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ABSTRACT
Relevance measures the relation between query and document
which contains several different dimensions, e.g., semantic simi-
larity, topical relatedness, cognitive relevance (the relations in the
aspect of knowledge), usefulness, timeliness, utility and so on. How-
ever, existing retrieval models mainly focus on semantic similarity
and cognitive relevance while ignore other possible dimensions
to model relevance. Topical relatedness, as an important dimen-
sion to measure relevance, is not well studied in existing neural
information retrieval. In this paper, we propose a Topic Enhanced
Knowledge-aware retrieval Model (TEKM) that jointly learns se-
mantic similarity, knowledge relevance and topical relatedness to
estimate relevance between query and document. We first construct
a neural topic model to learn topical information and generate topic
embeddings of a query. Then we combine the topic embeddings
with a knowledge-aware retrieval model to estimate different di-
mensions of relevance. Specifically, we exploit kernel pooling to
soft match topic embeddings with word and entity in a unified
embedding space to generate fine-grained topical relatedness. The
whole model is trained in an end-to-end manner. Experiments on a
large-scale publicly available benchmark dataset show that TEKM
outperforms existing retrieval models. Further analysis also shows
how topic relatedness is modeled to improve traditional retrieval
model with semantic similarity and knowledge relevance.
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Figure 1: Different relevance dimensions for the query
“Huawei”.

1 INTRODUCTION
Relevance estimation is a central problem in information retrieval
(IR) research, which aims to learn a scoring function to capture
the relevance of a document with respect to a query. Intuitively,
relevance implicitly or explicitly involves a relation. It’s a measure
for determining a degree of appropriateness or effectiveness with
respect to the matter at hand [35]. Priors studies believed that rele-
vance potentially has different manifestations [2, 33, 34]. Generally,
these manifestations address that the relations behind relevance
should involve different dimensions to measure, e.g., semantic simi-
larity, topical relatedness, cognitive relevance, usefulness, utility to
a situation or problem at hand, temporal aspect, intent in use and so
on [35]. These dimensions provide a base or context for establishing
a relation, which can be explicit or implicit, well-defined or visceral.
To build a better IR system, different dimensions of relevance needs
to be considered so that IR system can better infer user search intent
and provide a more accurate estimation of relevance score.

Among these dimensions, semantic similarity, cognitive rele-
vance (the relations in the aspect of knowledge) and topical related-
ness draw the most attention in IR research [27] since they are rel-
atively explicit and well-defined compared with other dimensions.
We take an example query “Huawei” to understand their differences
in Figure 1. Cognitive relevance (or knowledge relevance) [35] is
the cognitive correspondence or informativeness between objects,
e.g., Huawei - (China, Zhengfei Ren). In IR literature, we often esti-
mate knowledge relevance by external knowledge bases. Difference
between semantic similarity and topical relatedness is easier to
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understand if we look back upon their modeling methods. Semantic
similarity is often modeled by distributed semantic models like
word2vec [25] while topic relatedness is often modeled by topic
models like LDA [3]. The former is learned within a local context
(or 𝑛-gram windows) while the latter takes the whole document
as context. Difference in their considered contextual information
leads to the capture of different types of similarity. Local context-
based models (word2vec) capture semantic similarity (e.g. Huawei -
(Samsung, Nokia)) while document-based models (LDA) capture se-
mantic relatedness (i.e., topical relatedness) like Huawei - (5G, ban,
networks). By applying word2vec to test the topical relevant words
in Figure 1, we find the similarities are very low, which indicates
that traditional distributed word embedding cannot capture the
topical relatedness. Therefore, it is necessary to model the topical
relatedness to improve the current neural IR solutions.

Recently, neural retrieval models have gained much attention
in IR community and obtain promising ranking performance. Ac-
cording to the investigation of neural IR [11] , most existing neural
retrieval models are designed to model semantic similarity between
query and document based on their distributed word embeddings.
These models are able to achieve better ranking performance com-
pared to traditional statistical models like BM25 [31]. To better es-
timate relevance, further works also attempt to incorporate knowl-
edge graph and use entity embeddings to consider the dimension
of knowledge relevance [22, 44]. The combination of semantic sim-
ilarity and knowledge relevance helps these models better estimate
the relevance score and improve ranking performance. Prior stud-
ies [17, 23] in traditional retrieval models have shown that topical
relatedness is an important dimension for relevance estimation. It
provides the signal to measure the relation of two objects under a
specific topic. However, to our best knowledge, there is no exist-
ing effort in incorporating topical relatedness into the relevance
estimation of neural IR models.

In this paper, to improve neural retrieval model by consider-
ing different relevance dimensions, we propose a Topic Enhanced
Knowledge-aware retrieval Model (TEKM) that jointly learns se-
mantic similarity, knowledge relevance and topical relatedness
between query and document. Firstly, we develop a new neural
topic model for topic inference. The model is based on variational
autoencoder (VAE) [18] for discovering topics via neural networks.
Compared to traditional topic model like LDA [3], it is more com-
patible with other neural models [24] and also enables the whole
model to train in an end-to-end manner. Secondly, each topic is
represented by an implicit topic vector and topical relatedness is
learned by extracting multi-level soft matching signals between
topic vectors of a query and textual information of a document.
In particular, the textual information is represented by both word
and entity annotations. Word embedding [25] inherits context se-
mantic while entity embedding inherits the relations in knowledge
graph [22] to neural IR model. Three dimensions of relevance are
aggregated by kernel pooling method [43], which models different
levels of soft matches. With this framework, the proposed model
can jointly learns different dimensions of relevance and estimate a
more accurate relevance score.

We conduct experiments on a large-scale public test collection [5]
Tiangong-ST from a commercial search engine. Experimental re-
sults show that our framework significantly outperforms existing

retrieval models. We further investigate the effectiveness of topic
information in different ranking scenarios and how topic infor-
mation improve traditional semantic matching signals for better
document ranking. The analysis indicates that by modeling topical
relatedness, our model can capture more reliable matching signals
compared with traditional neural retrieval models with word and
entity interactions.

Our main contributions are three-folds:
(1) We propose a new neural topic model that represents each

topic as an implicit topic vector, which is flexible to deep neural
network based learning tasks in different application scenarios.
In our work, we exploit it to generate topic information for
neural information retrieval.

(2) We propose a Topic Enhanced SemanticMatchingModel (TESM)
that considers different dimensions of relevance estimation.
Specifically, our model jointly learns semantic similarity, knowl-
edge relevance and topical relatedness between query and doc-
ument. To the best of our knowledge, this is the first attempt to
integrate topic information into neural retrieval models.

(3) Extensive experiments on a large-scale public test collection
show that our framework significantly outperform existing
retrieval models. We systematically analyze the effectiveness
of topic information in different ranking scenarios, thereby
providing a solid understanding of how to effectively utilize
topic information with neural retrieval models.

2 RELATEDWORK
2.1 Manifestations of relevance
Relevance is the key notion in information retrieval [19]. It is so
basic that people use it without thinking about it. Intuitively, we
suppose that relevance always implicitly or explicitly involves a
relation. It’s a measure for determining a degree of appropriateness
or effectiveness with respect to the matter at hand [35]. Vickery [39]
was first to recognize that relevance has different manifestations,
which includes a duality - user relevance and subject relevance. The
former depends on individual user’s cognitive state and person-
alized preference while the latter lies in the content of candidate
item itself. Mizzaro [38] further proposed that relevance manifesta-
tions can be represented in a four-dimensional space: information
resources (documents, surrogates, information), representation of
user problem (real information need, perceived information need,
request, query), time and components (topic, task, context). Those
dimensions represent various aspects of user information needs.
Further researches followed the problem setting but called these
dimensions by a number of different names [2, 33, 34]. In summary,
these dimensions include semantic similarity, topical relatedness,
cognitive relevance (knowledge relevance), usefulness, utility to a
situation or problem at hand, temporal aspect, intent in use and so
on [35]. To better meet user’s information needs, different dimen-
sions of relevance needs to be taken into consideration so that the
IR system can better infer user search intent and provide a more
accurate relevance score.

2.2 Topic modeling in information retrieval
The earliest method of incorporating topic models in IR was per-
formed by introducing terms from hand-crafted thesauri, which are
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typical manually-built topic models. This model incorporated an-
other dimension tomeasure word similarity but was labor-intensive.
Latter, a number of statistical topic models e.g., probabilistic latent
semantic analysis (pLSA) [13], latent Dirichlet allocation (LDA) [3]
were proposed and widely used in different applications such as
emotion classification [21] and recommendation systems [1]. They
were able to effectively learn unsupervised representations of text
and capture topical features. Recently, neural topic models [24] are
proposed based on variational auto-encoder [18], which makes it
possible to jointly perform topic inference and other application
tasks.

The first LDA-based retrieval model was proposed by Wei et
al. [42]. The basic idea is to improve query likelihood function with
the maximum likelihood of word𝑤 in the document 𝐷 , i.e.,

𝑃 (𝑤 |𝐷) = 𝜆𝑃𝑄𝐿 (𝑤 |𝐷,𝐶) + (1 − 𝜆)𝑃𝐿𝐷𝐴 (𝑤 |𝐷)

𝑃𝐿𝐷𝐴 (𝑤 |𝐷) =
∑
𝑧

𝑃 (𝑤 |𝑧)𝑃 (𝑧 |𝐷) (1)

where 𝐶 is the collection and 𝑧 is the topic. The following LDA-
based retrieval model is generally based on this framework. Jian
et al. [17] improves it by replacing query likelihood with other
retrieval models like BM25, MATF [28] and Dirichlet LM [45]. Men-
doza et al. [23] propose strategies for topic and model selection
to learn better topic information. However, these models are only
based on traditional statistical models and are rough combination
of two independent models. In neural information retrieval, few
investigations have been made to integrate topic information into
neural information retrieval. In our work, we attempt to combine
topic model with neural retrieval model to better estimate relevance
in different dimensions.

2.3 Neural Retrieval Models
Existing neural retrieval models can be grouped into two cate-
gories [11], namely representation-based and interaction-based mod-
els. Representation-based models aim to build a good semantic
representation of queries and documents. DSSM [16] represents
two input texts with a unified process by using a multi-layer per-
ceptron (MLP) transformation. ARCI [15] employs convolutional
neural networks to replace MLPs to represent the input text. They
are computationally efficient but fail to capture fine-grained seman-
tic information (e.g., passage or sentence-level relevance [20]). On
the other hand, interaction-based models learn local interaction
patterns from query-document pairs and capture more fine-grained
semantic information. ARCII [15] utilize convolutional neural net-
works to capture complicated patterns from word-level interactions.
KNRM [43] summarize multi-level soft matches between query
and document. Matchpyramid [30] defines a symmetric interaction
function to model term similarities between query and document.

These model mainly focus on semantic similarity by generat-
ing matching signals with word embedding similarity and ignore
other possible dimensions of relevance. To better estimate relevance,
a number of previous works also attempt to incorporate knowl-
edge graph to consider the dimension of knowledge relevance (or
cognitive relevance). Xiong et al. [44] modeled entity salience in
document by modeling the interactions between entities and words.

Liu et al. [22] introduced entities in the knowledge base into a neu-
ral retrieval model. The interactions in the aspect of knowledge
base help the retrieval model perform better relevance estimation
in the dimension of cognitive relevance (or knowledge relevance).
Considering that topic information includes the signals of a spe-
cific component (task, goal, or context) [38] and is different from
other relevance dimensions, we attempt to introduce additional
dimension on topic information to improve neural retrieval models.

3 TOPIC ENHANCED KNOWLEDGE-AWARE
RETRIEVAL MODEL

This section presents our proposed Topic Enhanced Knowledge-
aware Model (TEKM). The overall framework is shown in Figure 2.

3.1 Overview
The intuitive idea behind our model is to incorporate topic embed-
dings to measure the topical relatedness for relevance estimation,
which consists of two components: 1) A neural topic model that
learns topic information from the query and generates weighted
topic embeddings for further matching. 2) A topic enhanced match-
ing framework that combines semantic similarity, knowledge rele-
vance and topical relatedness for learning to rank.

We first adopt neural topic model instead of traditional topic
models like LDA [3] since it benefits in several aspects such as topic
quality, computational efficiency and compatibility with neural
models [37]. Our neural topic model takes both words and entities
as input and represent topics by a set of auxiliary implicit topic
embeddings. The embedding representation of topic information
helps the fine-grained interactions with both words and entities in
the match framework. In addition, we only build topic embeddings
for query instead of document. The main idea is to augment the
topic representation power of query and use the generated topic
embeddings to match topical relevant words and entities in the
document (e.g., Huawei - (5G, ban, networks) in Figure 1) ). It can
be regarded as a query expansion on the topical dimension. The
interactions between topic embeddings and word embeddings cap-
ture the fine-grained word-level topic matching signals. And it is
similar for the relationship between topic embeddings and entity
embeddings. We finally exploit kernel pooling to combine fined-
grained topic relatedness with semantic similarity and knowledge
relevance to estimate the final relevance score. We will explain the
model details in the following subsections.

3.2 Neural Topic Model
The upper part of Figure 2 shows the structure of our Neural Topic
Model (NTM), which is built upon the VAE architecture. The basic
idea is to mimic the modeling process of topic models by neural
networks. As discussed in Section 3.1, we generate topic information
based on the query instead of the document to augment the topic
representation power of query. Given a predefined topic number
𝐾 , NTM maps the query to the topic distribution 𝜽 via inference
encoder. Then 𝜽 is decoded by the generative decoder to reconstruct
the query. Specifically, we represent the query by both words 𝒒𝑤
and its entity annotations 𝒒𝑒 . The generative process of the query
is described as follows:

• Draw a topic distribution 𝜽 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼),
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Figure 2: Framework of the proposed Topic enhanced knowledge-aware retrieval model.

• For each word𝑤 and entity 𝑒 in the query,
draw𝑤 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (1, 𝜎 (𝜷𝜽 )),
draw 𝑒 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (1, 𝜎 (𝝓𝜽 ))

where 𝛼 is the hyper-parameter to control the mixture of topics.
𝜷 and 𝝓 are the matrices of topic-word probability and topic-entity
probability, respectively. 𝜎 is the softmax function.

The probability of the reconstructed query can thus be repre-
sented by summing out the topic distribution 𝜽 :

𝑝 (𝒒𝑤 |𝛼, 𝜷) =
∫
𝜃

©«
|𝒒𝑤 |∏
𝑤

𝑝 (𝑤 |𝜷, 𝜃 )ª®¬𝑝 (𝜃 |𝛼)𝑑𝜃
𝑝 (𝒒𝑒 |𝛼, 𝝓) =

∫
𝜃

©«
|𝒒𝑒 |∏
𝑒

𝑝 (𝑤 |𝝓, 𝜃 )ª®¬𝑝 (𝜃 |𝛼)𝑑𝜃
(2)

where 𝑝 (𝑤 |𝜷, 𝜃 ) and 𝑝 (𝑒 |𝝓, 𝜃 ) are both subject to multi-nomial
distribution. To make the back-propagated gradient flow through a
random node, we should apply reparameterization trick (RT) [32]
in the neural networks. However, it is hard to directly develop an
effective reparameterization function for Dirichlet distribution [37],
we thus construct a Laplace approximation of Dirichlet prior. The
Dirichlet probability density function over the softmax variable 𝒉
is given by

𝑝 (𝜽 |𝛼) = Γ(∑𝑘 𝛼𝑘 )∏
𝑘 Γ(𝛼𝑘 )

∏
𝑘

𝜃
𝛼𝑘
𝑘
𝑔(1𝑇𝒉) (3)

where 𝜽 = 𝜎 (𝒉) and 𝑔 is an arbitrary density function for in-
tegrability by constraining the redundant degree of freedom. The
Laplace approximation also benefits with the property that the co-
variance matrix of the Dirichlet prior becomes diagonal for large
topic number 𝐾 [9]. The Dirichlet prior 𝑝 (𝜽 |𝛼) is approximated by
a multivariate Gaussian with mean 𝝁1 and covariance matrix 𝚺1:

𝜇1𝑘 = log𝛼𝑘 −
1
𝐾

𝐾∑
𝑖

log𝛼𝑖

Σ1𝑘𝑘 =
1
𝐾
(1 − 2

𝐾
) + 1

𝐾2

𝐾∑
𝑖

1
𝛼𝑖

(4)

We can then approximate 𝑝 (𝜽 |𝛼) in the simplex basis with
𝑝 (𝜽 |𝝁1, 𝚺1) = LN(𝜽 |𝝁1, 𝚺1) (5)

where LN is a logistic normal distribution with parameters 𝝁1, 𝚺1.
By this way, we can apply RT to logistic normal and sample 𝜽 to
approximate Dirichlet prior. The detailed implementation of NTM
is as follows:

Encoder: We first maps query words 𝒒𝑤 and its entity annota-
tions 𝒒𝑒 to pretrained 𝐿-dimension embeddings 𝒗𝑞𝑤 and 𝒗𝑞𝑒 , respec-
tively. Then convolutional neural networks (CNN) is used to encode
the meaning of a query into a fixed-length query embedding 𝒉𝑞 by
concatenating the representations of query words and entities:

𝒉𝑞 = [𝐶𝑁𝑁𝑞 (𝒗𝑞𝑤),𝐶𝑁𝑁𝑒 (𝒗
𝑞
𝑒 )] (6)

Specifically, CNN is composed of a layer of convolutions and
max-pooling as follows:

𝑐𝑚,𝑖 = 𝑅𝑒𝐿𝑢 (𝒘𝑇𝑚𝒗𝑖:𝑖+ℎ−1 + 𝑏𝑚)
𝑐𝑚 = max{𝑐𝑚,1, 𝑐𝑚,2, . . . , 𝑐𝑚,𝑛−ℎ+1}

𝐶𝑁𝑁 (𝒗) = [𝑐1 ⊕ 𝑐2 ⊕ · · · ⊕ 𝑐𝑀 ],
(7)

where𝑀 is the number of convolution kernels and 𝑛 is the num-
ber of words/entities in the query.w𝑚 and𝑏𝑚 are the weights in the
𝑚-th convolution kernel, extracting a window of ℎ words/entities
to produce a local feature. The final representation of query words/
entities is represented as the concatenation of max-pooled outputs
over all positions.

We define 𝑞(𝜽 |𝒒𝑤 , 𝒒𝑒 ) as the posterior logistic normal distribu-
tion with the posterior mean 𝝁0 and the covariance 𝚺0, which are
estimated by multi-layer neural networks F𝜇 and FΣ, i.e.,

𝝁0 = F𝜇 (𝒉𝑞), 𝚺0 = 𝑑𝑖𝑎𝑔(FΣ (𝒉𝑞)) (8)
where 𝑑𝑖𝑎𝑔 converts a column vector to a diagonal matrix. Then
we can apply RT to generate the 𝜽 ∼ 𝑞(𝜽 |𝝁0, 𝚺0) by sampling
𝝐 ∼ N(0, 𝑰 ) and computing 𝜽 = 𝜎 (𝝁0 + 𝚺

1/2
0 𝝐).

Decoder: The decoder takes the learned topic distribution 𝜽
as input. Different from previous neural topic models [24, 37], we
introduce a set of auxiliary implicit topic embeddings. The topic
embeddings are used to represent topic information and match
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with candidate document in the following topic enhanced match-
ing framework. We denote T = [𝒕1, . . . , 𝒕𝐾 ] ∈ R𝑑𝑡×𝐾 as the 𝑑𝑡 -
dimensional topic embeddings. The generative process of the query
is derived as below:

𝑝 (𝒒𝑤 |𝜷, 𝜽 ) = 𝜎 (𝑾𝛽 · 𝜎 (T𝜽 ))
𝑝 (𝒒𝑒 |𝝓, 𝜽 ) = 𝜎 (𝑾𝜙 · 𝜎 (T𝜽 )) (9)

where𝑾𝛽 ∈ R𝑉×𝑑𝑡 and𝑾𝜙 ∈ R𝐸×𝑑𝑡 are the weight matrices to
reconstruct query words and entities, respectively. 𝑉 and 𝐸 are the
vocabulary size of words and entities. The topic-word probability
matrix 𝜷 and topic-entity probability matrix 𝝓 can be regarded as
a combination of two matrices, i.e., 𝜷 =𝑾𝛽T and 𝝓 =𝑾𝜙T.

In our model, the implicit topic embeddings play a crucial role
in topic modeling, which provide better representation power com-
pared with topic distribution 𝜽 . They are learned during the gener-
ative process of VAE. To make topic embeddings independent with
each other, we add an orthogonal constraint as follows:

L𝑜𝑟𝑡ℎ = | |T𝑇T − I | |2𝐹 (10)
where I is the identity matrix and | | · | |𝐹 is the Frobenius norm.
The objective function of topic modeling is to maximize the

evidence lower bound (ELBO), as derived as follows:

L𝐸𝐿𝐵𝑂 = 𝐾𝐿(𝑞(𝜽 |𝒒𝑤 , 𝒒𝑒 ) | |𝑝 (𝜽 |𝛼)) + E𝑞 (𝜽 |𝒒𝑤 ,𝒒𝑒 ) [log𝑝 (𝒒𝑤 , 𝒒𝑒 |𝜽 , 𝜷, 𝝓)]

=

|𝑄 |∑
𝑞=1

[
−( 12 {𝑡𝑟 (𝚺

−1
1 𝚺0) + (𝝁1 − 𝝁0)𝑇 𝚺−11 (𝝁1 − 𝝁0)})

−𝐾 + log
|𝚺−11 |
|𝚺−10 |

]
+ E𝜖∼N(0,𝑰 )

[
𝒒𝑇𝑤 log(�̂�𝑤) + 𝒒𝑇𝑒 log(�̂�𝑒 )

]
(11)

where the first term is the KL divergence to match the poste-
rior 𝑞(𝜽 |𝒒𝑤 , 𝒒𝑒 ) with the prior 𝑝 (𝜽 |𝝁1, 𝚺1) (the approximation of
𝑝 (𝜽 |𝛼)) and the second term is the reconstruction error for query
words and entities generation. |𝑄 | is the number of query samples
in the training data. 𝒒𝑤 and �̂�𝑤 are the bag-of-word representation
of input query words and reconstructed query words. And it is
similar to 𝒒𝑒 and �̂�𝑒 . If there is no entity in a query, we will use
<unk> as the entity in this query. The final objective function of
NTM is thus derived as follows:

L𝑁𝑇𝑀 = L𝐸𝐿𝐵𝑂 + 𝜂 ·L𝑜𝑟𝑡ℎ (12)
where 𝜂 is a parameter to balance the orthogonal constraint.

3.3 Topic Enhanced Knowledge-aware
Framework

We then incorporate the topic embeddings from neural topic model
into a knowledge-aware retrieval model. The whole model is called
Topic Enhanced Knowledge-aware retrieval Model (TEKM), which
combines semantic similarity, knowledge relevance and topic relat-
edness for learning to rank.

Given the words and entity annotations of query and document,
our model contains three steps for relevance estimation. First, we
build four different interaction matrices to measure semantic simi-
larity, knowledge relevance and topic relatedness, which are query

words to document words, query entities to document entities,
query topics to document words and query topics to document enti-
ties. Then, we apply kernel pooling technique [43] as our interaction-
based feature extractor to generate soft-match features. Third, the
features are then concatenated to calculate the ranking score.

Interaction matrix building: We write 𝒗𝑞𝑤𝑖
, 𝒗𝑑𝑤𝑗

∈ R𝐿 to de-
note the word embedding of query 𝑞 and document 𝑑 , respectively.
We aim to build an interaction matrix𝑀 where each element in𝑀
is the embedding similarity between a query word and a document
word:

𝑀𝑠
𝑖 𝑗 = 𝑐𝑜𝑠 (𝒗

𝑞
𝑤𝑖
, 𝒗𝑑𝑤𝑗

) (13)

The matrix represents fine-grained word-level semantic similar-
ity. Similarly, we construct interaction matrix to measure knowl-
edge relevance and topic relatedness:

𝑀𝑒
𝑖 𝑗 = 𝑐𝑜𝑠 (𝒗

𝑞
𝑒𝑖 , 𝒗

𝑑
𝑒 𝑗
)

𝑀𝑡𝑤
𝑖 𝑗 = 𝑐𝑜𝑠 (𝒕𝑖 , 𝒗𝑑𝑤𝑗

)

𝑀𝑡𝑒
𝑖 𝑗 = 𝑐𝑜𝑠 (𝒕𝑖 , 𝒗𝑑𝑒 𝑗 )

(14)

where 𝒗𝑞𝑒𝑖 , 𝒗
𝑑
𝑒 𝑗

denote the entity embedding of query 𝑞 and doc-
ument 𝑑 . 𝒕𝑖 = 𝜃𝑖 · 𝒕𝑖 is the 𝑖-th query topic representation in the
weighted topic embedding matrix T̂ = 𝜽 ⊙ T and ⊙ is the element-
wise multiplication. Specifically, T̂ represents the topic information
weighted by the query’s topic distribution over all given topics.

Kernel pooling: We then apply kernel pooling technique to map
interaction matrix into soft-matched ranking features. In particular,
our model uses 𝑇 Gaussian kernels to count the soft matches of
interaction pairs at 𝑇 different strength levels. Each kernel summa-
rizes the interaction features in matrix𝑀 as soft similarity counts
in the region defined by its mean 𝜇𝑡 and width 𝜎𝑡 , generating a
𝑇 -dimensional feature vector 𝜙 (𝑀) = {𝐾1 (𝑀), . . . , 𝐾𝑇 (𝑀)}:

𝐾𝑡 (𝑀) =
∑
𝑖

log𝐾𝑡 (𝑀𝑖 )

𝐾𝑡 (𝑀𝑖 ) =
∑
𝑗

exp(−
(𝑀𝑖 𝑗 − 𝜇𝑘 )2

2𝜎2𝑡
)

(15)

where matrix𝑀 has different superscripts as shown in Equa-
tion 13 and 14. Prior studies have shown that such counting-based
pooling methods can achieve better performance than score-based
methods like mean-pooling or max-pooling [29].

We then apply kernel pooling to four interaction matrix in Equa-
tion 13 and 14, resulting 𝜙 (𝑀𝑠 ), 𝜙 (𝑀𝑒 ), 𝜙 (𝑀𝑡𝑤) and 𝜙 (𝑀𝑡𝑒 ). The
final ranking feature 𝜙 (M) is a concatenation (⊕) of four extracted
interaction features.

𝜙 (M) = 𝜙 (𝑀𝑠 ) ⊕ 𝜙 (𝑀𝑒 ) ⊕ 𝜙 (𝑀𝑡𝑤) ⊕ 𝜙 (𝑀𝑡𝑒 ) (16)

Learning to rank: This layer converts the final ranking feature
𝜙 (M) into a ranking score by a neural network:

𝑓 (𝑞, 𝑑) = tanh(𝒘𝑇𝜙 (M) + 𝒃) (17)
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Figure 3: Illustration of embedding learning in our frame-
work, e.g., word embedding learning is guided by semantic
matching signals and topic matching signals.

We apply pairwise learning to rank loss to train our model: docu-
ment 𝑑+ is ranked higher than 𝑑− in terms of ground truth prefer-
ences, with respect to a query 𝑞;

L𝑟𝑎𝑛𝑘 = max(0, 1 − 𝑓 (𝑞, 𝑑+) + 𝑓 (𝑞, 𝑑−)) (18)
The final learning objective of TEKM framework is to minimize

the ranking loss and NTM loss:
L𝑇𝐸𝐾𝑀 = L𝑟𝑎𝑛𝑘 + 𝜆 · L𝑁𝑇𝑀 (19)

where 𝜆 is a parameter to balance the two losses of learning to
rank and NTM.

3.4 Discussion
TEKM estimates relevance by modeling three relevance aspects:
semantic relevance, knowledge relevance and topical relatedness.
The parameters of the whole model are learned to better estimate
the final relevance. In particular, the embedding learning is guided
by two relevance signals, which is different from traditional kernel
pooling based ranking models. For example, word embeddings are
learned by the kernels in semantic matching interaction matrix
𝑀𝑠 and topic-word interaction matrix𝑀𝑡𝑤 . As shown in Figure 3,
the learning of word embeddings1 is guided by two matching sig-
nals, i.e., semantic similarity and topic relatedness. For traditional
word-level semantic learning process [43], a kernel moves two word
embeddings such that their similarity is closer (or away) to the ker-
nel mean 𝜇. However, the matching of word embedding can only
capture semantic similarity. In our framework, word embeddings
are also interacted with topic embeddings and updated by their
similarity (or distance) with the specific topic embedding. The topic
embedding2 can be regarded as a cluster center in the word em-
bedding space. The learning process makes the word embeddings
clustered to a specific topic in terms of their similarity to a spe-
cific topic embedding. It is similar to entity embedding used in our
model, which is guided simultaneously by knowledge relevance and
topical relatedness. Compared with previous semantic similarity
based only model [43] or knowledge-aware retrieval model [22],
our model learns the words and entities cluster points as the topic
1Different from the illustration in [43], we represent two words around the kernel and
words around the smaller kernel mean are closer in the word embedding space.
2Since topic embeddings are tuned to fit word and entity together during training, our
experiment finds that using shared topic embeddings for both word and entity can
achieve better ranking performance compared with the separated topic embeddings.

Table 1: Statistics of our experimental data Tiangong-ST

Train Valid Test

#queries 344,942 4,888 2,000
#sessions 143,155 2,000 2,000
#avg. click3 per query 3.29 3.36 3.52
#avg. doc per query 9.60 9.58 9.59

embeddings. They are further exploited to match topical relevant
words and entities in the document, providing topical relatedness
to better estimate relevance.

4 EXPERIMENTAL SETUP
4.1 Dataset
We conduct our experiments on a large-scale, publicly available
query log from a Chinese commercial search engine, Sogou.com,
namely Tiangong-ST 4 [5]. Table 1 shows the statistics of our dataset.
Tiangong-ST provides web search session data extracted from an
18-day search log. It contains weak relevance labels (i.e., click rel-
evance labels [43]) derived by six different click models for all
query-document pairs and human relevance labels for documents
in the last query of 2,000 sampled sessions. We use the 2,000 last
queries as our test set for an ad-hoc retrieval task. To avoid enor-
mous entity number in the document, we exploit document titles
in both training and testing instead of the full document content.
Prior studies [6, 43] have shown that weak relevance labels de-
rived from click models can be used to train and evaluate retrieval
models. Since the Partially Sequential Click Model (PSCM) [40]
achieves the best relevance estimation performance among the six
click model alternatives, we employ click labels from the PSCM
for training and validation. Following the experimental setups in
previous works [22, 43], we utilize three different relevance labels
to evaluate our model on the test set. In the Test-SAME setting, we
uses click relevance labels from the same PSCM to evaluate our
model. In the Test-DIFF setting, we use the Dynamic Bayesian Net-
work click model (DBM) [8] as the relevance labels for evaluation.
In HUMAN-label setting, we use the provided five-graded human
annotated relevance labels to evaluate ranking performance.

For the entity annotations, we utilize XLore [41] as our knowl-
edge graph foundation. XLore is an English-Chinese bilingual knowl-
edge graph built from EnglishWikipedia, ChineseWikipedia, Baidu
Baike and Hudong Baike. It contains 16,284,901 entities, 2,466,956
concepts and 446,236 relations. The query and document entities
are annotated by CMNS [12], the commonness (popularity) based
entity linker, which follows the settings of previous work [22]. The
distribution of the entity number is shown in Figure 4, where most
of query and document have at least one entity. The average entity
number of query and document is 3.44 and 4.92, respectively.
4.2 Experimental Settings
4.2.1 Baselines. To compare the effectiveness of three relevance
dimensions (i.e., semantic similarity, knowledge relevance and top-
ical relatedness), we exploit four different types of retrieval models
as our baselines: Topic based retrieval models (T), semantic based
3Pseudo click drawn from PSCM labels, where documents with top 29% click probability
(grade 1 or higher) are considered being clicked.
4http://www.thuir.cn/tiangong-st/.

http://www.thuir.cn/tiangong-st/
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Figure 4: The distribution of query and document with dif-
ferent entity numbers.

retrieval models (S), knowledge-aware retrieval models (S+K) and
topic enhanced knowledge-aware retrieval models (S+K+T), where
S, K, T represent semantic similarity, knowledge relevance and
topical relatedness, respectively.
• BM25 (S): A popular probabilistic bag-of-words retrieval function
that ranks a set of documents based on the query terms appearing
in each document [31].

• Matchpyramid [30] (S): A neural retrieval model that first builds
a word-level semantic interaction matrix and then applies CNNs
to aggregate it into the final relevance score. We use a one-layer
CNN with 64 (1 × 3) kernels and a (2 × 2) pooling size.

• KNRM [43] (S): A neural retrieval model that uses a kernel
pooling to model multi-level semantic similarity signals. We
use 11 kernels as the default setting in the original paper (10
soft-matching and 1 exact-matching kernels).

• ARCII [15] (S): A neural retrieval model that maps the word
embeddings of query and document to an aggregated embedding
by a CNN. we use a two-layer CNN, where the size of kernels
and pooling in both layers are set to (3 × 3) and (2 × 2). There
are 16/32 kernels in two layers.

• ARCI [15] (S): ARCI is a representation-based model which en-
codes text information by CNNs.We use a three-layer CNNwhere
the filter windows sizes are 1 to 3 and there are 64 feature maps
for each filter.

• DSSM [16] (S): DSSM is also a representation-based model. It
consists of a word hashing layer, two non-linear hidden layers,
and an output layer. We use a three-layer DNN as in the original
paper of DSSM; the hidden number of each layer is set to 50.

• KESM [44] (S+K): KESM is proposed to model the salience of
query entities in candidate documents. It uses kernel pooling
to model the interactions of query entities with the entities and
words in the document. We set the dimension of word and entity
embedding as 50 and remains other parameter settings as the
original paper.

• EDRM [22] (S+K): EDRM exploits four interactions matrices to
model word-entity duet relationships, which considers both se-
mantic similarity and knowledge relevance. We set the dimension
of word and entity embedding as 50 and remains other parameter
settings as the original paper.

• LBDM [42] (T): LDA-Based Document Model (LBDM) was firstly
proposed to combine traditional language model like query like-
lihood and BM25. It calculates relevance score as illustrated in
Equation 1. Jian et al. [17] improves LBDM by summing all the

term likelihoods 𝑝 (𝑤 |𝐷) in Equation 1 and 𝑃𝑄𝐿 can be any other
retrieval models. The inference function becomes:

𝑟𝑒𝑙 (𝑞, 𝑑) = (1 − 𝜆) · 𝑅𝑀 (𝑞, 𝑑) + 𝜆 · 𝐿𝐷𝐴(𝑞, 𝑑) . (20)

where 𝑅𝑀 represents the score from an external Retrieval Model
and 𝐿𝐷𝐴(𝑞, 𝑑) = ∑ |𝑞 |

𝑤

∑
𝑧 𝑃 (𝑤 |𝑧)𝑃 (𝑧 |𝑑) is the topic model based

relevance score. 𝜆 is tuned based on the ranking performance in
validation set. We can thus incorporate other retrieval models
by this function. To avoid redundancy when applying different
𝑅𝑀 (𝑞, 𝑑), we refer LBDM to the topic model based relevance
score 𝐿𝐷𝐴(𝑞, 𝑑) only (i.e., 𝜆 = 1) and combine it with the best
performing baseline retrieval models (i.e., KESM and EDRM) as
our baselines.

• LDA-DSSM (T): To further compare the effectiveness of individ-
ual topic information, we directly use the implicit topic vectors
from LDA to represent query and document. The vectors are then
inputted to DSSM for relevance estimation. The topic number is
set as 50.

• LDA-KESM and LDA-EDRM (S+K+T): As discussed in Equa-
tion 20, we combine the topicmodel based relevance score𝐿𝐷𝐴(𝑞, 𝑑)
with two best performing baselines instead of using all baselines.
𝑅𝑀 (𝑞, 𝑑) is replaced by the scores from KESM and EDRM. 𝜆 is
tuned based on the ranking performance in validation set, i.e.,
0.2 and 0.4, respectively.

4.2.2 Parameter settings. We implement our models using Pytorch.
The parameters are optimized by Adam, with a batch size of 32
and a learning rate of 0.001. The dimension of the word embed-
dings, entity embedding and topic embeddings in NTM are all 50.
Word embeddings are pretrained on a Chinese Wikipedia dataset5
by word2vec while entity embeddings are pretrained based on
node2vec [10]6. For CNN layer in NTM, the filter windows sizes are
1 to 3 and there are 50 feature maps for each filter. Topic embedding
is initialized by orthogonal initialization. For kernel pooling, we use
11 kernels which contain an exact match kernel (𝜇 = 1, 𝜎 = 0.001)
and 10 soft match kernels (𝜇 = [0.9, 0.7, · · · ,−0.9], 𝜎 = 0.1). The
hyper-parameter 𝜂 and 𝜆 are selected from [0.001, 0.01, 0.1,1,10].
The number of topics is selected from [32, 64, 128, 256, 512]. Early
stopping with a patience of 5 epochs is adopted during the training
process. We use NDCG (Normalized Discounted Cumulative Gain)
as evaluation metric. The source code is publicly available7.

5 EVALUATION RESULTS
5.1 Overall Ranking Performance
We first compare our model TEKMwith various comparisonmodels.
The overall ranking performance under three different evaluation
labels are shown in Table 2 and 3.

We first observe that most of retrieval models perform simi-
larly among three evaluation labels and the performance on PSCM
is more like that of human labels. It shows that retrieval models
trained on click labels are also effective for human evaluation.

For Topic based retrieval model, we find that LDBM and LDA-
DSSM performworst comparedwith other retrieval models on three

5http://download.wikipedia.com/zhwiki
6We do not use the popular TransE [4] to pretrain entity embedding because the
number of relation types in XLore is small.
7https://github.com/lixsh6/TEKM-ranker.

http://download.wikipedia.com/zhwiki
https://github.com/lixsh6/TEKM-ranker
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Table 2: Overall ranking performance of our model and other baselines. Results of best performing baselines are underlined.
1, 2 indicates a significant improvement over KESM and EDRM, respectively. † indicate statistically significant improvements
over all baselines. (p-value ≤ 0.05)

PSCM(SAME) DBN(DIFF)

NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10
Topic based retrieval model (T)

LBDM 0.1530 0.2064 0.3419 0.3762 0.1374 0.1634 0.2953 0.3294
LDA-DSSM 0.2191 0.2403 0.3971 0.5023 0.1582 0.2341 0.3223 0.4021
Semantic based retrieval models (S)

BM25 0.2403 0.3887 0.4743 0.6363 0.2144 0.3688 0.4440 0.6039
MatchPyramid 0.3254 0.4108 0.4936 0.6558 0.2707 0.3579 0.4512 0.6165
KNRM 0.5224 0.5978 0.6622 0.7642 0.4074 0.5279 0.5901 0.6986
ARCII 0.5657 0.6117 0.6866 0.7854 0.4304 0.5175 0.5888 0.7084
ARCI 0.5834 0.6475 0.7012 0.7946 0.4512 0.5493 0.6059 0.7204
DSSM 0.5859 0.6646 0.7143 0.8043 0.4497 0.5583 0.6134 0.7263
Knowledge-aware retrieval model (S+K)

KESM 0.6690 0.7674 0.7447 0.8459 0.4849 0.5831 0.6453 0.7403
EDRM 0.7233 0.7812 0.8106 0.8645 0.5053 0.5990 0.6702 0.7490

Topic enhanced knowledge-aware ranking model (S+K+T)

LDA-KESM 0.67831 0.7712 0.7489 0.8473 0.4612 0.5703 0.6204 0.7367
LDA-EDRM 0.7211 0.7885 0.82032 0.8685 0.4942 0.5790 0.6531 0.7354

TEKM 0.7328† 0.8042† 0.8377† 0.8818† 0.5431† 0.6366 † 0.7015† 0.7811 †

Table 3: Over ranking performance on Human annotated la-
bels. Significance marks 1, 2, † are the same as Table 2.

NDCG@1 NDCG@3 NDCG@5 NDCG@10
Topic based retrieval model (T)

LBDM 0.2205 0.2449 0.4402 0.5585
LDA-DSSM 0.3748 0.3842 0.5402 0.6092
Semantic based retrieval models (S)

BM25 0.4528 0.5533 0.6244 0.7856
MatchPyramid 0.4807 0.5565 0.6135 0.7849
KNRM 0.5560 0.6080 0.6707 0.8144
ARCII 0.5822 0.6363 0.6889 0.8285
ARCI 0.6045 0.6628 0.7043 0.8256
DSSM 0.6141 0.6550 0.7016 0.8253
Knowledge-aware retrieval model (S+K)

KESM 0.6164 0.6547 0.6989 0.8345
EDRM 0.6314 0.6655 0.7135 0.8389
Topic enhanced knowledge-aware retrieval model (S+K+T)

LDA-KESM 0.6213 0.6604 0.7017 0.8401
LDA-EDRM 0.6351 0.6714 0.72212 0.8415

TEKM 0.6549† 0.7003† 0.7363† 0.8522†

different evaluation labels. This illustrates that using individual
topic information to represent query and document will lose much
information in the original text and hurt ranking performance.

For Semantic based retrieval models, we first observe that
BM25 performs relatively worse compared with other models. This
indicates thatmerely considering exact wordmatching is not enough

to model the relevance between query and document. Instead, neu-
ral retrieval models, which models semantic similarity based on
distributed word embeddings, can achieve substantial improve-
ments over BM25. It shows that semantic similarity is a key part
to estimate relevance for neural retrieval models. Compared with
all semantic based retrieval models, our model TEKM achieves
significantly better ranking performance, which indicates that con-
sidering more relevance dimensions are helpful to construct better
retrieval models.

ForKnowledge based retrievalmodels, both KESMand EDRM
achieve better performance than semantic based retrieval models
significantly over three evaluation labels. It illustrates that knowl-
edge relevance is also an important part for relevance estimation
besides semantic similarity. The main difference between KESM
and EDRM is that KESM only exploits query entities and ignores
query words to match the document’s words and entities. This re-
sults in the relatively poor performance of KESM. Our model TEKM
outperforms KESM and EDRM with a significant level over three
evaluation labels. This confirms that topic relatedness is useful for
the retrieval task and it can be well exploited in our framework.

ForTopic enhancedknowledge-aware retrievalmodels, we
find that the topic enhanced framework in Equation 20 does not
improve the best performing baselines KESM and EDRM signif-
icantly over most evaluation metrics. The results on DBN labels
are even worse than the original retrieval models. This shows that
topic information cannot be simply incorporated into neural net-
works. However, our model TEKM learns topic embedding to rep-
resent each topic from both neural topic model and the following
matching framework in an end-to-end manner. Therefore, the topic
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Table 4: Ablation study of different ways to construct topic embeddings. Relative performances are compared in percentages.

PSCM(SAME) DBN(DIFF) HUMAN

NDCG@3 NDCG@10 NDCG@3 NDCG@10 NDCG@3 NDCG@10

TEKM (w/o topic) 0.7713 0.8628 0.6101 0.7567 0.6555 0.8329
TEKM (word only) 0.7889 (+2.28%) 0.8795 (+1.95%) 0.6218 (+1.92%) 0.7705 (+1.82%) 0.6981 (+6.50%) 0.8504 (+2.10%)
TEKM (entity only) 0.7722 (+0.12%) 0.8694 (+0.76%) 0.6172 (+1.16%) 0.7674 (+1.41%) 0.6746 (+2.91%) 0.8485 (+1.87%)
TEKM 0.8042 (+4.27%) 0.8818 (+2.20%) 0.6366 (+4.34%) 0.7811 (+3.22%) 0.7003 (+6.83%) 0.8522 (+2.32%)

embeddings have better topic representation power and can be well
exploited in neural retrieval model. In summary, our model outper-
forms other baselines significantly over three evaluation metrics.
It demonstrates that topic relatedness is useful for retrieval task
and our model can measure three relevance dimensions well for
constructing better neural retrieval models.

5.2 Ablation Study on Topic Embeddings
This experiment studies the effectiveness of different inputs to
build topic embeddings. Recall that neural topic model takes both
query words and entities as inputs and reconstructs both of them
based on the topic embeddings. Therefore, we test our model by
using different inputs to the neural topic model, yielding TEKM
without topic embeddings (w/o topic), TEKM with only word input
(word only) and TEKM with only entity input (entity only). The
ranking performance over three different evaluation labels is shown
in Table 4.

Using both query words and entities for neural topic model
aims to improve the quality of generated topic embeddings. TEKM
without topic embedding only considers semantic similarity and
knowledge relevance like other knowledge-aware retrieval model.
Its difference with EDRM is that EDRM uses additional word-entity
interaction matrices. TEKM (w/o topic) performs similarly with
EDRM, which demonstrates that word-word and entity-entity in-
teraction matrices are the key part to model semantic similarity
and knowledge relevance. Furthermore, we observe that in general
our framework built on the generated topic embeddings achieves
better performance than the original model without topics. It shows
that both inputs (words and entities) are helpful for topic modeling.
In particular, our model generating on the single word inputs per-
forms substantially better than that of the single entity inputs. The
improvement over the single entity inputs is also limited compared
with the original model. This is due to two reasons:1) using entity
information to represent the whole query will lose a part of infor-
mation out of the extracted entities and there are also a few queries
without any entities (See Figure 4). 2) the entity extraction method
used in our study cannot guarantee the quality of the extracted
entities, where wrong or duplicated entities may be extracted. Both
of these two reasons cause the information loss in topic modeling
and effects the topic quality. Moreover, this also indicates that word
information is crucial to topic modeling since the learned topic
embeddings from individual word information improves ranking
performance substantially.

By combining both of query words and entities, TEKM outper-
forms other variants with single input source. It illustrates that our
model can make full of different sources and learns better topic
embeddings for further relevance estimation.
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Figure 5: Ranking performance comparison between TEKM
andEDRMon the human annotated labels. Y-axis represents
the Win/Loss number over different groups.

5.3 Performance on Different Scenarios
This experiment analyzes the influence of topical relatedness in two
different scenarios: different query lengths and query frequencies.
We compare the performance of our model TEKM with the best
performing baseline EDRM and count Win/Loss number in Figure 5.

Prior studies [22] have shown that query length is an important
impact on ranking performance. We split the testing queries into
three groups in terms of their lengths: short queries (≤ 2 words),
medium queries (3-4 words) and long queries (≥ 5 words). It is
observed that TEKM has more win cases and achieves the larger
improvements on short and medium queries. According to the pre-
vious study [36], short queries tend to be broad and have ambiguous
search intent. By adding additional relevance dimension (topical re-
latedness), our model can perform better when limited information
is available from the original query text.

We calculate query frequency by averaging the term frequency
in the training set and category them into three groups: the 30%
queries with the lowest frequency (Low), the 30% queries with the
highest frequency (High) and others (Medium). We observe that
queries with high and medium frequency performs better compared
with EDRM. Previous research [14] found that topic model is unable
to learn a good topic representation on the sparse text since topic
model is learned based on context information. Therefore, this
reason causes our model use a relatively noisy topic embedding,
which influences the performance of relevance estimation.

Note that short queries do not mean that the query frequency
is low. There may be popular words in the short queries and thus
they have good ranking performance. As explained in previous
study [14], topic modeling approaches are very useful for short text
and it does not mean that the model itself should be trained on
short text. Instead, a model trained on aggregated longer text can
yield better performance.
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Table 5: Examples from queries that TEKM improves or hurts compared with EDRM. The top-ranked documents by two
models and the topic words from the topic with maximal probability are shown. Document IDs from the original data are in
parenthesis.

Cases that TEKM improves the ranking performance

Query Topic words TEKM Preferred Document EDRM Preferred Document

Driver Genius Official download computer
version TXT software ...

(d72422) "Driver genius 2017 official website
to download - PChome download center" (d184681) "Driver genius - Sogou Wiki"

Bank rate Fund net value Oriental
... stock makes

(d38606) "Bank Financial Port - Bank rate
about deposits, loan and others"

(d162219) "Gaps between Bank rates
in different banks increases "

National education platform ... educational backstage entrance
login education resources

(d66699) "National basic education
resource website"

(d82766) "How to use National
education public service"

Cases that TEKM hurts the ranking performance

Insurance and bank deposit Mean what effect
+ impact useful ...

(d93837) "Old people
deposit money to banks"

(d93835) "Difference between insurance
and bank deposit - sunflower insurance "

How to connect
laptop with iphone4s

Official download computer
version TXT software ...

(d401713) "IOS7 firmware download
- iPhone5s/iphone4s"

(d137596) "How to connect laptop
with iphone4s - BAIDU Experience"

microphone sound is low Official download computer
version TXT software ...

(d286919) "LENOVO official website,
product instruction, tutorial"

(d286915) "Win7 - microphone sound is
low, solution - BAIDU Experience"
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Figure 6: Ranking performance over different topic coher-
ences on the human annotated labels. Topic indices are
sorted by the topic coherence.

Table 6: Ranking performance over different topic numbers
on three evaluation labels.

PSCM DBN HUMAN

NDCG @3 @10 @3 @10 @3 @10

16 0.7866 0.8728 0.6186 0.7712 0.6700 0.8442
32 0.7887 0.8756 0.6233 0.7697 0.6775 0.8423
64 0.8012 0.8782 0.6278 0.7768 0.6801 0.8459
128 0.8042 0.8818 0.6366 0.7811 0.7003 0.8522
256 0.8038 0.8810 0.6371 0.7804 0.6966 0.8474
512 0.8074 0.8834 0.6384 0.7813 0.6941 0.8502

5.4 Impact of Topic Coherence
Topic embedding is a crucial part in our model which is used to
measure topical relatedness for relevance estimation. Thus, it is also
interesting to analyze if the quality of topics will influence the final
ranking performance. To measure the topic quality, we use topic
coherence as our metric. Topic coherence is a quantitative measure

of the interpretability of a topic [26]. It is the average point-wise
mutual information of the words from the same topic:

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 (𝑘) =
20∑
𝑖, 𝑗

2
𝑁 2 log

𝑃 (𝑤𝑖 ,𝑤 𝑗 )
𝑃 (𝑤𝑖 )𝑃 (𝑤 𝑗 )

(21)

where 𝑤𝑖 ,𝑤 𝑗 are the top 20 most likely words in the topic 𝑘 .
𝑃 (𝑤𝑖 ,𝑤 𝑗 ) is the probability of words 𝑤𝑖 and 𝑤 𝑗 co-occurring in
the same text (i.e., the query in our study). 𝑃 (𝑤𝑖 ) is the marginal
probability of word𝑤𝑖 . The intuitive idea behind topic coherence
is that a coherent topic will display words that tend to occur in the
same query. Since the quality of the annotated entities is not always
perfect due to the extraction method (as discussed in Section 5.2)),
we only calculate the coherence score of words. We group the rank-
ing performance of each testing query in terms of their coherence
of the most likely topic. The average ranking performance of each
groups over the sorted coherences on the human annotated labels
is shown in Figure 6.

We observe that generally, the ranking performance of our model
TEKM has positive correlation with the coherence score. The pear-
son correlation coefficient is 0.69 with a significant level (𝑝 < 0.01).
It shows that our topic enhanced framework relies on the quality
of the learned topics to some extent. The noisy topic embeddings
cannot be a good cluster point among the word embeddings, as
discussed in Section 3.4. This reason causes our model learn a noisy
topical relatedness and thus influences the ranking performance.

5.5 Impacts of topic number
This experiment studies the ranking performance when using dif-
ferent topic numbers. Due to the space limitation, we only report
NDCG@3, 10 and other metrics are qualitatively similar. We tune
the topic number in the range of {16, 32, 64, 128, 256, 512}. The
results are shown in Table 6.

We can observe that on three evaluation labels, our model TEKM
performs relatively worse when the topic number is small. Recall
that the topic number can be regarded as the number of clusters
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in embedding space, as discussed in Section 3.4. When using small
topic number, it is hard to have meaningful clusters (i.e., high topic
coherence). Therefore, our model cannot perform well over small
topic number. On the other hand, as topic number increases, our
model performs better on PSCM and DBN labels, but the perfor-
mance on human annotated labels drops. This is probably due to the
gap between click labels and real manual labels [20]. The training
on click labels may be over-fitted on other testing labels.

5.6 Case Study
With some special cases we can better understand how topical
relatedness is exploited in our model. In Table 5, we compare both
good and bad cases compared with EDRM, which does not consider
topical relatedness. The top-ranked documents by two models with
respect to different queries.

The improvements from TEKM are mainly from its ability to
estimate suitable topical relatedness. As discussed in Section 5.3, we
find our model performs better than EDRM over short and medium
queries. When the search intent of the issued query is vague or
broad, our model improves the ranking performance by additional
relevance dimension modeling. For example in the improved cases
in Table 5, “Driver Genius” is a popular application software. Our
model produces a topic about looking for softwares and ranks the
Web page with application direct download at the top position.
Besides semantic matching signal (or exact matching signal in this
case), our model provides additional topical relatedness (download)
that is more suitable to satisfy user search intent.

The cases that TEKM hurts are mostly due to two reasons: 1)
Wrong topic clustering or low-quality topic interpretability (i.e.,
topic coherence). As the first case that TEKM hurts in Table 5,
the query drops in a topic that is hardly to interpret (with topic
coherence 0.087). Our model thus cannot provide a suitable topical
relatedness and leads to wrong signals for relevance estimation.
This noise hurts the ranking performance of our model. 2) We
observe that when a query has clear search intent, the topical
relatedness does not help to improve ranking performance. And it
is worth noting that most of these cases happened on long queries.
For example, in the last two cases in Table 5, their search intent is
already clear. Although our model provides the correct topics with
good quality, the topical relatedness is not so helpful. This finding
is similar to the discussion about the query length in Section 5.3.
It suggests that topical relatedness is more suitable for the queries
without clear search intent.

6 CONCLUSION
This paper proposes a Topic enhanced knowledge-aware retrieval
model (TEKM) which explicitly models three dimensions of rele-
vance. Specifically, we introduce semantic similarity, knowledge
relevance and topical relatedness into the process of relevance es-
timation. TEKM employs a neural topic model to generate topic
embeddings, which are further exploited to soft match with word
and entity embeddings. To the best of our knowledge, this is the
first attempt to integrate topic information into neural retrieval
models. Extensive experiments demonstrate the effectiveness of
the proposed framework and its advantages in different scenarios.
Moreover, since we exploit neural topic model to generate topic

embeddings, our model also inherits similar characteristics with
traditional topic models. For example, our model tends to perform
better when the topic quality (i.e., coherence) is good and the pre-
defined topic number is suitable for the dataset. Finally, we conduct
case study to understand how topic information contributes to the
ranking improvements. We illustrate the importance to model top-
ical relatedness when the search intent is vague or broad and its
dispensability in two aspects. Our study systematically analyzes
the effectiveness of topic information in different ranking scenarios,
providing a solid understanding of how to effectively utilize topic
information for neural retrieval models.

In the future, we plan to extend our work to contextualized
transformer-based ranking model like BERT [7]. We also plan to
design self-adapted strategies to weight different relevance dimen-
sions. For example, when the topic coherence is low, the weight
of estimated topical relatedness should be lower than other di-
mensions. We believe that estimating relevance from different di-
mensions is necessary for better inferring user search intent and
building better web search systems.
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