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ABSTRACT
Explainability and e�ectiveness are two key aspects for building rec-
ommender systems. Prior e�orts mostly focus on incorporating side
information to achieve better recommendation performance. How-
ever, these methods have some weaknesses: (1) prediction of neural
network-based embedding methods are hard to explain and debug;
(2) symbolic, graph-based approaches (e.g., meta path-basedmodels)
require manual e�orts and domain knowledge to de�ne patterns
and rules, and ignore the item association types (e.g. substitutable
and complementary). In this paper, we propose a novel joint learn-
ing framework to integrate induction of explainable rules from knowl-
edge graphwith construction of a rule-guided neural recommendation
model. The framework encourages two modules to complement
each other in generating e�ective and explainable recommenda-
tion: 1) inductive rules, mined from item-centric knowledge graphs,
summarize common multi-hop relational patterns for inferring dif-
ferent item associations and provide human-readable explanation
for model prediction; 2) recommendation module can be augmented
by induced rules and thus have better generalization ability dealing
with the cold-start issue. Extensive experiments1 show that our
proposed method has achieved signi�cant improvements in item
recommendation over baselines on real-world datasets. Our model
demonstrates robust performance over “noisy" item knowledge
graphs, generated by linking item names to related entities.
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1 INTRODUCTION
Recommender systems play an essential part in improving user ex-
periences on online services. While a well-performed recommender
system largely reduce human e�orts in �nding things of interests,
1Code and data can be found at: https://github.com/THUIR/RuleRec
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Figure 1: Illustration of Item-item Associations in a Knowledge
Graph. Given items, relations and item associations (e.g. Buy Together), our
goal is to induce rules from them and recommend items from rules. These
rules are used to infer associations between new items, recommend items,
and explain the recommendation.

often times there may be some recommended items that are un-
expected for users and cause confusion. Therefore, explanability
becomes critically important for the recommender systems to pro-
vide convincing results—this helps to improve the e�ectiveness,
e�ciency, persuasiveness, transparency, and user satisfaction of
recommender systems [45].

Though there are many powerful neural network-based rec-
ommendation algorithms proposed these years, most of them are
unable to give explainable recommendation results [12, 14, 19].
Existing explainable recommendation algorithms are mainly two
types: user-based [25, 33] and review-based [11, 46]. However, both
of them are su�ering from data sparsity problem, it is very hard
for them to give clear reasons for the recommendation if the item
lacks user reviews or the user has no social information.

On another line of research, some recommendation algorithms
try to incorporate knowledge graphs, which contain lots of struc-
tured information, to introduce more features for the recommenda-
tion. There are two types of works that utilize knowledge graphs
to improve recommendation: meta-path based methods [32, 43, 48]
and embedding learning-based algorithms [24, 31, 44]. However,
meta-path basedmethods require manual e�orts and domain knowl-
edge to de�ne patterns and paths for feature extraction. Embedding
based algorithms use the structure of the knowledge graph to learn
users’ and items’ feature vectors for the recommendation, while
the recommendation results are unexplainable. Besides, both types
of algorithms ignore item associations.

We �nd that associations between items/products can be utilized
to give accurate and explainable recommendation. For example,
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if a user buys a cellphone, it makes sense to recommend him/her
some cellphone chargers or cases (as they are complementary items
of the cellphone). But it may cause negative experiences if the
system shows him/her other cellphones immediately (substitute
items) because most users will not buy another cellphone right
after buying one. So we can use this signal to tell users why we
recommend an item for a user with explicit reasons (even for cold
items). Furthermore, we propose that an idea to make use of item
associations: After mapping the items into a knowledge graph,
there will be multi-hop relational paths between items. Then, We
can summarize explainable rules from for predicting association
relationships between each two items and the induced rules will
also be helpful for the recommendation.

To shed some light on this problem, we propose a novel joint
learning framework to give accurate and explainable recommen-
dations. The framework consists of a rule learning module and a
recommendation module. We exploit knowledge graphs to induce
explainable rules from item associations in the rule learning module
and provide rule-guided recommendations based on the rules in
the recommendation module. Fig. 1 shows an example of items
with item associations in a knowledge graph. Note the knowledge
graph here is constructed by linking items into a real knowledge
graph, but not a heterogeneous graph that only consists of items
and their attributes. The rule learning module leverage relations in
a knowledge graph to summarize common rule patterns from item
associations, which is explainable. The recommendation module
combines existing recommendation models with the reduced rules,
thus have a better ability to deal with the cold-start problem and
give explainable recommendations. Our proposed framework out-
performs baselines on real-world datasets from di�erent domains.
Furthermore, it gives an explainable result with the rules.

Our main contributions are listed as follows:
• We utilize a large-scale knowledge graph to derive rules
between items from item associations.
• We propose a joint optimization framework that induces
rules from knowledge graphs and recommends items based
on the rules at the same time.
• We conduct extensive experiments on real-world datasets.
Experimental results prove the e�ectiveness of our frame-
work in accurate and explainable recommendation

2 PRELIMINARIES
We �rstly introduce concepts and give a formal problem de�nition.
Then, we brie�y review BPRMF [27] and NCF [14] algorithms.

2.1 Background and Problem
Item recommendation. Given users U and items I , the task of
item recommendation aims to identify items that are most suitable
for each user based on historical interactions between users and
items (e.g. purchase history). A user expresses his or her prefer-
ences by purchasing or rating items. These interactions can be
represented as a matrix. One of the promising approaches is a ma-
trix factorization method which embeds users and items into a low
dimensional latent space. This method decomposes the user-item
interaction matrix into the product of two lower dimensional rect-
angular matricesU and I for a user and an item, respectively. From
these matrices, we can recommend new items to users.
Knowledge graph. A knowledge graph is a multi-relational graph
that composed of entities as nodes and relations r as di�erent types

edges e . We can use many triples (head entity E1, relation type r1,
tail entity E2) to represent the facts in the knowledge graph [38].
Inductive rules on knowledge graph. There are several paths
between two entities in the knowledge graph, and a path is consisted
of entities with the relation types (e.g. Pk = E1r1E2r2E3 is a path
between E1 and E3). A rule R is de�ned by the relation sequence
between two entities, e.g. R = r1r2 is a rule. The di�erence between
paths and rules is that rules focus on the relation types, not entities.
Problem De�nition. Our study focus on jointly learning rules
in a knowledge graph and a recommender system with the rules.
Formally, our problem is de�ned as follows:

De�nition 2.1 (Problem De�nition). Given usersU , items I , user-
item interactions, item associations, and a knowledge graph, our
framework aims to jointly (1) learn rules R between items based
on item associations and (2) learn a recommender system to rec-
ommend items I ′u to each user u based on the rules R and his/her
interaction history Iu . This framework outputs a set of rules R and
recommended item lists I ′.

2.2 Base Models for Recommendation
The framework proposed in our study is �exible to work with
di�erent recommendation algorithms. As BPRMF is a widely used
classical matrix factorization algorithm and NCF is a state-of-the-
art neural network based recommendation algorithm, we choose
to modify them to verify the e�ectiveness of our framework.
BayesianPersonalizedRankingMatrix Factorization (BPRMF).
Matrix Factorization based algorithms play a vital role in recom-
mender systems. The idea is to represent each user/item with a
vector of latent features. U and I are user feature matrix and item
feature matrix respectively, and we use Uu to denote the feature
vector of useru (Ii for item i). The dimensions of them are the same.
In BPRMF algorithm [27], the preference score Su,i between u and
i is computed by the inner product ofUu and Ii :

Su,i = U
>
u · Ii (1)

The objective function of BPRMF algorithm is de�ned as a pair-
wised function as follows:

OBPRMF =
∑
u ∈U

∑
p∈Iu ,n<Iu

(Su,p − Su,n ) (2)

where p is a positive item that user u interacted before, and n is a
negative item sampled randomly from the items user u has never
interacted (n should not be in test set too).
NeuralCollaborative Filtering (NCF).NCF [14] is a neural based
matrix factorization algorithm. Similar to BPRMF, each user u
and each item i has a corresponding feature vector Uu and Ii , re-
spectively. NCF propose a generalized matrix factorization (GMF)
(Eq (3)) and a non-linear interaction part via a multi-layer percep-
tion (MLP) (Eq (4)) between user and item to extraction.

hu,i = U
>
u · Ii (3)

дu,i = ϕn (...ϕ2 (ϕ1 (z1)))

z1 = ϕ0 (Uu ⊕ Ii )

ϕk (zk−1) = ϕk (W
T
k zk−1 + bk−1),

(4)

where n is the number of hidden layers.Wk , bl , and zk are weight
matrices, bias vector, and output of each layer. ⊕ is vector con-
catenation and ϕ is a non-linear activation function. Both hu,i and
дu,i are user-item interaction feature vectors for GMF and MLP,
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Figure 2: Overview of the Proposed RuleRec Framework. First, we build a heterogeneous graph from items and a knowledge graph. The rule learning
module learns the importance of rules and the recommendation module learns the importance at the same time by sharing a parameter vector w .
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Figure 3: An example of a heterogeneous graph which consists of items
and entities in a knowledge graph. The dashed lines are links between items
and entities generated by an entity linking algorithm.

respectively. The prediction equation of NCF is de�ned in Eq (5),
in which the outputs of GMF and MLP parts are concatentated to
get the �nal score. And we modi�ed the objective function of NCF
into Eq (6) in this paper.

Su,i = ϕ (α · hu,i ⊕ (1 − α ) · дu,i ) (5)

ONCF = σ (
∑
u ∈U

∑
p∈Iu ,n<Iu

(Su,p − Su,n )) (6)

3 THE RULEREC FRAMEWORK
Framework Overview. Recommendation with rule learning con-
sists of two sub-tasks: 1) rule learning in a knowledge graph based
on item associations; 2) recommending items for each user u with
his/her purchase history Iu and the derived rules R.

To cope with these tasks, we design a multi-task learning frame-
work. The framework consists of two modules, a rule learning
module and a recommendation module. The rule learning module
aims to derive useful rules through reasoning rules with ground-
truth item associations in the knowledge graph. Based on the rule
set, we can generate an item-pair feature vector whose each entry
is an encoded value of each rule. The recommendation module
takes the item-pair feature vector as additional input to enhance

recommendation performances and give explanations for the rec-
ommendation. We introduce a shared rule weight vectorw which
indicates the importance of each rule in predicting user preference,
and shows the e�ectiveness of each rule in predicting item pair
associations. Besides, based on the assume that useful rules per-
form consistently in both modules with higher weights, we design
a objective function to conduct jointly learning:

min
V ,W

O = min
V ,W
{Or + λOl } (7)

where V denotes the parameters of the recommendation module,
andW represents the shared parameters of the rule learning and
the recommendation module. The objective function consists of two
terms: Or is the objective of the recommendation module, which
recommends items based on the induced rules. Ol is the objective
of the rule learning module, in which we leverage the given item
associations to learn useful rules. λ is a trade-o� parameter.

3.1 Heterogeneous Graph Construction
First, we build a heterogeneous graph containing items for the
recommendation and a knowledge graph. For some items, we can
conduct exactly mapping between the item and the entity, such as
“iPhone", “Macbook". For other items, it is hard to �nd an entity
that represents the items, such iPhone’s charger. Thus, we adopt
entity linking algorithm [6] to �nd the related entities of an item
from its title, brand, and description in the shopping website. In this
way, we can add new nodes to the knowledge graph that represents
items and add some edges for it according to entity linking results.
Then, we get a heterogeneous graph which contains the items and
the original knowledge graph. Fig. 3 is an example.

3.2 Rule Learning Module
The rule learning module aims to �nd the reliable rule set RA asso-
ciated with given item associations A in the heterogeneous graph.
Rule learning. For any item pair (a, b) in the heterogeneous graph,
we use a random walk based algorithm to compute the probabilities
of �nding paths which follow certain rules between the item pair,
similar to [16, 17]. Then, we obtain feature vectors for item pairs.
Each entry of the feature vector is the probability of a rule between
the item pair. Here, we focus on relation types between the item
pair to obtain rules such as R1 in Fig. 3, because it is general to the
entities to capture the rules between items.
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First, we de�ne the probability of a rule between an item pair.
Given a rule R = r1...rk , probability P with the rule from a to b is
de�ned as:

P (b |a,R) =
∑

e ∈N (a,R′)

P (e |a,R′) · P (b |e, rk ), (8)

whereR′ = r1...rk−1, and P (b |e, rk ) =
I (rk (e,b ))∑
i I (rk (e,i ))

is the probability
of reaching node b from node e with a one-step random walk with
relation rk . I (rk (e,b)) is 1 if there exists a link with relation rk from
e to b, otherwise 0. If b = e , then P (b |e, rk ) = 1 for any rk . N (a,R′)
denotes a node set that can be reached with rule R′ from node a.
For example, P (b |a,R) with a rule R = r1r2 in Fig. 4 is computed as
follows:

P (b |a,R) = P (c |a, r1) · P (b |c, r2) + P (d |a, r1) · P (b |d, r2)

Second, we de�ne a feature vector between an item pair. Given
a set of rules, a rule feature vector for an item pair (a, b) is de�ned
as x (a,b ) = [P (b |a,R1), ..., P (b |a,Rn )]>. Each entry in the feature
vector x (a,b ) represents a encoded value of rule Ri between a and b.
Rule selection. To select the most useful rules from the derived
rules, we will introduce two types of selection methods: hard-
selection and soft-selection.
Hard-selection method. Hard-selection method set a hyper pa-
rameter to decide howmany rules we want to select with a selection
algorithm �rstly. Then we use a chi-square method and a learning
based method to choose n rules in this study:

(1) Chi-square method. In statistics, the chi-square test is applied
to measures dependence between two stochastic variables A and
B (9) (to test if P(AB) = P(A)P(B)). NA,B is the observed occurrence
of two events from a dataset and EA,B is the expected frequency. In
feature selection, as the features that have lower chi-square scores
are independent of prediction target are likely to be useless for
classi�cation, chi-square scores between each column of feature
vector (x (a,b ) ) and prediction target (ya,b |A) are used to select the
top n useful features [29].

χ2A,B =
∑ (NA,B − EA,B )

2

EA,B
(9)

(2) Learning based method. Another way to conduct feature se-
lection is to design a objective functionOl that compute importance
of each rule and try to minimize it. In the objective function, we
introduce a weight vector w whose each entry represents impor-
tance of each rule. For an item pair (a, b), we use ya,b |A to denote

whether a and b have association A (ya,b |A is 1 if they have, and 0
otherwise.). We de�ne the following objective functions:
• Chi-square objective function∑

allpair s ∈A

|x (a,b ) |∑
i=0

wi · (x (a,b ) (i ) + b − ya,b |A )
2 (10)

• Linear regression objective function∑
allpair s ∈A

|x (a,b ) |∑
i=0

(wi · x (a,b ) (i ) + b − ya,b |A )
2 (11)

• Sigmoid objective function∑
allpair s ∈A

|x (a,b ) |∑
i=0

wi

1 + e−|x (a,b ) (i )+b−ya,b |A |
(12)

wherex (a,b ) (i ) is i-th entry ofx (a,b ) . Tomake the objective function
reasonable, we constrain that ∑i wi = 1 and wi > 0. In training
steps, if x (a,b ) (i ) shows positive correlation with ya,b |A, then rule
i is likely to be useful for item association classi�cation and will
get higher weight according to the loss functions. So similar to the
chi-square method, the top weighted rules will be selected.
Soft-selection method. Besides the hard-selection method, an-
other way to make use of the learning based objective functions is
to take the weight of each rule as a constrain on the rules weights in
the recommendation module. No rule will be removed from rule set
in this way and it will not introduce extra hyper-parameter. Due to
this method is �exible to be combined into other part, we introduce
the soft-selection method with learning based objective functions
to the recommendation module as a multi-task learning. In such
condition, there is no extra constrain on rule weight (∑i wi = 1
or wi > 0). The detail of the multi-task learning method will be
shown in Section 3.5.

As the rule set is derived from an item association in rule learning
module. To apply di�erent item associations at the same time, we
can combine the rule sets from di�erent item associations together
to get a global rule set R.

3.3 Item Recommendation Module
We propose a general recommendation module than can be com-
bined with existing methods. This module utilizes the derived rule
features to enhance recommendation performances.

The goal of this module is to predict an item list for user u based
on the item set Iu s/he interacted (e.g. purchased) before. Previous
works calculate the preference score Su,i of user u purchase candi-
date item i , and then rank all candidate items with their scores to
get the �nal recommendation list. As shown in Eq (13), we propose
a function fw parameterized by the shared weight vectorw to com-
bine the score Su,i with rule features between candidate item i and
items user interacted (e.g. purchased) under rule set R. A score S ′u,i
for our method is de�ned as:

S ′u,i = fw (Su,i ,
∑
k ∈Iu

F(i,k |R ) ) (13)

The feature vector for item pair (a,b) under rule set R is denoted
by F(a,b |R ) . Note that F(a,b |R ) is di�erent from x (a,b ) and calcu-
lated by F(a,b |R ) =

∑
e ∈N (a,R′) P (e |a,R

′) · I (b |e, rk ). I (b |e, rk ) is an
indicator function: if there is a edge in relation type rk between b
and e , I (b |e, rk ) = 1; otherwise 0. The reason why we adopt another
feature generation method is that in recommendation module, we
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concerns more about if there exists a path in this rule between
two items. The weight of each rule will be used in explaining the
recommendation result, so we should make the comparing between
rules fair. While longer rules are more likely to get lower score
(more random walk steps so lower probability). If the feature vector
is still x , it will hurt the explainable of our module. Thus we use
F(a,b |R ) as the feature vector here, which represents the frequency
of each rule between the two items.

To consider the global item associations between candidate item
i and the item set Iu , we add the rule features between i and each
item Ik in Iu together. For convenience, the new feature vector is
named as F(i, Iu |R ) . So Eq (13) can be rewrite as the following:

S ′u,i = fw (Su,i , F(i, Iu |R ) ) (14)
We de�ne the objective function for the recommendationmodule

as follows:
Or =

∑
u ∈U

∑
p∈Iu ,n<Iu

(S ′u,p − S
′
u,n )

=
∑
u ∈U

∑
p∈Iu ,n<Iu

(
fw (Su,p , F(p, Iu |R ) ) − fw (Su,n , F(n, Iu |R ) )

)
,

(15)
where p is a positive item (∈ Iu ) and n is a random sampled

negative item (< Iu ) for user u. Note that the rule weight vector
w gives explanations for item pairs with rules in recommendation
module. If a candidate item i gets a higher score than other candi-
date items, the rule which contributes the highest score for i and
the corresponding items the user bought can be used to explain
why the algorithm recommends i to the user. In other words, the
introduction of rule features make the recommendation results
explainable. There are some case studies in Section 5.5.

This combination method is �exible and easy to introduce rule
features to many previous recommendation models (use the al-
gorithm’s prediction function to calculate Su,i ). In this study, we
implement this recommendation module with BPRMF (traditional
MF algorithm) and NCF (neural network basedMF algorithm). Since
it is a two step algorithm (to learn rules �rstly and then conduct
recommendation), we denote them as RuleRectwo (BPRMF) and
RuleRectwo (NCF). The prediction function and objective function
of them are Eq (14) and Eq (15), where Su,i is replaced by the pre-
diction function of BPRMF (Eq (1)) and NCF (Eq (5)), respectively.

3.4 Multi-task Learning
In Sections 3.2 and 3.3, we introduced the two modules respectively.
We can train the modules one by one to get the recommendation
results. The shortcoming of training two modules separately is that

the usefulness of rules in prediction item association is ignored.
Instead, we share the rule weightw , and this weight can capture
the importance of the rule in both the recommendation and item
association prediction simultaneously as shown in Fig. 5. Thus, we
propose a multi-task learning objective function de�ned as follows:

O = Or + λOl (16)
where Ol and Or are the objective functions for the rule learning
module and the recommendation module, respectively. Note that
both objective functions sharew .

The multi-task learning combination method is able to conduct
rule selection and recommendation model learning together. Sim-
ilar to the two step combination method, it is also �exible to to
multiple recommendation models too. BPRMF and NCF are en-
hanced with this idea, and the modi�ed algorithms are named as
RuleRecmulti (BPRMF) and RuleRecmulti (NCF).

4 RULE SELECTION DETAILS
This section introduces the implementation details and results of
the rule selection component in RuleRec.

4.1 Dataset and Implementation Details
We introduce item association datasets, a knowledge graph, and
recommendation datasets for experiments.
Item association datasets. A open dataset with item associations
is used in our experiments2. The item associations are extracted
from user log on Amazon (same as [20]). Four types of item associ-
ations are considered: 1) Also view (ALV), users who viewed x also
viewed y; 2) Buy after view (BAV), users who viewed x eventually
bought y; 3) Also buy (ALB), users who bought x also bought y; 4)
Buy together (BT), users frequently bought x and y together. ALV
and BAV are substitute associations, and ALB and BT are comple-
mentary associations. The statistics of Cellphone and Electronics
datasets with di�erent item associations are shown in Table 1. Since
the data is crawled from Amazon3, the number of link is nearly ten
times as large as the number of involved items in each association
type. Besides, as shown in the table, over 37% items do not have
any association with other items in this dataset.
Knowledge graph dataset. Freebase [2] is used to learn rules. It
is the largest open knowledge graph4, containing more than 224M
entities, 784K relation types, and over 1.9 billion links.

The link prediction algorithm 5 [6] is used to connect items (with
their titles, brands, and descriptions) and entities in DBPedia 6 �rstly.
Then the linked entities in DBPedia are mapped to the entities in
Freebase with a entity dictionary 7. As there is a probability score
of each linked entity with the algorithm, which represents the
con�dence of this linking. So if the probability of a word links to
a entity is lower than 0.6, we will ignore it to make the link result
more accurate.

Due to the large scale of the knowledge graph, it is infeasible to
enumerate all possible rules in this step. Following the idea in [17],
we require that all derived rule needs to be supported by at least
a fraction α of the training item pairs, as well as being of length
no more than β (there will be huge number of rules without the
2http://jmcauley.ucsd.edu/data/amazon/
3www.amazon.com
4https://developers.google.com/freebase/
5http://model.dbpedia-spotlight.org/en/annotate
6https://wiki.dbpedia.org/
7https://drive.google.com/�le/d/0Bw2KHcvHhx-gQ2RJVVJLSHJGYlk/view



Table 1: The statistics of item association pairs in di�erent domain. #Involved item means the number of items that have at least one type of association
with any other items. #Item is the number of involved items with association and #Pair is the number of item pairs with association.

Dataset #Item #Involved
Item

Also View Buy After Viewing Also Buy Buy Together
#item #Pair #item #Pair #item #Pair #item #Pair

Cellphone 346,793 214,692 103,845 1,038,090 181,935 1,818,990 71,660 716,240 29,372 293,360
Electronic 498,196 318,922 123,959 1,239,230 250,409 2,503,730 159,562 1,595,260 31,040 310,040

Table 2: The number of derived rules from di�erent associations.

Dataset #ALV #BAV #ALB #BT
Cellphone 700 948 735 675
Electronic 46 66 70 50

length constraint). In the experiments, we set α to 0.01 (the same
as [17]), and β to 4, which means the maximum number of edges
between entities in a path is 4.

4.2 Results of Rule Selection
Item linking to the Knowledge Graph. In this step, we link
the items from di�erent domains to the entities in the knowledge
graph. Items in the Cellphone domain and the Electronic domain
are connected with 33,542 entities and 55,180 entities in Freebase
respectively. Due to the item-entity linking method is not in a
one-by-one accurate linking but based on items’ titles, brands, and
descriptions, each item will be linked into several entities and each
entity will be linked with several items. With the random walk
strategy introduced in Section 3.2, we �nd that the four hop routes
in the knowledge graph from these entities will pass over 10 million
entities. To avoid introducing unrelated entities in random walk
step, the type of entities are constrained on pre-de�ned entity types
(e.g.: entities in “ns.base.brand", “ns.computer” and some other types
are maintain), then the involved entity amount is reduced to around
100K in each domain.
Rule Learning. The derived rules of di�erent associations in cell-
phone domain are summarized in Table 2. There are hundreds of
rules derived from Cellphone domain in each association, while
only around 46-70 rules are in Electronic domain. The possible rea-
son is that comparing with Cellphone domain, Electronic domain
contains more items and the items are more diversity. Most rules
are supported by less than 0.01 of the training item pairs. so less
general rules are derived.
Rule Selection. To select useful rules from the large rule set, we
use the learning based (LR, Eq (11)) and chi-square based feature
selection methods in Section 3.2. The idea of selection methods is
to choose the rules by which any items in a speci�c association are
followed. E.g. if any item pairs in the BT association follows a rule
Rk , then Rk is a useful rule for the BT association.

We choose the ALB association in the Cellphone dataset to ver-
ify the selection ability of the two methods. Because the derived
rules will be used to extract item-item pair feature for the recom-
mendation, a good rule should be able to indicate the associations
between item i and user’s purchase history Iu . So the recommen-
dation dataset (Section 5.1) in the Cellphone domain is used for
evaluation, we calculate the recall of whether there is at least one
path satis�ed rule rk between the last item il user interacted and
user’s previous purchase history Iu . Due to not always exist at least
one rule between il and Iu , there is a upper bound for the recall.

Table 3: Rule selection results on ALB association in the Cellphone domain.

LR Chi-square All Upper
BoundTop 50 Top 100 Top 50 Top 100

20.1% 40.1% 87.0% 88.5% 89.2% 90.7%

Table 3 shows the rule selection results ALB association in Cell-
phone domain and its upper bound. Chi-square based method out-
performs linear-regression based method in rule selection. The
reason is that rules with higher weight in linear regression model
cannot fully represent usefulness of rules in the recommendation.
However, Chi-square method is able to �nd the most useful rules,
and the selected 50 rules cover 87.0% of user purchase history (only
2.2% percentage lower than using all rules). It is reasonable to choose
only the subset of derived rules for the recommendation. Besides,
we �nd that the upper bound in Electronic domain is only about
65%, indicating that the combination between rules in Electronic
dataset is not as tightly as in the Cellphone dataset.

Besides, for multi-task learning framework, it is unnecessary to
conduct rule selection because the model takes the e�ect of each
rule in predicting item associations through the combined loss
function Eq ((10), (11), or (12)).

5 RECOMMENDATION EXPERIMENTS
This section introduces dataset and experiment settings for com-
paring RuleRec with other baseline methods, as well as providing
case study on analyzing di�erent components of RuleRec.

5.1 Recommendation Dataset
The recommendation datasets are open datasets that extracted
from Amazon [10, 21]. Each user’s purchase histories in Amazon
are recorded with the purchased items and times. We conduct ex-
periments using two datasets: Amazon Cellphone and Amazon
Electronic. Each user has at least 5 interactions with items. The
statistics of the datasets are summarized in Table 4.

Table 4: The statistics of recommendation datasets.

Dataset #user #item #links
Cellphone 27, 879 10, 429 194, 439
Electronic 22, 675 58, 741 195, 751

5.2 Experimental Settings
Evaluation Protocol. To evaluate the item recommendation per-
formance, we use leave-one-out evaluation in the recommenda-
tion [1, 14]. The latest interactions between items and each user are
used as positive items in test set, and the remaining data are used
for training. Due to the loss function in our study is pair-wised,
each positive item in training set will be trained with a negative



item sampled from items that the user has not interacted. As for test
set, since it is too time-consuming to rank all items for each user
in evaluation, 99 negative items that are not interacted with the
user are random sampled and added to test set [5, 36]. Therefore, in
the test set, each user is evaluated with 99 negative items and one
positive item. The target here is to generate a high-quality ranked
list of items for each user.
Evaluation Metrics. We use Recall, Normalized Discounted Cu-
mulative Gain (NDCG), and Mean reciprocal rank (MRR). Higher
score means better performance in each metric. Recall focuses on
whether the positive item is in the list, while NDCG and MRR take
the position of the positive item into evaluation. Considering that
the length of most recommendation list in real scenarios is 5 or 10,
so the ranked list is truncated at 10 for all metrics. We calculate
Recall@5, Recall@10, NDCG@10, and MRR@10 for evaluation.

5.3 Compared Methods
Three types of baselines (traditional matrix factorization, neural
network based, and recommendation with knowledge graph) are
used here:
• BPRMF [27]. As introduced in Section 2.2.1, this method follows
the idea of matrix factorization with pairwise ranking loss.
• NCF [14]: This is a state-of-the-art latent factor model. It pre-
trains MLP and GMF part separately, and then ensembles the
two models to get the �nal preference score. Following previous
studies [5, 13],MLP and GMF are taken as baseline models too.
• HERec [31]: A state-of-the-art algorithmwhich using the knowl-
edge graph for the recommendation. This method adopts meta-
paths to generate the embeddings of users and items in the
heterogeneous network with Deepwalk [26], and then use them
in the recommendation. Two variants of this algorithm with
di�erent fusion functions, HERecsl (with the simple linear fu-
sion function) and HERecpl (with personalized linear fusion
function) are used as baseline models.
• RippleNet [34]: Another state-of-the art algorithm that incor-
porates the knowledge graph into recommender systems. It
stimulates the propagation of user preferences on the set of
knowledge entities to learn a user’s potential interests.

ImplementationDetails.Weadopt the implementation of BPRMF
algorithm in MyMediaLite8 (a famous open source package) on our
experiments. The implementation of other algorithms are from
the public codes that the authors provided in their papers (NCF9,
HERec10, and RippleNet11). The four new models, RuleRectwo with
BPRMF, RuleRectwo with NCF, RuleRecmulti with BPRMF, and
RuleRecmulti with NCF are modi�ed from BPRMF and NCF accord-
ing to our framework respectively. We tune all the parameters to
achieve the best performance of each algorithm.

The score function is de�ned as S ′u,i = fw (Su,i , F(i, Iu |R ) ) =

Su,i + α ·w
T F(i, Iu |R ) in this section. Di�erent implementations of

fw and their results will be analyzed in Section 5.5. All of the four
types of item associations are used in the recommendation module
for both two-step andmulti-task learning algorithms. Top 50 rules of
each type of item associations (selected with chi-square method) are
chose to the two-step based methods. To make the comparison fair,
these rules are used in the multi-task learning algorithms with the
8http://www.mymedialite.net/index.html
9https://github.com/hexiangnan/neural_collaborative_�ltering
10https://github.com/librahu/HERec
11https://github.com/hwwang55/RippleNet

sigmoid objective function in the �nal experiments. The objective
function is sigmoid (Eq (12)), as it performs the best in the three
objective functions (Eq (10), (11), and (12)); due to the limited of
length, we do not show the results here. The comparison of di�erent
amounts of rules will be introduced in Section 5.5.5.

5.4 Experiments and Performance Study
The experimental results of these algorithms in di�erent domains
are summarized in Table 5. We repeated each setting for 5 times and
conducted the paired two-sample t-test on the 5 times experiment
results for signi�cant test. As shown in the table, the performance
of algorithms in Electronic dataset is obviously worse than in Cell-
phone dataset. The reason is that the item count of Electronic
dataset is about 6 times over the item count of Cellphone dataset
(from Table 4), which makes the recommendation in Electronic
dataset more di�cult.
1. The Enhanced Algorithms vs. the Originals. NCF algorithm
performs better than BPRMF algorithm in both datasets, as more
complex user and item feature interactions are taken into consider-
ation in NCF. Looking into the results of BPRMF algorithms and
NCF algorithms, we �nd that RuleRecmulti with BPRMF gets 6.5%
to 11.0% improvements over BPRMF in di�erent evaluation metrics
on two domains. The improvements of RuleRecmulti with NCF
in Recall@5, Recall@10, NDCG@10, and MRR@10 are between
3.0% to 6.4% comparing with NCF in Cellphone domain, while the
improvements of which on Electronic is lower than in Cellphone
domain. Though RuleRecmulti with BPRMF is improved more than
RuleRecmulti with NCF, RuleRecmulti with NCF still achieves the
best performance in Cellphone domain and RuleRecmulti with
BPRMF performs the best in Electronic domain.
2. Overall Performances. Besides, we �nd that any one of the en-
hanced algorithms outperform all baselines in both Cellphone and
Electronic domains in each metric. And most of the improvements
are statistically signi�cant, showing that the derived rules from
the knowledge graph are really helpful to generate a better ranked
item list for the recommendation. The multi-task learning algo-
rithms (RuleRecmulti with BPRMF and RuleRecmulti with NCF)
show better performances than the two-step learning algorithms
(RuleRectwo with BPRMF and RuleRectwo with NCF), indicating
that the combination of recommendation loss and rule selection
loss in weight training is able to boost the recommendation results.
Though the learning-based selection methods perform worse than
chi-square in Section 4.2, it does helpful in the multi-task learning.
3. The Performances of HERec and RippleNet. We also note
that HERec based algorithms and RippleNet, some state-of-the-art
algorithms that uses the knowledge graph for the recommendation,
performs worse in these datasets. We think the possible reason
is that unlike movie, book, or Yelp datasets which contains many
well organized category features (such as director, movie type, ac-
tor/actress name in movie dataset) to construct a compact graph,
here we link Cellphone and Electronic datasets with a real knowl-
edge graph Freebase. Though Freebase contains more information,
but it is not as clean as the on-topic sub graph and makes it harder
to mine valuable information, so these algorithms perform worse.
More analyses are shown in Section 5.5.1.

To summarize, the derived rules from knowledge graph are valu-
able for item pair feature vector learning, and the learned vector is
able to enhance multiple basic recommendation models (BPRMF
and NCF here). Comparing with the two-step combination method,



Table 5: Performance Comparison between RuleRec and Other Methods in Di�erent Domains. RuleRectwo and RuleRecmulti are our proposed
models. RuleRectwo is a two-step rule-based model and RuleRecmulti is a multi-task model. These models use BPRMF or NCF as a recommendation model. *
indicates statistical signi�cance at p < 0.01 compared to the best baseline model.

Methods / Dataset Cellphone Electronic
Recall@5 Recall@10 NDCG@10 MRR@10 Recall@5 Recall@10 NDCG@10 MRR@10

BPRMF [27] 0.3238 0.4491 0.2639 0.2058 0.1886 0.2763 0.1571 0.1207
GMF [13] 0.3379 0.4666 0.2789 0.2223 0.1988 0.2835 0.1657 0.1298
MLP [5] 0.3374 0.4779 0.2790 0.2182 0.2000 0.2883 0.1681 0.1315
NCF [14] 0.3388 0.4751 0.2761 0.2151 0.2005 0.2916 0.1679 0.1300
Hecsl [31] 0.2436 0.3481 0.2040 0.1600 0.1870 0.2851 0.1534 0.1135
Hecpl [31] 0.2511 0.3564 0.2090 0.1641 0.1948 0.2851 0.1628 0.1256

RippleNet [34] 0.2834 0.4042 0.2219 0.1780 0.1965 0.2865 0.1638 0.1265
RuleRectwo (BPRMF) 0.3495* 0.4768 0.2813* 0.2201* 0.2050* 0.2932 0.1707* 0.1334*
RuleRecmulti (BPRMF) 0.3568* 0.4829* 0.2864* 0.2246* 0.2071* 0.2946* 0.1718* 0.1341*

RuleRectwo (NCF) 0.3538* 0.4876* 0.2902* 0.2296* 0.2049* 0.2947* 0.1681 0.1296
RuleRecmulti (NCF) 0.3569* 0.4894* 0.2902* 0.2290* 0.2074* 0.2917 0.1702* 0.1330

Table 6: Performance Comparison on MovieLens dataset.

Model AUC
Hecsl [31] 0.894
Hecpl [31] 0.895

RippleNet [34] 0.921
RuleRectwo (BPRMF) 0.907

multi-task learning for both recommendation and rule selection
contributes more on rule weight learning. Due to the �exible of the
proposed framework, the derived rules are able to combine with
other recommendation models to boost performances signi�cantly.

5.5 Case Study and Performance Analysis
1. PerformanceComparison in compact heterogeneous graph.
Experiments in Section 5.4 are conducted on a large heterogeneous
graph extracted from real knowledge graph. In this subsection,
some extra experiments are conducted on a compact heteroge-
neous graph, which is constructed based on item attributes, in
MovieLens-1M dataset12. We adopt the proposed algorithm and
HERec algorithm in this dataset following the setting in RippleNet.

The experimental results are shown in Table 6. Our model per-
forms better than HERec while worse than RippleNet , there are
two possible reason: 1) relation type is very limited in this dataset
(only 7), so the power of rule selection for the recommendation in
RuleRec is limited in this scenario. 2) MovieLens-1M is di�erent
from real knowledge graph datasets in Section 5.4 (which is con-
structed by linking items into Freebase), the connection coverage of
it is very perfect and RippleNet bene�ts a lot from this. The results
indicate that the proposed algorithms is able to achieve noteworthy
performance in compact heterogeneous graph.
2. Explainability of the learned rules. In Section 5.4, the results
indicate the derived rules are useful in providing more accurate
recommendation results. In this section, we will show the explain-
ability of the derived rules for the recommendation. Two positive
weighted rules on RuleRecmulti are shown as the following :
• R1 = “computer.computer.manufacturer"
• R2 = “computer.computer.compatible_oses" − >
“computer.os_compatibility.operating_system" − >
“computer.operating_system.includes_os_versions"

12https://github.com/hwwang55/RippleNet/tree/master/data/movie

Where the words with quotation marks are the relation types
de�ned in Freebase (such as “computer.computer.manufacturer").
These rules are with positive weights in the recommendation mod-
ule, indicating that if a new item b exists a path between it and item
a user bought before, item b is more likely to get higher score.

First we try to verify if item pairs with these rules a�ect user’s
purchase. As to R1, it links a computer product and its manufacturer.
If two items a and b have a path in R1, it means that item b is likely
to be manufactured by the same as item a. For R2, two example
entity paths in this rule are: 1) “MacMini" - “os x yosemite" - “OS X" -
“IOS" and 2) “Surface Pro" - “Windows 10" - “Windows" - “Windows
Phone". It shows that users are tend to use similar operating systems
in both cellphone and computer. As you can see, these rules are
consistent with our common sense.

Then, to check whether users agree that the selected rule will
be helpful to improve the explainability of the recommendation if
the rules are used in real scenarios, the derived rules in Cellphone
dataset are labeled by three experts (only agree or disagree, 100
rules from ALB and BT associations). The results show that over
94% learned rules are accepted by users (87% rules are accepted by
all users).

Due to the e�ective rule i in calculating user preference on a
speci�c item will get higher score (wi

>F(i, Iu |ri ) ) for the preference
prediction. So for each item in the ranked list, unless it has no path
between it and items in user’s purchase history, we can generate
the most important rule for it by ranking the score of each rule in
preference prediction.
3. Study on di�erent model integration strategies. The score
function (Eq (14)) and the rule weight vector w in fw a�ect the
performance of the recommendation module. We experiment with
several ways to identify the best combination methods.
• Hard �ltering: Remove candidate items that have no rule
with any item in Iu . Formally, S ′u,i = Su,i · I (F(i, Iu |R ) ), where
I (F(i, Iu |R ) ) = 1 if ∑ F(i, Iu |R ) >= 1 otherwise 0.
• Equal weight: Each rule gets an equal weight in prediction.
S
′

u,i = Su,i + α ·w
>F(i, Iu |R ) , andw = [0.02, ..., 0.02].

• Selection weight: S ′u,i = Su,i + α · w>F(i, Iu |R ) , and w =

wruleselect ion wruleselect ion is the ruleweight vector trained
by Eq (12) in rule selection step.
• Learn together: The rule weight vector is trained with the
original recommendation model. fw (a,b) = a +w>b.
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Figure 6: Performance comparison under di�erent score function settings in the Cellphone dataset. We select the top 50 rules in each association
by chi-square method. Among all score function settings, the multi-task learning method performs the best.

Table 7: The results of using a single association vs. all associations.
BPRMF is used as a recommendation model. Our proposed model shows
the best performances when using all kinds of associations.

Type Recall@5 Recall@10 NDCG@10 MRR@10
None 0.3238 0.4491 0.2639 0.2058
ALV 0.3527 0.4815 0.2844 0.2225
BAV 0.3513 0.4812 0.2840 0.2222
ABU 0.3511 0.4811 0.2838 0.2218
BT 0.3514 0.4810 0.2841 0.2222
ALL 0.3568 0.4829 0.2864 0.2246

• Multi-task: The rule weight vector w is shared by recom-
mendation learning and rule selection part, and the score
prediction function is fw (a,b) = a +w>b.

The results of applyingmultiple score functions on RuleRec(BPRMF)
model in Cellphone dataset are shown in Fig. 6. The performances
of the score functions are Hard �ltering < Equal weight < Selection
weight < Learn together < Multi-task with all metrics in all associ-
ations. First, we can see that the multi-learning method achieves
the best performance on all metrics, and the improvements are sig-
ni�cant, which indicates multi-task learning is very helpful in rule
weight learning for better recommendation results. Second, since
the hard �ltering method is likely to ignore both negative items and
positive items (from Table 3, we can see that sometimes there is no
rule between the positive item and item purchase history Iu ). Third,
though selection weight contributes on the recommendation (better
that equal weight), it is still worse than Learn together model.
4. Study on single association vs. all associations

In this subsection, we compare the performance of RuleRecmulti
with BPRMF with only one type of association and all associations,
the results are summarized in Table 7.

First, we can see that with the rules derived by any one of the
four associations, RuleRecmulti with BPRMF outperforms BPRMF
algorithm signi�cantly. The performances of using di�erent asso-
ciations are similar, but all of them are valuable for mining the
item relationships to boost the recommendation results. Second,
RuleRecmulti with BPRMF derived by all kinds of associations out-
performs RuleRecmulti with a single association, indicating that
the combination contributes for the recommendation models.
5. Recommendation with di�erent rule counts. In Section 3.2,
rule selection is introduced as an important part in rule learning.
Does rule selection is really necessary? We conduct further ex-
periments on each association with di�erent of derived of rules
(selected with chi-square method, 50, 100, 200, 300, 400, and 500
respectively) with RuleRectwo and RuleRecmulti with BPRMF.

From Fig. 7, the performance of RuleRectwo with BPRMF de-
creases in recall@5, MRR@10 as the rule number increases. At the
same time, NDCG@10 keeps stable and Recall@10 increases. The
overall performances is not getting better when more rules are
applied in the recommendation learning. The possible reason is
that with the grows of rule number, lots of ”bad" rules are included
and the two-step model RuleRectwo with BPRMF shows worse
ability in dealing with them properly. However, due to the rule se-
lection is taken into consideration in the multi-task learning based
algorithms, we �nd that the performance of RuleRecmulti with
BPRMF algorithm shows better performances as the rule number
increases (Fig. 8). Furthermore, the performances of RuleRecmulti
with BPRMF is signi�cantly better than those of RuleRectwo with
BPRMF (paired two-sample t-test on the experimental results with
di�erent count of rules. p < 0.01). The results show that the multi-
task learning based algorithms are able to tackle with large number
of rules even though there are useless rules.

6 RELATEDWORK
Combine Side-information for the Recommendation.Matrix
factorization based algorithms [27, 28] are widely used to tackle
recommendation problems. Recently, recommendation algorithms
achieve remarkable improvements during these years with help of
deep learning models [12, 14, 30, 47, 49] and the successful introduc-
ing of side-information [15, 19, 22, 23, 34]. In this study, we focus
on the introducing of side-information in the knowledge graph
for the recommendation, and there already two types of studies
using the knowledge graph in the recommendation: path-based and
embedding learning based.

Path-based methods adopt random walk on prede�ned meta-
paths between user and items in the knowledge graph to calculate
user’s preference on an item. Yu et al. �rst propose to usemeta-paths
to utilize user-item preferences and then expand matrix factoriza-
tion for the recommendation [43]. Shi et al. use weighted paths for
explicit recommendation [32]. Zhao et al. design a factorization
machine with the latent features from di�erent meta-paths [48].
Catherine et al. design a �rst-order probabilistic logical reason-
ing system, named ProPPR, to integrate di�erent meta-paths in a
knowledge graph [3, 4]. All these methods achieve improvements
in the recommendation, while the weakness of them is that they
ignore the type of item associations.

Embedding learning based methods conduct user/item represen-
tation learning based on the Knowledge graph structure �rstly. The
learned embedding [8] is applied in Zhang’s study to get item em-
bedding for the recommendation [24]. Zhang et al. use TransR [18]
to learn the structural vectors of items, and these vectors are part of
the �nal item latent vector for preference prediction [44]. Besides,
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Figure 7: The performance of using di�erent number of rules in RuleRectwo with BPRMF.
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Figure 8: The performance of using di�erent number of rules in RuleRecmulti with BPRMF.

some previous studies propose new algorithms in which Meta-path
guided random walks are used in a heterogeneous network for
user and item embedding learning and achieve outperform results
[31, 34, 37, 48] in di�erent ways. However, the embedding learning
based methods give up the explainable strength of the knowledge
graph, which is very valuable for the recommendation.

Rule Learning in the Knowledge Graph. Item-item relation-
ships are considering as useful features for providing better rec-
ommendation results. Julian et al. �rstly propose to a topic model
based method to predict relationships (substitute or complemen-
tary) between products from reviews [20]. In their study, the ground
truth is calculated in a data-driven way in Amazon. Then, more
algorithms attempt to improve the prediction results with better
algorithms. Word dependency paths are taken into consideration
in Hu et al.’s work [41] and Wang et al. adopt a embedding based
method to enhance the performance of relationship prediction [37].

However, these methods are su�ering from cold items. So we pro-
posed to not predict item associations directly, but mine meaningful
rules in the knowledge graph with the ground truth item pairs. The
rules will be applied to generate feature vectors for di�erent item
pairs without user reviews.

Knowledge graph is a multi-relational graph that composed of
entities as nodes and relations as di�erent types of edges [38]. In
the past years, knowledge graphs have been used as important
resources for many tasks [7, 39]. One of the main usage of knowl-
edge graph is reasoning and entity relationship prediction. Lots
of research are focus on reasoning, such as [40, 42]. While these
studies focus on link prediction but not rule inducing, which is not
proper for our study.

On the other line of research, several work attempt to learn the
useful rules but not the prediction results from the knowledge graph
with the ground truth entity pairs. Random walk based algorithms
are proposed in Lao et al.’s studies [16, 17] and others’ [9, 35].
These methods are able to show why the entity pair has a certain
relationship according to the derived rules, which makes the results
more explainable. In our study, we adopt a similar algorithm as
them in rule learning module.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a novel and e�ective joint optimization
framework for inducing rules from a knowledge graph with items
and recommendation based on the induced rules.

Our framework consists of two modules: rule learning module
and recommendation module. The rule learning module is able
to derive useful rules in a knowledge graph with di�erent type
of item associations, and the recommendation module introduces
the rules to the recommendation models for better performance.
Furthermore, there are two ways to implement this framework:
two-step and jointly learning.

Freebase, a large-scale knowledge graph, is used for rule learning
in this study. The framework is �exible to boost di�erent recom-
mendation algorithms.Wemodify two recommendation algorithms,
a classical matrix factorization algorithm (BPRMF) and a state-of-
the-art neural network based recommendation algorithm (NCF), to
combine with our framework. The proposed four rule enhanced
recommendation algorithms achieve remarkable results in multi-
ple domains and outperform all baseline models, indicating the
e�ectiveness of our framework. Besides, the derived rules also
show the ability in explaining why we recommend this item for
the user, boosting the explainability of the recommendation mod-
els at the same time. Further analysis shows that our multi-task
learning based combination methods (RuleRecmulti with BPRMF
and RuleRectwo with NCF) outperform the two-step method with
di�erent number of rules. And the combination of rules derived by
di�erent associations contributes to better recommendation results.

In future, we plan to investigate how to design a embedding
learning based combination algorithm which keeps the recommen-
dation results explainable with the knowledge graph.
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