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ABSTRACT
Repeat consumption is a common scenario in daily life, such as
repurchasing items and revisiting websites, and is a critical factor
to be taken into consideration for recommender systems. Temporal
dynamics play important roles in modeling repeat consumption.
It is noteworthy that for items with distinct lifetimes, consuming
tendency for the next one fluctuates differently with time. For
example, users may repurchase milk weekly, but it is possible to
repurchase mobile phone after a long period of time. Therefore,
how to adaptively incorporate various temporal patterns of repeat
consumption into a holistic recommendation model has been a new
and important problem.

In this paper, we propose a novel unified model with introduc-
ing Hawkes Process into Collaborative Filtering (CF). Different
from most previous work which ignores various time-varying pat-
terns of repeat consumption, the model explicitly addresses two
item-specific temporal dynamics: (1) short-term effect and (2) life-
time effect, which is named as Short-Term and Life-Time Repeat
Consumption (SLRC) model. SLRC learns importance of the two
factors for each item dynamically by interpretable parameters. Ac-
cording to extensive experiments on four datasets in diverse scenar-
ios, including two public collections, SLRC is superior to previous
approaches for repeat consumption modeling. Moreover, due to
the high flexibility of SLRC, various existing recommendation algo-
rithms are shown to be easily leveraged in this model to achieve
significant improvements. In addition, SLRC is good at balancing
recommendation for novel items and consumed items (exploration
and exploitation). We also find that the learned parameters is highly
interpretable, and hence the model is able to be leveraged to dis-
cover items’ lifetimes, and to distinguish different types of items
such as durable and fast-moving consumer goods.
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1 INTRODUCTION
Recommender system plays a crucial role in users’ engagements
with web-services, which makes it easier for users to explore end-
less items that they have not consumed (novel items) [19, 23, 36].
Meanwhile, repeat consumptions come to account for a large pro-
portion of user-item interactions and become increasingly impor-
tant in recent years. Therefore, properly recommending items user
consumed before becomes a vital part of recommender systems
nowadays. For example, an online shopping website can recom-
mend the milk powder user consumed before when it is time to be
used up. It is widely agreed that providing consumed items at the
right time can greatly improve both users’ satisfaction and sellers’
profit [3, 11, 12, 40].

Temporal dynamics is an important factor to accurately model
repeat consumption. Previous study about user consumption se-
quence presents a holistic model of sequential consumption [4].
The model takes time factor, distance factor, quality factor into con-
sideration and the time factor turns out to be the most important
one. Du et al. [16] utilize temporal point process to model recurrent
user activities. That is to say, previous consumptions are likely to
trigger repeat consumptions for those items (self-excitation) and
such excitation decays with time.

However, existing studies about repeat consumption (e.g. [3–
5, 8, 16, 32]) do not focus on modeling how the tendency of repeat
consumption fluctuates with time, especially the difference between
items. As a result, they fail to capture various temporal dynamics
across distinct items. Actually, it is noteworthy that different items
demonstrate diverse temporal patterns of repeat consumption. In
particular, there are both (1) short-term and (2) life-time effects. To
illustrate these two factors, Figure 1 gives an example of two items’
purchase tendencies (baby diaper and feeding bottle) drifting with
time. For a new mother, both baby diaper and feeding bottle are
needed, so the base purchase tendencies are similar at first. After
she buys both items simultaneously, their purchase tendencies
increase immediately and diminish with time (short-term effect),
which means the mother probably consumes these two items again
in a short term for some reasons such as future usage. On the
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Figure 1: Illustration of two items’ purchase tendencies drift-
ing with time. There existing short-term effect for both baby
diaper and feeding bottle after purchase, and such effect de-
cays with time. On the other hand, life-time effect peaks af-
ter different periods of time, which is short for baby diaper
(superposed with short-term effect) but long for feeding bot-
tle. Both items’ purchase tendencies finally decay to their
basic values as time goes by.

other hand, users also tend to purchase the item again near the end
of item’s lifetime [20, 30]. In Figure 1, the purchase tendency of
feeding bottle has another spike around t3 (life-time effect), which is
probably the time to change a new one. With regard to baby diaper,
lifetimes of such fast-moving consumer goods are so short that the
corresponding effect is superposed with short-term effect, resulting
in higher tendency shortly after purchasing. As time goes by, the
self-exciting effect diminishes and both items’ purchase tendencies
return to their basic values. Such difference between items also
holds for many other cases such as snacks for A and mobiles for B.

Current methods modeling repeat consumption do not jointly
model both two characteristics for different items. However, the lack
of variety of temporal factors can lead to lower predictive ability.
For example, when life-time effect is not considered, the dominated
short-term effect will result in continuous recommendation for
mobiles shortly after purchasing one, which would be annoying to
users. And mobiles could not be recommended when it is the time
to change to a new one.

In this paper, firstly we conduct a detailed analysis of repeat
consumption and temporal dynamics on four real-world datasets
spanning over 30 months. Two key factors are revealed to model
the complex time-varying patterns of repeat consumption: (1) short-
term effect and (2) life-time effect. We find there are many repeat
consumption shortly after previous purchase even for durable goods
like baby walker (short-term effect). Besides, a consumption is likely
to trigger next consumptions for the same itemwhen item’s lifetime
runs out (life-time effect). Moreover, the importance of short-term
and life-time effect can vary wildly between distinct items.

Then, based on these findings, we propose a holistic model
that can recommends both novel and consumed items simulta-
neously, called SLRC referring to Short-Term and Life-Time Repeat

Consumption model. SLRC innovatively combines collaborative
filtering (CF) [24] and Hawkes Process [17], with the two temporal
characteristics of repeat consumption modeled by the kernel func-
tion in Hawkes Process. The CF part of the model projects users and
items to the same space, in which similar representations stand for
similar properties. As a result, the CF part helps to better capture
users’ preferences and explore novel items. While Hawkes process
utilizes patterns of repeat consumption to properly rank consumed
items higher at specific time (when users need items previously
consumed again), leading to a holistic model with a good balance of
exploration and exploitation. Moreover, the item-specific modeling
of repeat consumption makes it possible to reveal fine-grained tem-
poral patterns and automatically discover distinct items’ lifetimes,
which often need to be predefined in previous work [27]. The main
contributions of this work can be summarized as follows:

• Two temporal dynamics of repeat consumption: (1) short-term
effect and (2) life-time effect are revealed through empirical study,
which vary a lot for distinct types of items.

• A unifiedmodel, Short-Term and Life-TimeRepeatConsumption
model (SLRC), is proposed with innovative combination of two
techniques: Collaborative Filtering (CF) and Hawkes Process. The
model adaptively incorporates two item-specific temporal dy-
namics of repeat consumption into kernel function of Hawkes
Process. And the integration of CF helps SLRC to better capture
users’ intrinsic preference, achieving a good balance of explo-
ration and exploitation.

• Comparative experimental results on four datasets indicate SLRC
is superior to previous models of repeat consumption. SLRC is
also flexible to leverage different state-of-the-art recommenda-
tion algorithms and further enhance the performance and inter-
pretability of originals.

• With high interpretability, SLRC is able to discover distinct items’
lifetimes, and hence distinguish different kinds of items such as
durable goods and fast-moving consumer goods.

2 RELATEDWORK
2.1 Repeat Consumption
Repeat consumption has been studied in various domains, including
web revisitation [2, 9, 29, 45], repeated web search queries [40, 41],
music listening [20], time-limited coupons [32], and predicting
consumption rate [28]. All the work demonstrates that repeat con-
sumption is common and important in various fields.

Early explorations of repeat consumption utilize marginal utility
in economics to make prediction [42]. The Law Of Diminishing
Marginal Utility [7] states that an item’s marginal utility decreases
as its quantity grows. However, this law may not always hold
especially in item purchasing scenario. For example, users may buy
fast-moving consumer goods again and again regularly although
the accumulated quantities are growing.

There is a series of work focusing on some simplified tasks related
to repeat consumption to better model intrinsic patterns. Some
work predicts whether a purchase will be a repeat consumption
according to item features in current time window [11]. And some
other work predicts which consumed item user will prefer given
the fact that current consumption is a repeat consumption [3, 5, 12].
Especially, Anderson et al. find recency is a key factor with a cache-
based method, indicating that users tend to purchase items recently



consumed [3]. Different from these studies, we focus to build a
unified and holistic model that can recommend both consumed
items and novel items simultaneously, where consumed items are
only properly selected at the right time.

Further, Benson et al. [4] presents a holistic model of sequential
repeat consumption, which introduces time factor, distance factor
(recency) and quality factor. Most recently, Cai et al. [8] and Du
et al. [16] utilize revamped Hawkes Process to model sequential
online interactive behaviors and recurrent user activities, respec-
tively. Although these methods can make holistic recommendation,
they either estimate temporal patterns over all items or move one
more step to model item-specific effect of previously consumed
items (self-excitation or mutual-excitation), but the degree of exci-
tation simply decays globally with time. All these studies are lack
in taking various temporal dynamics of repeat consumption into
consideration. Moreover, without integrating collaborative filtering
methods, they may fail to accurately capture users’ personalized
preference.

2.2 Collaborative Filtering and Point Process
There are other two lines of research related to our work: Collabo-
rative Filtering and Point Process.

Collaborative Filtering analyzes relationships between users and
interdependencies among products to identify new user-item associ-
ations, which is domain free and more accurate than content-based
techniques [25]. Latent factor model is one of the primary methods
of collaborative filtering, in which users and items are characterized
on some specific number of factors inferred from the interaction
patterns. A series of latent factor models have been proposed to im-
prove performance of item recommendation [6, 10, 18, 19, 23, 35, 36].
The utilization of mutual relationships between users and items en-
ables these methods to better capture users’ preference and discover
novel items users may be interested in.

Point Process is good at modeling sequential events localized in
time [14]. There have been many applications of point process,
including modeling user influence in social network [39, 46], pre-
dicting earthquakes [33], paper citation count [44] and user return
times [38]. As a variant of temporal point process, Hawkes Process
[17] explicitly models the effect of previous events (self-excitation).
The triggering kernel of intensity function in Hawkes Process con-
trols how excitation varies with time. There have been several
studies leveraging recurrent neural network (RNN) to derive inten-
sity or replace triggering kernel [15, 34, 43], but it is hard for RNN
to capture very long dependencies of repeat consumption when
spanning over a long period of time. The lack of interpretability is
also the main weakness. Recent work utilizes temporal point pro-
cess to predict high-level human actions such as eating and biking,
which accounts for three time-sensitive characteristics [26]. Com-
pared to only 8-10 actions in the work, there are millions of items
in personalized recommendation task, in which case their model
contains intractably numerous parameters and will fail to explore
endless novel items without integrating collaborative filtering.

We further build a holistic model with combination of Collab-
orative Filtering and Hawkes Process to take full advantage of
both techniques. The CF part of the model captures users’ inherent
preference and helps to explore novel items, while two temporal dy-
namics of repeat consumption modeled by Hawkes Process makes

Table 1: Statistics of Datasets.

Dataset #user
( |U |)

#item
( |I |)

#entry
(
∑
u |Su |)

repeat
ratio time span

Baby 25.4k 7.6k 238.7k 17.8% 2012.09 - 2014.05
Order 34.6k 86.2k 820.4k 14.0% 2016.12 - 2018.03

Recsys2017 113.8k 44.7k 1240.4k 21.2% 2016.11 - 2017.02
BrightKite 29.7k 105.2k 3591.9k 90.0% 2008.03 - 2010.10

it possible to properly exploit consumed items, leading to a good
balance of exploration and exploitation.

3 EMPIRICAL STUDY ON REPEAT
CONSUMPTION

In this section, we first describe the task we are tackling. Then
we make several observations about repeat consumption on four
real-world datasets, which serve as the foundation of our model.

3.1 Task Definition
Given a target time t̂ and a user’s consumption history before t̂ ,
our task is to predict top-k items the user may be interested in at
target time. Note that the recommendation list here can contain
both novel items and consumed items. Formally, letU be the set
of all users. Each user u ∈ U has a consumption sequence Su =
{(i1, t1), (i2, t2), · · · , (iNu , tNu )} ∈ S with Nu interactions. Each
interaction consists of an item in ∈ I and corresponding time
tn ∈ R+ (0 ≤ tn ≤ T ), which means user u consumed item in
at time tn . T is the total time span observed. S represents all the
consumption sequence in data. The sequence is sorted by time in
an ascending order, i.e., tn ≤ tn′ for any n < n′. For simplicity,
we denote a user’s consumption sequence up to time t as Sut =
{(i ′, t ′)|(i ′, t ′) ∈ Su ∧ t ′ < t}.

Then, we define repeat consumption as below:

Definition 3.1. The interaction (i, t) conducted by user u is a
repeat consumption if and only if ∃(i ′, t ′) ∈ Sut : i ′ = i ∧ t ′ < t

3.2 Dataset Description
To illustrate critical temporal patterns of repeat consumption, we
use four datasets in distinct scenarios. The datasets are described
below and the consumption statistics after filtering are summarized
in Table 1.
Baby. This dataset contains online purchasing information within
baby category from an e-commerce retailer.
Order. This dataset contains mobile payment records in super-
markets and convenient stores. We have provided the anonymized
dataset online1.
Recsys2017. Recsys Challenge 20172 is a competition for job rec-
ommendation, where the item is job posting and the consumption
is clicking. Then a repeat consumption is that a user clicks the same
job posting again after previous click. We use click interactions in
open training data (offline phase).

1https://github.com/THUwangcy/SLRC/tree/master/data
2https://www.recsyschallenge.com/2017/



BrightKite. BrightKite was a location-based social networking
website, where users could check in to physical locations. The data
is publicly available3 [13].

Each record in these datasets contains user-item pair and corre-
sponding timestamp. Users and items with less than 5 associated
interactions are filtered out. Besides, we remove two types of users:
(1) interactions take place within one day (likely to be attracted by
promotions); (2) consumes too frequently (more likely a merchant
but a normal user). These four datasets cover consumptions in dif-
ferent scenarios, including both online and offline consumptions,
as well as different scene of shopping, job seeking and check-in.
Besides the ratio of repeat consumption varies across datasets. For
BrightKite, 90% consumptions are repeat consumption, while the
repeat ratio is moderate in other datasets.

3.3 Temporal Dynamics of Repeat
Consumption

To reveal the temporal dynamics of repeat consumption, we try to
figure out how previous consumption triggers next purchasing for
the same item and how repurchasing tendency changes with time.
However, it is hard to observe actual self-exciting pattern, which is
latent and we can only observe consumption behavior as a result
of the latent factor. Here, we resort to study the inter-consumption
gap, which means the time interval between a user’s two adjacent
consumptions for the same item. Inter-consumption gap is a good
indicator of how the tendency for consuming an item again varies
with time. For example, if there is a lot of people purchasing milk
one day after previous consumption, it indicates the tendency of
repurchasing milk is high after one day.

Through investigating overall and item-level distributions of
inter-consumption gap, we make two important empirical observa-
tions about repeat consumption. First, consumptions for most items
are likely to trigger next consumption for the same item in the short
term, which we call short-term effect. Second, some items tend to
be consumed again centrally after a period of time, which we call
life-time effect. These two types of effects serve as the foundation
of the proposed SLRC model in the next section.

3.3.1 Short-term effect. Figure 2 shows the overall distribution
of inter-consumption gap in the datasets. Except for Recsys2017,
all the distributions monotonically decrease with a heavy tail. The
distribution in Recsys2017 also diminishes quickly in the begin-
ning, which means generally there are a lot of repeat consumptions
happening shortly after previous consumption. Such short-term
effect is very common in daily life. Figure 3 shows different items’
inter-consumption gap distributions in Baby and Order datasets.
Take milk powder in Figure 3(b) for example, one may occasionally
buy a kind of milk powder online and appreciates it very much.
As a result, she purchases the milk powder again recently. Even
for items that are not fast-moving consumer goods, like baby care
cream in Figure 3(a), it is possible to repurchase them in a short
term just as a gift to others or for other reasons. As a result, the
time-decaying short-term effect can be leveraged to basically model
the tendency to repurchase.

3.3.2 Life-time effect. Apart from short-term effect, there is also
life-time effect for repeatedly consuming items. The distribution in

3https://snap.stanford.edu/data/loc-brightkite.html

Figure 2: Distributions of inter-consumption gap. On the
whole, most repeat consumptions happen shortly after the
previous, while life-time effect is obvious in Recsys2017
dataset.

Figure 3: Inter-consumption gap distributions of different
items. Various types of items inherently have distinct tem-
poral dynamics of repeat consumption.

Recsys2017 dataset presents another spike after a long-period time,
which means users may forget the information of previously clicked
posts and click them again. Almost all items have their inherent
lifetimes and demonstrates different time-varying patterns. For
other datasets, the monotonically decreasing form on the whole
can be a superimposed result of distinct distributions for various
items. In Figure 3, we can see time-varying patterns differ from
each other greatly. For example, in Figure 3(a)(c), baby care cream
runs out in about 50 days and some families may go to supermarket
monthly to resupply vegetables. When item’s lifetime is going to
run out, users will be more likely to purchase it again. Therefore,
when taking life-time effect into consideration, we can make more
accurate prediction at the right time (e.g. recommending durable
goods consumed before after a long period when user tends to
repurchase them).



In summary, two temporal patterns of repeat consumption: (1)
short-term effect and (2) life-time effect are uncovered through inves-
tigation into inter-consumption gap distribution. More importantly,
the importance of these two factors varies wildly across different
items. Therefore, addressing item-specific temporal dynamics of
repeat consumption will help to make more relevant recommenda-
tion.

4 SLRC MODEL
Based on the empirical observations above, we propose a holis-
tic model with combination of collaborative filtering and Hawkes
Process, which is named as Short-Term and Life-Time Repeat
Consumption (SLRC) model. Some preliminaries about temporal
point process are introduced first. Then we detailedly describe
model definition and parameter learning.

4.1 Preliminaries About Temporal Point
Process

Formally, a temporal point process is a random process of which
the realization consists of a list of discrete events localized in time,
{tn }n∈N with the time tn ∈ R+. In the scene of item consumption,
{tn }n∈N represents a series of time that a user purchases some
specific item. Given the history time of past events St , temporal
point process introduces conditional intensity function λ(t |St ) rep-
resenting a stochastic model for the time of the next event given
all the times of previous events. For simplicity, we omit conditional
sign and denote λ(t) as conditional intensity function. Then, the
probability for the occurrence of a new event given the history time
St within a small time window [t , t + dt) can be expressed as:

λ(t)dt = P{event in [t , t + dt) | St } . (1)
Besides, the conditional probability that an event does not hap-

pen since last observed time tn is

U (t) = exp
(
−

∫ t

tn
λ(τ )dτ

)
. (2)

Combining these two components, we have the conditional density
function f (t |St ) = λ(t)U (t) that an event happens exactly at time t
given all previous consumptions St [1].

The conditional intensity function λ(t) takes various functional
forms. A constant intensity leads to homogeneous Poisson Process,
while non-homogeneous Poisson Process has time-varying inten-
sity function but the events are still independent. Hawkes Process
models excitations between events whose intensity function takes
the form of:

λ(t) = λ0 + α
∑
tj<t

γ (t − tj ) , (3)

where λ0 represents the base intensity and every history event has
an addictive self-exciting effect to current intensity, which varies
with time and temporal characteristics are controlled by triggering
kernel γ . α represents the degree of excitation.

4.2 Model Definition
Inspired by the intensity function in Hawkes Process (Eq. 3), we
integrate collaborative filtering in base intensity and address both
short-term and life-time effects in kernel function, leading to an

intensity function in the following form:

λu,i (t) =

base︷︸︸︷
λu,i0 +

sel f −excitation︷                                ︸︸                                ︷
αi

∑
(t ′,i′)∈Sut

I (i ′ = i)γi (t − t ′) , (4)

where the total intensity can be seen as a summation of base inten-
sity λu,i0 and the self-excitation4 of all previous consumptions for
item i .

4.2.1 Base intensity. Base intensity λu,i0 models inherent per-
sonalized preference for different items. To accurately model the
basic preference, we leverage collaborative filtering methods to
derive the base intensity, such as Bayesian Personalized Ranking
(BPRMF) and Neural Collaborative Filtering (NCF). Collaborative
filtering methods model user’s preference based on what she has
consumed in the past and assume similar users like similar items,
which helps to explore novel items. In the case of BPRMF, there
is a K-dimensional latent factor for each user and item, pu and qi
respectively. Then base intensity

λu,i0 = pTu qi + b . (5)
In the case of NCF, the base intensity is derived by a multi-layer
neural network, which can be formulated as

λu,i0 = ϕout (ϕX (· · ·ϕ2(ϕ1(p
T
u ,q

T
i )) · · · )) , (6)

where ϕout and ϕx respectively denote the mapping function for
the output layer and x-th neural collaborative filtering layer, and
there are X neural CF layers in total.

We will show it is easy for SLRC model to leverage many state-
of-the-art algorithms with joint parameters learning.

4.2.2 Self-excitation. In self-excitation part, I (c) is an indicator
function and returns 1 when c is true, otherwise 0. The triggering
kernel γi (·) controls the temporal characteristics of self-excitation
and varies with inter-consumption time interval ∆t = t − t ′. To
explicitly address the two factors, we resolve γi (·) as a mixture dis-
tribution modeling short-term effect with Exponential distribution
and life-time effect with Gaussian mixture distribution:

γi (∆t) =

shor t−term︷           ︸︸           ︷
π i0E(∆t | 1/β

i )+

l i f e−t ime︷                        ︸︸                        ︷∑
z∈[1,Z ]

π izN (∆t | µiz ,σ
i
z ) . (7)

E(x |λ) represents Exponential distribution with parameter λ,
whileN (x |µ,σ ) is a Gaussian distribution with mean µ and standard
deviation σ . The coefficient π iz satisfy the limit that

∑
z∈[0,Z ] π

i
z = 1.

From Eq. 7, we can see there are two factors in self-excitation:
Short-term effect. As shown in Section 3.3.1, short-term effect is

really common and important for modeling repeat consumption.
From Figure 2, the short-term effect diminishes quickly as time
goes by, in which case an item-specific Exponential distribution is
suitable for modeling it.

Life-time effect. Life-time effect also greatly influences user’s
repurchasing tendency, which often causes a raise of tendency af-
ter specific time intervals (e.g. 50 days after purchasing baby care
cream when it is time to run out). As a result, it’s natural to choose

4Here we only consider self-excitation (influence by the same item) because we mainly
focus on repeat consumption. We leave the mutual-excitation caused by other items
as future work.



Figure 4: Illustration on the joint impact of various temporal
dynamics on time-varying trends of overall intensity, char-
actered by the triggering kernel.

Gaussian mixture distribution to model life-time effect, for some-
times item’s lifetime can be multimodal. But in our experiments,
we find a single Gaussian distribution is strong enough, with its
mean standing for item’s expected lifetime. Therefore we choose to
set Z = 1 without loss of generality. If items’ lifetimes demonstrate
more complex patterns in datasets, larger Z can be chosen through
cross-validation. When Z = 1, the triggering kernel γi (·) can be
simplified as:

γi (∆t) = (1 − π i )E(∆t | 1/βi ) + π iN (∆t | µi ,σ i ), π i ∈ [0, 1] . (8)
All the parameters related to self-excitationΘs = {α ,π , β, µ,σ }

are item-specific. We make the degree of excitation α i a summation
of global degree and item bias: α i = α + α ib , in which case global
α can capture average degree of excitation. Figure 4 conceptually
visualize how we separately model two temporal dynamics in self-
excitation part, which shows different time-varying trends of overall
intensity (black) can be represented as the summation of short-term
effect (blue) and life-time effect (green).

As intensity λu,i (t) indicates the tendency of consumption, the
recommendation list can be derived by the followings: we calculate
the intensity value of each candidate item (including novel items
and consumed items) for user u at time t firstly. Then, all candidate
items are ranked according to their intensity value. The top-k items
in the ranked list will be recommended to users.

Different from previous work [5, 8, 31, 32, 43], we focus to build
a holistic model that can recommend both novel items and con-
sumed items. The integration of collaborative filtering methods
helps to better balance recommendation of the two kinds of items.
Besides, we address two temporal dynamics of repeat consumption
with specifically designed item-specific triggering kernel, which
is concise and powerful with high interpretability. There may be
other methods to address these two factors, but what we want to
do is preliminarily exploring how to incorporate item-specific tem-
poral dynamics of repeat consumption into recommender systems.
Therefore we leave other forms of intensity function as future work.

4.3 Parameter Learning
As all candidate items are ranked according to intensity value
λu,i (t), we can adopt pairwise ranking loss for optimization. For
each consumption (u, in , tn ), a negative item i−n is randomly sam-
pled from items user haven’t consumed, i.e. I\Iu (Iu is a set of
unique items consumed by user u). The pairwise ranking loss is

defined as follows:

L(Θ|S) = −
∑
n∈U

Nu∑
n=1

logσ
(
λu,in (tn ) − λu,i

−
n (tn )

)
+ Ω(Θb ) . (9)

Remind that the base intensity λu,i
u
n

0 can be derived by different
methods. We denote Θb as parameters related to calculating base
intensity (e.g. Θb = {p,q,b} for BPRMF). Θb may have various
forms when our model leverages different algorithms. We add a L2
regularizer Ω(Θb ) to prevent the base intensity overfitting data. On
the other hand, parameters related to self-excitation can be denoted
as Θs (Θ = Θb ∪ Θs ). Θb and Θs are learned together with the
unified loss (Eq. 9).

Due to the success of Adam algorithm [22] in many recommen-
dation models’ parameter learning procedures, we use Adam as
the learning algorithm to minimize the pairwise ranking loss. Note
that such optimization method makes it easy and efficient for joint
learning of parameters when leveraging different algorithms to
derive base intensity.

5 EXPERIMENTS
5.1 Experimental Settings

5.1.1 Datasets and evaluation protocols. Weuse the same datasets
described in Section 3.2, including consumptions in various scenar-
ios. For each consumption sequence Su ∈ S, we leave the interac-
tions at the latest time as test dataset and the interactions at the
secondly latest time as validation dataset. All the remaining data are
used for training. The repeat consumption ratio of each test dataset
is similar with overall repeat ratio (as shown in Table 1). And for
each test or validation case, we recommend top-k (k = 5, 10) items
from a given candidate set containing ground-truth items. Consid-
ering it is too time-consuming to rank all items for some methods
when dataset is large, we randomly sample a certain number of neg-
ative items besides ground-truth items to construct candidate set.
The negative items are randomly sampled from all the items except
for ground truth, which means the candidate set may contain both
items that user has never consumed and previously consumed items
(but not bought this time, which are also negative examples for
this consumption). The candidate sets stay the same for all models’
training and testing. As for the size of candidate set, we make it
relevant to the number of unique items in the dataset (500, 5000,
2500, 5000 for Baby, Order, Recsys2017, BrightKite respectively).

To evaluate the quality of recommendation, we use Recall and
Normalized Discounted Cumulative Gain (NDCG) as evaluation met-
rics. Recall measures how many ground-truth items are recom-
mended, while NDCG concerns about whether ground-truth items
are ranked higher than others by accounting for the position of hit.
We calculate both metrics for each user in test or validation dataset
and report the average score.

5.1.2 Baseline Methods. We compare SLRC to nine baselines in
different aspects. The first three baselines are collaborative filtering
models and do not take repeat consumption into consideration:

• BPRMF. This method apply a pairwise ranking loss to optimize
Matrix Factorization (MF) model, which is competitive for item
recommendation [36].



Table 2: Experimental results (higher is better). Bold face indicates the best result of each column in a particular metric. Best
baseline in eachmetric is underlined. The relative improvement SLRC gains compared to originals is listedwithin parentheses.
Value** is significantly better than the strongest baseline (p < 0.01).

Method
Baby Order Recsys2017 BrightKite

topk=5 topk=10 topk=5 topk=10 topk=5 topk=10 topk=5 topk=10

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BPRMF 0.3686 0.2786 0.4496 0.3058 0.2307 0.2168 0.2796 0.2371 0.5754 0.5191 0.5879 0.5231 0.7609 0.7143 0.7872 0.7229
Tensor 0.4587 0.3543 0.5708 0.3923 0.2214 0.1971 0.2874 0.2240 0.5561 0.4655 0.5758 0.4719 0.7816 0.7280 0.8106 0.7375
NCF 0.3600 0.2717 0.4450 0.3002 0.2241 0.1987 0.2834 0.2231 0.5926 0.5322 0.6080 0.5372 0.7431 0.6771 0.7663 0.6847

FPMC 0.3835 0.3034 0.4655 0.3311 0.2346 0.2188 0.2897 0.2414 0.6180 0.5838 0.6324 0.5885 0.7369 0.6927 0.7651 0.7018
UtilitySVD 0.3431 0.2677 0.4197 0.2933 0.2282 0.2214 0.2734 0.2401 0.5730 0.5053 0.5850 0.5092 0.7453 0.7151 0.7610 0.7202
HCM 0.3703 0.2736 0.4824 0.3118 0.1445 0.1345 0.1863 0.1518 0.5633 0.4277 0.6326 0.4505 0.8019 0.7540 0.8276 0.7590

TSR-Hawkes 0.3797 0.2998 0.4576 0.3260 0.2565 0.2544 0.2907 0.2689 0.6629 0.5888 0.6658 0.5898 0.7611 0.7447 0.7622 0.7451
Neu-Hawkes 0.4203 0.3298 0.5088 0.3550 0.2645 0.2577 0.3087 0.2804 0.7078 0.6356 0.7280 0.6405 0.7801 0.7511 0.8006 0.7520
LS-Hawkes 0.4304 0.3457 0.5356 0.3786 0.2604 0.2554 0.2978 0.2723 0.7103 0.6389 0.7292 0.6409 0.7803 0.7513 0.8098 0.7587

SLRCBPRMF
0.4014
(+8.9%)

0.3217
(+15.5%)

0.4833
(+7.5%)

0.3492
(+14.2%)

0.2790∗∗

(+20.9%)
0.2723∗∗

(+25.6%)
0.3301∗∗

(+18.0%)
0.2935∗∗

(+23.8%)
0.7058
(+22.7%)

0.6337
(+22.1%)

0.7250
(+23.3%)

0.6399
(+22.3%)

0.8083∗∗

(+6.2%)
0.7778∗∗

(+8.9%)
0.8286∗∗

(+5.3%)
0.7844∗∗

(+8.5%)

SLRCTensor
0.4894∗∗

(+6.7%)
0.3919∗∗

(+10.6%)
0.5991∗∗

(+5.0%)
0.4290∗∗

(+9.3%)
0.2622
(+18.4%)

0.2572
(+30.5%)

0.3057
(+6.4%)

0.2752
(+22.9%)

0.6650
(+19.6%)

0.6034
(+29.6%)

0.6724
(+16.8%)

0.6058
(+28.4%)

0.7923
(+1.4%)

0.7658
(+5.2%)

0.8119
(+0.2%)

0.7722
(+4.7%)

SLRCNCF
0.3924
(+9.0%)

0.3124
(+15.0%)

0.4709
(+5.8%)

0.3387
(+12.8%)

0.2751
(+22.8%)

0.2683
(+35.0%)

0.3219
(+13.6%)

0.2876
(+28.9%)

0.7207∗∗

(+21.6%)
0.6450∗∗

(+21.2%)
0.7364∗∗

(+21.1%)
0.6501∗∗

(+21.0%)
0.8044
(+8.3%)

0.7768
(+14.7%)

0.8219
(+7.3%)

0.7824
(+14.3%)

• Tensor. Tensor factorization is widely used in context-aware
recommendation [21]. Here we split the continuous time into
bins and handle a three dimensional tensor (user-item-time).

• NCF. This is a state-of-the-art collaborative filtering method that
utilizes neural networks to capture complex relationship between
users and items in latent space [18].

Another three baselines incorporate repeat consumption informa-
tion and can make holistic item recommendation:

• FPMC. This method combines MF and factorized Markov Chains
with a user-specific transition matrix, which utilizes the sequence
information of each user [37].

• UtilitySVD. This method utilizes marginal utility to model re-
peat consumption, where users’ preference for items will change
according to consumed quantity [42].

• HCM. It is a holistic generative model for sequential repeated
consumption, which takes time, quality and distance factor into
consideration. We use the last two parts of the model to conduct
top-k recommendation [4].

The last three are related to Hawkes Process with similar task:

• TSR-Hawkes. This model aims at Time-Sensitive Recommen-
dation with low-rank Hawkes Process, in which core parameters
are assumed to have low-rank structure. The triggering kernel
decays globally with time [16].

• Neu-Hawkes. Mei et al. [34] propose a neural Hawkes process
model that uses recurrent layer to derive intensity according to
events history. A novel continuous-time LSTM architecture is
utilized where each memory cell exponentially decays toward
some steady-state value.

• LS-Hawkes. The model captures long- and short-term depen-
dency between actions with two different Hawkes Process, while
both of the triggering kernels simply decay in a global way [8].

The first three baselines will further be leveraged to derive the base
intensity λu,i0 in our SLRC model. We denote the unified model as
SLRCmethod, such as SLRCBPRMF.

As for other work about repeat consumption [3, 5, 11, 12] referred
to in Section 2, they are used either to classify repeat consumption
or to predict only items consumed before. Neither of them focuses to
recommend both consumed items and novel items simultaneously.
So they cannot be taken as baseline methods.

5.1.3 Implement details. We implement SLRC model in Tensor-
Flow and the code has been open source5. We tune hyperparameters
based on NDCG@10 in the validation dataset and report the results
in the test dataset. All models are trained with Adam optimizer
until converge with a maximum of 200 epochs. Each experiment is
repeated 5 times with different random seed and the average result
is reported.

For fair comparison, the batch size is fixed to 128 and the latent
dimension for all models is 100. As for parameter initialization,
global excitation α and parameters in mixture distribution β ,σ are
initialized with 1; item bias of excitation degree α ib is all initialized
with 0. π is normally initialized with 0.5 mean; µ is also normally
initialized and the mean is global average inter-consumption time
interval. Other parameters are normally initialized with 0 mean.
All normal initializers have 0.01 standard deviation.

5https://github.com/THUwangcy/SLRC



Figure 5: Some examples to validate the parametric model-
ing assumptions. For different types of items, overall inten-
sity (black) closely approximates real distributions of inter-
consumption gap (bar). Moreover, Exponential (blue) and
Gaussian (green) distribution fit short-term and life-time ef-
fects well, respectively.

5.2 Performance
Table 2 shows the performance of all baselines and the improved
methods when incorporating SLRC model.

First, the performances of different baselines vary across datasets.
Tensor, Neu-Hawkes, LS-Hawkes, HCM performs the best among
all baselines in Baby, Order, Recsys2017, BrightKite, respectively,
which shows capacities of different models in various scenarios.
Tensor performs quite well in Baby, which may be the result of long
time span and time sensitivity in this dataset. As state-of-the-art
models based on Hawkes Process, Neu-Hawkes and LS-Hawkes per-
forms robustly in all the datasets, and become the most competitive
baselines in Order and Recsys2017. As for HCM, it achieves the best
performance among baselines in Brightkite because of its high re-
peat consumption ratio (90%). Explicitly predicting whether current
consumption will be repeat consumption in HCM greatly narrow
the range of candidate items to consider. But in other datasets with
lower repeat consumption ratio (e.g.Order), due to the lack of collab-
orative filtering information, mainly modeling repeat consumption
results in bad performance.

Second, although collaborative filtering and Hawkes Process
methods gain encouraging results in different datasets, SLRC per-
forms consistently better than other baselines in all datasets (the
best combination with collaborative filtering method may be differ-
ent in distinct datasets). This shows the proposed model is capable
of utilizing both the strengths of collaborative filtering and tempo-
ral dynamics of repeat consumption in Hawkes Process, leading to
great overall performance improvement consequently. Aside from
the performance improvement over models about repeat consump-
tion (i.e. FPMC, UtilitySVD, HCM), SLRC outperforms methods
based on Hawkes Process without concern about item-specific
temporal dynamics of repeat consumption (i.e. TSR-Hawkes, Neu-
Hawkes and LS-Hawkes), which indicates the importance of mod-
eling both short-term and life-time effects in kernel function. The
integration of collaborative filtering methods also plays an impor-
tant role, which estimates users’ inherent preference for items more
accurately and helps to better recommend novel items that meet
users’ interests.

Third, the experimental results demonstrate that the incorpora-
tion of SLRC leads to a big gap of improvement (up to 35.0%) com-
pared to the original collaborative filtering baselines. This shows

Figure 6: Correlation between item’s inter-consumption gap
and the learned lifetime parameter µi in Gaussian distribu-
tion (left), where color represents the number of items. And
joint distribution of parameter µi and π i (right), where red
and blue stand for longer and shorter inter-consumption
gap in average, respectively.

the information of repeat consumption and its item-specific tem-
poral dynamics are critical to recommender systems. Notice that
the improvement for traditional method BPRMF is extremely large
in most datasets. SLRC introduces history sequence information
and temporal factors into the model, so BPRMF may attentively
model inherent preference more accurately. For other baselines that
take more information into consideration themselves, SLRC also
brings consistent performance gain on all datasets. Besides, the
encouraging results on all the datasets in different scenarios show
the scalability and flexibility of our model.

5.3 Parametric Assumptions Validating
Here we want to validate whether the learned parameters have
interpretable meaning as we assume when designing the model.

First, we study how well the learned intensity function fits real
data. Figure 5 gives some examples from different datasets. We draw
both the distribution of inter-consumption gap in real data and
how estimated intensity drifting with time6. The results show that
the overall intensity (black) closely approximates real distribution
of inter-consumption gap. Moreover, the short-term effect (blue)
and life-time effect (green) capture the temporal characteristics
of repeat consumption well, respectively. Take vegetable as an
example (the right figure), we find there are numerous repurchasing
behavior for vegetables around 30 days after previous consumption
in Section 3.3. As expected, the Gaussian distribution for vegetable
learned in SLRC shows around 30 days mean (µi = 36 days) and
the importance of life-time effect is high (π i = 0.65), indicating
life-time effect is in dominated position.

Next, remind that the mean (µi ) and the coefficient (π i ) of life-
time effect in Eq. 7 are item-specific. µi can be seen as item’s ex-
pected lifetime and π i is the importance of life-time effect. Figure
6 (a)7 shows the correlation between item’s inter-consumption gap
in average and corresponding parameter µi . Parameters are trained
in Baby dataset with SLRCBPRMF model. Other combinations in
other datasets yield similar results. Note that the information of
inter-consumption gap is not introduced in SLRC explicitly, but µi

6Here we assume previous consumption happens at the origin of coordinates and
show the temporal trend of self-excitation.
7We discard items that are never repeatedly consumed. And items with extremely high
or low number of average inter-consumption gap are also removed.



Figure 7: Performance comparison between SLRC andmethods with no consideration for CF or variety of temporal dynamics.
SLRC performs the best again various variations. All improvements are statically significant (p < 0.05).

is reasonably in direct proportion to average inter-consumption
gap (Pearson Correlation Coefficient: 0.7468), showing that items
that are often consumed again after a long period of time (long
lifetime) get larger µi just as assumed.

Further, we show the joint distribution of µi and π i in Figure
6 (b), which demonstrates that items with higher average inter-
consumption gap (red in color) almost have larger µi and π i . The
dashed line in figure obviously divides items into two kinds: fast-
moving consumer goods (below) and durable goods (above). Some
representative items above the dashed line are toys, baby walkers,
beds and so on, while fast- moving consumer goods like paper
diaper and milk powder are mostly under the dashed line. Another
convincing and interesting observation is that most feeding bottles
appear above the dashed line while nipples only appear below the
dashed line, for the reason that users often change nipples but
seldom change feeding bottles.

To sum up, SLRC gains remarkable performance improvement
and the estimated parameters can further explain various temporal
patterns of repeat consumption across different items perfectly.

6 FURTHER ANALYSIS
6.1 Ablation Study
To verify the effect of CF part and the two item-specific temporal
dynamics (short-term and life-time effects) addressed in the model,
we compare SLRC to a series of baselines without consideration for
variety of temporal characteristics of repeat consumption.
• SLRC\CF. This model removes the CF part of SLRC and uses an
item-specific parameter to estimate the base intensity.

• SLRC-g. This model does not concern the variety across different
items. Parameters related to self-excitation are not item-specific
(parameters in Θs = {α ,π , β , µ,σ } are global values).

• SRC. This model only consider short-term effect without life-
time effect, where the triggering kernel in intensity function is
an item-specific Exponential distribution.

• LRC. Similar with SRC, LRC only takes life-time effect into con-
sideration, where an item-specific Gaussian distribution acts as
the triggering kernel in intensity function.
Table 3 intuitively shows the difference between SLRC and its

variants. Combinations with different baselines yield similar results,
so here we only show results when combined with BPRMF (i.e. base

Table 3: Difference comparison between variants of SLRC.

Variants CF Item-specific Life-time Short-term

SLRC\CF ! ! !

SLRC-g ! ! !

SRC ! ! !

LRC ! ! !

SLRC ! ! ! !

intensity is calculated by BPRMF for SRC, LRC, SLRC-g). The results
shown in Figure 7 indicate that although variants of SLRC achieve
consistently better performance than BPRMF, none of them can
outperform the full SLRC model.

Without the integration of CF, SLRC\CF leads to loss of per-
formance, which demonstrates that the CF part of SLRC plays an
important role for holistic recommendation task. As for SLRC-g,
it neglects inherent properties (like lifetime) of distinct items. The
short-term and life-time effects estimated over all items can be
inaccurate when evaluating some specific items. Therefore the dif-
ference in temporal dynamics across items are critical to model
repeat consumption behavior.

On the other hand, SRC and LRC do not take both temporal fac-
tors into consideration and hence get worse results, which demon-
strates that the lack of variety of temporal factors can lead to lower
predictive ability (e.g. continuous recommendation for mobiles
shortly after purchasing one and mobiles could not be recom-
mended when it is the time to change a new one). It is noteworthy
that the performances of SRC and LRC vary across datasets. The
results are similar in Baby and Order for the reason that both short-
term and life-time effects are common in item purchasing scenario.
But LRC is better than SRC in Recsys2017, which may be the result
of obvious life-time effect in this dataset as shown in Section 3.3.
The short-term effect is weaker compared with other datasets be-
cause users seldom click a job posting again in a short time. While
in BrightKite, SRC outperforms LRC greatly. It is also reasonable
because users often revisit hotels they appreciate recently but sel-
dom go to the one visited long time ago. The short-term effect is
much stronger than life-time effect in such scenario.



Figure 8: Results on test subsets with different ratios of re-
peat consumption case. In the left figure, the dashed line
shows expected trend of consumed items ratio. SLRC shows
a better balance of exploration and exploitation, and gains
better result all the time.

Further, dynamically modeling short-term and life-time effects
for different items, our SLRC model is able to utilize strengths of
CF and capture complex patterns of repeat consumption, achieving
the best performance in all the datasets.

6.2 Discussion on Exploration and Exploitation
Besides the great performance improvement, we want to figure out
how well our model balances the recommendation of novel items
and consumed items. The self-excitation addressed in the model
should not result in recommending more consumed items under all
circumstances. Therefore, we construct a series of subsets (the same
size) from the test dataset with different ratios of repeat consump-
tion to simulate exploration dominated and exploitation dominated
scenarios. This can be done by randomly sampling a certain ratio
(namely, repeat ratio r ) of cases from repeat consumption set and
filling the rest with cases randomly sampled from the other part
containing no repeat consumptions. When repeat ratio r is small,
exploration cases are in dominant position (if r = 0, all cases in the
subset are consumptions for novel items), otherwise exploitation
cases dominate the subset.

Figure 8 shows consumed items ratio and Recall@10 on subsets
with different repeat ratio r . Consumed items ratio means the pro-
portion of test cases whose corresponding recommendation list
contains consumed items. Ideally, model should recommend less
consumed items when repeat ratio r is small (i.e. users tend to seek
novel items) but to retrieve more consumed items when r is large
(i.e. users want to purchase items consumed before). In the left fig-
ure, the dashed line shows expected trend of consumed items ratio.
We conduct top-10 recommendation in Recsys2017 dataset and use
BPRMF as the base method. Several observations from these results
are worth highlighting:

• All the models recommend more consumed items when repeat
ratio gets larger (i.e. users express more needs for consumed
items) and yield better performance.

• SLRC recommends less items when repeat ratio is small, while
recommends more consumed items otherwise, leading to a better
balance of exploration and exploitation compared with BPRMF
and LS-Hawkes.

• SLRC achieves better results under all circumustances. The im-
provement gap compared to BPRMF gets larger as repeat ratio

increases. And only when all test cases are repeat consumption,
LS-Hawkes can achieve similar performance with SLRC.
The main conclusion is that addressing both short-term and life-

time effects helps SLRC to well balance exploration and exploitation.
SLRC will not recommend extra consumed items when users do not
need. While in the cases when users express demands for consumed
items, our model properly recommends more consumed items. No-
tice that the performance of LS-Hawkes gets closer to SLRC’s when
repeat ratio increases, the reason may be that LS-Hawkes wrongly
gives higher scores to some consumed items without considering
various temporal dynamics and CF information, so novel items
cannot be recommended for some exploration cases. As a result,
only when there are all repeat consumption cases, LS-Hawkes can
achieve similar performance with SLRC.

In summary, the results demonstrate that SLRC clearly captures
users’ need for consumed items, achieving a good balance of explo-
ration and exploitation. Furthermore, in real-world scenarios where
repeat consumption takes a moderate part, SLRC model performs
significantly better than other methods.

7 CONCLUSION AND FUTUREWORK
Repeat consumption comes to be increasingly important recently.
It is necessary to model repeat consumption behavior so that rec-
ommender system can recommend items user consumed before at
proper time. In this work, we focus to build a holistic model that can
recommend novel items and consumed items simultaneously. Two
factors are revealed for modeling various time-varying patterns of
repeat consumption: short-term effect and life-time effect. To address
this variety, we propose a novel model, Short-Term and Life-Time
RepeatConsumption (SLRC), which explicitly takes the two factors
into consideration with combination of two techniques: Collabo-
rative Filtering (CF) and Hawkes Process. According to extensive
experiments, significant performance improvement is achieved in
four real-world datasets compared to state-of-the-art baselines. Be-
sides, with high interpretability, SLRC is able to discover distinct
items’ lifetimes. And different types of items such as fast-moving
consumer goods and durable goods can even be distinguished by
the learned parameters, showing the model can perfectly captures
various item-specific dynamics of repeat consumption. Generally,
our model is able to be leveraged as a framework that utilize re-
peat consumption information to enhance existing recommender
systems based on collaborative filtering and hence achieve better
recommendation results in real-work applications.

In the future, we will turn to category level and consider mutual-
excitation of similar items. Intuitively, a previous consumption not
only has influence on the item itself, but also influences purchase
tendency of similar items. The item-specific modeling method in
SLRC may suffer from data sparsity greatly. Further, simultaneous
consumption has some inherent relationship with repeat consump-
tion. How to combine these two together is an interesting but
seldom explored problem.
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