Learning Better Representations for Neural Information
Retrieval with Graph Information

Xiangsheng Li', Maarten de Rijkez’3 , Yiqun Liu', Jiaxin Mao!, Weizhi Ma!, Min Zhang1 and
Shaoping Ma'
!Department of Computer Science and Technology, Institute for Artificial Intelligence,
Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing, China
2University of Amsterdam, Amsterdam, The Netherlands 3Ahold Delhaize, Zaandam, The Netherlands
yiqunliu@tsinghua.edu.cn,m.derijke@uva.nl

ABSTRACT

Neural ranking models have recently gained much attention in
information retrieval (IR) community and obtain good ranking
performance. However, most of these retrieval models focus on cap-
turing the textual matching signals between query and document
but do not consider user behavior information that may be helpful
for the retrieval task. Specifically, users’ click and query reformula-
tion behavior can be represented by a click-through bipartite graph
and a session-flow graph, respectively. Such graph representations
contain rich user behavior information and may help us better un-
derstand users’ search intent beyond the textual information. In
this study, we aim to incorporate this rich information encoded in
these two graphs into existing neural ranking models.

We present two graph-based neural ranking models (EmbRanker
and AggRanker) to enrich learned text representations with graph
information that captures rich users’ interaction behavior infor-
mation. Experimental results on a large-scale publicly available
benchmark dataset show that the two models outperform most ex-
isting neural ranking models that only consider textual information,
which illustrates the effectiveness of integrating graph information
with textual information. Further analyses show how graph infor-
mation complements text matching signals and examine whether
these two models can be adopted in practical applications.

KEYWORDS
Neural ranking; Network embedding; Graph neural network

ACM Reference Format:

Xiangsheng Li, Maarten de Rijke, Yiqun Liu, Jiaxin Mao, Weizhi Ma, Min
Zhang, and Shaoping Ma. 2020. Learning Better Representations for Neural
Information Retrieval with Graph Information. In Proceedings of the 29th
ACM International Conference on Information and Knowledge Management
(CIKM °20), October 19-23, 2020, Virtual Event, Ireland. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3340531.3411957

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °20, October 19-23, 2020, Virtual Event, Ireland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10...$15.00
https://doi.org/10.1145/3340531.3411957

1 INTRODUCTION

Relevance estimation is a central problem in information retrieval
(IR) research, which aims to learn a scoring function to determine
the degree of relevance of a document with respect to a query.
Traditional solutions to this problem include both statistical mod-
els (e.g., BM25 [30]), and learning-to-rank models that combine
multiple ranking functions [20]. Recently, neural ranking mod-
els have drawn attention for their ability to automatically extract
features from raw text. They can be grouped into two categories,
namely representation-based and interaction-based models [26].
Representation-based models integrate query and document infor-
mation into vector representations while interaction-based models
capture fine-grained interaction signals between query and docu-
ment. These models aim to capture the degree to which there is a
semantic match between query and document based on textual in-
formation. However, other kinds of information that are known to
be informative are rarely being exploited by neural ranking models.

Besides the content information of search results, logged user
behavior has shown great potential for search intent understanding
and user behavior modeling has been extensively explored for im-
proving relevance estimation [34]. To better exploit user behavior
information, we can use graph structure to represent user behavior
and further improve retrieval models. Previous studies have shown
that incorporating such graph information can bring substantial
improvements in many IR applications [1, 15, 21]. For example,
Jiang et al. [15] propose to enrich vector representations of docu-
ments and queries by mining the click-through bipartite graph. A
user’s query intent is thus enriched with other adjacent interaction
behavior. Figure 1 shows an example graph recording the interac-
tion information of a web search session. A user first issued the

KD Kevin Durant’s news

query —> query reformulation

—> click behavior

document

Kevin Durant stats ~ ESPN-Draymonds talk to KD

Figure 1: An example of graph information in web search.
Orange arrows indicate query reformulations, green arrows
link queries to documents being clicked in response to the
query. This information can help to better understand a

user’s search intent for the first issued query “KD”.


https://doi.org/10.1145/3340531.3411957
https://doi.org/10.1145/3340531.3411957

abbreviated query “KD” but did not find relevant documents. Then
the query was reformulated to a clearer query “Kevin Durant’s news”
and it leads the user to probably useful documents. We can see that
the search engine does not understand the user’s intent behind the
vague query “KD. If the interaction behavior information in the
graph is adopted, it is possible for the search engine to help other
users with the same query to obtain useful results more efficiently.

Despite the fact that graph-based information may be a rich
source of knowledge beyond textual information, most existing
neural ranking models do not take graph information into consid-
eration. We propose to integrate graph information into a uni-
fied neural ranking model framework. We aim to learn better
query/document representations with graph information. It is im-
portant to note that we take a representation-based ranking model
as a basic ranking model rather than interaction-based ranking
model because interaction-based models do not learn an indepen-
dent representation for a specific query or document. Motivated by
two main graph modeling methods [36] (network embeddings and
graph neural networks), we propose two graph neural ranking mod-
els, namely an embedding-based neural ranker (EmbRanker) and an
aggregation-based neural ranker (AggRanker). EmbRanker learns
embeddings by leveraging the skip-gram model on a graph [22] to
jointly preserve textual information and graph-based information.
AggRanker learns embeddings by aggregating each local neighbor-
hood from text content to the structure level.

While a wide range of information can be represented in different
kinds of graphs, in this study, we focus on two graphs: the session-
flow graph and the click-through bipartite graph. The session-flow
graph describes how users reformulate queries, which can enrich
the learned query embeddings with semantic information from
other related queries in the same session context. The click-through
bipartite graph specifies co-clicked documents with respect to a
given query, which reduces the lexical gap between query and doc-
ument embeddings. Compared to previous neural ranking models,
the learned representations can better model users’ search intent,
which is particularly important for long-tail queries [15, 18].

We evaluate the proposed models, EmbRanker and AggRanker,
on a large-scale publicly available test collection [4] from a com-
mercial search engine, Sogou.com. Experimental results show that
EmbRanker and AggRanker significantly outperform existing re-
trieval models. We also investigate graph parameters and compu-
tational costs to analyze the practical feasibility of incorporating
graph information into neural ranking models.

In summary, our main contributions are as follows:

(1) We develop two graph-based neural retrieval models that utilize
the session-flow graph and click-through bipartite graph to
build better query and document representations for document
retrieval. To the best of our knowledge, this is the first attempt to
integrate graph-based information into neural ranking models.

(2) We conduct extensive experiments on a large-scale public test
collection. Experimental results show that our proposed models
significantly outperform most existing retrieval models, which
illustrates the effectiveness of incorporating graph information
into neural ranking models.

(3) We systematically analyze the effectiveness of using different
graphs and the efficiency of two proposed models, thereby

providing a solid understanding of how to effectively utilize
graph-based information in the retrieval task.

2 RELATED WORK
2.1 Neural retrieval models

Existing retrieval models can be divided into two categories [12],
namely representation-based and interaction-based models. Repre-
sentation-based models aim to build a good semantic representa-
tion of queries and documents. DSSM [14] is the first successful
representation-based model for retrieval tasks; it represents two
input texts with a unified process by using a multi-layer percep-
tron (MLP) transformation. Convolutional networks [13] have been
employed to replace MLPs to represent the input text. They are
computationally efficient but lose fine-grained semantic informa-
tion (e.g., passage or sentence-level relevance [19]). On the other
hand, interaction-based models build local interactions between
query and document, which capture more fine-grained semantic
information. KNRM [37] utilizes kernel pooling to build multi-level
soft matches between query and document. Matchpyramid [27]
defines a symmetric interaction function to model term similarities
between query and document.

2.2 Graph-based information retrieval

Graph-based information has been widely studied and exploited
in the IR literature. Based on link structure, a series of ranking
algorithms have been proposed (e.g., PageRank [25], HITS [17]).
Previous studies also use different types of graphs to represent a
user’s behavioral information. Jiang et al. [15] enrich vector repre-
sentations by using a click-through bipartite graph to reduce the
lexical gap between query and document. However, this method
is only based on BoW vectors and ignores low-frequency words,
which leads to a loss of neighbor information. Click graphs have
also been used to learn query intent [21] to help improve search per-
formance, which illustrates that behavior graph is useful to improve
intent modeling. Zhang et al. [42] learn query and item embeddings
to approximate the external pre-trained graph embedding for prod-
uct search. But this method requires external pre-training and its
fixed graph embedding may be incompatible with a specific task.

To address the problems of existing graph-based ranking mod-
els [15, 42], we use neural networks to extract a dense representa-
tion that preserves the structural information in graphs and learn
graph representations in an end-to-end manner. In our work, we
utilize two different graphs, namely the session-flow graph and the
click-through bipartite graph to improve neural ranking models.
These graphs capture detailed interaction behavior information,
which is helpful for modeling user search intent.

2.3 Graph-based deep learning

Recently, many efforts have been made to adapt deep neural net-
works to graph-structured data. The key idea is to enrich the rep-
resentation with specific structural information and to preserve
the node information. Existing graph modeling methods can be
categorized into two classes: network embeddings and graph neu-
ral networks [36]. Network embeddings leverage the skip-grams
method [22] and sample positive and negative samples to encode
rich graph-structured relationships. For example, DeepWalk [28]
and Node2vec [11] employ skip-gram techniques to learn structural



regularities present within random walks. Similar structures are
also applied on text [31] and image [2] classification to manage su-
pervised loss and structure loss. Specifically, their works only focus
on classification task while our work focuses on text matching task.
These models are computationally more expensive due to the use
of sampling, however, their inference time is much lower than the
training process. On the other hand, graph neural networks directly
perform feature extraction in the graph domain by aggregating
information from the neighbor nodes. Their computational proce-
dures are usually the same during the training and testing process.
Graph Convolutional Networks (GCNs) [8, 16] incorporate graph
information into neural networks by generalizing traditional con-
volutional filters from images to graphs. Similar structures are also
utilized in text classification [38] and recommender systems [39].

In our work, based on two graph modeling methods, we present
two graph-based neural retrieval models, EmbRanker (based on
the network embedding method) and AggRanker (based on graph
neural networks), for document retrieval.

3 PRELIMINARIES

We aim to use graph information to build representations of queries
and documents so as to improve basic ranking models that only
exploit textual information. In this section, we give the notation
and introduce the basic ranking models used in our framework.

3.1 Notation

Let G = (V,E) be an undirected graph consisting of a set of nodes
V and a set of edges E. We focus on two graphs: the session-flow
graph and the click-through bipartite graph, where V consists of
queries g € Q and documents d € D. The set E contains two kinds
of edges ¢ — q and g — d, which represent consecutive queries in
the same session and documents clicked following a query. Given a
node with its text content u = {w, ..., wy} € V, we write N (u) for
its neighborhood, i.e., the set of nodes connected to it. The graph G
is generated from user behaviors on the training set. Given a query
q, document d, and graph G, the goal of our models is to estimate
the relevance of d by generating high-quality representations that
preserve both structural proximity information in the graph and
semantic information in content.

3.2 Basic ranking models

We focus on enriching learned representations with graph informa-
tion. Therefore, we build on representation-based ranking models
as the basic ranking models instead of interaction-based ranking
models since interaction-based models do not learn an independent
representation for a specific query or document. The basic rank-
ing model includes two parts: a text encoder and an output layer.
To fairly compare the effectiveness of different text encoders, we
apply the same output layer to predict relevance. Depending on
the specific situations in practical systems, the basic ranking model
could be any representation-based ranking models. In our work,
we adopt three representation-based models as our basic ranking
models, i.e., ARCI [13], DSSM [14] and Transformer [33].

3.2.1 ARCI. Given the textual content of a query or document,
ARCI takes as input the embedding of its words and summarizes
the meaning of that content through a layer of convolutions and

pooling, until reaching a fixed length representation in the final
layer. We write x; € RE to denote the word embedding with L
dimensions. An n-gram in the text content is represented as the
concatenation of words Xx;.j = [X; ® Xj4+1 ® - - - ® X;]. The final text
representation is computed as follows:

Ck,i = f(WEXpiehot + bi)
¢k = max{ck 1, Ck,2: - - - Ch,n—h+1} 1)
c=[61®&®-- ik,
where K is the number of convolution kernels, w; € R and
br € R are the weights in the k-th convolution kernel, extracting
a window of h words to produce a local feature. Also, f is an
activation function such as the ReLU. Then, the most important
feature over all positions is captured by the max-pooling function.
The features of different kernels are concatenated as the final text
representation, denoted as c.

3.2.2 DSSM. The first layer of the original DSSM model is a word-
hashing layer, which transforms the high-dimensional term vector
of the query/document to a low-dimensional letter-trigram vector.
However, this layer is not applicable to our Chinese dataset since
a Chinese sentence is composed of single words, not fine-grained
letters. To address this problem, we replace the word-hashing layer
as an Average Word Embedding (AWE) layer [41], which induces
text embedding by averaging the embedding vectors of all terms.
AWE has been shown to be effective in previous studies [41] and is
able to learn good text representation.

In summary, in our framework DSSM first averages the word
embedding of all terms in the text content, and then it applies
multi-layer neural networks to map text features to a semantic
representation. The final text representation is computed as follows:

Xo = tanh (Wo . ﬁ +b0)
T @)
f(j=tanh(VVj-i(j_1+bj),j=1,..,,],

where T is the text length and J is the number of hidden layers.
The final X is considered as the text representation.

3.2.3 Transformer. The Transformer [33] is a seq2seq model that
relies on (self-)attention and several identical layer stacks. Each
layer is composed of a multi-head self-attention mechanism and a
position-wise fully connected feed-forward network. Multi-headed
attention builds multiple “representation subspaces” and heads
governed by separate sets of Wp, Wk, Wy weight matrices, which
are calculated as follows:

head; = Attention(HWi R HWIQ, HW&)
KT ) ®3)
v,

dy
where H is an embedding matrix for the bottom encoder, i.e., query
or document embedding matrix. We use this stack of N Transformer

blocks and the output embedding of the last block is considered as
the query or document representation.

Attention(Q, K, V) = softmax ( Q

3.2.4 Output layer. We use the above methods to build a query
representation eq and document representation e , separately. To
fairly compare the quality of learned representations, we use the



same relevance scoring function s(gq, d) for all basic models, which
is a linear transformation for the concatenation of e4 and e:

s(q,d) = Ws - [eq, eq] + bs. (4)

The ranking loss L, ,p,k is defined as a pairwise ranking loss: docu-
ment d* is ranked higher than d~ in terms of ground truth prefer-
ences, with respect to a query g;

Lyank =max(0,1-s(q,d") +s(g.d")). ®)

4 GRAPH-BASED RANKING MODELS

In this section, we introduce two graph-based neural ranking mod-
els that improve basic (textual) ranking models with graph informa-
tion, namely EmbRanker and AggRanker. The workflow of the two
models is illustrated in Figure 2. Below, we describe their details.

4.1 Overview

The motivation of our framework comes from existing graph mod-
eling methods, which can be categorized into two classes: network
embedding methods and graph neural network methods [36]. Net-
work embedding methods aim to preserve the space proximity of
the learned node representation with skip-grams while graph neural
network methods directly aggregate information from the neighbor
nodes. We believe that both solutions may be employed to incor-
porate graph information into the ranking model. Therefore, we
represent graph information based on space proximity and feature
aggregation, with an embedding-based neural ranker (EmbRanker)
and an aggregation-based neural ranker (AggRanker), respectively.
Both methods aim to learn a good representation that preserves
both textual and structural information so that search intents can
be better understood. Hence, for neural retrieval models, we focus
on improving representation-based models since interaction-based
models aim to learn an interaction embedding and do not indepen-
dently learn a specific representation for a query or document.

4.2 Embedding-based neural ranker

The core idea of the embedding-based neural ranker (EmbRanker)
is to generate embeddings that preserve both structured proximity
information and text information. Specifically, structured proximity
means that a node is close to its local neighborhoods and away from
other nodes in the embedding space. To learn structured proximity
information, we learn the embeddings of query and document by
using a skip-gram based network embedding method. Figure 2a
illustrates the overall workflow of EmbRanker.

For each input query, document pair, EmbRanker first adopts its
encoding architecture to encode text information as an embedding
and then optimizes with both ranking loss and structural loss. To
learn structured representations, we adopt skip-grams with nega-
tive sampling on random walk-based paths in the graph, as network
embeddings benefit from random walk-based paths in reducing bias
towards certain nodes [10, 32]. The random walk method generates
its paths as follows. We select a node vy as the initial node and then
circularly pick up one of its neighborhoods as the next node until
the path length reaches a desired length. In our work, every node
in the graph is used as the initial node, which means each sampling
run contains |V| paths. This guarantees that all the nodes are in-
cluded in the sampled paths. The transition from a node v; to vj is
governed by the transition probability p(v; | v;) = 1/N, where N is

the number of neighborhoods of v;. After obtaining random walk-
based paths, we apply skip-grams with negative sampling on the
paths to capture proximity information [22]. The neighborhoods
in the path within a certain window size L are considered as posi-
tive samples for the central node while other nodes are randomly
picked as negative samples. We also incorporate a percentage € of
non-clicked documents as negative samples for query nodes. Then,
we maximize the likelihood of positive samples S* and minimize
the likelihood of negative samples S~. The structural loss L; is
thus the overall negative log-likelihood:

Li=-L(S",S10)
=— Z log o'(elTej) — Z loga(—eiTek), (6)

(i,j)eS+ (i,k)eS~
where e;, e}, e denote embeddings of the central node, the positive
sample and the negative sample, respectively. © are the model pa-
rameters; o is the sigmoid function; the negative likelihood function
is also called as structural loss, aimed at learning structured infor-
mation present in the graph. The final loss function of EmbRanker
L ¢mp consists of structural loss and ranking loss:

Lemp = Lrank +4s - Ls., (7)

where A is a trade-off parameter for structure loss L. During the
training process, the encoding architecture of a basic ranking model
is optimized by L,,,,; such that the learned embedding preserves
both textual and structural information.

4.3 Aggregation-based neural ranker

Compared to the EmbRanker, which uses skip-grams to learn em-
beddings in a pairwise manner, the aggregation-based neural ranker
(AggRanker) learns graph information by directly propagating the
information of all the neighborhoods to the focal node by a graph
neural network (GNN). The key idea is to learn a neighborhood
embedding that represents the local structure information up to a
given depth K. Figure 2b illustrates the workflow of AggRanker,
which is a two-stage encoding process.

In the first stage, AggRanker first collects all the neighborhoods
of the focal node (query node or document node) within a given
depth K, e.g., (91, 92, q3, 94, d1, d2, d3) in Figure 2b. Then it uses the
text encoder of a basic ranking model to map the content of each
node into a textual semantic embedding as detailed in Section 3.2.
We use ey, to denote the textual semantic embedding of the node v.

Second, AggRanker recursively aggregates the semantic embed-
dings of the neighborhoods layer by layer. For node v; in the k-th
layer, the aggregated embedding h’;i is represented as:

it = ringjh 1 (®)
vjeN (v;)U{v;}
hE, = tanh(WF - h571 + b5), (9)

where the first aggregated embedding is the textual semantic em-
bedding hgi = ey; and m;; € M is the normalized symmetric
adjacency matrix specifying the connection between v; and v;.
Following the multi-layer Graph Convolutional Network (GCN)
model [16], the matrix M is given by

M = D_%Ab_%

i (10)
A=A+Iy,



Negative sampling for node ¢ and d

SagPmy 1O
:\d‘o'" "Odgl’;::): q 4 === Structural
,,,,,,,,,, P N loss
‘v'/ q O— [ | . Behavior graph  Skip-gram Lg
! Text P a
: embedding :::) ey
“._ Textencoder O/ W N
O’O =) Ranking loss
Q Lyank
O

MLP

(a) Embedding based neural ranker (EmbRanker).

ena)

Aggregate features from neighbors
for node ¢ and d

O’O =) Ranking loss
Lrank

! Text embedding

a0 —

‘. Textencoder '

(b) Aggregation based neural ranker (AggRanker).

Figure 2: Workflows of two graph-based neural retrieval models. EmbRanker (a) uses skip-grams with negative sampling
to embed graph-based information for ranking. AggRanker (b) uses GNNs to encode graph-based information as neighbor
embeddings and combines it with the original text embedding for ranking.

where A € RIVIXIVI is the adjacency matrix with added self-
connections, Iy is the identity matrix and D = 3 ; A;; is the degree

matrix. In each layer, the network not only gathers the informa-
tion from the previous layer, but also diffuses the current node
information to the next layer. The number of layers K allows mes-
sage passing among nodes that are at most K steps away. Global
information can be learned in this information propagation manner.

We take the concatenation of the neighbor embedding epy(,,) =

hfi and textual embedding e, as the final representation of the
query-document pair. Similar to EmbRanker, we then apply a linear
transformation to construct the objective function in Eq. 4 and learn
using a pairwise ranking loss as in Eq. 5.

4.4 Discussion

EmbRanker and AggRanker are designed based on two important
graph modeling methods [36]: network embeddings and graph neu-
ral networks. They share two common aspects. (1) EmbRanker and
AggRanker are proposed for a representation-based model since
we aim to enrich representation with both textual semantic and
structural information. However, interaction-based models cannot
independently learn a specific representation for a query or docu-
ment, they are thus not considered in our framework. Experimental
results show that by incorporating graph information into represen-
tation-based models, they can perform better than interaction-based
models. We leave the combination of interaction-based models and
graph information as future work. (2) Importantly, the basic rank-
ing model is suggested to be computationally efficient since the
text content of neighborhoods in the graph is also modeled. When
using a large amount of neighborhoods, this brings computational
challenge to the ranking system. Therefore, in practical systems, we
suggest to optimize the computationally expensive part or reduce
the number of parameters. We will discuss the computational costs
of the two methods in Section 6.4.

There are important differences in both the training and test
processes for EmbRanker and AggRanker. For training, we observe
that EmbRanker requires additional preprocessing for graph traver-
sals to sample positive and negative pairs while AggRanker directly
models structural information during the training process. Prepro-
cessing comes with a computational overhead. However, for testing,

EmbRanker does not require the input of structural information
while AggRanker still needs to consider graph information as input.
This means that the inference time of EmbRanker is substantially
shorter than for AggRanker, which is important in practice. See
Section 6.4.

5 EXPERIMENTAL SETUP
5.1 Dataset

We evaluate the proposed methods on a large-scale, publicly avail-
able query log from a Chinese commercial search engine, Sogou.com,
namely Tiangong-ST! [4]. Table 1 shows the statistics of our dataset.
Tiangong-ST provides web search session data extracted from an
18-day search log. It contains weak relevance labels (i.e., click rel-
evance labels [37]) derived by six different click models for all
query-document pairs and human relevance labels for documents
in the last query of 2,000 sampled sessions. Due to the context dif-
ference, the number of unique queries is smaller than the number
of sessions. We use the 2,000 last queries as our test set for an ad-
hoc retrieval task. Since the text content of neighborhoods is also
considered in the graph modeling framework, we use document
titles in both training and testing instead of the full document con-
tent, which ensures efficiency when incorporating multiple hops of
neighborhoods. A similar experimental setup has previously been
used; see, e.g., [37]. Prior studies [6, 37] have shown that weak
relevance labels derived from click models can be used to train
and evaluate retrieval models. Since the Partially Sequential Click
Model (PSCM) [35] achieves the best relevance estimation perfor-
mance among the six click model alternatives, we employ click
labels from the PSCM for training and validation. For testing, we
use the provided five-graded human annotated relevance labels to
evaluate ranking performance.

Graph-structured information is extracted from consecutive
queries in a session (session-flow graph) and clicked documents
(click-through bipartite graph). We build graphs only based on user
behavior in the training set. A total of 87.1% of the queries and
54.5% of the documents in the test set can be found in the training
set. For the validation set, 94.0% of the queries and 57.1% of the

http://www.thuir.cn/tiangong-st/.


http://www.thuir.cn/tiangong-st/

Table 1: Statistics of the Tiangong-ST dataset and the gener-
ated graph. “All” means both the query click-through bipar-
tite graph (q — d) and the session-flow graph (q - q).

Train Valid Test
#unique queries 39,777 1,111 610
#queries 344,942 4,888 2,000
#sessions 143,155 2,000 2,000
#avg. session length 241 2.44 3.21
#avg, click! per query 3.29 3.36 3.52
#avg. doc per query 9.60 9.58 9.59

All q-d q-q

#nodes 92,926 39,776 86,109
#edges 145,445 72,050 73,395
#avg neighbors 3.012 3.347 1.705

documents are in the training set. For new queries or documents
that are not in the graphs, EmbRanker is able to handle them since
it does not need structural information in testing and AggRanker
takes a fixed NULL embedding as the neighbor embedding. Pre-
vious studies have revealed several types of bias in SERPs such
as “position” [7] (user’s decaying attention in vertical direction),
“trust” [40] (user’s judgement is affected by website reputation)
and “presentation” [35] (search results’ display styles influence
user’s attention) factors. To reduce the possible bias in a SERP and
obtain an unbiased estimation of result relevance, we use PSCM
labels to generate pseudo clicked documents instead of direct clicks,
where documents with a click probability over a fixed threshold
are considered as having been clicked.

Following the setting in [37], we map click relevance scores into
five-graded relevance grades in terms of the label distribution in the
TREC 2014 session track [3] for validation, where documents with
the top 29% click probability (grade 1 and higher) are considered
relevant and being clicked.

5.2 Experimental settings

5.2.1 Baselines. Our baselines include four types of retrieval model:

a probabilistic ranking model (i.e., BM25), neural ranking models,

graph-based ranking models, and a pre-trained language model

(BERT). The first two categories consider only text information (T)

while the third considers both text and graph information (T+G):

o BM25 (T): A popular probabilistic model-based ranking function
proposed by Robertson et al [30].

e Matchpyramid [27] (T): A neural ranking model that first builds
a word-level relevance interaction matrix and then applies CNNs
to aggregate it into the final relevance estimation. We use a one-
layer CNN with 64 (1 X 3) kernels and a (2 X 2) pooling size.

o KNRM [37] (T): A neural ranking model that uses a kernel pool-
ing strategy to model multi-level semantic matching signals. We
use 11 kernels as the default setting in the original paper (10
soft-matching and 1 exact-matching kernels).

e ARCII [13] (T): A neural ranking model that maps the word
embeddings of query and document to an aggregated embedding
by a CNN. we use a two-layer CNN, where the size of kernels

!Pseudo click drawn from PSCM labels, where documents with top 29% click probability
(grade 1 or higher) are considered being clicked.

Table 2: Ranking performance when using graph informa-
tion on different basic ranking models. T, }, § indicates sig-
nificant improvements with respect to the corresponding ba-
sic ranking models, respectively. (p-value < 0.05).

Model NDCG@1 NDCG@3 NDCG@5 NDCG@10
ARCI 0.6045 0.6628 0.7043  0.8257
+EmbRanker  0.62587  0.67727 071257 0.8412%
+AggRanker  0.65957  0.67977  0.71327 0.8465"
DSSM 0.6141 0.6550 0.7016  0.8253
+EmbRanker 0.6306%  0.6668%  0.7127F  0.8408%
+AggRanker 0.6401%  0.6633%  0.7104% 0.84207
Transformer 0.5776 0.6378 0.6905  0.8263
+EmbRanker  0.6175%  0.6569%  0.6953  0.8348%
+AggRanker 0.6234% 06588  0.6995% 0.8351%

and pooling in both layers are set to (3 X 3) and (2 X 2). There
are 16/32 kernels in two layers.

ARCI [13] (T): ARCl is a representation-based model as discussed
in Section 3.2. It is used as a basic ranking model. We use a three-
layer CNN where the filter windows sizes are 1 to 3 and there
are 64 feature maps for each filter.

DSSM [14] (T): DSSM is also used as a basic ranking model as
discussed in Section 3.2. We replace the word-hashing layer as
an Average Word Embedding (AWE) layer [41] to model Chinese
sentences as discussed in Section 3.2. We use a three-layer DNN
as in the original paper of DSSM; the hidden number of each
layer is set to 50.

Transformer [33] (T): Transformer is also used as a basic rank-
ing model discussed in Section 3.2. We use a stack of 2 Trans-
former blocks with hidden size = 64, number of attention heads
= 5. The number of parameters is reduced to some extent for the
computational efficiency in the graph modeling.

VPCG [15] (T+G): A graph-based model that enriches vector
representations by using click-through bipartite graph to reduce
the lexical gap between query and document. We use the default
parameter settings K = 20 as in the original paper. Compared
with our models, this method is only based on term frequency
information and ignores low-frequency words, which loss a part
of neighborhood information.

GEPS [42] (T+G): A graph-based model that utilizes graph em-
beddings from an external unsupervised graph model to guide
the representation learning for product search. We set the dimen-
sion of the graph embedding as 128. Compared with our models,
this method only uses the fixed pre-trained graph embedding
which may be incompatible with a specific task.

BERT [9] (Pretraining+T): Pretrained language model BERT that
has been shown to be very effective on the document ranking
task [29]. We use the pretrained 12-layer bert-base-chinese® model
and finetune it on our dataset.

5.2.2  Parameter settings. We implement our models using Pytorch.
The parameters are optimized by Adam, with a batch size of 80 and
a learning rate A of 0.001. The dimension of the word embeddings
is 50 and they are pretrained on a Chinese Wikipedia dataset* by

Shttps://github.com/google-research/bert/blob/master/multilingual.md
4http://download.wikipedia.com/zhwiki.


https://github.com/google-research/bert/blob/master/multilingual.md
http://download.wikipedia.com/zhwiki

Table 3: Ranking performance of different retrieval models. { indicate statistically significant improvements over all the base-
lines except BERT. 1, 2 indicates a significant improvement over EmbRanker and AggRanker, respectively (p-value < 0.05).

Model type Feature Model NDCG@1 NDCG@3 NDCG@5 NDCG@10

Probabilistic Text BM25 0.4528 0.5533 0.6244 0.7856
MatchPyramid 0.4807 0.5565 0.6135 0.7849
KNRM 0.5676 0.6172 0.6738 0.8176
ARCII 0.5822 0.6363 0.6889 0.8285

1 ranki 1

Neural ranking mode Text ARCI 0.6045 0.6628 0.7043 0.8257
DSSM 0.6141 0.6550 0.7016 0.8253
Transformer 0.5776 0.6378 0.6905 0.8263
VPCG 0.5729 0.6369 0.6904 0.8242

Graph-based Text+Granh GEPS 0.5940 0.6573 0.6987 0.8347

ranking model P EmbRanker(ARCI)  0.6258" 0.6772F 0.7125" 0.8412"
AggRanker(ARCI)  0.6595" 0.6797" 0.7132f 0.8465"

Pre-trained language model Externel corpus + Text BERT 0.6388! 0.69262  0.72772 0.8503%2

using word2vec. The output dimension of the text representation is
50 for three different text encoders. For EmbRanker, the percentage
€ of non-clicked documents in negative sampling is 0.4. Since the
number of pairs in L; is larger than a single pair in L, ;,, the
trade-off parameter of the structure loss A; is set smaller, selecting
from [0.1, 0.05, 0.01]. To model the multi-order connectivity in the
graph, we set the window size of negative sampling for EmbRanker
and the depth of aggregation layer for AggRanker as 3 and 2, re-
spectively. We also report the effect of other depths in Section 6.3.2.
Early stopping with a patience of 5 epochs is adopted during the
training process. All experiments are conducted on a single NVIDIA
GeForce GTX TITAN X GPU with 12GB-memory. We use NDCG
(Normalized Discounted Cumulative Gain) as evaluation metric.
The source code is publicly available’.

6 RESULTS AND ANALYSIS

6.1 RQ1: Can our framework improve the

representation-based ranking models?

Based on the results in Table 2 we arrive at the following lessons:

(1) We find that both of the proposed graph ranking models, Emb-
Ranker and AggRanker, obtain significant improvements over
the underlying basic ranking models, which suggests that users’
behavior graph is helpful for improving the ranking perfor-
mance and our frameworks can effectively exploit this informa-
tion to learn better representations for the retrieval task.

(2) We find that AggRanker with the basic ranking model ARCI
achieves the best ranking performance. It illustrates that mod-
eling graph information by an aggregation function leads to a
better graph representation than the skip-gram method. The ag-
gregation function learns graph information in a separate graph
embedding, thus it can better convey behavior information than
the integrated embedding in skip-grams method.

(3) The Transformer does not perform as well as ARCI and DSSM.
This is because it is not designed as an independent text encoder
in retrieval tasks [33]. Regular usage of the Transformer is
as an interaction-based model and to take the concatenation
query and document with a [SEP] as input [29]. Similar findings

5 https://github.com/lixsh6/GraRetrieval- CIKM2020.

were reported in [29]. Despite this, when using Transformer as
the basic ranking model, our framework can also improve its
ranking performance with graph information.

6.2 RQ2: How does our framework perform
compared to existing ranking models?

In additional to traditional BM25, neural ranking models and graph-

based ranking models, we also compare our methods with the

state-of-the-art pretrained language model BERT [9]. See Table 3.

To reduce overlap with the results in Table 2, we only list the results

of our methods based on ARCI, the best-performing basic ranking

model. From the table, we have the following lessons:

(1) The traditional probabilistic model BM25 performs worst com-
pared with other retrieval models. This indicates that merely
considering exact term matching is not enough to model the
relevance between query and document on our collection.

(2) While some negative results were reported for representation-
based models in ad-hoc retrieval tasks [24], we observe that
most of representation-based models (ARCI, DSSM) can achieve
better results than interaction-based models (MatchPyramid,
KNRM, ARCII). Previous studies have shown that representation-
based models can perform better than interaction-based models
over short and popular queries [23]. In our dataset, 69.9% of the
queries have a length shorter than 4 words and 87.1% of the test
queries are observed in the training set, which means that the
majority of the queries are short and popular queries. This phe-
nomenon results in the better performance of representation-
based models in our dataset.

(3) Considering the comparisons with text-based ranking models,
we find that EmbRanker and AggRanker with ARCI outper-
forms all neural ranking models that only use text features.
This confirms that graph information is useful for the retrieval
task and well exploited in our frameworks.

(4) We also compare our methods with graph ranking models. Both
proposed models outperform VPCG and GEPS significantly. As
discussed in Section 2.2, VPCG suffers from losing neighbor-
hood information while GEPS only uses an external fixed graph
embedding to guide the training, which may be incompatible
with a specific task. Our models overcome these shortcomings


https://github.com/lixsh6/GraRetrieval-CIKM2020

0.67 0.850

0.66 B EmbRanker === EmbRanker
: AggRanker 0.845 AggRanker
0.65
0.840
064
063 0835
062
0.830
061
0.825
0.60
0.59 0.820
ARCI Query-click Session-flow All ARCI Query-click Session-flow Al
(a) NDCG@1 (b) NDCG@10

Figure 3: Ranking performance when using different graph
informations. “All” means using query click-through bipar-
tite graph (q — d) and session-flow graph (q — q) together.

by integrating graph information into a dense representation
and learning in an end-to-end manner. From a retrieval point of
view, our models provide more informative textual and graph
information than VPCG and GEPS.

(5) For the pre-trained language model BERT, we find that it achieves
the best performance on most evaluation metrics. This is prob-
ably because: (a) BERT has a much larger parameter size (110M
parameters) than other ranking models and is pre-trained on
an external corpus; (b) with a large model capacity, BERT can
effectively model the interaction between the query and doc-
ument [33]. Our models perform best among all the baselines
that do not rely on external corpus and a resource-consuming
pre-training process. As an aside, because it is preferable to use
BERT as an interaction-based ranking model [29], the question
of how to incorporate graph information into BERT is beyond
the scope of this paper and left as future work.

6.3 RQ3: How does graph information
contribute to the ranking performance?

In this section, we aim to understand the influence of different graph

parameters (graph types, depth and size) on ranking performance.

Due to space limitations, we only report NDCG@{1, 10} of ARCI as

other results are qualitatively similar.

6.3.1 Effect of different graphs. In our work, we exploit two types

of graph to build graph-structured information. To study which

type of graph information contributes more to the overall ranking
performance, we conduct an ablation study for the proposed models.

In Figure 3, “Query-click” represents the click-through bipartite

graph (q — d edges) and “Session-flow” represents the session-flow

graph (q — q edges). We obtain the following lessons:

(1) Both types of graph information improve the original ranking
model ARCI. This demonstrates the effectiveness of our pro-
posed graph-based ranking model framework and shows that
the two kinds of graph information provide useful features to
enrich the representation of query and document.

(2) Comparing the two types of graph information, the models
based on the session-flow graph achieve better performance
than those based on the click-through bipartite graph. We ex-
plain this as follows: (a) the information of q¢ — d edges might
be duplicated partially with information learned through the
ranking loss; and (b) there exist more noisy signals in the click-
-through bipartite graph due to users’ click noise [5].

(3) Between the two graph-based ranking models, AggRanker out-
performs EmbRanker in most of cases. When combining two
types of graph information, EmbRanker and AggRanker can

Table 4: Ranking performance of different graph depths, i.e.,
the window size L in EmbRanker and the propagation layer
number K in AggRanker.

EmbRanker AggRanker
Depth NDCG@1 NDCG@10 NDCG@1 NDCG@10
0 0.6045 0.8257 0.6045 0.8257
1 0.6129 0.8369 0.6471 0.8418
2 0.6229 0.8373 0.6595 0.8465
3 0.6258 0.8412 0.6505 0.8451
4 0.6084 0.8377 0.6318 0.8380
5 0.6152 0.8370 0.6188 0.8382

Table 5: Ranking performance when using different graph
sizes. Averaged results over 5 times sampling are reported. A
represents a significant improvement compared to the orig-
inal model (i.e., 0%) with p-value < 0.05.

EmbRanker

AggRanker

Percentage NDCG@1 NDCG@10 NDCG@1 NDCG@10

0% 0.6045 0.8257 0.6045 0.8257
20% 0.5759 0.8294 0.6027 0.8282
40% 0.5912 0.8334 0.62654 0.8284
60% 0.6020 0.8350* 0.6208* 0.83914
80% 0.61774 0.8415* 0.63304 0.8446*

100% 0.62584 0.84124 0.6595% 0.8465*

both achieve better ranking performance than with a single
source of graph information.

6.3.2  Effect of depth in the graph. Proximity information of a cen-
tral node in a graph enriches its textual semantic representation.
However, at what distance in a graph do nodes still provide informa-
tion that helps to enrich the representation? We tune the sampled
window size L in EmbRanker and the propagation layer number K
in AggRanker to study this problem. For simplicity, we use depth
to represent window size and propagation layer number directly.
The results in Table 4 provide the following lessons:

(1) The overall tendency of our proposed methods is similar, where
the ranking performance first increases and then decreases as
the graph depth increases. This illustrates that there exists a
tradeoff between the improvement and depth. Remote neigh-
borhoods bring more noise and thus have a negative impact on
the ranking performance.

(2) The depth with the best performance for EmbRanker and Agg-
Ranker is around 3 and 2. This result indicates that neighbor-
hoods within this depth are semantically relevant to their cen-
tral nodes and other, more remote nodes are mostly noise.

6.3.3  Effect of graph size. Graph information can be considered as a

type of side information for ranking models. To study the influence

of the graph size, we vary the percentage of graph nodes by random

sampling. We finally report the averaged results over sampling 5

times for each percentage in Table 5 and have the following lessons:

(1) The two proposed models do not perform well and even get
worse when only using a small amount of graph information.
This is because the models may easily suffer from overfitting
with small graph sizes and the learned graph information influ-
ence the quality of the whole learned embedding.



Top ranked document

Query Q “qo: Business license annual examination”

ARCI “d,: Inquiry of Business license information”

N “d,: Change of new Business license and its
EmbRanker procedure of annual examination — Baidu

EXPERIENCE ”

{ D “dy: Annual examination of Individual Industrial
AggRanker and commercial business license — Baidu KNOWS”

L ‘

Subgraph of the issued query node

P ‘ a: Inquiry of business license in Hebei
s

Q2
aQ do ‘

;: Annual examination of Industrial and
ial business license

N

qg: Business license annual examination
online

d,: Fujian municipal administration of Industry

q3: Industrial and commercial Business license W
and Commerce J

@ Issued query node (q,)

Query nodes

d5: Online procedure of annual examination J /

of Industrial and commercial business license
Document nodes

Figure 4: An example of top-ranked documents from different ranking models. Important words are in bold face. In the sub-
graph, q; and dj are irrelevant nodes with lighter background color.

(2) Asthe graph size gets larger, both models perform better and sig-
nificantly outperform the original model (without using graph
information). The minimal required graph size for a significant
difference of the two models are 80% and 60%, respectively. This
illustrates that the proposed models require a large volume of
graph information to be effective.

6.3.4 Case study. To better understand what can be learned by
the proposed models, we conduct a case study to analyze the rela-
tionship between the top-ranked document and the applied graph
information. An example is shown in Figure 4, where the subgraph
of the issued query g is shown on the right. The result is translated
from Chinese. We have the following observations:

(1) The original model ARCI improperly provides a link to check
the license information, which is irrelevant to the search intent
of the issued query.

(2) The proposed graph-based models can leverage the graph to
better infer user search intent and provide the desired infor-
mation about annual examination. Importantly, the proposed
models can discover the important words annual examination
since the majority of the neighborhood nodes provide similar
information on this search target.

(3) We find that the proposed models works well despite the pres-
ence of noisy nodes in the graph (e.g., qo and dy) because the
neighborhood information is aggregated over the majority of
neighborhoods. This illustrates the robustness of the proposed
models when using a large-scale graph information.

6.4 RQ4: How efficient is our framework?

Compared to traditional neural ranking models, our methods have
more computational costs because of the graph information that
they incorporate. For both proposed models, the efficiency of text
encoder plays an important role since the text content of neigh-
borhoods is also considered. This is why we suggest to use com-
putationally efficient representation-based models. Specifically, for
EmbRanker, its additional computational costs are only incurred
during training since it does not require structural information
during testing. For AggRanker, its computational costs increase as
the depth of the graph information considered becomes larger.
Figure 5 summarizes the training and testing run-times for the
proposed models in different depths. The basic ranking model is
ARCI. Depth 0 indicates the ARCI without using graph information.
We have the following observations:
(1) Compared with the original model (i.e., depth 0), EmbRanker
doubles the run-time when using graph information. And there

R
a
8
8

W Train (per batch)
10 Inference (full test set)

W Train (per batch)
Inference (full test set)

@ w
S 8 &
g 8 8

Time (seconds)
-
Time (seconds)
sy

g 8

o N
a 3
o 8 8

0 1 2 3 4 5 ) 1 2 3 4 5
Window size (L) Propagation layer number (K)

(a) EmbRanker (b) AggRanker
Figure 5: Run-times in different graph depths.

is no significant change at different depths (1 to 5) for both
training and testing.

(2) For AggRanker, we find that its run-time substantially increases
as the number of layers grows. At depth 1, its computational
costs increase by about 33% and 3% in training and testing,
respectively. For the best depth parameter 3, its inference run-
time increases about 81%, however, its ranking performance
NDCG@1 enhances 9%, which is a considerable tradeoff in
practical ranking scenarios. In particular, the growth rate is
mainly influenced by the neighborhood number N.

(3) We see that the computational costs of AggRanker are substan-
tially higher than of EmbRanker and that AggRanker is more
sensitive to variation in depth. Although EmbRanker does not
perform as well as AggRanker, it benefits due to lower compu-
tational costs.

7 CONCLUSION

This paper proposes two graph-based neural ranking models for
web search to enrich learned text representations with graph infor-
mation that captures rich behavior information. Specifically, the
proposals are based on a network embedding method (EmbRanker)
and a graph neural network method (AggRanker), respectively.

Extensive experiments demonstrate the effectiveness of incorpo-
rating graph information into neural ranking models. Our models
perform best among all the baselines that do not rely on external
corpus or a time-consuming pre-training process. We further in-
vestigate how different graph parameters (i.e., graph types, depths,
and size) influence ranking performance and the computational effi-
ciency. Our work systematically analyzes the importance of adding
graph information to a neural ranking model and provides a better
understanding of how to model graph information effectively using
neural architectures for IR.



In future work, we plan to incorporate graph information into
interaction-based ranking models such as BERT. Our work only
focuses on representation-based models; how to properly use graph
information with interaction-based models remains an open prob-
lem. We believe that graph information is an important feature
beyond traditional text matching techniques for neural ranking
models and may help us build better web search systems.

ACKNOWLEDGEMENTS

This work is supported by the National Key Research and Develop-
ment Program of China (2018YFC0831700), Natural Science Foun-
dation of China (Grant No. 61732008, 61532011, 61902209), Beijing
Academy of Artificial Intelligence (BAAI) and Tsinghua Univer-
sity Guogiang Research Institute. This project is also funded by
China Postdoctoral Science Foundation and Dr Weizhi Ma has been
supported by Shuimu Tsinghua Scholar Program. All content rep-
resents the opinion of the authors, which is not necessarily shared
or endorsed by their respective employers and/or sponsors.

REFERENCES

[1] Adrien Bougouin, Florian Boudin, and Béatrice Daille. 2013. Topicrank: Graph-
based topic ranking for keyphrase extraction. In Proceedings of the Sixth Interna-
tional Joint Conference on Natural Language Processing. 543-551.

Thang D Bui, Sujith Ravi, and Vivek Ramavajjala. 2018. Neural Graph Learning:

Training Neural Networks Using Graphs. In Proceedings of the 2018 international

conference on web search and data mining. 64-71.

Ben Carterette, Paul Clough, Mark Hall, Evangelos Kanoulas, and Mark Sanderson.

2016. Evaluating retrieval over sessions: The TREC session track 2011-2014.

In Proceedings of the 39th International ACM SIGIR conference on Research and

Development in Information Retrieval. ACM, 685-688.

[4] Jia Chen, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2019. TianGong-
ST: A New Dataset with Large-scale Refined Real-world Web Search Sessions.
In Proceedings of the 28th ACM International on Conference on Information and
Knowledge Management. ACM, 2485-2488.

[5] Weizhu Chen, Dong Wang, Yuchen Zhang, Zheng Chen, Adish Singla, and Qiang
Yang. 2012. A noise-aware click model for web search. In Proceedings of the fifth
ACM international conference on Web search and data mining. ACM, 313-322.

[6] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for
Web Search. San Rafael: Morgan and Claypool.

[7] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An ex-
perimental comparison of click position-bias models. In Proceedings of the 2008
international conference on web search and data mining. 87-94.

[8] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. In Advances

in neural information processing systems. 3844-3852.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805 (2018).

Yuxiao Dong, Jing Zhang, Jie Tang, Nitesh V Chawla, and Bai Wang. 2015. Cou-

pledlp: Link prediction in coupled networks. In Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 855-864.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen

Wu, W Bruce Croft, and Xueqi Cheng. 2019. A Deep Look into Neural Ranking

Models for Information Retrieval. arXiv preprint arXiv:1903.06902 (2019).

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-

ral network architectures for matching natural language sentences. In Advances

in neural information processing systems. 2042-2050.

[14] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search using
Clickthrough Data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. ACM, 2333-2338.

[15] Shan Jiang, Yuening Hu, Changsung Kang, Timothy Daly, Dawei Yin, Yi Chang,

and Chengxiang Zhai. 2016. Learning Query and Document Relevance from

a Web-scale Click Graph. In Proceedings of the 39th International ACM SIGIR

conference on Research and Development in Information Retrieval. ACM, 185-194.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[2

3

=

=
X0

[10

[12

[13

[16

[17] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM) 46, 5 (1999), 604-632.

Xiangsheng Li, Yiqun Liu, Xin Li, Cheng Luo, Jian-Yun Nie, Min Zhang, and
Shaoping Ma. 2018. Hierarchical Attention Network for Context-Aware Query
Suggestion. In Asia Information Retrieval Symposium. Springer, 173-186.
Xiangsheng Li, Jiaxin Mao, Chao Wang, Yiqun Liu, Min Zhang, and Shaoping
Ma. 2019. Teach Machine How to Read: Reading Behavior Inspired Relevance
Estimation. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 795-804.

Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225-331.

[21] Hao Ma, Haixuan Yang, Irwin King, and Michael R Lyu. 2008. Learning latent
semantic relations from clickthrough data for query suggestion. In Proceedings
of the 17th ACM conference on Information and knowledge management.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match using
local and distributed representations of text for web search. In Proceedings of the
26th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1291-1299.

Yifan Nie, Yanling Li, and Jian-Yun Nie. 2018. Empirical study of multi-level con-
volution models for ir based on representations and interactions. In Proceedings
of the 2018 ACM ICTIR.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. 2017. A Deep
Investigation of Deep IR Models. arXiv preprint arXiv:1707.07700 (2017).

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text matching as image recognition. In Thirtieth AAAI Conference.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701-710.

Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Understanding
the Behaviors of BERT in Ranking. arXiv preprint arXiv:1904.07531 (2019).
Stephen E Robertson and Steve Walker. 1994. Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval. In SIGIR’94.
Xiaofei Sun, Jiang Guo, Xiao Ding, and Ting Liu. 2016. A general frame-
work for content-enhanced network representation learning. arXiv preprint
arXiv:1610.02906 (2016).

Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S Yu, and Xiao Yu.
2013. Pathselclus: Integrating meta-path selection with user-guided object clus-
tering in heterogeneous information networks. ACM Transactions on Knowledge
Discovery from Data (TKDD) 7, 3 (2013), 11.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Chao Wang, Yiqun Liu, and Shaoping Ma. 2016. Building a click model: From idea
to practice. CAAI Transactions on Intelligence Technology 1, 4 (2016), 313-322.
[35] Chao Wang, Yiqun Liu, Meng Wang, Ke Zhou, Jian-yun Nie, and Shaoping Ma.
2015. Incorporating non-sequential behavior into click models. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 283-292.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
Philip S Yu. 2019. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596 (2019).

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR Conferenc. ACM, 55-64.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional networks
for text classification. In Proceedings of the AAAI Conference, Vol. 33. 7370-7377.
Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 974-983.

Yisong Yue, Rajan Patel, and Hein Roehrig. 2010. Beyond position bias: Examining
result attractiveness as a source of presentation bias in clickthrough data. In
Proceedings of the 19th international conference on World wide web. 1011-1018.
[41] Hamed Zamani and W Bruce Croft. 2016. Estimating embedding vectors for
queries. In Proceedings of the 2016 ACM International Conference on the Theory of
Information Retrieval. 123-132.

Yuan Zhang, Dong Wang, and Yan Zhang. 2019. Neural IR Meets Graph Embed-
ding: A Ranking Model for Product Search. the web conference (2019), 2390-2400.

[18

[19

[20

[22

[23

[24

I
i

[26

[27

[29

[30

[31

@
S

[33

(34

&
2

(37

[38

[39

[40

[42



	Abstract
	1 Introduction
	2 Related work
	2.1 Neural retrieval models
	2.2 Graph-based information retrieval
	2.3 Graph-based deep learning

	3 Preliminaries
	3.1 Notation
	3.2 Basic ranking models

	4 Graph-based Ranking Models
	4.1 Overview
	4.2 Embedding-based neural ranker
	4.3 Aggregation-based neural ranker
	4.4 Discussion

	5 Experimental Setup
	5.1 Dataset
	5.2 Experimental settings

	6 Results and analysis
	6.1 RQ1: Can our framework improve the representation-based ranking models?
	6.2 RQ2: How does our framework perform compared to existing ranking models?
	6.3 RQ3: How does graph information contribute to the ranking performance?
	6.4 RQ4: How efficient is our framework?

	7 Conclusion
	References

