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ABSTRACT
Document ranking is one of the most studied but challenging prob-
lems in information retrieval (IR) research. A number of existing
document ranking models capture relevance signals at the whole
document level. Recently, more and more research has begun to
address this problem from �ne-grained document modeling. Sev-
eral works leveraged �ne-grained passage-level relevance signals
in ranking models. However, most of these works focus on context-
independent passage-level relevance signals and ignore the context
information, which may lead to inaccurate estimation of passage-
level relevance. In this paper, we investigate how information gain
accumulates with passages when users sequentially read a doc-
ument. We propose the context-aware Passage-level Cumulative
Gain (PCG), which aggregates relevance scores of passages and
avoids the need to formally split a document into independent
passages. Next, we incorporate the patterns of PCG into a BERT-
based sequential model called Passage-level Cumulative GainModel
(PCGM) to predict the PCG sequence. Finally, we apply PCGM to
the document ranking task. Experimental results on two public ad
hoc retrieval benchmark datasets show that PCGM outperforms
most existing ranking models and also indicates the e�ectiveness
of PCG signals. We believe that this work contributes to improv-
ing ranking performance and providing more explainability for
document ranking.
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Paragragh 1: Recently, several major changes in IELTS test have been announced. First, a
pronunciation assessment scale for the speaking test will be published soon. Second...... The
Changes to the speaking test can be divided into the following three points:

Document

Query: Changes to assessment criteria of the IELTS speaking test

Paragragh 2: 1. The new assessment criteria for pronunciation and intonation will start being
used in August.

Paragragh 3: 2. Examiners should try to grade pronunciation and intonation with even numbers.

Paragragh 4: 3. The requirements for pronunciation and intonation and the general criteria
have not changed, but some detailed rules have been added......

Paragragh 5:What are the pros and cons of these changes for Chinese students? As the product
manager of IELTS in China said......

Paragragh 6: Specifically, the four current assessment criteria are:......

Paragragh 7: For more information, please visit the Sina English Examination Channel......

Paragragh 8: Special note: Due to the constant adjustment and changes in various aspects, all
the information provided by Sina.com is only for reference......

Figure 1: An example of high-gain documents to the query
“Changes to assessment criteria of the IELTS speaking test”.
The document is relevant and meets the information needs
in the query although only the �rst four paragraphs within
it are relevant.

1 INTRODUCTION
Document ranking is one of the main challenges in information
retrieval research. Given a query and a set of documents, document
ranking aims to assign a relevance score for each query-document
pair and then rank the documents in descending order according to
the scores. For many existing ranking methods, no matter whether
they are unsupervised (e.g. BM25 [34] and language models [32, 42])
or supervised (e.g. learning to rank [1, 22] or deep ranking [27]),
they usually capture relevance signals at the whole document level.

When humans judge the relevance of documents (e.g. the assess-
ment in TREC ad hoc task [3]), a document is typically considered
relevant if any part of the document contains useful information:
according to the Scope Hypothesis [34], the relevant parts could be
in any position of a long document. This is in contrast to a sub-
document-level (or passage-level) relevance judgment process. Fig-
ure 1 shows an example document retrieved for the query “Changes
to assessment criteria of the IELTS speaking test”. We can see that
the document is composed of 8 paragraphs and only 4 of them
are relevant to the query. It was assessed to be a “high-gain doc-
ument” in our user study (see Section 3 for more details), which
can totally satisfy users’ information needs. However, it may be
di�cult to capture these local relevance signals if we only focus on
whole-document-level features.

To solve this problem and help ranking models capture local
signals, several works propose to estimate document relevance
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based on �ne-grained passage-level relevance signals. In these
works [2, 17, 39], documents are split into passages based on textual
discourse units (discourse passage), subject of the content (seman-
tic passage), or a �xed-length window (window passage). Local
relevance signals are obtained from these passages and then com-
bined to generate the document-level relevance scores. To better
combine the local signals, di�erent strategies were also proposed.
Several researchers employed maximum, minimum or weighted
summation functions, and tried to understand the relationship be-
tween passage-level relevance and document-level relevance by
comparing these results [4, 19, 38]. Other methods turned to deep
neural networks to automatically learn the relationship [7, 29].
These e�orts led to improved ranking performance by introducing
�ne-grained relevance signals.

Meanwhile, most of these works make a simple assumption that
the content of passages are independent from each other. With this
context-independent assumption, passage-level relevance signals
can be estimated separately. However, this assumption does not
hold in many circumstances. For example, the second and third
paragraphs of the example document in Figure 1 are too short for
algorithms to accurately estimate their relevance. However, the
last sentence of the �rst paragraph “The Changes to the speaking
test can be divided into the following three points” indicates that
the following content is relevant to the query. Ignoring context
information may lead to inaccurate estimation of passage-level
relevance, and a better solution should take this information into
consideration.

Di�erent from these existing works, we try to estimate the
passage-level cumulative gain (PCG) for document-level relevance
estimation, rather than context-independent passage-level rele-
vance signals. Taking the document shown in Figure 1 as an ex-
ample, users’ information needs can only be partially met if they
only read a single one of the relevant paragraphs. The information
needs are fully met only once they read all four relevant paragraphs.
Therefore, we focus on how the information gain (i.e., useful infor-
mation for the query) accumulates passage by passage when users
read a document from top to bottom (here we assume that users will
follow the sequential order while reading an article, which accords
with �ndings in user reading behavior [20]). With this framework,
we avoid the problem of how to split a document into independent
passages and how to aggregate relevance scores of independent
passages to get document-level relevance.

The cumulative gain (CG) has been used to evaluate ranking
performance at both the query-level [14, 15] and multiple session-
level [16]. In this work, we investigate cumulative gain at the pas-
sage level, with the aim of capturing context-aware �ne-grained
relevance signals. Then we model the sequence of PCG with deep
recurrent neural networks and leverage it for document ranking.
To summarize, we investigate the following research questions:

• RQ1: How does the passage-level information gain accumu-
late during a user’s information seeking process?
• RQ2: Can we e�ectively predict the sequence of passage-
level cumulative gain based on the raw text of queries and
documents?
• RQ3: Can the passage-level cumulative gain be applied to
improve the performance of document ranking models?

To shed light on these research questions, we collect the anno-
tations of PCG through a lab study on an existing ad hoc retrieval
dataset, TianGong-PDR [38]. Based on the dataset, we �rstly inves-
tigate the patterns of PCG to answer RQ1 by analyzing the PCG
sequence and the transition of PCG. Then we de�ne PCG predic-
tion as a sequence prediction task and propose a new Passage-level
Cumulative Gain Model (PCGM), which employs BERT [5] to learn
initial representations for query-passage pairs and incorporates the
observed patterns into an LSTM [11] to e�ectively predict PCG
sequences. Finally, we leverage this model to estimate a relevance
score for the whole document. We further test the ranking perfor-
mance of PCGM over another public document ranking test set,
NTCIR-14Web Chinese test collection [26]. To summarize, the main
contributions are as follows:
• To our best knowledge, we construct the �rst ad hoc re-
trieval dataset 1 which contains passage-level cumulative
gain annotations.
• We provide a thorough analysis of the patterns by which
passage-level information gain accumulates. This helps us
better understand how information gain is perceived when
users seek useful information in a document for a certain
query intent.
• We show that the sequence of PCG can be e�ectively pre-
dicted by incorporating the observed PCG patterns into a
deep neural network.
• We employ the PCG sequence into document rankingmodels
and show its e�ectiveness in improving ranking performance
on both the TianGong-PDR dataset and the NTCIR-14 Web
Chinese test collection.

The remainder of this paper is organized as follows. We review
related work in Section 2. Then we describe the passage-level cu-
mulative gain and analyze the patterns of PCG to address RQ1
in Section 3. Section 4 describes the proposed model PCGM. The
experimental setup and results of PCG prediction and document
ranking are presented in Section 5 and 6 respectively. Section 7
concludes this work and suggests directions for future research.

2 RELATEDWORK
In this section, we brie�y review the related works on passage-level
relevance and document ranking models.

2.1 Passage-level Relevance
Callan [2] proposed that with the increase of documents’ length, it
is natural to consider the �ne-grained relevance, such as passage-
level relevance, in ranking tasks. Several works have investigated
the �ne-grained passage-level relevance signals. It was found able to
help better understand the relevance judgment process and be fur-
ther used to improve the performance of document ranking [30, 38].
There were several methods to split a doucment into passages in pre-
vious works. Callan [2] categorized most of them into three types:
discourse, semantic, and window passages. Discourse passages are
obtained by splitting documents based on textual discourse units
such as sentences, paragraphs, and sections [38]. Semantic passages
are derived from documents based on the subject or content of the

1The data is now available at http://www.thuir.cn/group/~YQLiu/
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text [2]. Window passages have not taken the logical structure or
semantic information of documents into consideration, but consist
of a �xed number of words [39].

After splitting documents into passages, relevance signals are
obtained from these passages, which is called passage-level rele-
vance, then the passage-level relevance can be utilized to generate
document-level relevance scores [4, 19, 23, 38]. For example, Wu
et al. [38] recently used a four-grade relevance scale to annotate
each passage of a document. Then they employed maximum, mini-
mum or weighted summation functions to estimate the document-
level relevance, which helps better understand the relationship
between passage-level relevance and document-level relevance.

In this work, we take a paragraph as a passage and investigate
the context-aware passage-level cumulative gain (PCG).

2.2 Document Ranking Models
A large number of models for document ranking have been pro-
posed, including probability models (e.g., BM25 [34]), feature-based
learning to rank models [1, 13, 22], and neural ranking models [27].
Neural ranking models have been shown to be e�ective at auto-
matically learning ranking scores from raw text of queries and
documents. Here we mainly review the development of neural
ranking models in recent years.

Hu et al. [12] proposed CNN-based ARC-I and ARC-II for match-
ing two sentences. The former gets the representation of the query
and document, then compares the two representations to predict the
ranking score. The latter �rst conducts the interaction between the
matrixes of the query and document, then predict the ranking score.
Deep Relevance Matching Model (DRMM) [8] use matching his-
togram mapping as the input, and combines a feed forward match-
ing network and a term gating network to consider query term im-
portance. MatchPyramid [28] models text matching as the problem
of image recognition by using convolution approaches. Position-
Aware Convolutional Recurrent Relevance Matching (PACRR) [13]
uses convolutional layers to capture both term matching and po-
sitional information based on the query-document interactions.
Kernel-based Neural Ranking Model (KNRM) [40] uses a kernel-
pooling technique to extractmulti-level soft match features between
the query and document. All of these models capture matching sig-
nals at the whole document level.

Recently, some works try to address the document ranking prob-
lem by incorporating �ne-grained passage-level matching signals.
Pang et al. [30] proposed DeepRank, which �rst detects relevant
locates, then determines local relevance, and �nally aggregates lo-
cal relevance to get the document-level ranking score. Fan et al. [7]
followed the same idea and proposed Hierarchical Neural Matching
Model (HiNT). Li et al. [21] proposed Reading Inspired Model (RIM)
based on the inspiration of users’ reading behavior patterns, which
�rst captures the sentence-level relevance signals and then model-
ing the document-level relevance according to reading heuristics
from human. BERT [5] is an e�ective pre-trained language model
trained on large-scale, open-domain corpus, and can be used to
obtain the representation of texts. Based on BERT, Dai and Callan
[4] took the maximum, �rst, and summation of matching scores of
query-passage pairs as document-level ranking scores, and show
the e�ectiveness of BERT on the document ranking task.

Table 1: Statistics of our dataset.

#Query #Document #Passage #PCG annotation
70 1,050 11,512 34,536

In this work, we use BERT to learn the passage representation
and incorporate the historical PCG information into a RNN model
to predict the following PCG sequence and document relevance.

3 PASSAGE-LEVEL CUMULATIVE GAIN
In this section, we �rst describe the procedure of passage-level
cumulative gain annotations. Then we conduct a thorough analysis
of the patterns of passage-level cumulative gain to address RQ1.

3.1 De�nition
We start by de�ning passage-level cumulative gain (PCG). Given
a query and a document, considering that users usually follow
the sequential order while reading an article [20], we assume that
the gain (i.e., useful information for the query) obtained by the
users accumulates passage by passage when users read a document
from top to bottom. Formally, given a query q = {q1,q2, ...,qm }
and a document d = {p1,p2, ...,pn }, where qi is the i-th term in
the query and pi is the i-th passage in the document, the PCG
labels of d can be described as a sequence Gd = {д1,д2, ...,дn },
where дi (1 ≤ i ≤ n) denotes the degree of gain that the user
obtains from the �rst i passages in d . Therefore, дn is the degree
of gain that the user obtains from the whole document d . We also
use дn to denote the document-level cumulative gain (DLCG) of
d (i.e., дd ). In this work, we take one paragraph as one passage,
following Wu et al. [38], and use a four-grade PCG judgment scale
(i.e., дi ∈ {0, 1, 2, 3}, 1 ≤ i ≤ n).

3.2 Data Collection
3.2.1 Task and Participants. To investigate PCG in document rank-
ing, we �rst collect the PCG annotations for a recent and public ad
hoc retrieval dataset, TianGong-PDR2 [38]. TianGong-PDR consists
of 70 general interest queries from search logs of the Sogou search
engine, 70 manually generated search intent descriptions, and 1,050
documents from a Chinese news corpus, THUCNews.3 There are
15 documents for each query and 564 words per document on aver-
age. In this work, we conduct a lab-based study to collect the PCG
annotations for this dataset.

By posting posters around the campus and social networks, we
recruited 45 participants in this study, 19 males and 26 females.
They are all undergraduate and graduate students from a university.
Their ages are from 18 to 29 and their majors vary from natural
science and engineering to humanities and sociology. All of them
have basic Chinese reading skills and daily search experience using
Chinese search engines. Each participant was paid about $15 as
compensation.

3.2.2 Procedure. Each annotation task involves a query-document
pair. In each task, participants need to read the passages within the
document one by one and annotate the PCG sequence for the whole
document.We ask participants to carefully read the instructions and
2http://www.thuir.cn/data-pdr/
3http://thuctc.thunlp.org/

http://www.thuir.cn/data-pdr/
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Table 2: The distributions of four-grade document-level cu-
mulative gain (DLCG) and passage-level cumulative gain
(PCG). The Avg. #P and Avg. #W mean the average number
of passages and words within documents, respectively.

Document-level Passage-level
Type Proportion Avg. #P Avg. #W Type Proportion

DLCG = 0 0.390 10.8 536 PCG = 0 0.527
DLCG = 1 0.208 10.5 548 PCG = 1 0.230
DLCG = 2 0.187 10.9 585 PCG = 2 0.136
DLCG = 3 0.215 11.8 605 PCG = 3 0.107

All 1 11.0 562 All 1

then guide them to �nish two training tasks to help them quickly
get familiar with the experimental system and instructions. In the
beginning of each task, the system will show the search query,
search intent description, and the �rst passage in the document
to the participant, who then needs to annotate the PCG degree of
the �rst passage, after reading it. Next, both the �rst and second
passages will be presented and the participant gives the PCG degree
for the �rst two passages together. The same step repeats until all
the passages in the document have been shown. Finally, we obtain a
sequence of PCG for the query-document pair from the participant.

There are totally 70 queries and 15 documents for each query
in the dataset. For each query, each participant needs to annotate
one document. Therefore, each participant needs to complete 70
annotation tasks (i.e., 70 query-document pairs) in total. All tasks
are shown to participants in random order. It takes about one and
a half hours to �nish these 70 tasks. Each query-document pair is
annotated by three di�erent participants.

3.2.3 PCG Annotation Instructions. We use a four-grade PCG an-
notation in the study, which re�ects the degree of gain. The instruc-
tions for the four-grade PCG annotation are as follows:
• No gain (0): There is no useful information for the informa-
tion needs behind the query in the content you have read.
• Low gain (1): Based on the content you have read, the in-
formation needs behind the query can be slightly satis�ed.
• Moderate gain (2): Based on the content you have read, the
information needs behind the query can be fairly satis�ed.
• High gain (3): Based on the content you have read, the
information needs behind the query can be totally satis�ed.

3.2.4 Collected Dataset. Statistics of our dataset are shown in Ta-
ble 1. There are 70 queries, and 1,050 documents consisting of
11,512 passages in the dataset. For each document, we obtain three
sequences of PCG from three di�erent annotators. Therefore, we
have totally 34,536 PCG annotations. After collecting the PCG an-
notations, we �rst use Krippendor�’s α [10] for ordinal data to
measure the inter-person agreement of PCG annotations. The value
is 0.625, which indicates a moderate agreement level. Table 2 shows
the distributions of DLCG and PCG annotations. About 21.5% of
documents in the dataset can fully satisfy the information needs.
The high-gain documents contain more passages and more words
than other kinds of documents on average. Figure 2 shows fractions
of PCG annotations in the no-gain (0), low-gain (1), moderate-gain
(2), and high-gain (3) documents respectively. In no-gain documents,
all of the PCG annotations are zero. We found that the PCG degree
with the largest proportion in the other three kinds of documents
matches their DLCG degree.

Passage 1: How to Prevent Obesity?

Passage 2: Obesity should be prevented and people should
be aware of the dangers of obesity and keep their weight
within the normal range .……

Passage 3: Generally speaking, there are three preventive
measures: universal prevention, selective prevention and
target prevention.
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Figure 2: The joint distribution of document-level cumula-
tive gain (DLCG) and passage-level cumulative gain (PCG).

3.3 Patterns of Passage-level Cumulative Gain
To answer RQ1, we analyze how the passage-level information
gain accumulates when users are seeking useful information in a
document based on the collected data.

We �rst look into how the PCG annotations change after users
read onemore passage. The transition probabilities P (дi = x | дi−1 =
y), where дi is the PCG annotation for the �rst i − 1 passages, are
shown in Figure 4. For example, the “0.905” in the bottom left cor-
ner of Figure 4 indicates that when дi−1 is zero, the probability
for дi = 0 is 0.905. The probabilities that дi−1 is greater than дi
are all zero, which shows that the PCG sequence of a document in
our collected data is always a non-decreasing sequence. In other
words, the useful information captured by users accumulates as
they read more passages. This may be because that documents in
the TianGong-PDR dataset are news articles. They are well writ-
ten, structured, and that remains trustworthy throughout. They
often follow the “inverted pyramid” writing structure. There is no
document where it seems promising at the start, but later on, the
reader discovers something strange and loses all trust in the con-
tent and reduces the PCG grades. Probabilities on the diagonal line
are largest in all four columns, followed by the probabilities for
дi − дi−1 = 1, while probabilities for дi − дi−1 > 1 are rather small.
Therefore, we can summarize that when PCG increases from дi−1
to дi , the increment is most likely to be one.

We de�ne the passage where the PCG annotation is di�erent
from the previous one as the key passage. Since the PCG sequence
is non-decreasing, the i-th passage is a key passage only if дi is
greater than дi−1. The values of PCG annotations increase at key
passages. There are three kinds of key passages: low-gain key pas-
sages (PCG = 1), moderate-gain key passages (PCG = 2), and
high-gain key passages (PCG = 3). We split passages within a docu-
ment into ten parts according to their vertical positions and analyze
the distribution of vertical positions of key passages. Figure 3(a)
shows distributions of key passages in low-gain, moderate-gain, and
high-gain documents. We did not plot the distribution in no-gain
documents because there is no key passage in no-gain documents.
The values in the �gure are the proportions of key passages. For
example, the “0.499” in the �rst row means that in high-gain docu-
ments, 49.9% of low-gain key passages are located in the top 10%
part of documents. Similarly, the “0.099” in the �rst row means that
in high-gain documents, 9.9% of moderate-gain key passages are
located in the top 10% part of documents.
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Figure 3: The distributions of (a) key passages and (b) PCG annotations at di�erent vertical positions in low-gain (DLCG = 1),
moderate-gain (DLCG = 2), and high-gain (DLCG = 3) documents.
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Figure 4: The transition probabilities of passage-level cumu-
lative gain (PCG).

We �nd that the proportions of low-gain key passages tend to
decay as the vertical position increases, which indicates that users
usually obtain some useful information at the beginning of docu-
ments, except no-gain documents. The higher the cumulative gain
of the document, the higher the vertical position of low-gain key
passages and moderate-gain passages. When looking into the verti-
cal position where the value of PCG becomes the same as the value
of DLCG, we �nd that the most likely position is lower as the DLCG
increases. Most of the low-gain key passages are in the 0%~30% part
of low-gain documents, while most of the moderate/high-gain key
passages are in the 30%~90% part of moderate/high-gain documents.
There are still 14.6% of high-gain key passages in the 80%~90% part
of high-gain documents.

Figure 3(b) shows distributions of PCG at di�erent vertical po-
sitions. The “0.797” in the top left corner means that in 0%~10%
part of low-gain documents, the probability that PCG equals zero is
0.797. We observe that in low-gain documents, the probability that
PCG equals DLCG reaches 0.5 at the position of 20%~30%, while in
moderate-gain and high-gain documents, the probabilities reach
0.5 at the position of 50%~60%, which is lower than that in low-gain
documents. This indicates that as the value of DLCG increases,
more passages need to be read to judge an accurate DLCG.

3.4 Summary
Answering RQ1, we �nd that the PCG sequence of a document
is non-decreasing. That’s to say the current PCG is equal to or
greater than the previous one. The value of the i-th PCG in the
PCG sequence of a document is determined by the content of the
top i passages, and highly related to the previous PCG. The higher
the DLCG, the lower the position where PCG reaches DLCG. Users
need to read more passages to judge an accurate DLCG as DLCG
increases.

4 PASSAGE-LEVEL CUMULATIVE GAIN
MODEL

Wehave shown in Section 3 that the PCG sequence is non-decreasing
and the current PCG is related to the previous one. In this section,
we propose a Passage-level Cumulative Gain Model (PCGM) to
leverage context-aware sequence information to address the PCG
sequence prediction task, and further leverage the last value of the
PCG sequence for document ranking.

The framework of PCGM is illustrated in Figure 5. It consists of
three major components: passage encoder, sequential encoder, and
output layer. The passage encoder aims to learn the semantic repre-
sentations from both the query and the passage. The output of the
passage encoder is then fed into the sequential encoder to generate
a context-aware passage representation, which is �nally fed into
the output layer to predict the PCG sequence. When predicting the
PCG, the previous PCG is also taken as an input for the sequential
encoder and output layer. The details are described as follows.

4.1 Passage Encoder
We continue to use the notation introduced in Section 3.1. To cap-
ture the semantic matching between query q and each passage
pi , we use the pre-trained Chinese BERT BERT-Base-Chinese4 to
obtain a representation for each passage. As shown in Figure 5, we
use the output embedding of the �rst token as the representation

4https://github.com/google-research/bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
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Figure 5: The model architecture of PCGM.

for the entire query-passage pair:
Pi = BERT(q,pi ) (1)

4.2 Sequential Encoder
According to the de�nition of PCG, дi represents the gain of the
�rst i passages {p1,p2, ...,pi }. дi is not only determined by pi , but
also related to the former passages. Therefore, we use a recurrent
neural network LSTM to model the passages. We showed that the
PCG sequence is non-decreasing and дi is related to дi−1 in Section
3.3. So дi−1 should also be taken as an input when modeling the i-th
passage. We use a Gain Embedding Layer to get the corresponding
embedding Ei−1 for дi − 1. The initial PCG д0 is set to 0. Then we
concatenate the i-th passage representation Pi and the previous
gain embedding Ei−1 as the input of an LSTM cell. We use Vi to
represent the output vector of LSTM at the i-th step. Through
LSTM, we update the passage representation by adding the content
information and PCG of previous passages into it. Thus, we consider
Vi as a context-aware passage representation.

Ei−1 = GainEmbedding(дi−1) (2)
Ui = [Pi ,Ei−1] (3)

V1,V2, ...Vn = LSTM(U1,U2, ...,Un ) (4)

4.3 Output Layer
After the LSTM, we use a multilayer perceptron (MLP) with two
fully connected layers to get a four-dimensional vector with respect
to the four grades of PCG. The activation function we used is tanh.
We also apply a dropout layer between the two fully connected
layers to avoid the over-�tting problem.

V ′i = tanh(WvVi + bv ) (5)
V ′′i = dropout(V ′i ) (6)
Oi =WoV

′′
i + bo (7)

whereWv ∈ R
|V ′i |× |Vi | , bv ∈ R |V

′
i | andWo ∈ R

|Oi |× |V ′′i | , bo ∈
R |Oi | , |Oi | = 4. We adopt a gain mask to keep the predicted PCG
sequence monotonically incremental as we found in Section 3.3.

The mask vectorMaski is a four-dimensional binary vector with
respect to the four grades of PCG annotations. With the previous
PCGдi−1, only the PCG grades that are not less thanдi−1 is possible
to be predicted. We adopt an element-wise product betweenMaski
and Oi . Finally in the output layer, we use so f tmax to obtain the
predicted probabilities Pi for the four grades of PCG.

Maski = [mi
0,m

i
1,m

i
2,m

i
3] (8)

mi
j =

{
0 j < дi−1
1 j > дi−1

(9)

Pi =softmax(Maski � Oi ) (10)
Pi = [P (дi = 0), P (дi = 1), P (дi = 2), P (дi = 3)] (11)

We use stochastic gradient descent (SGD) to update the parame-
ters of PCGM and adopt cross entropy as the loss function for PCG
sequence prediction:

Lθ = −
1
n

n∑
i=1

log(P (дi )) + β | |∆θ | |2 (12)

where θ is the parameter set of PCGM, n is the number of passages
within the document, P (дi ) is the predicted probability of the PCG
label дi , β is the weight for L2 normalization.

To summarize, PCGM is a BERT-based sequential model, which
incorporates the context-aware sequence information, including
both passages’ textual information and PCG signals. In the follow-
ing sections, we investigate the e�ectiveness of PCGM, as well as
the e�ect of the gain embedding and gain mask.

5 PASSAGE-LEVEL CUMULATIVE GAIN
PREDICTION

In this section, we answer RQ2: can we e�ectively predict the
sequence of passage-level cumulative gain? To address this research
question, we use the PCGM introduced in Section 4 to predict PCG
sequences of documents in TianGong-PDR dataset and compare
the performance with a number of baseline models. Further, We
analyze the e�ect of di�erent components in PCGM, i.e., the gain
embedding and gain mask.
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5.1 Experimental Settings
We adopt two baseline methods for comparison, including a feature-
based traditional machine learning model GBDT and a feature-
based deep learning model LSTM. These two baselines are based
on extracted features. We extract eight learning-to-rank features
for each passage according to Qin and Liu [33], including the pas-
sage length (the number of words in the passage), the average TF,
IDF, and TF × IDF values of query terms in the passage, scores of
BM25 and three language models with the query. Each passage is
represented by an eight-dimensional vector.

For the LSTM baseline, we fed the sequence of passage vectors
within a document into an LSTM network. Then we use a multilayer
perceptron and so f tmax to get a four-dimensional vector for each
passage, which is taken as the predicted probabilities of the four
grades of PCG. Considering that the GBDT can not capture the
context information, when predicting the i-th PCG of a document,
the input features consist of two parts. The �rst part contains the
eight learning-to-rank features of the i-th passage. The second
part contains the maximum, the minimum, and the mean values
of the features of the top i − 1 passages. Therefore, the length of
the feature vector is 32 for the GBDT baseline. We consider the
prediction task as a four-category classi�cation task and �nally get
a four-dimensional probability vector for each passage.

In addition, we also implement ablation experiments, which
remove both the gain embedding and gain mask (i.e., PCGM w/o
Embed and Mask), only the gain embedding (i.e., PCGM w/o Embed),
and only the gain mask (i.e., PCGM w/o Mask). We compare these
three sub-models to further investigate the e�ectiveness of the gain
embedding and gain mask.

We use the TianGong-PDR dataset with passage-level cumu-
lative gain annotations as our dataset. Details about the dataset
are described in Section 3.2. We divide the dataset into 5 sets and
conduct �ve-fold cross-validation. In each fold, we use four sets
as the training set and one set as the test set. Early stopping with
the patience of 10 epochs is adopted during the training process on
each fold. The parameters are optimized using the Adam [18] with
a batch size of 32, a learning rate of 0.001, and a dropout rate of
0.1. For the LSTM model, the dimension of the passage embedding
based on extracted features is 8 and that of the hidden vectors is 8.
For the PCGM, the dimension of the passage embedding obtained
by BERT is 768. and those of the hidden vectors and gain embed-
dings are 100, 150 respectively. The previous PCG used for the gain
embedding and gain mask is the real label of the previous passage.

Three metrics are used to evaluate the prediction performance:
the Log-Likelihood (LL), the Pearson Correlation Coe�cient (PCC),
and the accuracy. We use the expectation of probabilities of four
PCG grades as the predicted ranking score when calculating the
PCC. For the calculation of accuracy, we use the arдmax of proba-
bilities of four PCG grades as the predicted ranking score.

5.2 Results and Analysis
In this section, we compare the sequence prediction performance
of our proposed PCGM and baseline models. We investigate PCGM
on di�erent documents and passages (i.e., documents of di�erent
lengths, and passages with di�erent PCG labels) to better under-
stand the model performance.

Table 3: PCG prediction performance of di�erent methods
over the TianGong-PDR dataset. “*/†” denotes that com-
pared to PCGM/LSTM (the best baseline), the performance
di�erence is statistically signi�cant using Tukey’s HSD test.

Model LL PCC Accuracy
GBDT 1.2604* 0.3817* 0.4906*
LSTM 1.0854* 0.4327 0.5272*
PCGM w/o Embed and Mask 1.0303*† 0.4318 0.5483*†
PCGM w/o Embed 0.3362† 0.4606 0.8926†
PCGM w/o Mask 0.3402† 0.4592 0.8926†
PCGM 0.3386† 0.4596 0.8926†

5.2.1 Overall Results. Overall performance is shown in Table 3. For
the two baselines, the LSTM performs better than the GBDT, which
shows that the context-aware model is more e�ective in modeling
PCG sequences than the context-free model, although we extract
features from the context as the input of the context-free model.
The framework of PCGM w/o Embed and Mask is the same as the
LSTM baseline except for the passage encoder. PCGM w/o Embed
and Mask outperforms the LSTM baseline as well. This shows that
passage embeddings obtained by BERT are more e�ective than
extracted passage features. Our proposed PCGM performs better
than the GBDT and LSTM baselines signi�cantly on the LL and
accuracy, demonstrating that by using the BERT and sequence
model, we can e�ectively predict PCG sequences.

5.2.2 Model Ablation. We remove the gain embedding and gain
mask from PCGM, both or one at a time, and observe the impact
on the performance compared to the full model. The performance
of PCGM w/o Embed and Mask is signi�cantly worse than that
of PCGM, while the performance of PCGM w/o Embed and PCGM
w/o Mask is similar to that of PCGM. This shows that when using
the real previous PCG label to generate the gain embedding and
gain mask, one of them is enough to take full advantage of the
previous PCG information. PCGM w/o Embed performs better than
PCGM w/o Mask. Compared to the gain embedding, the gain mask is
more e�ective for ranking. It is worth noting that PCGM w/o Embed
performs slightly better than PCGM. This may be because that the
gain mask generated from the real previous PCG label is su�cient.
Adding an extra gain embedding increases the model complexity,
and makes it harder.

5.2.3 Experimental analysis. We further analyze the performance
of PCGM over documents of di�erent lengths and passages with
di�erent PCG labels, as shown in Figure 6. We use the number of
passages within a document as the length of the document, and
�nd that as the length increases, the performance of PCGM also
increases. This shows that PCGM can still capture the context
information well even in long documents. We use the arдmax of
probabilities of four PCG grades as the predicted PCG grade, and an-
alyze the precision, recall, and F1-score over passages with di�erent
PCG labels. The results show that no-gain passages can be totally
correctly predicted, and all of the passages which are predicted as
high-gain passages are indeed high-gain passages. According to
the F1 scores, PCGM performs better over no-gain and high-gain
passages than over low-gain and moderate-gain passages.
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Figure 6: PCG prediction performance of PCGM on (a) documents of di�erent lengths and (b) passages with di�erent PCGs.

6 DOCUMENT RANKING
In this section, we aim to answer RQ3: can the passage-level cu-
mulative gain be applied to improve the performance of document
ranking models? To address this research question, we apply PCGM
to predict the ranking scores of documents over TianGong-PDR
dataset (Experiment 1). Furthermore, we test the performance of
PCGM over another public document ranking test set, NTCIR-14
Web Chinese test collection (Experiment 2). We compare the per-
formance with a number of advanced baseline models.

6.1 Evaluation Metric
We evaluate all ranking models using three metrics: nDCG [14], Q-
measure [35] and nERR [36]. To examine the ranking performance
of models at di�erent ranking positions, we also calculate nDCG
at di�erent cuto� positions, i.e., nDCG@{1, 3, 5, 10}. Since there
are 15 documents for each query in the TianGong-PDR dataset, we
also report the nDCG (i.e., nDCG@15), Q-measure and nERR in the
full ranked lists. We adopt the Tukey’s HSD test to examine the
statistical signi�cance of performance di�erences between di�erent
models.

6.2 Experiment 1: Ranking on TianGong-PDR
In this experiment, we examine the ranking performance of PCGM
over the TianGong-PDR dataset. Since we already conducted �ve-
fold cross-validation in the PCG sequence prediction task in Section
5, we apply the saved PCG models of �ve folds into this document
ranking task. We take the predicted PCG of the last passage within
a document as the predicted ranking score for this document, and
take the DLCG label (i.e., the last value of the PCG sequence) as
the ground truth. Then we evaluate the ranking performance of
PCGM.

6.2.1 Baselines. In this experiment, we choose three types of base-
lines to compare with PCGM: the probabilistic ranking model and
two types of BERT-based neural ranking models at the document
level and passage level, respectively. For the probabilistic ranking
model, we adopt:
• BM25 [34]: This model is a classical and e�cient document-
level ranking model. Although a number of neural ranking
models have been proposed, BM25 is still a challenging base-
line to beat [21, 24]. So we include it in this experiment.

For the document-level neural baseline, we choose:

• BERT-Doc [5]: BERT �rst models the interactions between
two pieces of text with the attention mechanism and then
predicts their relationship, which can be classi�ed as the
interaction-based neural ranking model [8]. We use the pre-
trained Chinese BERT and �ne-tune its output layer for
predicting document-level ranking scores.

For the passage-level baseline, we adopt three BERT-based rank-
ing models according to Dai and Callan [4]: BERT-MaxP, BERT-
FirstP and BERT-SumP. In all these three models, we �rst �ne-tune
the pre-trained BERT model based on the relevance annotations
for passages in the TianGong-PDR dataset, and then use it to pre-
dict the relevance of each passage in the test set independently.
Finally, we obtain the document-level relevance by using di�erent
assumptions in the three models:
• BERT-MaxP: The document score is determined by the
maximum score of passages within the document.
• BERT-FirstP: The document score is determined by the
score of the �rst passage.
• BERT-SumP: The document score is calculated by summing
all predicted passage-level scores.

In addition, we use the three sub-models of PCGM, PCGM w/o
Embed, PCGM w/o Mask, and PCGM w/o Embed and Mask in this
experiment to examine the e�ect of the gain embedding and gain
mask.

6.2.2 Experimental se�ings. We use a public and e�ective imple-
mentation of BERT5 based on PyTorch [31]. For BERT-basedmodels,
the query description and one passage/the entire document are con-
catenated as the input. During �ne-tuning, the document will be
truncated to 512 words if its length exceeded 512 words (the max-
imum input length). For the document-level BERT, only the last
linear layer is trained to avoid over�tting. For the same reason, only
the last encoder and the output layer are trained in the passage-level
BERTs. We use Mean squared error (MSE) as the loss function in the
BERT-based baselines. The parameters are optimized by Adam [18]
with a batch size of 32 and initial learning rate of 5e-5 as same as [5].
The �ne-tuning processes converge after 3 epochs and 7 epochs for
document-level and passage-level BERT-based baselines separately.

For PCGM and its sub-models, we directly use the models trained
and saved in the PCG sequence prediction (Section 5). Note that
during the training process, the previous PCG used for the gain
5https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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Table 4: Ranking performance of di�erent ranking models over TianGong-PDR dataset. The di�erences among models are
not statistically signi�cant using Tukey’s HSD test).

Model nDCG@1 nDCG@3 nDCG@5 nDCG@10 nDCG@15 Q-measure ERR
BM25 0.590 0.612 0.641 0.730 0.819 0.766 0.737
BERT-Doc 0.600 0.652 0.666 0.754 0.838 0.792 0.754
BERT-MaxP 0.555 0.596 0.625 0.731 0.809 0.763 0.713
BERT-FirstP 0.614 0.633 0.652 0.723 0.821 0.768 0.745
BERT-SumP 0.624 0.638 0.673 0.755 0.832 0.780 0.758
PCGM w/o Embed and Mask 0.617 0.632 0.663 0.748 0.827 0.777 0.747
PCGM w/o Embed 0.626 0.665 0.675 0.763 0.838 0.787 0.768
PCGM w/o Mask 0.645 0.670 0.685 0.767 0.843 0.794 0.777
PCGM 0.688 0.686 0.696 0.780 0.850 0.798 0.800

embedding and gain mask is the real label of the previous passage,
while in the test process of this document ranking task, we use the
PCG predicted by PCGM at the previous step. Speci�cally, we use a
random sampling method to obtain a predicted PCG 100 times, and
we use the mean of each PCG label’s probabilities as the predicted
probability for this PCG label. Finally, we use the expectation of
probabilities of four PCG grades as the predicted ranking score.

6.2.3 Performance comparison. Table 4 shows the ranking perfor-
mance of di�erent ranking models in the �ve-fold cross-validation
on the TianGong-PDR dataset. For the two document-level rank-
ing models, BERT-Doc performs better than BM25, showing the
capability of the pre-trained BERT. Among the three passage-level
BERT-based baselines, we can see that BERT-SumP performs best,
followed by BERT-FirstP. We consider that the performance of these
three models is highly based on the e�ectiveness of their assump-
tions. BERT-SumP and BERT-Doc perform closely and win each
other at di�erent metrics. Overall, Our PCGM model which lever-
ages BERT representations and �ne-grained passage-level signals
gets the best ranking performance.

6.2.4 Model Ablation. When comparing among PCGM and its sub-
models, we can see that the design of gain embedding and gain
mask is e�ective and can help PCGM to achieve a better perfor-
mance. PCGM w/o Mask performs best among the three sub-models,
indicating that the gain embedding is more e�ective than the gain
mask in improving the performance of PCGM. The performance of
PCGM w/o Embed and Mask is close to BERT-Doc, showing that
our design of the gain embedding and gain mask is e�ective to take
advantage of PCG in the document ranking task.

6.3 Experiment 2: Ranking on NTCIR-14 Web
Chinese Test Collection

With the best performance of PCGM in the Experiment 1, we ex-
amine whether PCGM trained with PCG annotations will still be
e�ective in other public document ranking datasets. In Experiment
2, we use baseline models trained on the Sogou-QCL dataset [44].
Since there is no PCG label in the Sogou-QCL dataset, we can’t
train PCGM on this dataset and so directly use the saved PCGM
models from Section 5. All these models are evaluated over a public
test set for a document ranking task, NTCIR-14 Web Chinese test
collection.6
6http://www.thuir.cn/ntcirwww2/

6.3.1 Baselines. To compare with PCGM, we use BM25 and the
BERT-based baseline models introduced in Experiment 1 as base-
lines. In addition, a number of recently proposed neural ranking
models are adopted, including the ARC-I, ARC-II, DRMM, Match-
Pyramid, PACRR, KNRM, DeepRank, HiNT, and RIM, which have
been introduced in Section 2.

6.3.2 Dataset. Sogou-QCL [44] is a large-scale public benchmark
dataset for document ranking, which consists of 537,366 queries,
5,480,860 documents and various kinds of click model-based rele-
vance labels, such as PSCM [37], UBM [6] and so on. In the NTCIR-
14 Web Chinese task, Zheng et al. [43] won the �rst place by using
Sogou-QCL to train their own document-level neural ranking mod-
els. Therefore, in Experiment 2, we follow them and use Sogou-QCL
to additionally train the neural ranking baselines introduced in Sec-
tion 6.3.1. For those baselines, we randomly split the Sogou-QCL
into two parts for training and validation separately. The validation
set contains 200 queries and the training set contains other queries.
We use the PSCM-based relevance label as the supervision in the
training processes.

For the NTCIR-14WebChinese test collection [26], its documents
are the top-ranked documents from a large-scale Chinese Web
corpus, Sogou-T [25], by using BM25. There are 79 queries and
4,816 documents in the NTCIR-14 Web Chinese test collection in
total. It uses a four-grade relevance scale (irrelevant, fairly relevant,
relevant, and highly relevant) and contains relevance annotations
for all query-document pairs, which were collected through high-
quality crowdsourcing.

6.3.3 Experimental se�ings. Di�erent from the news document
of TianGong-PDR, the documents of NTCIR-14 Web Chinese test
collection are extracted from raw Web pages, where there is no
paragraph information. They are usually not well-organized and
contain many independent but short texts. Therefore, to test the
passage-level baselines, we set a sliding window with a size of
200 Chinese characters and an overlap of 50 Chinese characters
according to Callan [2] to split the documents of NTCIR-14 Web
Chinese test collection into multiple passages.

Since the training details of PCGM and BERT-based baselines
have been introduced in Experiment 1, we only describe the exper-
imental settings of several new ranking baselines in Experiment
2. For all neural ranking baselines introduced in Section 6.3.1, we
adopt the implementation from Li et al. [21], which is implemented

http://www.thuir.cn/ntcirwww2/
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Table 5: Ranking performance of di�erent ranking models over NTCIR-14 Web Chinese test collection. “*” denotes that com-
pared to PCGM, the performance di�erence is statistically signi�cant using Tukey’s HSD test.

Model nDCG@1 nDCG@3 nDCG@5 nDCG@10 nDCG@15 Q-measure ERR
BM25 0.432 0.443 0.438 0.471 0.490 0.423 0.575
ARC-I 0.397 0.400* 0.427 0.451 0.461* 0.413 0.541
ARC-II 0.422 0.425 0.433 0.445* 0.473 0.424 0.562
DRMM 0.357 0.413 0.430 0.467 0.486 0.434 0.555
MatchPyramid 0.388 0.374* 0.374* 0.415* 0.433* 0.375* 0.519*
PACRR 0.403 0.459 0.455 0.469 0.483 0.427 0.556
KNRM 0.458 0.435 0.447 0.468 0.493 0.427 0.562
DeepRank 0.443 0.437 0.447 0.461 0.489 0.443 0.559
HiNT 0.397 0.380* 0.399* 0.421* 0.449* 0.393 0.534
RIM 0.475 0.458 0.464 0.467 0.478 0.428 0.577
BERT-Doc 0.462 0.464 0.472* 0.497 0.516 0.449 0.613
BERT-MaxP 0.505 0.505 0.515 0.539 0.557 0.498 0.637
BERT-FirstP 0.431 0.462 0.476 0.508 0.531 0.469 0.593
BERT-SumP 0.485 0.486 0.486 0.498 0.521 0.462 0.621
PCGM 0.518 0.538 0.544 0.562 0.577 0.515 0.661

by PyTorch based on Matchzoo [9]. We adopt a pointwise loss func-
tion, Mean Squared Error (MSE) for the RIM and a pairwise hinge
loss function for other baseline models. We apply Adadelta [41] as
the optimizer during the training process with a bacth size of 80
and initial learning rate of 0.1. We use early stop strategy with a
patience of 10 epochs to get the best models over the test set.

6.3.4 Performance comparison. We report the performance of rank-
ing models over the NTCIR-14 Web Chinese test collection in Ta-
ble 5. There are four types of models: BM25 for the probabilistic
ranking model, ten document-level ranking models, three passage-
level ranking models and our PCG model. We can see that BM25
performs rather well and outperforms most document-level neural
ranking baselines, except BERT-Doc, on several metrics, which is
consistent with [21]. Among all the document-level neural ranking
baselines, BERT-Doc performs the best, indicating the e�ectiveness
of the pre-trained language model in the document ranking task.
When comparing the three passage-level BERT-based baseline mod-
els, we can see that BERT-MaxP performs the best and outperforms
all BM25 and document-level neural ranking models. We �nd that
both BERT-MaxP and BERT-SumP outperform BERT-Doc. We con-
sider this is because BERT-Doc can only process the �rst 512 words
of a document at most, which loses a lot of document information.
PCGM achieves the best performance among all the metrics. Our
results show that its improvements in nDCG@1, nDCG@5 and
nDCG@15 over BERT-Doc are 12.1%, 15.3% and 11.8%. Due to the
small query size in NTCIR-14 Web Chinese test collection (only
79 quries), these improvements over most of the baselines are not
statistically signi�cant. The experimental results not only show the
e�ectiveness of PCGM but also shows that the PCG annotations
are valuable.

To summarize Experiment 1 and 2, experimental results show
that PCGM can e�ectively learn from �ne-grained PCG signals with
the design of gain embedding and gain mask, which helps PCGM
outperform all the baseline models on both the TianGong-PDR
dataset and NTCIR-14 Web Chinese test collection.

7 CONCLUSION
In this paper, we investigated how the information gain of users
accumulates through passages within a document. To the best of
our knowledge, this is the �rst work to propose passage-level cumu-
lative gain (PCG) and study how to apply it to document ranking
tasks. First, we de�ned PCG and collected PCG annotations for a
public document-ranking dataset named TianGong-PDR through a
lab-based user study. Analysis of the collected annotations demon-
strated that the PCG sequence of a document is always monoton-
ically increasing in the documents of TianGong-PDR. Based on
the �ndings of PCCG patterns, we proposed a BERT-based sequen-
tial model PCGM for modeling PCG, which uses an LSTM after a
pre-trained BERT with a gain embedding layer and a gain mask
mechanism. We �rst evaluated PCGM in the PCG sequence predic-
tion task, and showed the e�ectiveness of the gain embedding and
gain mask. Then we applied PCGM in a document ranking task and
showed that PCGM outperforms multiple advanced ranking base-
lines over two public datasets. We conducted a model ablation test
and a comparison with BERT-based baselines to better understand
PCGM. This work provides a newmethod for the document ranking
problem by leveraging the PCG and improves the performance of
document ranking.

In the future, we plan to study other approaches to leverage
the PCG sequence for document ranking, for example, proposing
new methods to utilize the last PCG annotation instead of directly
adding a gain mask. We also plan to take the query type into con-
sideration to better understand how users perceive PCG under
di�erent queries. We believe that a deeper understanding of the
PCG can further help improve the document ranking performance.
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