
14

Efficient Neural Matrix Factorization without Sampling

for Recommendation

CHONG CHEN and MIN ZHANG, Tsinghua University, China

YONGFENG ZHANG, Rutgers University, United States

YIQUN LIU and SHAOPING MA, Tsinghua University, China

Recommendation systems play a vital role to keep users engagedwith personalized contents inmodern online

platforms. Recently, deep learning has revolutionized many research fields and there is a surge of interest in

applying it for recommendation. However, existing studies have largely focused on exploring complex deep-

learning architectures for recommendation task, while typically applying the negative sampling strategy for

model learning. Despite effectiveness, we argue that these methods suffer from two important limitations:

(1) the methods with complex network structures have a substantial number of parameters, and require ex-

pensive computations even with a sampling-based learning strategy; (2) the negative sampling strategy is not

robust, making sampling-basedmethods difficult to achieve the optimal performance in practical applications.

In this work, we propose to learn neural recommendation models from the whole training data without

sampling. However, such a non-sampling strategy poses strong challenges to learning efficiency. To address

this, we derive three new optimization methods through rigorous mathematical reasoning, which can effi-

ciently learn model parameters from the whole data (including all missing data) with a rather low time com-

plexity. Moreover, based on a simple Neural Matrix Factorization architecture, we present a general frame-

work named ENMF, short for Efficient Neural Matrix Factorization. Extensive experiments on three real-world

public datasets indicate that the proposed ENMF framework consistently and significantly outperforms the

state-of-the-art methods on the Top-K recommendation task. Remarkably, ENMF also shows significant ad-

vantages in training efficiency, which makes it more applicable to real-world large-scale systems.

CCS Concepts: • Information systems → Recommender systems; • Computing methodologies →

Neural networks;

Additional Key Words and Phrases: Matrix factorization, neural networks, implicit feedback, efficient learn-

ing, recommendation system

This article is an extension of Chen et al. [4]. Compared with the previous conference version, it introduces two new

forms of the previously proposed efficient optimization method and a new efficient neural matrix factorization frame-

work. It also includes extensive experimental assessments of the new methods and compares the efficiency and perfor-

mance with the state-of-the-art recommendation models. This work is supported by Natural Science Foundation of China

(Grants No. 61672311 and No. 61532011) and the National Key Research and Development Program of China (Grant no.

2018YFC0831900). The work is also partially supported by National Science Foundation (Grant No. IIS-1910154).

Authors’ addresses: C. Chen, M. Zhang, Y. Liu, and S. Ma, Tsinghua University, Beijing, 100084, China; emails:

cc17@mails.tsinghua.edu.cn, z-m@tsinghua.edu.cn, yiqunliu@tsinghua.edu.cn, msp@tsinghua.edu.cn; Y. Zhang, Rutgers

University, New Brunswick, New Jersey, 08901, United States; email: yongfeng.zhang@rutgers.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1046-8188/2020/01-ART14 $15.00

https://doi.org/10.1145/3373807

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3373807

14:2 C. Chen et al.

ACM Reference format:

Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. 2020. Efficient Neural Matrix Fac-

torization without Sampling for Recommendation. ACM Trans. Inf. Syst. 38, 2, Article 14 (January 2020), 28

pages.

https://doi.org/10.1145/3373807

1 INTRODUCTION

Recommender systems provide essential web services on the Internet to alleviate the information
overload problem. An effective recommender system not only can facilitate the information seek-
ing process of users but also can help providers display products accurately to the target popula-
tion. With such an important role, recommendation has become a hot research topic and attracted
increasing attention in information retrieval and data-mining communities [3, 23, 58].

The key to personalized recommender systems is in modelling users’ preference on items based
on their past interactions (e.g., ratings and clicks), known as collaborative filtering. Among various
collaborative filtering methods, Matrix Factorization (MF) [26, 29] is the most popular one and
has been widely adopted in many real-world applications [32, 46]. MF maps users and items to a
shared latent factor space, so that user-item relationships can be captured by their latent factors’
dot product. Early work on MF algorithms [27, 28] mainly focused on explicit feedback, where
users’ ratings that directly reflect their preference on items are utilized. However, later researchers
found that this way of modelling only the observed positive feedbacks leads to poor performance
of the real top-N recommendation system [8]. Moreover, explicit ratings are not always available
in many applications. More commonly, users interact with items through implicit feedback, e.g.,
users’ viewing records and purchase history.
Compared to explicit ratings, implicit feedback is easier to collect but more challenging to uti-

lize, since it is binary and only has positive examples. To solve the problem of lacking negative
feedback [37], two learning strategies have been proposed: (1) negative sampling strategy that ran-
domly samples negative instances from the missing data [3, 23, 41]; (2) whole-data-based strategy
that treats all the missing data as negative [4, 26, 30]. Both solutions have pros and cons: Negative
sampling has controllable efficiency, but its effectiveness may suffer from the low quality of neg-
ative examples and slow convergence [40, 41], while modeling all missing data is costly, it can be
more effective [4, 25].

Recently, deep learning has made massive strides in many research areas and achieved great
performance [18]. The successful integration of deep-learning methods in recommendation sys-
tems has demonstrated the advantages of complex network structures over traditional models.
However, existing studies have largely focused on exploring newly proposed deep-learning ar-
chitectures for recommendation task, such as attention mechanisms [2, 5, 58], memory networks
[3, 14], Convolutional Neural Network (CNN) [20], Generative Adversarial Networks (GAN) [21,
52], Graph Neural Networks (GNN) [16, 55], and so on. While for model learning, these works
typically rely on the negative sampling strategy for efficient training. Despite effectiveness, we
argue that existing deep-learning-based recommendation methods suffer from two important lim-
itations: First, the methods with complex network structures have a substantial number of parame-
ters, and require expensive computations even with a sampling-based learning strategy; second, as
shown in previous work [23, 53], the performance of negative sampling is not robust as it is highly
sensitive to the sampling distribution and the number of negative samples. Essentially, sampling
is biased, making it difficult to converge to the same loss with all training examples, regardless of
how many update steps have been taken [57].

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

https://doi.org/10.1145/3373807

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:3

To address the limitation caused by negative sampling, we propose to performwhole-data-based
learning for neural recommendation models. In contrast to sampling, whole-data-based learning
does not involve any sampling procedure and computes the gradient over all training data (in-
cluding all missing data). As such, it can easily converge to a better optimum in a more stable way
[26, 60]. Unfortunately, the difficulty in applying whole-data-based learning lies in the expensive
computational cost for large-scale data, which makes the straightforward method less applicable
to neural models.
Motivated by the above observations, in this work, we enhance (1) the effectiveness of neural

recommendation models by performing whole-data-based learning strategy, and (2) the practi-
cability of learning from the whole training data by developing three efficient optimization al-
gorithms. The two significant enhancements of our methods make it easy to address large-scale
scenarios with a more expressive modeling on implicit data. To ensure training efficiency, we ac-
celerate the optimization method by reformulating a commonly used square loss function with
rigorous mathematical reasoning. Specifically, we perform the optimization on each element of
user and item latent vectors, rather than the traditional vector-wise manner [23, 26]. By leveraging
the sparsity of implicit data, we successfully update each parameter in a manageable time com-
plexity without sampling. Moreover, based on a simple Neural Matrix Factorization architecture,
we present a general framework named ENMF (short for Efficient Neural Matrix Factorization),
and propose three instantiations—ENMF-U, ENMF-I, and ENMF-A based on the newly derived
optimization approaches.
To evaluate the recommendation performance and training efficiency of our proposed meth-

ods, we apply ENMF on three real-world datasets with extensive experiments. The results indicate
that our ENMFmethods consistently and significantly outperform the state-of-the-art methods on
Top-K personalized recommendation task, while maintaining the favorable properties of not hav-
ing compositional parameters. Furthermore, ENMF also shows significant advantages in training
efficiency, which makes it more practical in practical E-commerce scenarios. Our main contribu-
tions are outlined as follows.

• We propose to learn neural recommendation models without sampling, which is more ef-
fective and stable due to the consideration of all samples in each parameter update. Three
efficient optimization methods are derived: user-based, item-based, and alternating-based,
which solve the challenging problem of learning neural models from the whole data with a
controllable time complexity.

• A generic Efficient NeuralMatrix Factorization framework (ENMF) is proposed based on the
derived learning methods. It complements the mainstream sampling-based neural models
for recommendation, providing a new approach to improve recommendation models.

• Extensive experiments are performed on three real-world datasets. The results show that
ENMF significantly outperforms the state-of-the-art methods by more than 5.90%, 4.08%,
6.30%, on the three datasets, respectively, while maintaining the favorable properties of not
having compositional parameters. Furthermore, ENMF also shows significant advantages in
training efficiency, which makes it more applicable to real-world large-scale systems. Codes
have been released to facilitate further developments on efficient whole-data-based neural
methods.1

This work is a revised and extended edition of research that appeared at SIGIR 2019 [4], which
is significantly different from its preliminary conference version in the methodology. Specifically,
this work approaches a generic problem setting where any scenario with implicit feedback can

1https://github.com/chenchongthu/ENMF.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

https://github.com/chenchongthu/ENMF

14:4 C. Chen et al.

be applied, while the previous work [4] is designed to focus on social-aware recommendations.
Moreover, this version extends the designed efficient learning method by adding item-based and
alternating-based forms, as well as the corresponding analysis of results, while only the user-based
form is discussed in the conference version.
The rest of this article is organized as follows. In the next section, we review related work. Then,

we provide some preliminaries of our methods in Section 3. After that, we elaborate our proposed
whole-data-based learning methods and Efficient Neural Matrix Factorization framework in Sec-
tion 4. In Section 5, we report experimental results and corresponding analysis. In Section 6, we
discuss the limitation and some extensions of our methods. Finally, we conclude the article and
highlight some future directions in Section 7.

2 RELATEDWORK

In this article, we study efficient whole-data-based learning for neural recommendation models.
Thus, we review the related work of traditional recommendation models, neural recommendation
models, and model learning in recommendation.

2.1 Traditional Recommendation Models

Among the various traditional recommendation methods, Matrix Factorization (MF) is the most
popular one, and is also the basis of many effective models [42, 48]. Popularized by the Netflix
Challenge, early MF methods [29] were designed to model users’ explicit feedback by mapping
users and items to a latent factor space, such that user-item relationships (ratings) can be obtained
by their latent factors’ dot product. After that, many research efforts have been devoted to en-
hancing MF, such as integrating it with neighbor-based models (SVD++) [27] and extending it to
Factorization Machines (FM) [39] for a generic modeling of features.

Later on, some researchers found that a well-designed MF model in rating prediction may not
perform well in Top-K recommendation, and called on recommendation research to focus more
on the ranking task [8]. In this case, Hu et al. [26] proposed a whole-data-based method (WMF),
which assumes that all unobserved items are negative samples and are equally weighted. Then
several efforts [25, 30] focused on the weighting scheme by considering whether the unobserved
items are indeed negative ones. On another line of research, Rendle et al. [41] proposed a pair-wise
learning method BPR, which is a sampling-based method that optimizes the model based on the
relative preference of a user over pairs of items. Then, the pairwise learning strategy has been
widely used to optimize recommender models [3, 5, 23, 50] and become a dominant technique in
recommendation.

2.2 Neural Recommendation Models

In the past few years, there is a large literature exploiting different neural networks for improv-
ing the performance of recommendation systems. Salakhutdinov et al. [43] proposed a Restricted
BoltzmannMachines to predict explicit ratings, which was the first to apply neural network to rec-
ommender system. Among the early studies, autoencoder was a popular choice of deep-learning
architecture. The autoencoder acts as a nonlinear decomposition of the rating matrix replacing the
traditional linear inner product. In previous work, Sedhain et al. [45] designed AutoRec that us-
ing an autoencoder followed by reconstruction to directly predict ratings. Wu et al. [56] proposed
Collaborative Denoising AutoEncoders (CDAE) that integrating a user-specific bias into an au-
toencoder. CDAE can be seen as a generalization of many existing collaborative filtering methods.
Zhang et al. [61] designed AutoSVD++ that extending the original SVD++model with a contrastive
autoencoder to capture auxiliary item information.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:5

Neural Collaborative Filtering (NCF) [23] addressed implicit feedback by jointly learning a ma-
trix factorization and a feedforward neural network. The outputs are then concatenated before the
final output to produce an interaction between the latent factors and the nonlinear factors. The
NCF framework has been extended to adapt to different recommendation scenarios [5, 17, 54]. For
example, Wang et al. [54] applied NCF to model user-item interaction in both information domain
and social domain, Chen et al. [5] combined NCF with attention mechanism to recommend videos
and images. Gao et al. [17] extended the architecture of NCF to a multi-task learning framework,
which aims to solve the problem of learning recommender systems from multi-behavior data.
Other than for pure implicit data setting, many studies utilized neural network to extract the

auxiliary information and features in recommender system, such as textual [2, 64], visual [33, 59],
audio [51], and video [7]. Zhang et al. [62] proposed a Joint Representation Learning (JRL) frame-
work to model heterogeneous information sources for recommendation. Recently, it has become
a trend to explore the application of newly proposed deep-learning architectures in recommenda-
tion. Such as attention mechanisms [2, 5, 58], memory networks [3, 6, 14], Convolutional Neural
Network (CNN) [20, 64], Recurrent Neural Network (RNN) [36], Generative Adversarial Networks
(GAN) [21, 52], Graph Neural Networks (GNN) [16, 55], and so on.

Although existing neural recommendation models have achieved great success, they either fo-
cus on rating prediction task, or just typically apply the negative sampling strategy for model
learning. As we have discussed in Section 1, complex deep models have a substantial number of
parameters so that require expensive computations, and the negative sampling strategy is not ro-
bust in real applications. Compared with these methods, we specially design an efficient neural
matrix factorization framework to address the above issues.

2.3 Model Learning in Recommendation

In many real-world applications, the data matrices can be highly sparse. To optimize a recommen-
dation model with implicit feedback, two strategies have been widely used in previous studies,
which are: (1) negative sampling strategy [3, 23, 41] and (2) whole-data-based strategy [11, 26, 30,
31].

Negative sampling strategy [3, 23, 41] samples negative instances from missing data. For exam-
ple, BPR [41] is a sampling-based method that randomly samples negative instances from missing
entries, maximizing the margin between the model prediction of observed entries and that of sam-
pled negatives. By negative sampling, the number of negative instances is greatly reduced, there-
fore the overall time complexity is controllable [23]. However, the downside is that sampling-based
methods usually have a slower convergence rate and the performance is highly dependent of the
design of the sampler [25, 57]. Whole-data-based strategy [11, 26, 30, 31] sees all the missing data
as negative. For example, the WMF method [26] models all missing entries as negative instances
with a label of 0, assigning themwith a lower weight in point-wise regression learning. The whole-
data-based methods model negative instances with a higher coverage, but the downside is that the
learning algorithm could be much slower. Existing neural recommendation methods [3, 23, 49, 59]
typically rely on negative sampling for efficient optimization. To retain the model’s fidelity, we
persist in whole-data-based learning in this article, and we develop fast optimization methods to
address the inefficiency issue.
Some efforts have been devoted to resolving the inefficiency issue of traditional whole-data-

based methods. Most of them are based on Alternating Least Squares (ALS) [26]. For example,
Pilaszy et al. [38] described an approximate solution of ALS. He et al. [25] proposed an efficient
element-wise ALS with non-uniform missing data. Unfortunately, ALS-based methods are not
applicable to neural models, which use Gradient Descent (GD) for optimization. Recently, some

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:6 C. Chen et al.

Table 1. A Summary of Key Notations in This Work

Symbol Description

U set of users
B batch of users or items
V set of items
R user-item interactions
R the set of user-item pairs whose values are non-zero
pu latent factor vector of user u
qv latent factor vector of item v
h prediction layer
cuv the weight of entry Ruv
d latent factor number
Θ set of neural parameters

researchers [57, 60] studied fast Batch Gradient Descent (BGD) methods to learn from all training
examples. However, they also only focus on optimizing traditional non-neural models.
Distinct from previous studies, we devise three new flexible whole-data-based learning ap-

proaches in this work. To the best of our knowledge, our work is the first study tailored for learning
neural recommendation models without sampling.

3 PRELIMINARIES

We first introduce the key notations used in this work, the whole-data-based MF methods, and the
weighting strategies for missing data.

3.1 Notations

Table 1 depicts the notations and key concepts used in this article. Suppose we have M users and
N items in the dataset, and we use the index u to denote a user, and v to denote an item. The
user-item data matrix is denoted as R = [Ruv]M×N ∈ {0, 1}, indicating whetheru has purchased or
clicked on item v . We use R to denote the set of observed entries in R, i.e., for which the values
are non-zero. Vector pu denotes the latent vector of u, and qv denotes the latent vector of v . cuv
denotes the weight of entry Ruv . More details are introduced in Section 4.

3.2 MF Method for Implicit Data

In implicit data, the user-item interactions R is defined as

Ruv =

{
1, if interaction (user u, item v) is observed,
0, otherwise.

(1)

For Ruv , a value of 1 indicates that there is an interaction between user u and item v , which is
taken as a positive instance that u likes v . However, a value of 0 does not necessarily mean u does
not likev , it can be consider as the user is not aware of the item. This poses challenges in learning
from implicit data. While observed entries reflect users’ interest on items, the unobserved entries
can be just missing data and there is a natural scarcity of negative feedback.
Matrix Factorization (MF) maps both users and items into a joint latent feature space of d di-

mension such that interactions are modeled as inner products in that space. Mathematically, each
entry Ruv of R is estimated as

R̂uv =< pu , qv >= pTu qv . (2)

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:7

The item recommendation problem is formulated as estimating the scoring function Ruv , which is
used to rank items.
For implicit data, the observed interactions are rather limited, and non-observed examples are

of a much larger scale. To learn model parameters, Hu et al. [26] introduced a weighted regression
function, which associates a confidence to each prediction in the implicit feedback matrix R:

L (Θ) =
∑
u ∈U

∑
v ∈V

cuv (Ruv − R̂uv)2, (3)

where cuv denotes the weight of entry Ruv . Note that in implicit feedback learning, missing entries
are usually assigned a zero Ruv value but non-zero cuv weight.

As can be seen, the time complexity of computing the loss in Equation (3) isO (|U| |V|d). Clearly,
the straightforward way to calculate gradients is generally infeasible, because |U| |V| can easily
reach billion level or even higher in real life.

3.3 Weighting Strategies for Missing Data

There have been many studies on how to assign proper weights for missing data. Here, we discuss
four most common strategies:
(1) Zero weight on missing entries. This strategy applies a zero weight on missing entries,

i.e., cuv = 0 if Ruv = 0. It is a typical setting for the task of rating prediction [2, 64], which aims to
predict the values of missing entries in user-item rating matrix. However, some researchers found
that a well-designed model in rating prediction may not perform well in Top-K recommendation
[8]. The reason is that the missing entries contain valuable signal about negative instances, and
ignoring them will lead to suboptimal performance.
(2) Uniform weight on all entries. This strategy applies a uniform weight of 1 on all data

entries. When the number of missing entries are of the same scale as the number of observed
entries, such a setting may yield good performance. However, in real-word scenarios, the implicit
data is usually very sparse, the observed entries are rather limited, and non-observed examples
are of a much larger scale. For such highly imbalanced learning scenarios, a uniform weighting
strategy will make the parameter estimation process dominated by the missing entries, resulting
in suboptimal performance [24].

(3) Uniform weight on missing entries. This strategy assigns all missing entries with the
same weight c0, which can be different as the weight for observed entries [26]:

cuv =

{
c1 if Ruv = 1,
c0 if Ruv = 0.

(4)

When dealing with sparse data, c0 can be set as a smaller number than c1 to alleviate the imbal-
anced learning issue. For example, in Reference [26], c1 is set to a value of 1, while c0 is a smaller
number. Previous studies [12, 26, 53] have demonstrated that this strategy yields better perfor-
mance than a uniform weight on all entries in recommendation task.
(4) Frequency-based weight on missing entries. This strategy assigns missing entries with

non-uniform weights, while the weights dependent on item popularity [25, 30] or user activity [1].
The uniform weight strategy assumes all missing entries provide the same level of negative signal,
which severely limits the fidelity for modeling real-world scenarios. For example, a popular item
is more likely to be seen by users, thus it should be assigned a higher weight as negative if not
clicked [25, 30]. Another reasonable intuition is that the missing entries of active users (who have
clicked many items) are more likely to be true negatives [1]. A commonly used frequency-based
weighting strategy [25, 57, 60] is as follows:

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:8 C. Chen et al.

cuv =

{
c1 if Ruv = 1,
c−v if Ruv = 0,

(5)

where c−v is defined as

c−v = c0
mx
v∑ |V |

j=1m
x
j

; mv =
|Rv |∑ |V |
j=1 |Rj |

, (6)

where mv denotes the frequency of item v in R; Rv denotes the positive interactions of v ; c0
determines the overall weight of missing data, and x controls the significance level of popular
items over unpopular ones.

4 EFFICIENT NEURAL MATRIX FACTORIZATION

This section elaborates our proposedmethods. Specifically, in Section 4.1, we first present a general
framework of neural matrix factorization with the whole-data-based learning strategy. Then, we
introduce three efficient learningmethods under the framework, which are user-based, item-based,
and alternating-based. In Section 4.5, we discuss the computational complexity and the application
scenarios of our efficient optimization approaches. Last, in Section 4.6, we describe the training
details of the methods.

4.1 General Framework

Figure 1 illustrates our proposed framework of Efficient Neural Matrix Factorization (ENMF) with-
out sampling. The overall neural network architecture follows the design of Neural Collaborative
Filtering (NCF) [23] with two major differences. First, in the input layer, distinct from NCF that
input a user-item pair (u,v), we use a user and all his/her item interactions (user-based) or an item
with all its user interactions (item-based) as inputs. This setting allows the neural network to learn
from the whole training data. Second, instead of applying a sampling-based strategy to optimize
the interaction between user and item, we adopt our proposed efficient optimization methods to
learn the model from the whole training data without sampling.
In the designed framework, users and items are first converted to dense vector representations

through embeddings. Then for each user-item instance (u,v), a mapping function is applied as

ϕ1 (pu , qv) = pu � qv , (7)

where pu ∈ Rd and qv ∈ Rd are latent vectors of user u and item v , d is the number of latent
factors, and � denotes the element-wise product of vectors. We then project the vector to the
prediction layer:

R̂uv = hT (pu � qv)

=

d∑
i=1

hipu,iqv,i ,
(8)

where h is the prediction layer.
The general framework is simple, but with the optimization of our proposed efficient whole-

data-based learning approaches, it significantly outperforms existing complex and state-of-the-art
recommendation methods. Moreover, ENMF also shows significant advantages in training effi-
ciency, which makes it more applicable to real-world large-scale systems. The details are shown
in Section 5.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:9

Fig. 1. Overview of our proposed Efficient Neural Matrix Factorization (ENMF) framework, which contains

two forms: (a) User-based and (b) Item-based. The major difference between the two forms lies in whether

the training batch is generated based on users or items.

4.2 User-based Efficient Learning

Our designed efficient whole-data-based optimization strategy has three forms, which makes it
more flexible in different application scenarios. We first introduce the user-based method in this
section.
For implicit data, the observed interactions are rather limited, and non-observed examples are

of a much larger scale. To learn model parameters, Hu et al. [26] introduced a weighted regression
loss, which associates a confidence to each prediction in the implicit data matrix (Equation (3)). To
make the loss suitable for learning neural models, we first adjust it to a mini-batch form, where the
training batches are generated based on users. Figure 2 shows an example of the input. Following
this setting, we have the loss for a batch of users as follows:

L1 (Θ) =
∑
u ∈B

∑
v ∈V

cuv (Ruv − R̂uv)2

=
∑
u ∈B

∑
v ∈V

cuv (R
2
uv − 2Ruv R̂uv + R̂2

uv),
(9)

where B denotes a batch of users, V denotes all the items in the data set, and cuv denotes the
weight of entry Ruv . As can be seen, the time complexity of computing this loss is O (|B| |V|d),
which means the straightforward way to calculate gradients is generally unaffordable in practice.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:10 C. Chen et al.

Fig. 2. The input batch of our user-based optimization method, which is generated based on users. The grey

cells denote non-observed (u,v) examples, which are assigned a zero value with lower weights.

In implicit data, since Ruv ∈ {0, 1} indicates whetheru has purchased or clicked on itemv , it can
be replaced by a constant to simplify the equation:

L1 (Θ) = const − 2
∑
u ∈B

∑
v ∈V+

c+uv R̂uv +
∑
u ∈B

∑
v ∈V

cuv R̂
2
uv , (10)

where const denotes a Θ-invariant constant value that can be eliminated. Then, the loss of missing
data can be expressed by the residual between the loss of all data and that of positive data. This is
a key design of our method, it serves as the prerequisite for the efficient computation. The detailed
derivation is as follows:

L1 (Θ) = const − 2
∑
u ∈B

∑
v ∈V+

c+uv R̂uv +
∑
u ∈B

∑
v ∈V+

c+uv R̂
2
uv +

∑
u ∈B

∑
v ∈V−

c−uv R̂2
uv

= const − 2
∑
u ∈B

∑
v ∈V+

c+uv R̂uv +
∑
u ∈B

∑
v ∈V+

c+uv R̂
2
uv +

∑
u ∈B

∑
v ∈V

c−uv R̂2
uv −

∑
u ∈B

∑
v ∈V+

c−uv R̂2
uv

= const +

LP1 (Θ)︷��︸︸��︷∑
u ∈B

∑
v ∈V+

(
(c+uv − c−uv)R̂2

uv − 2c+uv R̂uv
)
+

LA1 (Θ)︷�������������︸︸�������������︷∑
u ∈B

∑
v ∈V

c−uv R̂2
uv ,

(11)

where LP
1 (Θ) denotes the loss of positive data and LA

1 (Θ) denotes the loss of all data. Thus, L1 (Θ)
can be seen as a combination of the loss of positive data and the loss of all data. And the loss of
missing data has been eliminated. As can be seen, the first term focuses on the observed data
only and leads to a low complexity in optimization. The major computational bottleneck lies in
LA

1 (Θ) now. In the following, we show how to reduce the huge volume of computation by a simple
mathematical decouple.

Recall the prediction of R̂uv (Equation (8)), based on a decouple manipulation for the inner
product operation, the summation operator and elements in pu and qv can be rearranged:

R̂2
uv =

d∑
i=1

hipu,iqv,i

d∑
j=1

hjpu, jqv, j

=

d∑
i=1

d∑
j=1

(
hihj
) (

pu,ipu, j
) (

qv,iqv, j
)
.

(12)

By substituting Equation (12) in LA
1 (Θ), there emerges a nice structure: If setting c−uv to a uni-

form [26] (Equation (4)) or an item-dependent parameter c−v [25, 30] (Equation (5)) as previous

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:11

ALGORITHM 1: User-based efficient learning without sampling

Require: Training data {R,U,V}; weights of entries c; learning rate η; embedding size d
Ensure: Neural parameters Θ
1: Randomly initialize neural parameters Θ
2: while Stopping criteria is not met do

3: Randomly draw a training batch based on user {RB,B,V}
4: Compute the loss L̃1 (Θ) (Equation (14))
5: Update model parameters
6: end while

7: return Θ

work, then the interaction between pu,i and qv,i can be properly separated. Thus, the optimiza-
tion of

∑
v ∈V c−vqv,iqv, j and

∑
u ∈B pu,ipu, j are independent of each other, which means we could

achieve a significant speed-up by precomputing the two terms:

LA
1 (Θ) =

d∑
i=1

d∑
j=1

�
�

(
hihj
) �
�

∑
u ∈B

pu,ipu, j�
�
�
�

∑
v ∈V

c−vqv,iqv, j�
�
�
�
. (13)

The rearrangement of nested sums in Equation (13) is the key transformation that allows the fast
optimization. The computing complexity of LA

1 (Θ) has been reduced fromO (|B| |V|d) toO ((|B| +
|V|)d2).
By substituting Equation (13) in Equation (11) and removing the const part, we get the final

user-based efficient loss as follows:

L̃1 (Θ) =
∑
u ∈B

∑
v ∈V+

(
(c+v − c−v)R̂2uv − 2c+v R̂uv

)
+

d∑
i=1

d∑
j=1

�
�

(
hihj
) �
�

∑
u ∈B

pu,ipu, j�
�
�
�

∑
v ∈V

c−vqv,iqv, j�
�
�
�
, (14)

where cuv is simplified to cv as discussed before.We give the training process of user-basedmethod
in Algorithm 1. It is worth noting that our efficient optimization method is strictly equal to the
original loss function, as no approximation is introduced during the derivation process.

4.3 Item-based Efficient Learning

In this section, we introduce our item-based efficient optimization method. In Figure 3, we show
an example of the input, which contains a batch of items and all the users in the data set. Similarly,
for a input batch, the original regression loss is

L2 (Θ) =
∑
u ∈U

∑
v ∈B

cuv (Ruv − R̂uv)2, (15)

where B denotes a batch of items, U denotes the user set, and cuv denotes the weight of entry Ruv .
The main difference between user-based method and item-based method lies in whether the

batches are generated based on user or item. The derivation processes of the two forms are similar.
To avoid repetition, we leave out the detailed derivation of the item-based method and only show
the final result as follows:

L̃2 (Θ) =
∑
u ∈U+

∑
v ∈B

(
(c+v − c−v)R̂2uv − 2c+v R̂uv

)
+

d∑
i=1

d∑
j=1

�
�

(
hihj
) �
�

∑
u ∈U

pu,ipu, j�
�
�
�

∑
v ∈B

c−vqv,iqv, j�
�
�
�
. (16)

The training process of item-based method is shown in Algorithm 2.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:12 C. Chen et al.

Fig. 3. The input batch of our item-based optimization method, which is generated based on items. The grey

cells denote non-observed (u,v) examples, which are assigned a zero value with lower weights.

ALGORITHM 2: Item-based efficient learning without sampling

Require: Training data {R,U,V}; weights of entries c; learning rate η; embedding size d
Ensure: Neural parameters Θ
1: Randomly initialize neural parameters Θ
2: while Stopping criteria is not met do

3: Randomly draw a training batch based on item {RB,B,U}
4: Compute the loss L̃2 (Θ) (Equation (16))
5: Update model parameters
6: end while

7: return Θ

4.4 Alternating-based Efficient Learning

So far, we have derived two forms of efficient whole-data-based optimization method—user-based
and item-based. Although each individual method can achieve good results in practice, there is
still a potential problem that they may encounter: the imbalance of learning speed between users
and items. Take the user-based method as an example, each user is associated with all the items
as inputs, which will result in more gradient steps on items than users. As a result, items may be
over-trained locally at the expense of users, which would then be under-trained. Although some
tricks like adaptive learning rates like Adagrad [13] have been proposed to alleviate this problem,
we still want to address it fundamentally.
Since we have user-based method and item-based method, a natural question then arises: How

can we fuse the two forms, so that they can mutually reinforce each other to further address the
above problem and better learn the complex user-item interactions?
In traditional collaborative filtering methods, Alternating-Least-Square (ALS) is widely used

to solve the whole-based MF [24, 26, 30]. It alternates between re-computing user-factors and
item-factors, and each step is guaranteed to lower the value of the loss function. Motivated by
ALS, we propose an alternating-based efficient learning method that conducts a two-step training
procedure. During one learning epoch, the first step uses user-based loss and the second step
uses item-based loss. Each step is guaranteed to lower the value of the loss function. The overall
alternating-based learning method is summarised in Algprithm 3. During the training stage, the

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:13

ALGORITHM 3: Alternating-based efficient learning without sampling

Require: Training data {R,U,V}; weights of entries c; learning rate η; embedding size d
Ensure: Neural parameters Θ
1: Randomly initialize neural parameters Θ
2: while Stopping criteria is not met do

3: for user-based step do

4: Randomly draw a training batch based on user {RB,B,V}
5: Compute the loss L̃1 (Θ) (Equation (14))
6: Update model parameters
7: end for

8: for item-based step do

9: Randomly draw a training batch based on item {RB,B,U}
10: Compute the loss L̃2 (Θ) (Equation (16))
11: Update model parameters
12: end for

13: end while

14: return Θ

model is trained using user-based loss and item-based loss alternatively via Equation (14) and
Equation (16).

4.5 Discussion on Complexity

Now that the basic description of our technique is completed, we would like to further discuss the
complexity of our methods in this section.
For user-based efficient loss (Equation (14)), updating a batch of users takes O ((|B| + |V|)d2 +
|RB |d) time, where RB denotes positive user-item interactions of this batch. Then updating an

epoch takesO ((|U| + |U | |V ||B |)d2 + |R |d). Similarly, for item-based efficient loss (Equation (16)), one

epoch takes O ((|V| + |U | |V ||B |)d2 + |R |d) time. The complexity of alternating-based method is the

sum of user-based and item-based. However, it generally needs fewer epochs to achieve optimal
performance due to the balanced training of users and items, which reduces the overall time cost
in practice. For the original regression loss, one epoch takes O (|U| |V|d). Since |R | � |U| |V| and
d � |B| in practice, the computational complexity of training a model without sampling is reduced
by several magnitudes. This makes it possible to apply whole-data-based optimization strategy for
neural models. Moreover, since no approximation is introduced during the derivation process, the
optimization results are exactly the same with the original whole-data-based regression loss.

4.6 Training

Modern computing units such as CPU and GPU usually provide speedups for matrix-wise float
operations. Thus, our mini-batch-based optimization methods can be naturally implemented in
modern machine learning tools like Tensorflow and PyTorch. The model parameters can be cal-
culated with standard back-propagation, which is omitted here, since the learner is not the main
concern of this article. To optimize the objective function, we adopt mini-batch Adagrad [13] as
the optimizer. Its main advantage is that the learning rate can be self-adapted during the train-
ing phase, which eases the pain of choosing a proper learning rate and alleviates the imbalanced
training of users and items.
Overfitting is a perpetual problem in optimizing a machine learning model. Many works have

mentioned that deep-learning models are even more likely to suffer from overfitting [18, 19]. To

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:14 C. Chen et al.

alleviate this issue, we consider dropout [47]—a widely used method in deep-learning models, in
our work. The idea of dropout is randomly drop some neurons (along with their connections)
during the training process [47]. When updating parameters, only part of them will be updated.
Trough this process, it can prevent complex co-adaptations of neurons on training data. More-
over, as dropout is disabled during testing and the whole network is used for prediction, dropout
has another side effect of performing model averaging with smaller neural networks, which may
potentially improve the performance [19]. Specifically, in our efficient neural matrix factorization
framework, we randomly drop ρ percent of latent factors after the element-wise production in
Equation (7) to improve the model’s generalization ability, where ρ is termed as the dropout ratio.

5 EXPERIMENTS

In this section, we perform experiments to verify the correctness, efficiency, and effectiveness of
our efficient learning methods and ENMF framework. All experiments are conducted on three
real-world datasets, which are commonly used in recommendation systems. We aim to anwser the
following research questions:

• How are the effectiveness and efficiency of our proposed efficient learning methods?
• How does the proposed ENMF framework performs compared with state-of-the-art item

recommendation methods?
• How do the key hyper-parameter settings impose influence on the performance of our

methods?

In what follows, we first introduce the experimental settings, followed by answering the above
three research questions.

5.1 Experimental Settings

5.1.1 Datasets. We experimented with three public accessible datasets: Ciao,2 Epinion,3 and
Movielens.4 We briefly introduce the three datasets:

• Ciao: This dataset contains users’ ratings to the items they have purchased. Since we focus
on the implicit feedback, the detailed rating is transformed into a value of 0 or 1, indicating
whether a user has rated an item.

• Epinions: Epinions is a widely used dataset for recommendation. It is collected from a who-
trust-whom directed online social network that provides product rating and review service.
The corresponding rating is also assigned to a value of 1 (as implicit feedback) in our ex-
periments.

• Movielens:MovieLens is a dataset of movie ratings that have been leveraged extensively to
investigate the performance of CF algorithms. In our experiments, we choose the version
including one million ratings where there are 20 ratings per user at least. It is the largest
dataset in our experiments.

All the datasets were preprocessed to make sure that all items have at least five interactions to
make them easier to evaluate CF algorithms. The statistical details of these datasets are summarized
in Table 2.

5.1.2 Baselines. To evaluate the performance of our proposed methods, we compare with the
following approaches:

2http://www.jiliang.xyz/trust.html.
3https://alchemy.cs.washington.edu/data/epinions/.
4https://grouplens.org/datasets/movielens/1m/.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

http://www.jiliang.xyz/trust.html
https://alchemy.cs.washington.edu/data/epinions/
https://grouplens.org/datasets/movielens/1m/

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:15

Table 2. Statistical Details of the Evaluation Datasets

Dataset #User #Item #Interaction Density

Ciao 7,267 11,211 157,995 0.19%
Epinion 20,608 23,585 454,002 0.09%
Movielens 6,940 3,706 1,000,209 4.47%

Table 3. Comparison of the Methods

Characteristics MP ItemKNN BPR WMF ExpoMF GMF NCF ConvNCF ENMF

Top-N Recommendation
√ √ √ √ √ √ √ √ √

Neural Model \ \ \ \ \ √ √ √ √
Whole-data-based \ \ \ √ √ \ \ \ √

• MostPopular (MP): It is non-personalized, since it ranks items according to their popular-
ity, which is measured by the number of interactions.

• ItemKNN [44]: This is a standard item-based method that measures the similarity among
items for implicit feedback.

• Bayesian Personalized Ranking (BPR) [41]: This method optimizes MF with the
Bayesian Personalized Ranking objective function to learn from implicit feedback data. It is
a often opted baseline for item recommendation.

• Weighted MF (WMF) [26]: This is a whole-data-based method for item recommendation.
It treats all missing interactions as negative instances and weighting them uniformly.

• Exposure MF (ExpoMF) [30]: This is a whole-data-based method for item recommenda-
tion. It treats all missing interactions as negative instances and weighting them with the
corresponding item’s popularity.

• Generalized Matrix Factorization (GMF) [23]: It is one of the state-of-the-art neural
network-based recommendation method. Note that the network structure of GMF is the
same as our ENMF except for adopting negative sampling for model learning.

• Neural Collaborative Filtering (NCF) [23]: This is the state-of-the-art deep-learning
method that uses users’ historical feedback for item ranking. It combines MF with a multi-
layer perceptron (MLP) model and utilizes negative sampling for model learning.

• Convolutional Neural Collaborative Filtering (ConvNCF) [20]: This is a recently pro-
posed deep-learning method that supercharges NCF modeling with an outer product oper-
ation and convolutional neural network (CNN). It also utilizes negative sampling for model
learning.

The comparison of our ENMF and the baseline methods are listed in Table 3.

5.1.3 Evaluation Metrics. After a model is trained, we generate the personalized ranking list for
a user by ranking all items that are not interacted by the user in the training set. The leave-one-out
evaluation protocol [17, 23] is employed here to study the performance of item recommendation.
Specifically, we sort the user-item interactions by the timestamps for each user at first; then the
last records of users were used as test data, the second last records were used as validation data,
and the remaining records were used for training.
We evaluate the ranking list using Hit Ratio (HR) and Normalized Discounted Cumulative Gain

(NDCG). HR is a recall-based metric, measuring whether the testing item is in the top-K list, while
NDCG is position-sensitive, which assigns higher score to hits at higher positions. We define the
generated recommendation list for user u as Reu = {re1u , re2u , . . . , reNu }, where N is the number of

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:16 C. Chen et al.

recommended items, reiu is ranked at the ith position in Reu according to the predicted score. The
set of u’s interacted items in the test data is defined as Tu . These metrics are computed as follows:

HR@N =
1

|U|
∑
u

I (|Reu ∩ Tu |) ,

NDCG@N =
1

Z
DCG@N =

1

Z

1

|U|
∑
u

N∑
i=1

2I (| {r e iu }∩Tu |) − 1
loд2(i + 1)

,

(17)

where I (x) is an indicator function whose value is 1 when x > 0, and 0 otherwise, U is the user
set, and Z is a normalization constant, which is the maximum possible value of DCG@N .
For both metrics, larger values indicate better performance. Note that for a user, our evaluation

protocol ranks all unobserved items in the training set. Through this way, the obtained results
are more persuasive than ranking a random subset of negative times only [17]. Though this all-
ranking protocol is very time-consuming for neural models NCF and ConvNCF, our ENMF can still
rank all unobserved items quickly by leveraging matrix operation. For each method, we randomly
initialize the model and run it five times. After that, we report the average results.

5.1.4 Parameter Settings. Our ENMF approaches are implemented with TensorFlow,5 a well-
known open-source software library for deep learning. All hyperparameters are tuned according to
the validation set. The parameters for all baseline methods were initialized as in the corresponding
papers, and were then carefully tuned to achieve optimal performances. The learning rate for all
models were tuned amongst [0.005, 0.01, 0.02, 0.05]. To prevent overfitting, we tuned the dropout
ratio in [0.1, 0.3, 0.5, 0.7, 0.9, 1]. The batch size was tested in [128, 256, 512, 1024], the dimension
of the latent factor number d were tested in [8, 16, 32, 64]. In addition, the number of negative
samples is tuned amongst [1, 2, 3, 4, 5, 6] for sampling-based methods. Note that we uniformly
set the weight of missing data as c0, as the effectiveness of popularity-biased weighting strategy is
beyond the scope of this article. c0 was tuned amongst [0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1]. After the
tuning process, the batch size was set to 512, the size of the latent factor dimension d was set to 64,
and the learning rate was set to 0.05. The dropout ratio ρ was set to 0.3 for Ciao, 0.5 for Epinion,
and 0.7 for Movielens. c0 was set to 0.05 for Ciao and Epinion, and 0.5 for Movielens. The effects
of these hyperparameters are further explored in Section 5.4.

5.2 Performance Comparison

Wefirst made a comparison between our proposedmodels and other recommendation approaches.
We investigated the top-N performance with N setting to [50, 100, 200]. Note that for a user, all
unobserved items in the training set were ranked to provide the recommendation list. In this case,
small values of N will make the results have a large variance and unstable [17]. As such, we report
results of a relatively large N . For the purpose of a fair comparison, the embedding size is set to
64 for all embedding-based approaches (BPR, WMF, ExpoMF, GMF, NCF, ConvNCF, and ENMF).
In Section 5.4, we will alter the embedding size of these embedding-based approaches to observe
embedding size performance trends. The results of the comparison of different methods on three
datasets are shown in Table 4. Note that we show the results of our ENMF with three different
learning methods: user-based (ENMF-U), item-based (ENMF-I), and alternating-based (ENMF-A).
From the results, the following observations can be made:

(1) The popularity-based method MP is particularly ineffective here, indicating the necessity
ofmodeling users’ personalized preferences, rather than just recommending popular items

5https://www.tensorflow.org/.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

PLX-HTTPS://www.tensorflow.org/

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:17

Table 4. Performance of Different Models on Three Datasets

Ciao HR@50 HR@100 HR@200 NDCG@50 NDCG@100 NDCG@200 RI

MP 0.1047 0.1384 0.1776 0.0396 0.0452 0.0506 +67.96%

ItemKNN 0.1453 0.1884 0.2468 0.0497 0.0581 0.0668 +26.14%

BPR 0.1531 0.1930 0.2558 0.0517 0.0598 0.0685 +21.91%

WMF 0.1587 0.2011 0.2608 0.0562 0.0631 0.0714 +16.40%

ExpoMF 0.1602 0.1994 0.2613 0.0569 0.0626 0.0709 +16.41%

GMF 0.1668 0.2103 0.2674 0.0633 0.0687 0.0752 +9.36%

NCF 0.1651 0.2108 0.2712 0.0629 0.0695 0.0764 +8.84%

ConvNCF 0.1682 0.2237 0.2741 0.0641 0.0714 0.0787 +5.90%

ENMF-U 0.1750** 0.2296** 0.2945** 0.0651** 0.0741** 0.0830** –

ENMF-I 0.1749** 0.2311** 0.2946** 0.0643* 0.0734** 0.0823** –

ENMF-A 0.1757** 0.2331** 0.3015** 0.0662** 0.0753** 0.0850** –

Epinion HR@50 HR@100 HR@200 NDCG@50 NDCG@100 NDCG@200 RI

MP 0.0661 0.1068 0.1659 0.0234 0.0299 0.0382 +153.96%

ItemKNN 0.1312 0.2082 0.2929 0.0455 0.0563 0.0682 +34.41%

BPR 0.1708 0.2338 0.3007 0.0548 0.0646 0.0747 +17.04%

WMF 0.1765 0.2384 0.3158 0.0605 0.0685 0.0789 +11.07%

ExpoMF 0.1784 0.2368 0.3064 0.0602 0.0691 0.0781 +11.70%

GMF 0.1811 0.2513 0.3388 0.0613 0.0739 0.0845 +5.52%

NCF 0.1816 0.2534 0.3442 0.0621 0.0750 0.0869 +4.08%

ConvNCF 0.1833 0.2510 0.3418 0.0617 0.0742 0.0851 +4.87%

ENMF-U 0.1893** 0.2647** 0.3523** 0.0639** 0.0761** 0.0883** –

ENMF-I 0.1888** 0.2667** 0.3534** 0.0634** 0.0759** 0.0884** –

ENMF-A 0.1911** 0.2688** 0.3546** 0.0648** 0.0773** 0.0893** –

Movielens HR@50 HR@100 HR@200 NDCG@50 NDCG@100 NDCG@200 RI

MP 0.1842 0.2099 0.3382 0.0441 0.0481 0.0659 +109.01%

ItemKNN 0.2101 0.2889 0.3918 0.0598 0.0724 0.0867 +59.18%

BPR 0.2637 0.4048 0.5710 0.0757 0.0986 0.1217 +17.59%

WMF 0.2924 0.4378 0.6040 0.0909 0.1073 0.1324 +6.47%

ExpoMF 0.2904 0.4368 0.5927 0.0865 0.1100 0.1346 +7.11%

GMF 0.2847 0.4226 0.5847 0.0821 0.1086 0.1289 +10.30%

NCF 0.2902 0.4316 0.6023 0.0837 0.1097 0.1324 +8.02%

ConvNCF 0.2943 0.4403 0.6017 0.0872 0.1112 0.1333 +6.30%

ENMF-U 0.3117** 0.4574** 0.6092** 0.0962** 0.1198** 0.1410** –

ENMF-I 0.3105** 0.4576** 0.6107** 0.0956** 0.1194** 0.1398** –

ENMF-A 0.3124** 0.4581** 0.6139** 0.0968** 0.1202** 0.1419** –

* and ** denote the statistical significance for p < 0.05 and p < 0.01, respectively, compared to the best baseline. “RI”

indicate the average relative improvements of our ENMF-A over the corresponding baseline.

to users. The learning-based methods also achieves better performance than the heuristic-
based method ItemKNN.

(2) We can see that methods using whole-data-based learning strategies generally perform
better than sampling-based methods. For example, in Table 4, the performances of WMF
and ExpoMF are better than BPR; and our ENMF outperforms BPR, GMF, NCF and Con-
vNCF. This is consistent with previous work [4, 57, 60], which indicates that regardless
of what sampler is utilized or how many updates are taken, sampling is still a biased
approach.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:18 C. Chen et al.

Fig. 4. Comparison on the per iteration training time of GMF, ENMF-Original, ENMF-U, ENMF-I, and

ENMF-A with different embedding size d .

(3) The results show that neural methods generally performs better than traditional collabo-
rative filtering methods, which verifies the advantages of neural networks over traditional
models in representation learning. However, in our experiments, we find that the neural
methods NCF and ConvNCF needs to be carefully tuned to avoid model collapse, while
our ENMF is more stable and the parameters can be tuned very easily to obtain the optimal
performance.

(4) Our proposed ENMF achieves the best performance (the highest HR and NDCG scores) on
the three datasets, significantly outperforming all the state-of-the-art baseline methods.
Furthermore, we conduct one-sample t-tests to justify that all of enhancements are sta-
tistically significant with p-Value < 0.01. Specifically, compared to ConvNCF—a recently
proposed and very expressive deep-learning model, our ENMF-A exhibits average im-
provements of 5.90%, 4.87%, and 6.30% on the three datasets. This is very remarkable, since
ENMF uses the shallow NMF framework that has much fewer parameters. Moreover, as
compared to GMF, which has the same network structure but using negative sampling for
model learning, ENMF-A outperforms it by 9.36%, 5.52%, and 10.30% on the three datasets.
This further verifies the effectiveness of our methods and also implies the potential of im-
proving conventional shallow methods with a better learning algorithm.

(5) There is no absolute superior between our user-based learning method and item-based
method, since the results show that ENMF-U performs roughly the same as ENMF-I on
the three datasets. The reason we think is that that the two methods are both under the
whole-data-based learning framework and thus the results have no obvious differences.
Moreover, using alternating-based learning methods (ENMF-A) generally achieves better
performance, since it alleviates the imbalanced training issue caused by the use of user-
based or item-based methods only.

5.3 Efficiency Analyses

In this section, we conducted experiments to explore the training efficiencies of our methods and
three state-of-the-art neural recommendationmethods: GMF, NCF, and ConvNCF. All experiments
in this section are run on the same machine (Intel Xeon 8-Core CPU of 2.4 GHz and single NVIDIA
GeForce GTX TITAN X GPU) for fair comparison on the efficiency.
We first investigated the actual speedup brought by our design of the efficient learning methods.

The results of ENMF-Original are also added to show the efficiency of our proposed optimization
methods, where ENMF-Original represents the method using the original regression loss (Equa-
tion (9)). Figure 4 shows the training time of GMF, ENMF-Original, ENMF-U, ENMF-I and ENMF-
A with different embedding size d . In the figure, the x-axis denotes the setting of d , the y-axis

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:19

Table 5. Comparisons of Runtime (second/minute/hour [s/m/h])

Model
Ciao Epinion Movielens

S I T S I T S I T

GMF 23s 300 115m 216s 500 30h 56s 500 7h
NCF 34s 300 170m 305s 500 42h 91s 500 12h
ConvNCF 88s 300 440m 510s 500 70h 246s 500 34h
ENMF-Original 16s 300 80m 65s 200 216m 28s 300 140m
ENMF-U 2.6s 300 13m 8s 200 27m 6.7s 300 34m
ENMF-I 5.5s 300 28m 21s 200 70m 5.8s 300 29m
ENMF-A 8s 150 20m 32s 100 53m 11s 50 9m

“S,” “I,” and “T” represents the training time for a single iteration, the number of iterations to converge, and the

total training time, respectively.

denotes the training time per iteration. Note that these comparison models all have the same net-
work structure, but different learning methods.
From the figure, we can obviously observe that the training time costs of ENMF-U, ENMF-I

and ENMF-A are much faster than GMF and ENMF-Original with different embedding size d . For
example, on Epinion dataset, GMF and ENMF-Original require 216 and 92 seconds to train the
model with d=64, respectively, while our methods ENMF-U, ENMF-I, and ENMF-A only need 8,
21, and 32 seconds, respectively. Since the fivemethods have the same neural network structure, we
can attribute the acceleration to our designed efficient whole-data-based learning methods, which
are more efficiently compared to the original regression loss and negative sampling strategy.
Furthermore, we compared the overall training time of our methods and three state-of-the-art

neural recommendation methods: GMF, NCF, and ConvNCF. The embedding size is set to 64 for
all the methods and the training time results are shown in Table 5. We have the following key
observations:

(1) Our proposed methods are several magnitudes faster than the baseline models GMF, NCF,
and ConvNCF. For example, on Epinion dataset, the baselines takes over 30 hours to train
a model, while our methods only need 27, 70, and 53 minutes to achieve the optimal per-
formance, respectively. This acceleration is over 30 times. In real E-commerce scenarios,
the cost of training time is also an important factor to be considered. Our proposed ENMF
methods show significant advantages in training efficiency, whichmakes themmore prac-
tical in real life.

(2) Analytically, the time complexity of ENMF-U is O ((|U| + |U | |V ||B |)d2 + |R |d), while for

ENMF-I it is O ((|V| + |U | |V ||B |)d2 + |R |d). The difference in time complexity between the

two methods is the number of users and items. Specifically, on Ciao dataset, which has
7,267 users and 11,211 items, the total training time of ENMF-U is 13 minutes, while for
ENMF-I it is 28 minutes.

(3) Although our ENMF-A takes more time to train a single iteration than ENMF-U and
ENMF-I, the overall training time is generally less than them as it requires less iterations
to achieve the optimal performance.

We also investigated the training process of the neural models GMF, ConvNCF and our ENMF
methods. Figure 5 demonstrates the state of each method at embedding size 64 on three datasets.
Note that we only show the results on HR@100 and NDCG@100 metrics. For other metrics, the
observations are similar. From the figure, we can obviously find the effectiveness of our proposed
methods. In particular, our methods ENMF-A, ENMF-U, ENMF-I converge much faster than GMF

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:20 C. Chen et al.

Fig. 5. Performance curves of GMF, ConvNCF, ENMF-U, ENMF-I, and ENMF-A on the three datasets.

and ConvNCF, and consistently achieves better performance. The reason is that our ENMF is op-
timized with newly derived whole-data-based methods, while GMF and ConvNCF are based on
negative sampling, which generally requires more iterations and can be sub-optimal. Moreover,
the results show that ENMF-A converges even more faster than ENMF-U and ENMF-I. Specifi-
cally, on Movielens dataset, ENMF-A only requires 50 epochs to achieve the optimal performance,
while ENMF-U and ENMF-I require 300 epochs. This further verifies that by adopting alternating-
based learning, ENMF-A can alleviate the under-trained issue caused by ENMF-U and ENMF-I,
thus leading to a faster training process.

5.4 Hyper-parameter Analyses

In this section, we conducted experiments to investigate the impact of different values of the
dropout hyper-parameter ρ and different negative weight w0 on our ENMF methods. In addition,
as embedding-based models, the embedding size is a critical hyper-parameter as well. Thus, we
also compared the different embedding sizes on the performance trends. It is worth noting that our
ENMF does not introduce any additional specific hyper-parameters, which makes it much easier
to be tuned compared with other complex deep-learning models in practice.

5.4.1 Impact of Embedding Size. We conducted experiments to test the impact of embedding
sized in this subsection. Figure 6 shows the performance of HR@100 and NDCG@100 with respect
to the embedding size. For other metrics, the observations are similar. As can be seen from this
figure, our ENMF methods outperform all the other models with different values of d for the two
ranking metrics. Notably, ENMF with an embedding size of 32 even performs better than the best
baseline ConvNCF with a larger embedding size of 64. This further verifies the positive effect of
whole-data-based learning in our ENMF methods.
Moreover, as the latent dimension size increases, the performance of all models increase. This

indicates that a larger dimension could capture more hidden factors of users and items, which is
beneficial to Top-K recommendation due to the increased modeling capability. This observation is
similar to previous work [3, 21, 23]. However, for most deep-learning methods, a larger dimension

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:21

Fig. 6. Performance of GMF, ConvNCF, ENMF-U, ENMF-I, and ENMF-A w.r.t. the embedding size on the

three datasets.

also requires more time for training. Thus, it is crucial to increase a model’s efficiency by learning
with efficient optimization methods.
The recommendation task typically involves a large space of input features (e.g., user ID, item ID,

and other attributed and contextual variables). Given such a large feature space, even a shallow
embedding model like Matrix Factorization [26] will have a large number of parameters, not to
mention the more expressive deep neural networks [20]. This work introduces efficient whole-
data-based learning for the ranking task, providing a newmeans to increase the training efficiency
of large models and having the potential to improve a wide range of models.

5.4.2 Impact of Negative Weight. To illustrate the impact for whole-data-based methods WMF,
ENMF-U, ENMF-I, and ENMF-A with regarding to the negative weight, we demonstrate the ex-
perimental results with different weights of negative instances in Figure 7. Note that in our exper-
iments, we first uniformly set the weight of missing data as c0. From the figure, we can make the
following observations.
First, for Ciao and Epinion, the peak performance is achieved when c0 is around 0.05, while for

Movielens, the optimal c0 is around 0.5. When c0 becomes smaller or too larger, the performance
of WMF and our ENMF both degrade. This highlights the necessity of accounting for the missing
data when modeling implicit feedback for item recommendation. Second, the performances of
our ENMF-U, ENMF-I and ENMF-A with respect to the negative weight on the three datasets are
similar. Comparing to WMF, our ENMF methods are more robust to the weight of missing data.
Specifically, on Ciao and Epinion datasets, ENMFwith c0 between 0.005 to 0.2 consistently perform
better than WMF with an optimal c0. The reasons are twofold. First, WMF optimizes with the
vanilla ALS, while our ENMFmethods are optimized with Adagrad, which adapts the learning rate
for each parameter based on its frequency (i.e., smaller updates for frequent and larger updates for
infrequent parameters). Second, WMF prevents overfitting via L2 regularization, while we employ
dropout, which can be more effective due to the model averaging effect. Third, considering the
performance on each dataset, we find that the optimal weight of missing instance depends on the
density of the dataset. The Movielens dataset is relatively dense in terms of user–item interactions

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:22 C. Chen et al.

Fig. 7. Performance of WMF, ENMF-U, ENMF-I, and ENMF-A w.r.t. the negative weight on the three

datasets.

Fig. 8. Performance of ENMF-U, ENMF-I, and ENMF-A w.r.t. different significant value of item popularity

on the three datasets.

(the density is 4.47%, compared with 0.19% and 0.09% for Ciao and Epinions, respectively). As
shown in previous work [25, 30], popular items are more likely to be known by users, thus it is
reasonable to assign a larger weight to a missing popular item as it is more probable to be a truly
negative instance.
Then, we vary the significant value of item popularity x with the optimal c0 to check the perfor-

mance change. As shown in Figure 8, the optimal x is around 0.6 on the three datasets. Below 0.6,
with the increase of x , the performances of our ENMF methods are gradually improved. But when

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:23

Fig. 9. Performance of GMF, ConvNCF, ENMF-U, ENMF-I, and ENMF-A w.r.t. to different dropout ratios on

the three datasets.

x increases above 0.5, the performance of our methods become worse. This observation is similar
to previous work [24, 25], which reveals that weighting missing data according item popularity is
important for recommendation.

5.4.3 Impact of Dropout. We then studied the impact of dropout on deep-learning-based meth-
ods. Figure 9 shows the validation performances of GMF, ConvNCF, and our ENMF approaches
with respect to different dropout ratios.
From the results, we can first see that by setting the dropout ratio to a proper value, all methods

can be significantly improved. Specifically, for ENMF, the optimal dropout ratio on Ciao, Epin-
ion, and MovieLens is 0.3, 0.5, and 0.7, respectively. This demonstrates the ability of dropout in
preventing overfitting and as such, better generalization can be achieved.
Second, our ENMF methods consistently perform better than the state-of-the-art neural meth-

ods GMF and ConvNCF with respect to different dropout ratios. The reason we think is that the
parameters in our methods are optimized using the whole data, while sample-basedmethods (GMF
and ConvNCF) only use a fraction of sampled data and may ignore important negative example.
Moreover, considering the performance on each dataset, we find that the optimal dropout ratio

also depends on the density and size of the dataset. For example, the results of Ciao are more
sensitive to the dropout ratios than the results of Epinion and Movielens. This is intuitive, since
neural methods are more likely to be overfitting on a small and sparse dataset.

6 LIMITATION AND EXTENSIONS

In this section, we discuss the limitation and some extensions of our efficient learning methods.

6.1 Limitation

As fast whole-data-based learning is a challenging problem, our current efficient learning meth-
ods are still preliminary and have a limitation. They are now limited to learn models with linear

prediction layer, because the rearrange operation in Equation (13) requires the prediction of R̂uv
to be linear. We leave the extension as future work.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:24 C. Chen et al.

Fig. 10. Examples of the specific scenarios for our user-based method and item-based method, respectively.

Nevertheless, our efficient learning methods still have a wide range of application scenarios.
Since our methods use a generic feature representation for inputs, the user and item factors can be
easily customized to utilize content features or support complex neural structures such as attention
mechanisms [4, 22].

6.2 Leveraging Heterogeneous Information

Since we focus on the pure collaborative filtering setting in this work, we apply our efficient
whole-data-based leaningmethods to a general Neural Matrix Factorization framework. It is worth
mention that our methods are not limited to the pure collaborative filtering setting. They can be
customized to support a wide range of modelling of users and items, such as social-aware [4],
content-based [19], neighbor-based [22], and multi-behavior-based [17].

Generally, our three efficient learning methods can be replaced by each other, the specific
method can also be selected according to the actual situation. As shown in Figure 10, in social-
aware scenarios where users act as the bridge of the social domain and the item domain, our
user-based method will be a good choice to learn users’ preference on both items and their social
friends simultaneously [4], we provide a simple social-aware example as follows:
For item domain, we have

L̃I (Θ) =
∑
u ∈B

∑
v ∈V+

(
(c I+v − c I−v)R̂2uv − 2c I+v R̂uv

)
+

d∑
i=1

d∑
j=1

�
�

(
hIih

I
j

) �
�

∑
u ∈B

pu,ipu, j�
�
�
�

∑
v ∈V

c I−v qv,iqv, j�
�
�
�
. (18)

Similarly, we can derive the loss function for social domain:

L̃S (Θ) =
∑
u ∈B

∑
t ∈U+

(
(cS+t − cS−t)X̂ 2

ut − 2cS+t X̂ut
)
+

d∑
i=1

d∑
j=1

�
�

(
hSi h

S
j

) �
�

∑
u ∈B

pu,ipu, j�
�
�
�

∑
t ∈U

cS−t дt,iдt, j�
�
�
�
, (19)

where X denotes user-user social connections and дt denotes the latent vector of user t as a friend.
After that, we can integrate both the subtasks of item domain and social domain into a unified

multi-task learning framework whose objective function is

L (Θ) = L̃I (Θ) + μL̃S (Θ), (20)

where μ is the parameter to adjust the weight proportion of each term. The whole framework can
be efficiently trained using existing optimizers in an end-to-end manner. More details about the
application on social-aware scenarios can be found at our previous conference version [4].

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:25

Similarly, in neighbor-based scenarios where items are interacted with both users and other
items (Figure 10(b)), the item-based method will be a more suitable choice.

We leave the above extensions of our method as future work.

6.3 Scale Up Model Parameter

Generally, the methods of increasing the number of parameters include: (1) Increasing the em-
bedding size; (2) Increasing the number of deep layers. In our experiments, we have shown that
as the latent dimension size increases, the performance of all models increase. This indicates that
a larger dimension could capture more hidden factors of users and items, which is beneficial to
Top-K recommendation due to the increased modeling capability. This observation is similar to
previous work. However, for most deep-learning methods, a larger dimension also requires more
time for training. Thus, it is crucial to increase a model’s efficiency by learning with efficient op-
timization methods. For the second method, previous work [9] has shown that deeper models do
not necessarily lead to better performance, since they are more easily to be overfitting. As such,
neural recommendation models like NCF [23], NFM [19], and so on, usually adopt a two-layer
framework in their model designs.
Therefore, to scale up the parameters of our ENMF, we recommend to increase the embedding

size or extend the inputs part [4] to introduce complex network architectures like attention mech-
anisms or memory network.

6.4 Application in Realistic Scenarios

Most recommendation systems [63] contain two stages: candidate generation and ranking. To the
best of our knowledge, most academic recommendation studies focus on ranking because of the
limitation of dataset and computing resources. For example, previous neural models [20, 23, 55]
mainly focus on generating a ranked list from a few hundred candidates due to the efficiency is-
sue. Different from them, our ENMF framework is more scalable for both candidate generation and
ranking because of the efficient learning process. For example, on Epinion dataset that contains
20,608 users and 23,585 items, our ENMF only needs 27 minutes to achieve the optimal perfor-
mance, which is over 30 times faster than the state-of-the-art neural models NCF and ConvNCF.
For vary large systems that contain billions of items and users, a pre-processing process of can-

didate generation can also be applied before our ENMFmethods. For example, Reference [32] used
co-occurrences of items to generate candidates, Reference [10] adopted a collaborative filtering-
based method, [15] applied a randomwalk on (co-occurrence) graph, and Reference [7] described a
hybrid approach using mixture of features. After the candidate generation stage, our ENMF can be
applied to provide a ranked list so that items with highest utility to users will be shown at the top.

7 CONCLUSIONS AND FUTURE WORK

In this work, we propose to learn neural recommendation models from the whole training data
without sampling. By reformulating a commonly used square loss function with rigorous mathe-
matical reasoning, we succeed in updating each parameter in a manageable time complexity with-
out sampling. We also devise an Efficient Neural Matrix Factorization (ENMF) framework and
propose three instantiations—ENMF-U, ENMF-I, and ENMF-A—based on the newly derived op-
timization approaches. Extensive experiments have been made on three real-word datasets. The
proposed ENMF approaches consistently and significantly outperform the state-of-the-art recom-
mendation models in terms of both recommendation performance and training efficiency.
This work complements the mainstream sampling-based neural models for recommendation

with implicit feedback, opening up a new avenue of research possibilities for neural recom-
mendation models. Our efficient whole-data-based learning methods are not limited to the task

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

14:26 C. Chen et al.

presented in this article, they have the potential to benefit many other tasks where only positive
data is observed. In the future, we are interested in exploring our efficient whole-data-based learn-
ing method in other related tasks like content-based recommendation [7], network embedding
[34], and multi-domain classification [35]. Also, we will try to extend our optimization method to
make it suitable for learning deep models with non-linear prediction layer.

REFERENCES

[1] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Missing data modeling with user activity and item

popularity in recommendation. In Proceedings of the Asia Information Retrieval Symposium. Springer, 113–125.

[2] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural attentional rating regression with review-level

explanations. In Proceedings of the International Conference on World Wide Web (WWW’18). 1583–1592.

[3] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2019. Social attentional memory network: Modeling aspect-

and friend-level differences in recommendation. In Proceedings of the ACM International Conference on Web Search

and Data Mining (WSDM’19). 177–185.

[4] Chong Chen, Min Zhang, Chenyang Wang, Weizhi Ma, Minming Li, Yiqun Liu, and Shaoping Ma. 2019. An efficient

adaptive transfer neural network for social-aware recommendation. In Proceedings of the International ACM SIGIR

Conference on Research and Development in Information Retrieval. 225–234.

[5] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive collabo-

rative filtering: Multimedia recommendation with item-and component-level attention. In Proceedings of the Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval. 335–344.

[6] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan Zha. 2018. Sequential

recommendation with user memory networks. In Proceedings of the 11th ACM International Conference on Web Search

and Data Mining. ACM, 108–116.

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for YouTube recommendations. In Pro-

ceedings of the ACM Conference on Recommender Systems (Recsys’16). 191–198.

[8] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n rec-

ommendation tasks. In Proceedings of the 4th ACM Conference on Recommender Systems (Recsys’10). ACM, 39–46.

[9] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress? A

worrying analysis of recent neural recommendation approaches. arXiv preprint arXiv:1907.06902.

[10] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He,

Mike Lambert, Blake Livingston, et al. 2010. The YouTube video recommendation system. In Proceedings of the Fourth

ACM Conference on Recommender Systems (Recsys’10). ACM, 293–296.

[11] RobinDevooght, Nicolas Kourtellis, andAminMantrach. 2015. Dynamicmatrix factorizationwith priors on unknown

values. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, 189–198.

[12] Jingtao Ding, Guanghui Yu, Xiangnan He, Yuhan Quan, Yong Li, Tat-Seng Chua, Depeng Jin, and Jiajie Yu. 2018.

Improving implicit recommender systems with view data. In Proceedings of the International Joint Conferences on

Artificial Intelligence (IJCAI’18). 3343–3349.

[13] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic

optimization. J. Mach. Learn. Res. 12 (July 2011), 2121–2159.

[14] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for recommendation systems. In Pro-

ceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM,

515–524.

[15] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma, Charles Sugnet, Mark Ulrich, and

Jure Leskovec. 2018. Pixie: A system for recommending 3+ billion items to 200+ million users in real-time. In Proceed-

ings of the World Wide Web Conference (WWW’18). International World Wide Web Conferences Steering Committee,

1775–1784.

[16] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph neural networks for social

recommendation. arXiv preprint arXiv:1902.07243.

[17] Chen Gao, Xiangnan He, Dahua Gan, Xiangning Chen, Fuli Feng, Yong Li, Tat-Seng Chua, and Depeng Jin. 2019.

Neural multi-task recommendation from multi-behavior data. In Proceedings of the International Conference on Data

Engineering (ICDE’19).

[18] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep Learning. Vol. 1. MIT Press Cam-

bridge.

[19] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In Proceedings

of the International ACM SIGIR Conference on Research and Development in Information Retrieval. 355–364.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation 14:27

[20] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tatseng Chua. 2018. Outer product-based neural

collaborative filtering. In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI’18). 2227–

2233.

[21] Xiangnan He, Zhankui He, Xiaoyu Du, and Tatseng Chua. 2018. Adversarial personalized ranking for recommen-

dation. Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval

(2018), 355–364.

[22] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yugang Jiang, and Tatseng Chua. 2018. NAIS: Neural

attentive item similarity model for recommendation. IEEE Trans. Knowl. Data Eng. 30, 12 (2018), 2354–2366.

[23] XiangnanHe, Lizi Liao, Hanwang Zhang, LiqiangNie, XiaHu, and Tat-SengChua. 2017. Neural collaborative filtering.

In Proceedings of the World Wide Web Conference (WWW’17). 173–182.

[24] Xiangnan He, Jinhui Tang, Xiaoyu Du, Richang Hong, Tongwei Ren, and Tat-Seng Chua. 2019. Fast matrix factor-

ization with nonuniform weights on missing data. IEEE Trans. Neural Netw. Learn. Syst. DOI:10.1109/TNNLS.2018.
2890117

[25] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online recom-

mendation with implicit feedback. In Proceedings of the International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval. 549–558.

[26] YifanHu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In Proceedings

of the International Conference on Data Mining (ICDM’08). 263–272.

[27] Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceed-

ings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 426–434.

[28] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining. ACM, 447–456.

[29] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems.

Computer8 (2009), 30–37.

[30] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. 2016. Modeling user exposure in recommenda-

tion. In Proceedings of the World Wide Web Conference (WWW’16). 951–961.

[31] Xiao Lin, Zhang Min, Zhang Yongfeng, Liu Yiqun, and Ma Shaoping. 2017. Learning and transferring social and item

visibilities for personalized recommendation. In Proceedings of the ACM International Conference on Information and

Knowledge Management (CIKM’17). 337–346.

[32] David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C. Ma, Zhigang Zhong, Jenny Liu, and Yushi

Jing. 2017. Related pins at pinterest: The evolution of a real-world recommender system. In Proceedings of the 26th

International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Com-

mittee, 583–592.

[33] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. 2015. Image-based recommendations

on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development

in Information Retrieval. ACM, 43–52.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. Distributed representations of words

and phrases and their compositionality. In Proceedings of the International Conference on Neural Information Processing

Systems (NIPS’13). 3111–3119.

[35] Hyeonseob Nam and Bohyung Han. 2016. Learning multi-domain convolutional neural networks for visual tracking.

In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’16). 4293–4302.

[36] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017. Embedding-based news recommendation for

millions of users. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 1933–1942.

[37] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N. Liu, Rajan Lukose, Martin Scholz, and Qiang Yang. 2008. One-class

collaborative filtering. In Proceedings of the 8th IEEE International Conference on Data Mining. IEEE, 502–511.

[38] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. 2010. Fast ALS-based matrix factorization for explicit and im-

plicit feedback datasets. In Proceedings of the ACM Recommender Systems Conference (Recsys’10). 71–78.

[39] Steffen Rendle. 2010. Factorization machines. In Proceedings of the International Conference on Data Mining (ICDM’10).

995–1000.

[40] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning for item recommendation from im-

plicit feedback. In Proceedings of the 7th ACM International Conference onWeb Search and Data Mining. ACM, 273–282.

[41] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI’09). 452–

461.

[42] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recommender systems handbook. In Recom-

mender Systems Handbook. Springer, 1–35.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

https://doi.org/10.1109/TNNLS.2018.2890117
https://doi.org/10.1109/TNNLS.2018.2890117

14:28 C. Chen et al.

[43] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted Boltzmann machines for collaborative

filtering. In Proceedings of the 24th International Conference on Machine Learning. ACM, 791–798.

[44] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering recommen-

dation algorithms. In Proceedings of the International Conference on World Wide Web (WWW’01). 285–295.

[45] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015. Autorec: Autoencoders meet collabora-

tive filtering. In Proceedings of the 24th International Conference on World Wide Web. ACM, 111–112.

[46] Brent Smith and Greg Linden. 2017. Two decades of recommender systems at Amazon. com. IEEE Internet Comput.

21, 3 (2017), 12–18.

[47] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A

simple way to prevent neural networks from overfitting.J. Mach. Learn. Res. 15, 1 (2014), 1929–1958.

[48] Xiaoyuan Su and Taghi M. Khoshgoftaar. 2009. A survey of collaborative filtering techniques. Adv. Artific. Intell. 2009,

Article 421425 (2009), 19 pages. DOI:http://dx.doi.org/10.1155/2009/421425
[49] Peijie Sun, Le Wu, and Meng Wang. 2018. Attentive Recurrent Social Recommendation. In Proceedings of the Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval. 185–194.

[50] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric learning via memory-based attention for

collaborative ranking. In Proceedings of the 24th International Conference on World Wide Web (WWW’18). 729–739.

[51] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep content-based music recommendation.

In Advances in Neural Information Processing Systems. MIT Press, 2643–2651.

[52] JunWang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, BenyouWang, Peng Zhang, and Dell Zhang. 2017. Irgan:

A minimax game for unifying generative and discriminative information retrieval models. In Proceedings of the 40th

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 515–524.

[53] Menghan Wang, Mingming Gong, Xiaolin Zheng, and Kun Zhang. 2018. Modeling dynamic missingness of implicit

feedback for recommendation. In Proceedings of the Neural Information Processing Systems Conference (NeuIPS’18).

6669–6678.

[54] Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2017. Item silk road: Recommending items from infor-

mation domains to social users. In Proceedings of the International ACM SIGIR Conference on Research and Development

in Information Retrieval. 185–194.

[55] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering. In

Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval.

[56] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders for

top-n recommender systems. In Proceedings of the ACM International Conference on Web Search and Data Mining

(WSDM’16). ACM, 153–162.

[57] Xin Xin, Fajie Yuan, Xiangnan He, and Joemon M. Jose. 2018. Batch IS NOT heavy: LearningWord representations

from all samples. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). 1853–1862.

[58] Feng Xue, Xiangnan He, Xiang Wang, Jiandong Xu, Kai Liu, and Richang Hong. 2019. Deep item-based collaborative

filtering for top-N recommendation. ACM Trans. Info. Syst. 37, 3 (2019), 33.

[59] Wenhui Yu, Huidi Zhang, Xiangnan He, Xu Chen, Li Xiong, and Zheng Qin. 2018. Aesthetic-based clothing recom-

mendation. In Proceedings of the International Conference on World Wide Web (WWW’18). 649–658.

[60] Fajie Yuan, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, Chua Tat-Seng, and Joemon M. Jose. 2018. fbgd:

Learning embeddings from positive unlabeled data with BGD. In The Conference on Uncertainty in Artificial Intelli-

gence. 2018.

[61] Shuai Zhang, Lina Yao, and Xiwei Xu. 2017. Autosvd++: An efficient hybrid collaborative filtering model via con-

tractive auto-encoders. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development

in Information Retrieval. ACM, 957–960.

[62] Yongfeng Zhang, Qingyao Ai, Xu Chen, andW. Bruce Croft. 2017. Joint representation learning for top-n recommen-

dation with heterogeneous information sources. In Proceedings of the ACM Conference on Information and Knowledge

Management. ACM, 1449–1458.

[63] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran

Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019. Recommending what video to watch next: A multitask ranking system.

In Proceedings of the 13th ACM Conference on Recommender Systems. ACM, 43–51.

[64] Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017. Joint deep modeling of users and items using reviews for recom-

mendation. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM, 425–434.

Received July 2019; revised October 2019; accepted November 2019

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 14. Publication date: January 2020.

http://dx.doi.org/10.1155/2009/421425

