test the impact of self-
attention layer number K. Figure 10 presents the NDCG@5 of KDA and SASRec with respect
to the layer number. We can see the overall trends also increase first and then decrease, which
demonstrates the usefulness of self-attention layers in limited ranges. The performance gain is
especially obvious when the number of self-attention layers changes from 0 to 1 for both KDA and
SASRec. However, with subsequent increase of the layer number, although multiple techniques are
applied to prevent over-fitting, the performance of SASRec only increases slightly and then begins
to drop, especially in sparse datasets. With regard to our KDA model, the performance grows stably
when the number of self-attention layers is within a proper range. Besides, the best performance
of KDA is generally achieved with deeper self-attention layers. This demonstrates that applying
self-attention over fixed-number relational dynamic history embeddings in our KDA model can
better exploit the expressiveness of the self-attention mechanism.

6.5.3 Point of DFT. Finally, we investigate whether the point of DFT N will influence the per-
formance of our KDA model. Table 5 shows the experimental results with different N in Amazon
Electronics. From the table, we can see the performances are similar for different DFT points (no
significant differences). Larger DFT points in limited ranges achieve a little better performance. Re-
sults in other datasets demonstrate similar phenomena. It can be concluded that our KDA model
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is not that sensitive to the exact point of DFT. The temporal decay functions can be well estimated
with both small or large N (at least X). In practice, a smaller N (i.e., size of frequency-domain
embeddings) can be set in consideration of the efficiency problem.

7 DISCUSSION ON LIMITATIONS

Beyond the effectiveness and scalability of our KDA model, we discuss some limitations and future
directions in this section.

7.1 Long-term User Preference

In this work, we mainly focus on the modeling of short-term user intention. The long-term user
preference is only captured by user embeddings, which is not sufficient nor powerful. We have
tested in our experiments that the overall performance will not suffer an obvious loss if there
are no user embeddings. In recent years, Graph Neural Network (GNN) is shown to be an
effective method to model long-term user preference. As a result, a possible future direction is to
leverage the output of GNN as our basic embeddings for users and items, so as to better combine
long-term user preference and short-term user intention.

7.2 Restriction on Item-item Relation

In this work, we assume relations only appear between items, so that the score function in the KG
embedding task can be shared to calculate relational intensities between historical items and the
target item. Although applicable in most scenarios, this assumption is a little strict. For attribute-
based item relations, a more general knowledge graph will represent them by relations between
items and other entities, such as (iPhone, Apple, brand_is). Here we treat these external entities as
relation values to construct item-item relations, but it will lead to numerous triplets, because any
two items with the same attribute value will constitute a relation. To solve this problem, instead
of storing all the item-item relation triplets, we only construct the needed triplets according to the
item metadata before each mini-batch in the implementation. Besides, the relationships between
external entities cannot be captured now. In the future, we will try to find a general method to
model external knowledge beyond item-item relations.

7.3 Model Efficiency

In our KDA model, each target item will get a different history representation m,, ;, which is more
time-consuming compared to methods based on inner product. This makes KDA more suitable for
fine-grained ranking rather than retrieving candidates from large-scale items. While compared to
recent target-aware methods (e.g., RCF, Chorus), the computation complexity of our model is still
acceptable as discussed in Section 5.4. As for further improvements on efficiency, the number of
relation types M in KDA is an influential factor. The main reason is that we need to aggregate
history sequence M times, and the subsequent self-attention is sensitive to M. However, it may
not be necessary to aggregate historical interactions under the view of each relation type. In the
future, some representative relations can be adaptively chosen to improve model efficiency.

8 CONCLUSION

In this work, we focus on better understanding dynamic user intention in the sequential recom-
mendation. Through the empirical study in three real-world datasets, we reveal the importance of
modeling temporal evolutionary effects of historical relational interactions. Based on these obser-
vations, we devise KDA to adaptively incorporate item relations and their temporal evolutionary
effects. Specifically, we aggregate the history sequence into relational dynamic history embed-
dings where the attention weight considers both relational intensities and time intervals between
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historical items and the target item. For one thing, relational intensity is used to model relation-
specific impacts of previous relational items. For another, we innovatively introduce a Fourier-
based method to estimate the temporal evolution of different relational effects. The latent and
continuous temporal decay functions are encoded to fixed-size embeddings in the frequency do-
main, which can be optimized together with other model parameters. Besides, the self-attention
mechanism is leveraged to capture the mutual influence between relations. As a result, the final
representation of the history sequence well reflects dynamic user intention. Extensive experiments
are conducted in three datasets with different application scenarios. The experimental results in-
dicate that our KDA model consistently and significantly outperforms state-of-the-art recommen-
dation methods.

It is noteworthy that our designs of relational intensity and frequency-domain embeddings both
contribute a lot to the performance improvement. The relational intensity helps our model to softly
aggregate the history sequence and fully exploit the knowledge learned in the KG embedding
task. More importantly, the Fourier-based estimation of temporal decay functions opens up a new
avenue to adaptively introduce temporal dynamics into the model design, which is easy to be
adopted in general neural models. In the future, we will extend our settings to include general
external knowledge and further explore the integration of long-term user preference.
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