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ABSTRACT
Social connections are known to be helpful for modeling users’
potential preferences and improving the performance of recom-
mender systems. However, in social-aware recommendations, there
are two issues which in�uence the inference of users’ preferences,
and haven’t been well-studied in most existing methods: First, the
preferences of a user may only partially match that of his friends
in certain aspects, especially when considering a user with diverse
interests. Second, for an individual, the in�uence strength of his
friends might be di�erent, as not all friends are equally helpful
for modeling his preferences in the system. To address the above
issues, in this paper, we propose a novel Social Attentional Memory
Network (SAMN) for social-aware recommendation. Speci�cally,
we �rst design an attention-based memory module to learn user-
friend relation vectors, which can capture the varying aspect atten-
tions that a user share with his di�erent friends. Then we build a
friend-level attention component to adaptively select informative
friends for user modeling. The two components are fused together
to mutually enhance each other and lead to a �ner extended model.
Experimental results on three publicly available datasets show that
the proposed SAMN model consistently and signi�cantly outper-
forms the state-of-the-art recommendation methods. Furthermore,
qualitative studies have been made to explore what the proposed
attention-based memory module and friend-level attention have
learnt, which provide insights into the model’s learning process.
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Figure 1: A possible illustration of user relationships in so-
cial network. User A is a friend of user B and user C, but the
common preference aspects are distinct (movie between A
and B while basketball between A and C).
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1 INTRODUCTION
Users expect personalized products and information in modern E-
commerce, entertainment and social media platforms. In this case,
recommender systems are designed to generate personalized item
recommendations and deal with the information overload problem.
Many recommendation methods are based on Collaborative Filter-
ing (CF) [14, 17, 18, 26], which mainly makes use of users’ historical
records such as ratings, clicks, and purchases.

Recently, owing to the prevalence of social media, many E-
commerce sites have become popular social platforms that help
users discuss and select items [25], such as Delicious, Ciao and
Epinions. In these social applications, users like to spread their pref-
erences of items to their social connections, and a user’s preferences
can not only be inferred from the items he bought and clicked, but
also can be inferred from his social connections. Generally, there
are two types of social connections: friends in undirected social
networks and followers in directed social networks. Since we do not
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focus on the di�erences between the two types, for the convenience
of description, we refer to the user’s social connections as friends
in this paper. As shown in previous studies on social-aware recom-
mender systems, the social behavior of users and their interactions
with items are positively correlated [22, 25, 37, 42]. By considering
users’ social connections, social-aware methods can utilize a much
larger volume of data to tackle the data sparsity issue, and further
improve the performance of recommender systems.

However, in social-aware recommendations, there are two issues
which in�uence the inference of users’ preferences, and haven’t
been well-studied in most existing methods.

The �rst one is aspect-level di�erences. Generally, users and
their friends only have the same preferences in certain aspects. It
is well recognized that the preference of a user can be used to infer
his friends’ preference and vice versa, which could be denoted as
an in�uence vector. Existing methods like [19, 29, 38] assume that
this vector keeps the same when facing di�erent friends. However,
a user may pay the most attention to one aspect for a friend but
focus on another aspect for a di�erent friend. In Figure 1 we show
an example that is common in social relationships. User A is a
friend of user B and user C, but the reasons are distinct: user A
and B are friends because they are both interested in movie, while
A and C are friends because they both like basketball. The aspect-
level di�erences should be considered when building a social-aware
recommender system. However, since users’ preference inference
is usually complex and non-linear, the aspect di�erences are hard
to be captured by traditional latent factor based models.

The second issue is friend-level di�erences. For a user, the
in�uence strength of his friends should be di�erent and dynamic.
Each user is associated with a set of friends in social networks,
but it does not necessarily indicate that every friend has equal
in�uence strength on his behaviors. For example, when buying
basketball shoes, a user will follow the advice of his friends who
play basketball, but when it comes to a trip, he will turn to those
who love traveling. In previous work, the social in�uence strength
is usually set equally for the social connections [15], or relied on
a prede�ned static function [9, 16]. These settings are not robust
in real life. To better characterize a user’s preferences, the model
requires di�erent attentions on the set of the user’s friends.

Motivated by the above observations, we propose to model both
aspect-level di�erences and friend-level di�erences for improving
the performance of social-aware recommendation. In this paper, we
present a Social Attentional Memory Network (or SAMN for short),
which utilizes the recent advances in memory networks [23, 31] and
neural attention mechanisms [2, 3, 34]. Speci�cally, we �rst design
an attention-based memory module to learn the user-friend speci�c
relation vectors, and then employ friend-level attention to auto-
matically select informative friends for user preference modeling.
The memory component allows reading and writing operations to
encode complex user and friend relations. An associative attention-
based addressing scheme places higher weights on aspects in which
user and his friend share similar preferences. The attention-based
memory module is controlled by the user-friend interaction, mak-
ing the learned relation vector corresponds to each user-friend pair.
In the friend-level attention modeling process, a two-layer atten-
tion network is adopted to model the in�uence strength among

users’ friends in a distant supervised manner. Then, the two com-
ponents are fused together to mutually enhance each other via
an end-to-end training process. We evaluate SAMN extensively
on three real-world datasets. Experimental results show that our
model consistently outperforms the state-of-the-art methods, and
also verify the e�ectiveness of our designed attention component
and memory network.

The main contributions of this work are summarized as follows.
(1) We propose a new model for social-aware recommender sys-

tems, which considers both aspect-level di�erences among user-
friend co-preferences and friend-level di�erences on social in-
�uence strength.

(2) To the best of our knowledge, we are the �rst to employ an
attention-based memory module to construct user-friend spe-
ci�c relation vector. We also introduce the friend-level attention
to adaptivelymeasure the social in�uence strength among users’
friends. These two parts are fused in a uni�ed framework and
can be learned through e�cient end-to-end training.

(3) Through extensive experiments conducted on three benchmark
datasets, we show that SAMN consistently outperforms the
state-of-the-art models.

2 RELATEDWORK
2.1 Traditional Collaborative Filtering
Among the various collaborative �ltering methods, matrix factor-
ization (MF) is the most popular one, and is also the basis of many
e�ective recommender models [27, 30]. Popularized by the Net�ix
Challenge, early MF methods [18] were designed to model users’
explicit feedback by mapping users and items to a latent factor
space, such that user-item relationships (ratings) can be obtained
by their latent factors’ dot product.

Later on, some researchers found that a well-designed MF model
in rating prediction may not perform well in Top-K recommenda-
tion, and called on recommendation research to focus more on the
ranking task [6]. In this case, Rendle et al. [26] �rst proposed a pair-
wise learning method BPR, which is a sample-based method that
optimizes the model based on the relative preference of a user over
pairs of items. Then, the pairwise learning strategy has been widely
used to optimize recommender models [3, 34, 39–41]. and become
a dominant technique in recommendation. In our work, we also
adopt BPR as our basic learning model because of its e�ectiveness
in exploiting the unobserved user-item feedback.

2.2 Social-aware Recommendation
In the last few years, there is a large literature exploiting users’
social connections for improving the recommendation performance
[25]. Most studies assumed that a user’s decision can be a�ected
by his friends’ opinions and behaviors. E.g., in [42] , the authors
assumed that users are more likely to have seen items consumed by
their friends, and exploited this e�ect to extend BPR [26] by chang-
ing the negative sampling strategy. Jamali et al. designed a social
in�uence propagation based model in latent based recommendation
models (SocialMF) [15]. Based on a generative in�uence model, the
work [38] exploits social in�uence from friends for item recom-
mendation by leveraging information embedded in the user social
network. However, many existing methods [19, 29, 38] assume that
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users’ in�uence vectors stay the same for di�erent friends, thus the
aspect-level di�erences are not well-studied.

In social-aware recommendation, social in�uence strength mod-
eling is a central problem [8, 9]. E.g., Goyal et al. [9] designed a
model to calculate in�uence strength from users’ historical behav-
iors. However, in most of the existing methods, the social in�uence
strength is assumed equal among friends [15] or with a simple
metric from other sources [9, 16] (e.g., the strength between their
interactions in the past).

To the best of our knowledge, few has explored the neural net-
works for modeling aspect-level di�erences and friend-level di�er-
ences in social-aware recommendation, which is the main concerns
of our work.

2.3 Deep Learning in Recommendation
Recently, deep learning has yielded an immense success in many
�elds like computer vision, speech recognition and natural language
processing [20]. Some researchers also tried to exploit di�erent
neural network structure for improving the performance of rec-
ommendations. In [11]. He et al. presented a Neural Collaborative
Filtering (NCF) framework to address implicit feedback by jointly
learning a matrix factorization and a feedforward neural network,
NCF is also the state-of-art recommendation method for using only
user-item historical records. Later, Neural Factorization Machines
(NFM) [10] was developed to enhance FM bymodeling higher-order
and non-linear feature interactions. More recently, [32] presents
an attentive recurrent network for temporal social-aware recom-
mendation (ARSE). There are two major di�erences between our
work and ARSE: (1) We focus on a more general problem while
ARSE focuses on temporal recommendations via Recurrent Neural
Network (RNN) and attention mechanisms. (2) Our work introduces
memory network to address the problem of aspect-level di�erences
between users and their friends.

Attention mechanism has been shown e�ective in many ma-
chine learning tasks such as image captioning and machine trans-
lation [1, 28]. In the �eld of recommendation, [3] introduced both
component-level and item-level attention into a CF framework for
multimedia recommendation. [36] improved FM by learning the
importance of di�erent feature interactions via a neural attention
network. Recently, Chen et al. [2] proposed to learn the “usefulness”
of reviews with the help of attention mechanism for improving the
performance and explainability of the recommender system.

Memory networks are recently introduced frameworks that com-
bine reasoning, attention and memory for solving tasks in the areas
of language understanding and dialogue. It generally consist of
two components: an external memory typically a matrix and a con-
troller which perform operations on the memory (e.g., read, write).
The memory component increases model capacity independent of
the controller while providing an internal representation of knowl-
edge to track long-term dependencies and perform reasoning. The
controller usually manipulates these memories with content-based
addressing, which �nds a scoring function between the given query
and a passage of text [23, 31, 35]. For recommendations, [34] uti-
lized memory module to learn the relationships between user-item
interactions for extending Collaborative Metric Learning [13]. In
[35], the authors proposed Collaborative Memory Network, while
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Figure 2: The architecture of our proposed Social Atten-
tional Memory Network (SAMN). Our model contains two
major components, which are the attention-based memory
module and the friend-level attention component.

the associative addressing scheme of the memory module acts as a
nearest neighborhood model identifying similar users.

3 SOCIAL ATTENTIONAL MEMORY
NETWORK (SAMN)

In this section, we introduce our Social Attentional Memory Net-
work (SAMN). First, we will present the general architecture of
SAMN. Then, we will show the detailed formulations of our pro-
posed attention-based memory module and friend-level attention
respectively, which are the main concerns in this paper. Lastly we
will go through the optimization details of SAMN.

3.1 Overview of SAMN
The goal of our model is to make recommendations based on im-
plicit feedback and social networks. Both aspect-level and friend-
level di�erences are considered for improving the model perfor-
mance and generalization. The architecture of the proposed model
is shown in Figure 2. From the �gure, we can make a simple high-
level overview of our model:
(1) Users and items are converted to dense vector representations

using an Embedding Layer.u andv are the user and item vectors
respectively.

(2) The model contains two major components, which are the
attention-based memory module and the friend-level attention
component. The attention-based memory module is designed
for addressing the problem caused by aspect-level di�erences.
The friend vector f(i,l ) is generated using a neural attention
mechanism over an augmented memory matrix M . It depen-
dents on user and friend, and is learned to represent the prefer-
ence relationship between user and his friend. The friend-level
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attention is used to select informative friends for better infer-
ring user preference.

(3) The model is optimized by pairwise ranking and negative sam-
pling strategy.

3.2 Attention-based Memory Module
Inmost cases, users and their friends only have the same preferences
in certain aspects, especially when considering a user with diverse
interests. However, explicit relations between user-friend pairs are
not available in implicit data (we don’t know what their shared
interest aspects are). Motivated by the recent advance in memory
network and attention mechanisms, we designed a new attention-
based memory module to learn the relation vectors between users
and their friends. The structure of the module is shown in Figure
3. The memory matrix of the module is represented asM ∈ RN×d ,
where d is the dimension of the user and item embeddings and
N is the memory size. In matrix M , each slice is noted Mj ∈ Rd
as a memory slice. The input of the module is a user-friend pair
(ui ,u(i,l )), whereui denotes user i , andu(i,l ) denotes the l-th friend
of user i . The module returns the vector f(i,l ), which represents the
relationship between ui and u(i,l ).

3.2.1 Joint Embedding. Given the user-friend pair (ui ,u(i,l )),
the module �rst apply the following operation to learn a joint
embedding of users and their friends. The denominator added in
Eq. (1) is used to normalize and make the generated vectors have
the same scale.

s =
ui � u(i,l )
‖ui ‖



u(i,l )

 (1)

where � denotes the element-wise product of vectors. The gener-
ated vector s ∈ Rd is of the same dimension of ui and u(i,l ). Note
that other functions like the multi-layered perceptron (MLP) or just
element-wise product without normalization can also be adopted,
but we found that the method of Eq. (1) performs better.

3.2.2 Key Addressing. After we obtain the joint embedding
vector s , the attention vector is learned from a key matrix K ∈
RN×d . Each element of the attention vector α is de�ned as:

α∗j = s
TKj (2)

where Ki ∈ Rd and the generated vector α ∈ RN . Then the �nal
attention scores are obtained by normalizing α using the softmax
function:

α j =
exp(α∗j )∑
k exp(α∗k )

(3)

3.2.3 Generating Friend Vector. In this step, the friend em-
bedding u(i,l ) is �rst extended to a matrix via the memory matrix
M :

Fj = u(i,l ) � Mj (4)
where � denotes the element-wise product of vectors. The matrix
F ∈ RN×d can be interpreted as a storage of conceptual building
blocks that used to describe the friend preferences in di�erent latent
aspects (N can be seen as the number of latent aspects).

User	Embedding	𝑢. Friend	Embedding	𝑢(.,2)

Joint	Embedding	𝑠
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Memory Slices

Figure 3: Illustration of our designed attention-based mem-
ory module. The module is characterized by its key-
addressed end-to-end architecture which learns user-friend
speci�c relation vectors. The memory size is set to 4 in this
example.

Finally, to generate the friend vector, we use the attention scores
to calculate a weighted representation of F :

f(i,l ) =
∑
j
α jFj (5)

The output is a speci�c relation vector f(i,l ), which can be seen as
the in�uence vector of user i’s l-th friend to user i’s preferences.

Let f(i,1), f(i,2), ... f(i,n) be the the relation vectors of user i’s
friends generated by the attentional memory module. As we have
mentioned in section 1, generally not every friend has the same
importance for inferring a user’s preference in real life. To address
this problem, we introduce friend-level attention into our model,
which can help to adaptively learn the in�uence strength of each
friend.

3.3 Friend-level Attention
Attention mechanism has been widely adopted in many �elds, such
as computer vision [4], machine translation [1] and recommenda-
tion [2, 3, 36]. The goal of the friend-level attention is to assign
non-uniform weights to users’ friends, and the weights are varied
when the user interacts with di�erent items. Intuitively, if a friend
has more expertise on an item (or items of the similar type), he
should have a larger in�uence on the user’s choice on the item.
Formally, a two-layer network is applied to compute the attention
score β(i,l ) with user (ui ), current item (vj ) and friend vector (f(i,l ))
as inputs:

β∗(i,l ) = h
T ReLU (W1ui +W2vj +W3 f(i,l ) + b) (6)

whereW1 ∈ Rd×k ,W2 ∈ Rd×k ,W3 ∈ Rd×kb ∈ Rk , h ∈ Rk are
model parameters, k denotes the dimension of attention network,
and ReLU [24] is a nonlinear activation function.

Then, the �nal friend-level attention is normalizedwith a softmax
function, which is a common practice in neural attention network.
It makes the attention network a probabilistic interpretation, which
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can also deal with the problem that users may have di�erent number
of friends:

β(i,l ) =
exp(β∗(i,l ))∑

j ∈Si exp(β∗(i, j))
(7)

where Si denotes all friends that user i has in the social network.
After we obtain the attention weight of each friend, the �nal

representation of user i is through the sum:

Ui = ui +
∑
l ∈Si

β(i,l ) f(i,l ) (8)

which considers both the user’s own preference and the in�uence
of his friends. Note that there have been a lot of work exploring
the strategies of combine di�erent features, such as concatenation,
addition, or element-wise product. In this work, we adopt the addi-
tion fusion method, which has been applied in RBLT [33], NARRE
[2] and A3NCF [5] and achieves good performance. It is worth
mentioning that we also tried to add a fully-connected neural layer
after the fusion step. However, it leads to inferior performance duo
to the over�tting problem.

3.4 Learning
3.4.1 Prediction. After completing the model training process,

the recommendation task is reduced to a ranking problem among all
the items in the dataset based on estimated score R̄i j . Our prediction
part is built on Matrix Factorization (MF), which is state-of-the-art
for rating prediction as well as modeling implicit feedback [18]:

R̄i j =
©­«ui +

∑
l ∈Si

β(i,l ) f(i,l )
ª®¬
T

vj (9)

The items (unclicked/ uncomsumed) are ranked in descending order
of R̄i j to provide the Top-K item recommendation list.

3.4.2 Optimization. Our objective is to study implicit feed-
back which is more pervasive in practice and can be collected
automatically (e.g. clicks, comsumes). To this end, we opt BPR pair-
wise learning objective [26], a commonly used objective function
in many previous studies [3, 34, 39–41]. For each positive user-item
pair< ui ,vj >, we randomly sample a negative item from the un-
observed items of the user, which is denoted as vk . The pairwise
ranking loss is as follows:

LBPR =
∑

(i, j,k )∈D
−lnσ

(
R̄i j − R̄ik

)
+ λΘ(‖Θ‖2) (10)

where σ (x) = 1/(1 + exp(−x)) is the logistic sigmoid function, D
denotes the set of pairwise training instances. and λΘ controls the
strength of regularization, which is a L2 norm to prevent over�tting.

To optimize the objective function, we adopt mini-batch Adagrad
[7] as the optimizer. Its main advantage is that the learning rate
can be self-adapted during the training phase, which eases the pain
of choosing a proper learning rate and leads to faster convergence
than the vanilla SGD.

Table 1: Statistical details of the evaluation datasets. “Inter-
action”means user-item historical records, and “Social link”
denotes user-friend connections in social network.

#User #Item #Interaction #Social Link
Delicious 1,521 1,202 8,397 10,401

Ciao 7,267 11,211 157,995 111,781
Epinions 38,089 23,585 488,917 433,416

4 EXPERIMENTS
4.1 Experimental Settings

4.1.1 Datasets. In our experiments, we used three publicly
accessible datasets to evaluate the performance of our model, which
are Delicious1, Ciao2, and Epinions3. We brie�y introduce the
three datasets:
• Delicious: This dataset contains social connections, book-marking,
and tag information from a set of 2K users from Delicious So-
cial Bookmarking System. In this paper we only use the social
connections and book-marking records to train our model and
baseline methods.

• Ciao: This dataset contains users’ ratings to the items they have
purchased and the social connections between users. Since we
focus on the implicit feedback, we transform the detailed ratings
into a value of 0 or 1 indicating whether the user has rated the
item.

• Epinions: Epinions is a who-trust-whom directed online social
network that provides product rating and review service. The
corresponding rating is also assigned to a value of 1 (as implicit
feedback) in our experiments.
All the datasets were preprocessed to make sure that all items

have at least �ve ratings. The statistical details of these datasets are
presented in Table 1.

4.1.2 Baselines. To evaluate the performance of Top-K recom-
mendation, we compare SAMN with the following methods. Note
that all models are learned by optimizing the same pairwise ranking
loss of BPR (cf Eqn. (10)) for a fair comparison.
• BPR [26]: This method optimizes MF with the BPR objective
function. It is a highly competitive method for implicit feedback
based recommendation.

• SBPR [42]: This is a ranking model that considers social rela-
tionships in the learning process, assuming that users tend to
assign higher ranks to items that their friends prefer.

• SocialMF [15]: This is a classical model for social-aware rec-
ommendation. It incorporate the social in�uence among users
into classical latent factor models, where the in�uence strength
is simply set equally for all social connections.

• NCF [11]: This is a recently proposed state-of-the-art deep
learning based framework that combines matrix factorization
(MF)with amultilayer perceptronmodel (MLP) for item ranking.
Since NCF shows superior performance over the traditional
weighting methods WMF [14] and eALS [12] according to [11],
we do not further compare with the performance of WMF and
eALS.

1https://grouplens.org/datasets/hetrec-2011/
2http://www.jiliang.xyz/trust.html
3https://alchemy.cs.washington.edu/data/epinions/
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Table 2: Performance comparison on three datasets for all methods. Best performance is in boldface and second best is un-
derlined. SAMN achieves best performance on all datasets, outperforming many strong neural baselines. * and ** denote the
statistical signi�cance for p < 0.05 and p < 0.01, respectively, compared to the best baseline.

Delicious Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50
BPR 0.1301 0.1601 0.2151 0.0930 0.1013 0.1136
SBPR 0.1358 0.1715 0.2534 0.0888 0.1024 0.1216

SocialMF 0.1337 0.1688 0.2433 0.0952 0.1044 0.1204
NCF 0.1280 0.1632 0.2401 0.0887 0.1002 0.1165
SNCF 0.1473 0.1846 0.2705 0.0971 0.1086 0.1274
NFM 0.1422 0.1789 0.2612 0.0955 0.1075 0.1147
SAMN 0.1624** 0.2033** 0.2837** 0.1034** 0.1151** 0.1325**
Ciao Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50
BPR 0.0644 0.0994 0.1625 0.0452 0.0547 0.0711
SBPR 0.0651 0.1011 0.1645 0.0462 0.0572 0.0721

SocialMF 0.0657 0.1004 0.1638 0.0469 0.0568 0.0717
NCF 0.0677 0.1013 0.1634 0.0477 0.0581 0.0729
SNCF 0.0722 0.1051 0.1725 0.0511 0.0619 0.0792
NFM 0.0717 0.1034 0.1697 0.0509 0.0611 0.0778
SAMN 0.0747** 0.1083** 0.1753** 0.0533** 0.0634** 0.0806**

Epinions Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50
BPR 0.0546 0.0836 0.1399 0.0361 0.0451 0.0596
SBPR 0.0557 0.0846 0.1411 0.0365 0.0456 0.0598

SocialMF 0.0542 0.0822 0.1387 0.0354 0.0447 0.0585
NCF 0.0553 0.0840 0.1404 0.0363 0.0454 0.0597
SNCF 0.0561 0.0852 0.1415 0.0366 0.0457 0.0603
NFM 0.0564 0.0848 0.1417 0.0371 0.0459 0.0601
SAMN 0.0575* 0.0869** 0.1440** 0.0380* 0.0469* 0.0617**

• SNCF: NCF [11] is designed suitable for recommendation with
side information. To adjust NCF for modeling social relations,
we plug user’s friends into the input feature vector and con-
catenate the feature vector with user ID embedding, dubbed
this enhanced model as SNCF.

• NFM [10]: This is a recently proposed Neural Factorization
Machine. It is one of the state-of-the-art deep learning methods,
which uses Bi-Interaction Layer to integrate both features and
historical feedback information. In our experiments, we treat
users’ social connections as features. Since the original NFM is
designed for regression, we changed the optimize function to
BPR (cf Eqn. (10)) to �t our task.

To the best of our knowledge, few has explored the neural net-
works for social-aware recommendation. Thus we compare with
traditional social-awaremethods SBPR and SocialMF, content-based
neural method NFM, and the extended neural model SNCF.We leave
out the comparison with ARSE [32], which is designed for temporal
social-aware recommendation, because the performance di�erence
may be caused by the temporal information.

4.1.3 Evaluation Metrics. To evaluate the performance of all
algorithms, we calculate Recall@K and NDCG@K [21, 39]. In-
tuitively, the NDCG@K metric is a position-aware ranking met-
ric while Recall@K metric considers whether the ground truth is
ranked among the top K items. When K is �xed, the Precision is
only determined by true positives while Recall is determined by
both true positives and positive samples [39]. To give a more com-
prehensive evaluation, we exhibit Recall rather than Precision and

F1-score (F1-score is almost determined by Precision since Preci-
sion is much smaller than Recall in our experiments). For each user,
these metrics are computed as follows:

Recall@K =

∑K
j=1 relj

min(K , |ytestu |)
;

DCG@K =
K∑
j=1

2r elj − 1
loд2(j + 1)

; NDCG@K =
DCG@K

IDCG@K

(11)

Where relj = 1/0 indicates whether the item at rank j in the Top-K
recommendation list is in the test set, |ytestu | denotes the number
of items rated by user u in the test set. The notion IDCG means the
maximum possible DCG through ideal ranking. Each metric is the
average for all users.

4.1.4 Experiments Details. We randomly split the dataset
into training (70%), validation (20%), and test (10%) sets. The val-
idation set was used for tuning hyper-parameters and the �nal
performance comparison was conducted on the test set. The param-
eters for baseline methods were initialized as in the corresponding
papers, and were then carefully tuned to achieve optimal perfor-
mances. The learning rate for all models are tuned amongst [0.005,
0.01, 0.02, 0.05]. The batch size was tested in [64, 128, 256] and
the latent factor number was tested in [32, 64, 128]. To prevent
over�tting, we turned the margin λΘ in [0.001, 0.005, 0.01, 0.02].
For SAMN, the number of memory slices in M is tuned amongst
[8, 16, 32, 64]. After the turning process, we set the latent factor
number d=128, learning rate lr=0.05, λΘ=0.01. The memory size N
is set 8 for Delicious and 16 for Ciao and Epinions. To evaluate on
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Figure 4: Performance comparison on two datasets w.r.t. dif-
ferent embedding sizes (validation sets).

di�erent recommendation lengths, we set K = 10, 20 and 50 in our
experiments.
4.2 Comparative Analysis on Overall

Performances
The empirical results of our proposed SAMN and baselines on three
datasets are given in Table 2. From the results, we can make the
following observations:

Firstly, methods utilizing social information generally perform
better than those without social information. For example, in Table
2, the performance of SBPR is better than BPR, SNCF performs better
than NCF, and SAMN performs better than BPR and NCF. This is not
surprising, since the social information is complementary to users’
historical records, it can help to increase the learning accuracy of
user preference.

Secondly, our method SAMN consistently and signi�cantly out-
performs all the baselines including neural methods NCF, SNCF
and NFM. Speci�cally, SAMN outperforms the best baseline by per-
formance gains about 6.49% on Delicious, 4.31% on Ciao and 2.43%
on Epinions on the NDCG@10 metric. The performance gains on
other metrics are also similarly high.

Thirdly, since SAMN share the same loss function with other
baseline methods, we can attribute the performance increase to
the proposed attention-based memory module and friend-level
attention. In our model, the aspect-level di�erences and friend-
level di�erences are considered, which allow the social information
to be modeled with a �ner granularity and thus lead to a better
performance.

We also conduct experiments to test the in�uence of latent factor
size d on validation sets. The results are shown in Figure 4. Duo
to the space limitation, we only show the results of Delicious and
Ciao datasets on Recall@10 and NDCG@10 metrics. The result of

Table 3: Comparison of the variantmodels of SAMN.ui is the
id embedding of user i, |Si | is the number of user i’s friends,
f(i,l ) is generated by the attention-basedmemorymodule (cf.
Section. 3.2), and β(i,l ) is generated by the friend-level atten-
tion (cf. Section. 3.3).

Variants Representation
of user Social Aspect-level

di�erences
Friend-level
di�erences

BPR ui \ \ \
SE ui +

∑
l ∈Si

1
|Si |ul

√ \ \
SAM ui +

∑
l ∈Si

1
|Si | f(i,l )

√ √ \
SFA ui +

∑
l ∈Si β(i,l )ul

√ \ √

SAMN ui +
∑
l ∈Si β(i,l ) f(i,l )

√ √ √

Epinions is similar to that of Ciao. As can be seen from this �gure,
our model outperforms all the other models with di�erent values
of d for the two ranking metrics on two datasets. Moreover, as
the latent dimension size increases, the performance of all models
increase. This indicates that a larger dimension could capture more
hidden factors of users and items, which is bene�cial to Top-K
recommendation due to the increased modeling capability.

4.3 E�ect of Attention-based Memory Module
and Friend-level Attention

The key characteristics in our proposed model SAMN are the two
newly designed components for social information modeling: the
attention-based memory module that captures the user-friend spe-
ci�c relationship, and the friend-level attention that models social
in�uence strength by adaptively learning the weight of each friend.
In this subsection, we discuss the e�ect of attention-based memory
module and friend-level attention. Speci�cally, we compare the
e�ect of each component by constructing the following variants of
SAMN:
• BPR: This is our basic collaborative �ltering model without any
social information. It is added as a baseline of other variants.

• SE: This is a variant model utilizing social information only by
social embedding.

• SAM: This is a variant model utilizing social information with
the attention-based memory module only.

• SFA: This is a variant model utilizing social information with
the friend-level attention only.

• SAMN: This is our proposed model utilizing social information
with both the attention-based memory module and the friend-
level attention.
The characteristics of the variant models are listed in Table 3.
Figure 5 shows the performance of di�erent variants. Due to the

space limitation, we also only show the results of Delicious and
Ciao datasets on Recall@10 and NDCG@10 metrics. As shown in
the �gure, BPR performs the worst since no social relationships
are utilized to provide the extra information. With the social in-
formation of friend embedding, SE performs better, but still worse
than SAM and SFA. Because just friend embedding is too crude
and can provide very limited social information to help infer users’
preferences. The performances of SAM and SFA are signi�cantly
better than SE (p<0.05), which shows that both the attention-based
memory module and the friend-level attention can help to better
utilize social information by considering aspect-level di�erences
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Figure 5: E�ect of di�erent components in SAMN. Note that
the signi�cant improvements for p <0.05 are achieved (SAM
vs SE, SFA vs SE, SAMN vs SAM and SFA, test sets).

Figure 6: Attention distributions for user-friend pairs of dif-
ferent tags on Delicious. The color scale indicates the inten-
sities of the weights, where a darker color indicates a higher
value and a lighter color indicates a lower value. Note that
the tag information is not used during the training process.

and friend-level di�erences respectively. Moreover, generally SAM
performs better than SFA, this may because that SAM can capture
user-friend speci�c relation vectors through the advantage of mem-
ory network, which is more �exible than SFA that only uses the
friend-level attention. Lastly, our proposed SAMN, which utilizes
both the attention-based memory module and the friend-level at-
tention, performs best (signi�cantly better than SAM and SFA for
p<0.05). The reason is that these two components are not con�ict
with each other and can be used to model users’ social in�uence
collaboratively.

4.4 Attention Analysis
The attention weights re�ect how the model learned and recom-
mend. In this subsection we conducted experiments to show how

Table 4: Case studies of friend-level attention of a sampled
user from Ciao. The friend weights of the user for positive
items (Item #130, #212, #1258) and negative items (Item #29,
#1105, #3367) are shown.

Friend
#782

Friend
#1391

Friend
#1446

Friend
#1505

Item #130 0.212 0.057 0.319 0.412
Item #212 0.145 0.086 0.517 0.252
Item #1258 0.533 0.121 0.079 0.267
Item #29 0.286 0.103 0.315 0.296
Item #1105 0.434 0.187 0.315 0.064
Item #3367 0.308 0.075 0.382 0.235

the attention-based memory module and friend-level attention com-
ponent work.

We �rst focus on the attention-based memory module, which is
designed to model the aspect-level di�erences between user-friend
relationships. Ideally, if a user-friend pair has the same interests
in certain aspects, it can be re�ected through the attention dis-
tributions of memory slices. To better understand the attention
results, we make use of users’ tag information contained in Deli-
cious dataset, which can be taken as users’ explicit preferences. We
take some examples to show how the attention weights identify
di�erent co-preferences between users and their friends in Figure
6. From the �gure, we can see that for user-friend pair (ux ,ua ) and
(ux ,ub ), the attention distributions of memory slices are similar,
which means that ua and ub share similar interest aspects with ux .
Since they all have the tag “sport”, we can imagine that the shared
interest aspects may be sports-related matters. For pair (ux ,uc ), the
distribution is di�erent from the above two pairs. The reason may
because that the shared interest aspects of ux and uc are games,
not sports. With the help of attention mechanisms, our model can
capture users’ attention weights on di�erent aspects of each friend,
and thus could achieve more accurate predictions (cf. Section. 4.3).

Apart from the attention-based memory module, another key
advantage of SAMN is its ability in adaptively measuring the in�u-
ence strength of users’ friends. To show this, we randomly selected
a user who has four friends (#782, #1391, #1446, and #1505) in social
network form Ciao dataset. We then randomly picked three items
(#130, #212, and #1258) which have been purchased by the user,
and three negative items (#29, #1105, and #3367) which have not
been purchased. Table 4 shows the attention weights of the user’s
friends for the randomly selected items. We have the following
observations: (1) For di�erent item, the attention weights of the
user’s friends vary signi�cantly. For example, when predicting the
user’s preference on item #1258, the attention weight of friend #782
are relatively high. The reason may because that the friend #782
has purchased item #1258 (according to the dataset), and thus he
has a bigger in�uence strength for the user’s purchasing behavior
on this item. (2) The attention weights can also somehow re�ect
the richness of friend users’ feedback information. For example, the
friend #1391 has only purchased 2 items according to the dataset.
For both positive items and negative items, his attention weights
are relatively low, which means that his information is not rich
enough to provide signi�cant in�uence for the user’s purchasing
behaviors.
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5 CONCLUSION
Social information plays a very important role for improving the
performances of recommender systems. However, there are two dif-
ferences: aspect-level di�erences among user-friend co-preferences
and friend-level di�erences on social in�uence strength, have not
been well-studied in existing methods. In this paper, we proposed
a new model, which uni�es the strengths of memory networks
and attention mechanisms to address the problems in social-aware
recommendations. To the best of our knowledge, we are the �rst
to employ the attention-based memory module to construct user-
friend speci�c relation vector. We also design the friend-level at-
tention to adaptively measure the social in�uence strength among
users’ friends. Extensive experiments have been made on three
real-life datasets. The proposed SAMN (Social Attentional Memory
Network) consistently and signi�cantly outperforms the state-of-
the-art recommendation models on di�erent evaluation metrics.
Moreover, we performed qualitative analyses of the attentional
memory module and the friend-level attention, which helps under-
stand what the model has learnt and prove the rationality of our
model.

In the future, we are interested in exploring the di�erences be-
tween the two types of social connections: friends in undirected
social networks and followers in directed social networks. More-
over, since the social information can be used to explain the rec-
ommendation results, we also like to investigate and improve the
explainability of our model.
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