SIGIR 2008, Singapore

A Generation Model To Unify Topic Relevance and Lexicon-based Sentiment For Opinion Retrieval

Min Zhang, Xingyao Ye
Tsinghua University, Beijing, China
z-m@tsinghua.edu.cn

July 22, 2008

Introduction

- A growing interest in finding out people's opinions from web data
 - Product survey
 - Advertisement analysis ...
 - Political opinion polls
 - TREC started a special track on blog data in 2006 blog opinion retrieval
 - o It has been the track that has the most participants in 2007

Related Work

- The popular opinion identification approaches
 - Text classification [Tong 01, Liu 05, Zhang 06, etc]
 - Lexicon-based sentiment analysis [Liao 06, Mishne 06, Yang 06, Oard 06, Macdonald 07]
 - Opinion retrieval
- Opinion retrieval: To find the **sentimental relevant** documents according to a user's query
- Topicality and polarity are first fused together to form the notion of opinion retrieval by Hurst and Nigam [Hurst 04]
 - Emphasize on how to judge the existence of opinions
- First generation model on opinion ranking using the cross entropy of topics and sentiments [Eguchi 06]

$$\alpha \sum_{v} R_t(v) \log P_t(v) + (1 - \alpha) \sum_{v} R_s(v) \log P_s(v)$$

Related Work (cont.)

- One of the key problems: How to combine opinion score with relevance score of each document for ranking
- Ad hoc solutions of combining relevance ranking and opinion detection result
 - 2 steps: rank with relevance, then re-rank with sentiment score
 - Generally linear combination by experience
 - TREC blog 06 observation [Ounis 06]
 - Existing methods to sentimental document ranking provide no improvements over mere topic-relevance ranking
 - TREC blog 07
 - Better result, but still an interesting observation that the topicrelevance result outperforms most opinion-based approaches

- The Generation Model
 - To find both sentimental and relevant documents with ranks
- Topic Relevance Ranking
- Opinion Generation Model and Ranking
- Ranking function of generation model for opinion retrieval

The Proposed Generation Model

- In existing probabilistic-based IR models, two ways to factor the "relevance" probability [Lafferty 03]
 - query generation and document generation
- Document generation model: how well the document d "fits" the particular query q, estimate posterior probability $p(d \mid q)$

$$p(d \mid q) \propto p(q \mid d)p(d)$$

• When assuming a uniform document prior, the ranking function is reduced to the likelihood of generating the expected query terms from the document.

The Proposed Generation Model (Cont.)

- In opinion retrieval, $p(d \mid q, s)$
- In this work, discuss lexicon-based sentiment analysis
 - Assume
 - The latent variable s is estimated with a pre-constructed bag-of-word sentiment thesaurus
 - \circ All sentiment words s_i are uniformly distributed.

• Then
$$p(d|q,s) = \sum_{i} p(d|q,s_{i})p(s_{i},s)$$
.
$$= \frac{1}{|s|} \sum_{i} p(d|q,s_{i}) + |s| = \# \text{ of words in sentiment the saurus}$$

$$\propto \frac{1}{|s|} \sum_{i} p(q,s_{i}|d)p(d) + \# \text{ topic relevance}$$

The Proposed Generation Model (Cont.)

• The final generation model

$$p(d|q,s) = I_{op}(d,q,s)I_{rel}(d,q)$$

$$I_{Op}(d,q,s) \stackrel{\text{def}}{=} \frac{1}{|S|} \sum_i p(s_i|d,q)$$
, opinion generation model to sentiment analysis

$$I_{rel}(d,q) \stackrel{\text{def}}{=} p(q|d)p(d)$$
 document generation model to estimate topic relevance

- Essentially it presents a quadratic relationship between document sentiment and topic relevance
- v.s. In previous work, linear combination

$$Rel_Op_Score = (1 - \lambda)Senti_Score + \lambda Rel_Score$$

Generation Model For Opinion Retrieval Information Retrieve @ Tsinghtus University

- The Generation Model
 - To find both sentimental and relevant documents
- o Topic Relevance Ranking
- Opinion Generation Model and Ranking
- Ranking function of generation model for opinion retrieval

Topic Relevance Ranking Model $I_{rel}(d,q)$

- The Binary Independent Retrieval (BIR) model is one of the most famous ones in this branch
 - Heuristic ranking function BM25

$$ScoreI_{rel}(d,q) := \sum_{w \in q \cap d} \left(ln \frac{N - df(w) + 0.5}{df(w) + 0.5} \times \frac{(k_1 + 1) \times c(w,d)}{k_1((1-b) + b \frac{|d|}{avdl} + c(w,d)} \times \frac{(k_3 + 1) \times c(w,q)}{k_3 + c(w,q)} \right)$$

c(w,d) is the count of word w in the document d,
c(w,q) is the count of word w in the document q,
N is the total number of documents in the collection,
df (w) is the number of documents that contain word w
|d| is the length of document d,
avdl is the average document length,
k₁(1.0 to 2.0),b (usually 0.75) and k₃ (0 to 1000) are constants.

10

Generation Model For Opinion Retrieval Information Retrieve @ Tsinghtus University

- The Generation Model
 - To find both sentimental and relevant documents
- Topic Relevance Ranking
- o Opinion Generation Model and Ranking
- Ranking function of generation model for opinion retrieval

Opinion Generation Model $I_{op}(d,q,s)$

 \circ $I_{op}(d,q,s)$ focus on the problem that given query q, how probably a document d generates a sentiment expression s.

$$I_{Op}(d,q,s) \stackrel{\text{def}}{=} \frac{1}{|S|} \sum_i p(s_i|d,q) \propto \sum_i p(s_i|d,q)$$

- This opinion generation model is on the branch of query generation
- Different from general query generation model
 - |S| is quite large (~ thousands)
 (v.s. in general models, # of terms in the query is usually small)
 - Sparseness problem → smoothing

Opinion Generation Model

Information Retriever @ Tsinghua University

Parameter Estimation (smoothing)

$$p(s_i|d,q) = \begin{cases} p_{seen}(s_i|d,q) \\ p_{unseen}(s_i|d,q) \end{cases} = \begin{cases} p_s(s_i|d,q) & if \ s_i \ is \ seen \\ \alpha_d p(s_i|C,q) & otherwise \end{cases}$$

- By Zhai & Lafferty's study, **Jelinek-Mercer smoothing** is more effective when the "queries" are long and more verbose.
 - In this proposed opinion generation model, the "queries" are sentiment words

$$p_s(s_i|d,q) = (1-\lambda)p_{ml}(s_i|d,q) + \lambda p(s_i|C,q), \quad \alpha_d = \lambda$$

 $p_{ml}(s_i|d,q)$: the maximum likelihood estimation of $p(s_i|d,q)$

Opinion Generation Model

Parameter Estimation (smoothing)

• Recall
$$I_{Op}(d,q,s) \stackrel{\text{def}}{=} \frac{1}{|S|} \sum_i p(s_i|d,q) \propto \sum_i p(s_i|d,q)$$

$$\circ \sum_i p(s_i|d,q)$$

$$= \sum_{s_i \in d} p(s_i|d,q) + \sum_{s_i \notin d} p(s_i|d,q) + \sum_{s_i \in d} p(s_i$$

$$= \sum_{s_i \in d} p_S(s_i|d,q) + \sum_{s_i \notin d} \alpha_d p(s_i|C,q) + \sum_{s_i \notin d} \alpha_d p(s_i|C,q) + \sum_{s_i \in d} p_S(s_i|C,q) + \sum_{s_i \in d} p$$

$$= \sum_{s_i \in d} [(1-\lambda)p_{ml}(s_i|d,q) + \lambda p(s_i|C,q)] + \sum_{s_i \notin d} \lambda p(s_i|C,q)$$

$$= \sum_{s_i \in d} (1 - \lambda) p_{ml}(s_i | d, q) + \lambda \sum_i p(s_i | C, q) +$$

$$= \sum_{s_i \in d} (1 - \lambda) p_{ml}(s_i | d, q) + \lambda$$

• We use the co-occurrence of s_i and q inside d within a window W as the ranking measure of $p_{ml}(s_i|d,q)$, then

$$Scorel_{op}(d,q,s) := \sum_{s_i \in d} (1-\lambda) \frac{co(s_i,q|w)}{c(q,d)|w|} + \lambda$$

 $co(s_i,q|w)$: the frequency of s_i which is co-occurred with q within W c(q,d): the query term frequency in the document, |W|: window size

Generation Model For Opinion Retrieval Internation Retrieve @ Tsinghtus University

- The Generation Model
 - To find both sentimental and relevant documents
- Topic Relevance Ranking
- Opinion Generation Model and Ranking
- Ranking function of generation model for opinion retrieval

Ranking function of generation model for opinion retrieval

• The final ranking function of the proposed generation model

$$p(d \mid q, s) = ScoreI_{op}(d, q, s) \times ScoreI_{rel}(d, q)$$

$$= (\sum_{S_i \in d} (1 - \lambda) \frac{co(s_i, q \mid W)}{c(q, d) \cdot |W|} + \lambda) \times ScoreI_{rel}(d, q)$$

$$p(d \mid q, s) = ScoreI_{rel}(d, q) \qquad \lambda = 1$$

To reduce the impact of unbalance between #(sentiment words)
 and #(query terms) → logarithm normalization

$$p(d \mid q, s) = [(1 - \lambda) \log(\sum_{S_i \in d} \frac{co(s_i, q \mid W)}{c(q, d) \cdot |W|} + 1) + \lambda] \times ScoreI_{rel}(d, q)$$

Experimental Setup – Data Set

- Data set
 - TREC blog 06 and TREC blog 07data
 - Permalinks, homepages and feeds
 - 100,649 blogs during 2.5 months
 - Only use permalinks in this work
 - 50 + 50 topics
 - Short queries (only <title> field)
- Strategy: find top 1000 relevant documents, then rerank the list with proposed model

Experimental Setup – Models

• General linear combination (Shown as *Linear Comb.*)

$$Rel_Op_Score = (1-\lambda)Senti_Score + \lambda Rel_Score$$

• Our proposed generation model with Jelinek-Mercer smoothing (Shown as *generation model*)

$$p(d \mid q, s) = ScoreI_{op}(d, q, s) \times ScoreI_{rel}(d, q)$$

$$= (\sum_{S_i \in d} (1 - \lambda) \frac{co(s_i, q \mid W)}{c(q, d) \cdot |W|} + \lambda) \times ScoreI_{rel}(d, q)$$

• Our proposed generation model with Jelinek-Mercer smoothing and logarithm normalization (Shown as *Generation*, *log*)

$$p(d \mid q, s) = [(1 - \lambda) \log(\sum_{S_i \in d} \frac{co(s_i, q \mid W)}{c(q, d) \cdot |W|} + 1) + \lambda] \times ScoreI_{rel}(d, q)$$

Experimental Setup – Sentimental Lexicons

V			N.	
		-)		
		_		
_		•		
rmati	on Retr	iever@1	singhu	a Universit

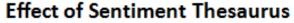
	Thesaurus Name	Size	Description
1	HowNet	4621	English translation of pos/neg Chinese words from HowNet
2	WordNet	7426	Selected words from WordNet with seeds
3	Intersection	1413	Words appeared in both 1 and 2
4	Union	10634	Words appeared in either 1 or 2
5	General Inquirer	3642	All words in the positive and negative categories
6	SentiWordNet	3133	Words with a positive or negative score above 0.6

L9

Experimental Results And Discussion

- Effectiveness of Sentimental Lexicons
- Selection of Window Size
- Opinion Retrieval Model Comparison
- Per-topic Analysis
- Case Study

1. Effectiveness of Sentimental Lexicons



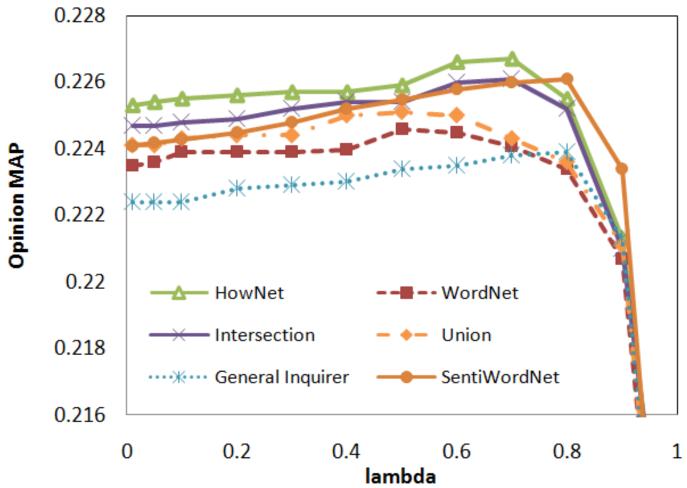
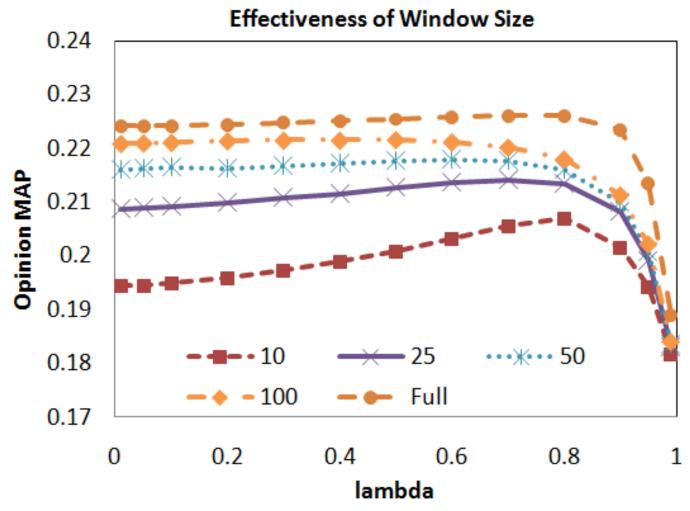


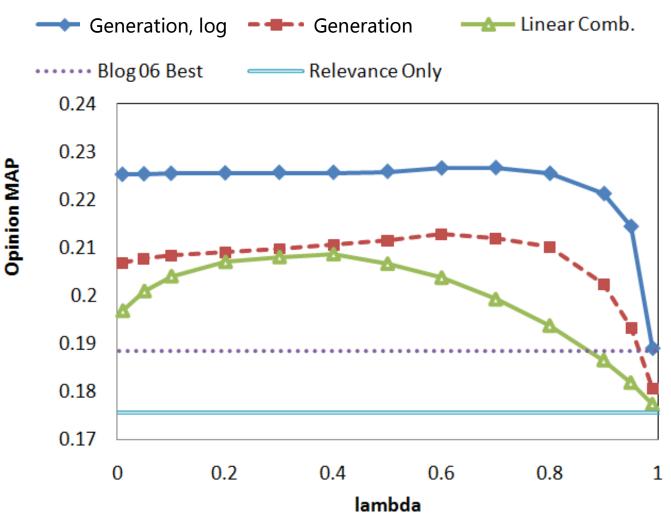
Figure 3 MAP -λ curve for different sentiment thesaurus. (Blog 06 Data) All the following experiments use sentiWordNet

2. Selection of Window Size



• Figure 4. MAP v.s. window size under different λ (Blog06)

3. Opinion Retrieval Model Comparison



• Figure 5. MAP-λ curve for different opinion ranking formulas

3. Opinion Retrieval Model Comparison (Cont.)

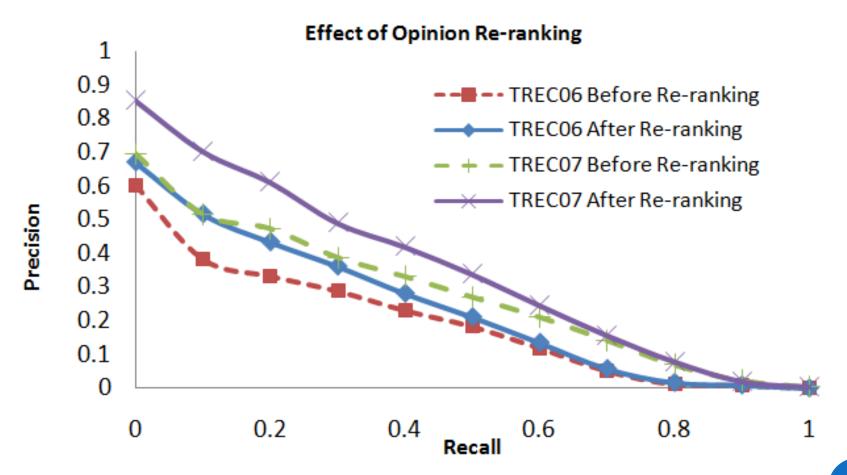
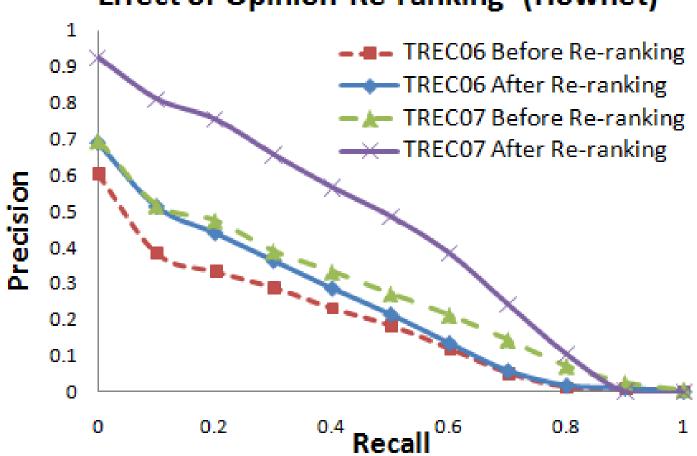


Figure 6. Precision-recall curves before and after opinion re-ranking of top 1000 relevant documents

3. Opinion Retrieval Model Comparison (Cont.)

Effect of Opinion Re-ranking (Hownet)



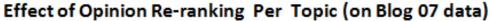
3. Opinion Retrieval Model Comparison (Cont.)

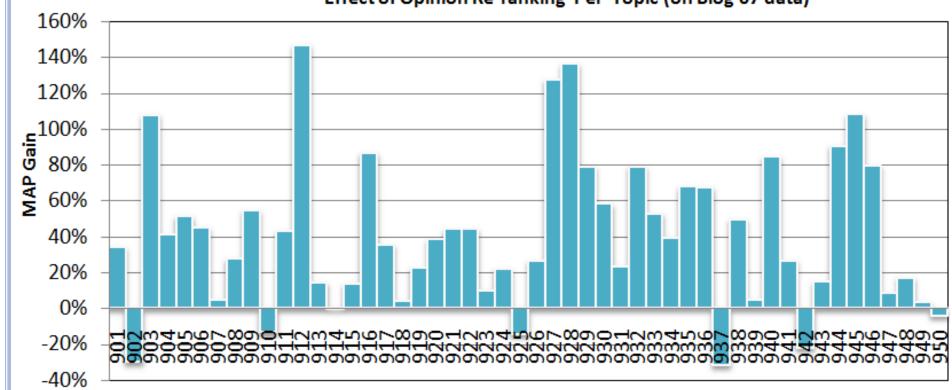
Data Set	Method	MAP	R-Prec	P@10
Blog 06	Best run at blog 06	0.2052	0.2881	0.468
	Best title-run at blog 06	0.1885	0.2771	0.512
	Our Relevance Baseline(title-run)	0.1758	0.2619	0.350
	Our Unified Model	0.2257	0.3038	0.507
Blog 07	Greatest improvement at blog 07	15.9%	8.6%	21.6%
	Our Relevance Baseline(title-run)	0.2632	0.3249	0.432
	Our Unified Model *	0.3371	0.3896	0.606
	improvement	28.1%	19.9%	40.3%

*: on Blog 07 data, use the same parameters as those on Blog 06 data,

 $\lambda = 0.6$, window = full, thesaurus: SentiWordNet

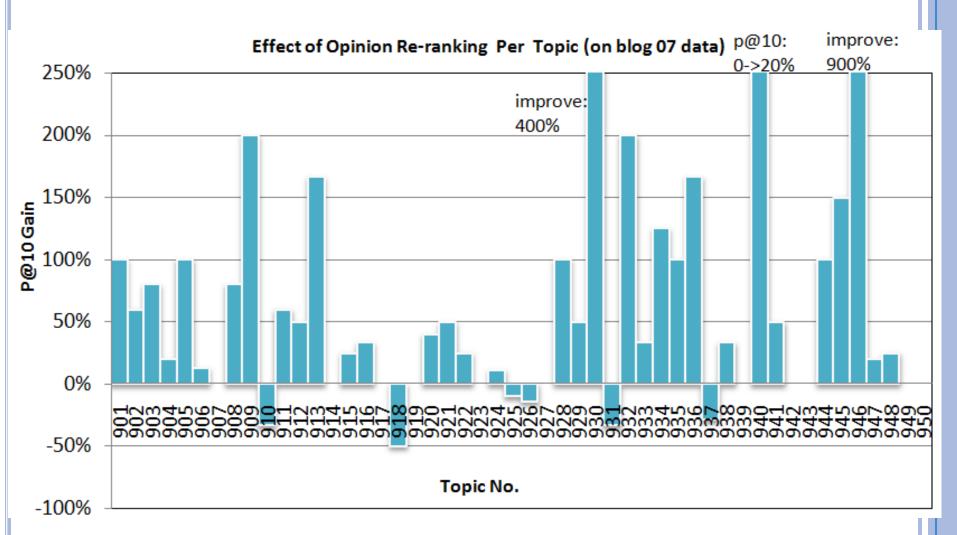
4. per-topic analysis (MAP Gain)





Topic No.

4. per-topic analysis (p@10 Gain)



5. Case Study

Details of the best re-ranked topics examples

Topic	Title		Description			
TREC 06 - 895	Oprah		Find opinions about Oprah Winfrey's TV show			
	MAP	Prec@10	Prec@30	Prec@100	Prec@1000	
Before re- ranking	0.0687	0.2000	0.0333	0.1200	0.0640	
After re- ranking	0.2721	0.8000	0.5000	0.3400	0.0640	
Topic	Title		Description			
TREC 07 - 946	tivo		Find opinions about TIVO brand digital video recorders			
	MAP	Prec@10	Prec@30	Prec@100	Prec@1000	
Before re- ranking	0.2779	0.1000	0.3333	0.3900	0.2650	
After re- ranking	0.4991	1.0000	0.9667	0.8300	0.2650	

Topic 946 – example 1

BLOG06-20051229-025-0029161424, ranked 283 \rightarrow ranked1

- TiVo's custom wireless G USB adapter has arrived. As previously reported the adapter is compatible with Series 2 models and off-loads some of the network processing, by utilizing a full MAC chipset..." Sells for \$50 Factorial description, no opinion
- I understand it s not the adapter but the TiVo software, but I don't care. TiVo could fix that pretty easy but chooses not to at the expense of our security. I run my TiVo wireless. Mainly because...
- I guess it s a good thing indirectly, less incentive to watch TV. Personally I think that it s nice to be able to organise TV life around your life
- o Not having WPA is a fault of the Tivo software, not the device (AFAIK this is not a "smart" device). I run all my Tivos with Netgear WG111s... Ill also be a bit miffed if they turn out to get decent transfer speed with these things as Tivo just sold me the 111s as their 30 fastest transfer method,

Topic 946 – example 2

• <DOCNO>BLOG06-20051225-017-0000132016</DOCNO>

<content>

Tivo

Ranked 5 → Ranked 306

Monday, August 15, 2005

The Internet s tivo software Resource Search Google: Other tivo software Resources: Hacking the TiVo TiVo is a trademark of TiVo Inc. This site or software on this site is in no way affiliated with or endorsed by TiVo Inc. TiVo Community Forum - powered by vBulletin This also includes hacks that remove ads from TiVo software. 17385 2434... USATODAY.com - TiVo investors give standing ovation to Comcas..

posted by mdb @

0 Comments:

</content>

</DOC>

Conclusion

- Proposed a formal generation opinion retrieval model
 - Topic relevance & sentimental scores are integrated with quadratic comb.
- Opinion generation ranking functions are derived
 - Using the language modeling approach with smoothing
 - With logarithm normalization paradigm
- Discussed the roles of the sentiment lexicon and the matching window.
- It is a general model for opinion retrieval
 - Domain-independent lexicons
 - No assumption has been made on the nature of blogstructured text

Information Retriever @ Tsingliua University

Future work

- Automatically constructing collection-based sentiment lexicons
- Understanding the nature of opinion expressing behavior on the
 Web
- Go beyond document re-ranking
 - Opinion-oriented index
 - Use linguistic information
 - •

Thanks for your attention!

Questions & comments?