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ABSTRACT
This paper presents a neural information retrieval pipeline that
integrates cooperative learning of query reformulation and neural
retrieval models. Our pipeline first exploits an automatic query re-
formulator to reformulate the user-issued query and then submits
the reformulated query to the neural retrieval model. We simulta-
neously optimize the quality of reformulated queries and ranking
performance with an alternate training strategy where query refor-
mulator and neural retrieval model learn from the feedback of each
other. Besides, we incorporate knowledge information into auto-
matic query reformulation. The reformulated queries are further
improved and contribute to a better ranking performance of the
following neural retrieval model. We study two representative neu-
ral retrieval models KNRM and BERT in our pipeline. Experiments
on two datasets show that our pipeline consistently improves the
retrieval performance of the original neural retrieval models while
only increases negligible time on automatic query reformulation.
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1 INTRODUCTION
Neural retrieval models learn distributed representations of query
and documents and conduct semantic matching in the embedding
space [31]. A bottleneck of information retrieval is that the short
queries issued by users may vaguely represent their true infor-
mation needs [21]. According to the investigations conducted on
large-scale commercial search engines, a query often contains less
than three terms and over 16% of queries are ambiguous [17]. There-
fore, to accurately understand users’ search intents behind these
queries is challenging for search engines. To a certain extent, these
queries limit the upper bound of ranking performance in existing
neural retrieval models.

To address this problem, automatic query reformulation tech-
nique [22] is proposed to alter a given query to better represent
user’s search intent and improve retrieval performance. The basic
idea of these methods is to extract terms from top retrieved docu-
ments (which is called pseudo-relevance feedback (PRF)) and select
terms to expand the original query. Automatic query reformula-
tion has been demonstrated effective and necessary in information
retrieval in many applications [6, 22, 33]. However, these studies
consider query reformation as an independent learning task before
ranking task and do not consider its interactions with the following
ranking models. This motivates us to build an integral framework
with query reformulation and ranking models.

In this paper, we design a new Cooperative Neural Information
Retrieval pipeline (CNIR) with automatic query reformulation. The
framework is shown in Figure 2. Different from the traditional
neural IR framework, we incorporate a parameterized query refor-
mulation module before neural retrieval model. User-issued query
is first reformulated with an automatic query reformulator and then
passed to the following neural retrieval model. Inside the pipeline,
automatic query reformulator and neural retrieval models aim to
optimizing the quality of reformulated queries and ranking perfor-
mance, respectively. Two modules learn from the feedback of each
other to improve the ranking performance, where query reformu-
lator provides the queries with better quality to neural retrieval
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Figure 1: An example of using knowledge information for
query reformulation.

models while the neural retrieval model returns the ranking results
and the corresponding ranking metric to query reformulator.

The automatic query reformulator is based on reinforcement
learning. The action is to sample 𝐾 terms to expand the original
query while the reward is the ranking performance metrics of the
ranked lists retrieved by the original query. Therefore, the query re-
formulator can generate better queries by learning to maximize the
reward through training. For neural retrieval model, it takes as input
the reformulated query instead of the original query. The reformu-
lated query with better quality is assumed to better represent users’
information needs and thus to achieve a better ranking performance
than the original query. We exploit an alternate training strategy
to jointly optimize the query reformulator and the neural retrieval
model in our pipeline, i,e., the parameters of one module is fixed
while training the other. Two modules are prompted alternately to
reformulate better queries and improve retrieval performance.

To further improve the quality of the reformulated query, we
incorporate knowledge information into the automatic query re-
formulation. Previous works on automatic query reformulation
primarily expand the query using pseudo-relevance feedback (PRF)
(e.g., top retrieved documents) [33]. However, PRF is often invalid
when the original query is misinterpreted by the search systems and
the top retrieved documents are not relevant to the query. In general,
knowledge offers two types of information: the relationships be-
tween entities, which are often represented as a (knowledge) graph,
and the descriptions of entities. Both types of knowledge are useful
for automatic query reformulation. For example, in Figure 1, a user
issues a query “Bert character” to find a muppet character. Retrieved
documents from PRF are mostly about the pretrained language
model, which do not match the user’s search intent. Knowledge in-
formation provides accurate information about the television show
and thus can be used to reformulate a better query.

To verify the flexibility and effectiveness of the proposed frame-
work, we test the proposed pipeline with two neural retrieval mod-
els in this study, including a kernel based neural ranking model,
KNRM [31] and a pretrained contextualized rankingmodel (BERT) [8].
We conduct experiments on a large-scale public test collection [4]
Tiangong-ST and a released testing set from Sogou-QCL [39]. Ex-
perimental results show that our pipeline can effectively improve
the retrieval performance of neural retrieval models. Meanwhile,
we find using knowledge information to build automatic query re-
formulation module can further improve the ranking performance
of our pipeline. Finally, we show that the time overheads introduced
by our framework is acceptable for practical retrieval systems.

The primary contributions of our work are three-folds:
(1) We present a Cooperative Neural Information Retrieval pipeline

(CNIR) with automatic query reformulation, where query re-
formulation and neural retrieval model in the pipeline are opti-
mized alternately from the feedback of each other.

(2) We incorporate knowledge information to build a knowledge
enhanced query reformulation module, which further improve
the ranking performance of the proposed pipeline.

(3) Extensive experiments on two public test collections show that
our pipeline effectively improves the retrieval performance of
two representative neural retrieval models and the pipeline is
also computationally acceptable for practical retrieval systems.

2 RELATEDWORK
Query reformulation is categorized into query expansion (or query
anchoring) and query rewriting. The former aims to select and add
terms to the original query while the latter is detailed rephrase of
the original query with seq-to-seq model [13]. In our work, we focus
on query expansion with the goal of minimizing query-document
mismatch. The term mismatch problem is mainly caused by poly-
semy (same words with different meanings, e.g., Apple) and syn-
onymy (different words with the same or similar meanings, e.g.,
USA and America). Early work investigated a range of seminal tech-
niques such as vector feedback [25], co-occurrent terms [11] and
comparative analysis of term distributions [9]. To enlarge the vo-
cabulary correlated with the query terms, a variety of data sources
are employed to improve the quality of reformulated queries, such
as synonyms dictionary [20] and top retrieved documents [33].
The latter is also called pseudo relevance feedback (PRF), which is
popularly exploited in different fields to improve the query repre-
sentation [34, 36]. Some studies [34] only simply take all the PRF
terms as side information to improve the query representation. To
select terms with better quality, different strategies to estimate the
relevance of PRF terms were proposed, such as using probability
language model [6], supervised classification methods [3] and re-
inforcement learning technique [22]. However, these methods are
mostly built on a unsupervised ranking model (e.g., BM25). The
cooperative optimization between automatic query reformulation
and neural retrieval models remain to be investigated.

On the other hand, short and ambiguous queries are the bottle-
neck of information retrieval, which are often vague to represent
users’ information needs [21] and limit the ranking performance
of most neural retrieval models. Previous works on few shot re-
trieval [35] and weak supervision [38] enlarge the training corpus
and learn a more robust retrieval model. Different from these meth-
ods, our pipeline directly learns from the original corpus and does
not incorporate weak supervised signals into the training process.

3 PIPELINE FRAMEWORK
3.1 Overview
The overall framework of our proposed Cooperative Neural Infor-
mation Retrieval (CNIR) pipeline is shown in Figure 2. The pipeline
is based on the assumption that queries with better quality can
better represent users’ information needs and thus achieve a better
ranking performance than the original query [7]. Compared with
the traditional neural IR pipeline, our pipeline first reformulates
the original query by a query reformulator and then takes the refor-
mulated query as inputs into neural retrieval model. The ranking
results of the reformulated queries are passed back to the query
reformulator and yield ranking metrics as a feedback signal to re-
flect the quality of the reformulated query. For the neural retrieval
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Figure 2: The framework of the proposed Cooperative Neural Information Retrieval pipeline (CNIR). Query reformulator is
exploited in both training and inference stage in CNIR pipeline.

model, it uses the reformulated query instead of the original query
as inputs to optimize the ranking performance. Two modules in the
pipeline are alternately optimized with the feedback of each other.
Details of two modules are described as follows.

3.2 Automatic Query Reformulation
Automatic query reformulation module is based on reinforcement
learning (RL), which can be divided into two parts: 1) candidate
terms construction; 2) automatic query reformulation with RL.

3.2.1 Candidate terms construction. Besides the top retrieved docu-
ments (i.e., PRF), candidate terms for automatic query reformulation
are also from an external knowledge repository. We construct an
entity linker to find knowledge information contained in the is-
sued query. To ensure efficiency, we apply an off-the-shelf entity
linker to extract the entities in the query, namely the common-
ness (popularity) based entity linker [12]. This linker identifies the
query entities that are contained in a given large-scale knowledge
repository. According to the statistics of our experimental dataset
in Figure 4, over 95.9% of queries contain at least one entity in our
dataset. We then retrieve the neighbor entities that are connected
to the query entities in the knowledge graph. The neighborhoods
reveal the entities in the relationship of equivalency and deriva-
tion with the query entities, e.g., the United States-USA and Los
Angles-USA, respectively.

To remove the noisy candidate terms, we further filter out the
noisy terms according to their word embedding similarity with the
query terms. The top knowledge based candidate terms C𝑘𝑛𝑜𝑤 with
highest similarities are kept to combine with PRF terms C𝑃𝑅𝐹 as the
final knowledge enhanced candidate terms for the original query
𝑞, i.e., C𝑞 = C𝑘𝑛𝑜𝑤 ∪ C𝑃𝑅𝐹 . If there is no entity found in the query,
the candidate terms only consist of the PRF terms as the previous
work [22], i.e., C𝑞 = C𝑃𝑅𝐹 .

3.2.2 Automatic query reformulation with RL. Given the knowledge
enhanced candidate set C𝑞 , we aim to strategically select useful
terms for automatic query reformulation. The expanded query
is required to boost the retrieval performance compared to the
original query. We thus exploit a reinforcement learning strategy to
reformulate queries such that the retrieval performance under the
reformulated queries is improved. The architecture of our automatic

query reformulator is shown in Figure 3. We then describe the State,
Action, Reward, and the learning via Policy Gradient.

State representation: The state represents whether a candidate
term is suitable for the given query. Specifically, for a given query
𝒒 = [𝑤1,𝑤2, . . . ,𝑤𝑛], we extract the entities that are contained in
this query, denoting as [𝑒1, 𝑒2, . . . , 𝑒𝑚]. The input sequence to the
reformulator agent is denoted as the concatenation of the word
and entity embedding 𝒒′ = {𝑤1,𝑤2, . . . ,𝑤𝑛, 𝑒1, 𝑒2, . . . , 𝑒𝑚}. The
convolutional layer of the agent is defined as:

𝑐𝑜𝑛𝑣𝑖 (𝑧,K𝑖 ) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑅𝑒𝐿𝑢 (𝜙 (𝑧))) (1)

where 𝑧 is the input features, 𝜙 is the convolutional operation;
MaxPool is the max-pooling operation and K𝑖 is the kernels to be
learned in the 𝑖th convolutional layer.

The query representation is then computed by multi-layer con-
volutional neural network, as follows:

𝑧𝑙 = 𝑐𝑜𝑛𝑣𝑖 (𝑧𝑙−1,K𝑙 ), 𝑙 = 1, . . . , 𝑁 (2)

where 𝑧0 = 𝒒′ and the final query representation is 𝑞 = 𝑧𝑁 .
For each candidate term, we employ multi-layer neural networks

to obtain a new vector representation 𝑐 ′
𝑗
= 𝑀𝐿𝑃 (𝑐 𝑗 ). The state rep-

resentation is thus the concatenation between query representation
and candidate vector representation:

𝑠 𝑗 = [𝒒′ ◦ 𝑐 ′𝑗 ] (3)

Action: The action is to sample 𝐾 candidate terms based on
their state representation and append the sampled terms to the
original query to form a new query. The candidate terms are from
the combination of PRF terms and knowledge based candidate terms
in Section 3.2.1, i.e., C𝑞 . The action probability 𝜋 (𝑠 𝑗 ) = 𝑃 (𝑐 𝑗 |𝒒) of
each candidate term is then estimated by:

𝑃 (𝑐 𝑗 |𝒒) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑈𝑇 𝑡𝑎𝑛ℎ(𝑊 [𝒒′ ◦ 𝑐 ′𝑗 ]) + 𝑏) (4)

where 𝑈 ,𝑊 are the weights and 𝑏 is the bias. 𝐾 is the hyper-
parameter in our experiment. Note each term is independently
sampled by Equation 4 and the reward is obtained by inputting the
newly reformulated query to the retrieval model.

Reward: The goal of the query reformulator is to improve the
ranking performance of the retrieved documents from the original
queries, thus reward function can be any retrieval metrics. In our
work, we use mean average precision (MAP) as the reward function.
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Policy gradient: We train the query reformulator by REIN-
FORCE algorithm [29]. The gradient of the policy is given by

∇JΘ (Θ) = E𝜋Θ
[
𝐾∑
𝑘=1

∇ log𝜋 (𝑎𝑘 |Θ) · 𝑅
]

≈ 1
𝑀

𝑀∑
𝑚=1

𝐾∑
𝑖=1

∇ log𝜋 (𝑎𝑘 |Θ) · 𝑅𝑚
(5)

where Θ denotes the parameters of the query reformulator and
𝐾 is the number of expanded terms.𝑀 is the sampled number. The
expectation reward guides the updates of the parameters Θ of the
agent policy 𝜋 (𝑠 𝑗 ).

3.3 Neural Retrieval Model Training
We take an assumption to train neural retrievalmodel in our pipeline:
queries with better quality can better represent users’ information
needs and thus achieve a better ranking performance than the orig-
inal query [7]. Different from the previous work [26], the retrieval
model only processes the reformulated query. It outputs the ranking
results based on the retrieved documents from the original query. In
our work, we study two representative neural retrieval models, i.e.,
a kernel based neural ranking model (KNRM) [31] and a pretrained
contextualized ranking model (BERT) [8].

3.3.1 Kernel based Neural Ranking Model (KNRM). KNRM [31] is a
neural retrieval model that uses kernel pooling to model multi-level
semantic similarity signals. Given word embeddings of a query and
a document, it first constructs an interaction matrix 𝑀 to model
word-level similarities, where each element in𝑀 is the cosine simi-
larity between a query word𝑤𝑖 and a document word𝑤 𝑗 :

𝑀𝑖 𝑗 = 𝑐𝑜𝑠 (𝒗𝑞𝑤𝑖 , 𝒗
𝑑
𝑤𝑗

) (6)

where 𝒗𝑤 is the word embedding of𝑤 . Kernel pooling technique
is then applied to map the interaction matrix into soft-matched
ranking features. In particular, KNRM uses 𝑇 Gaussian kernels to
count the soft matches of interaction pairs at 𝑇 different strength
levels. Each kernel summarizes the interaction features in matrix
𝑀 as soft similarity counts in the region defined by its mean 𝜇𝑡
and width 𝜎𝑡 , generating a 𝑇 -dimensional feature vector 𝜙 (𝑀) =
{𝐾1 (𝑀), . . . , 𝐾𝑇 (𝑀)}:

𝐾𝑡 (𝑀) =
∑
𝑖

log𝐾𝑡 (𝑀𝑖 )

𝐾𝑡 (𝑀𝑖 ) =
∑
𝑗

exp(−
(𝑀𝑖 𝑗 − 𝜇𝑘 )2

2𝜎2𝑡
)

(7)

Algorithm 1: Cooperative training of the CNIR pipeline.
Input: Training collection S = {(𝑞1,𝑫1), . . . , (𝑞𝑇 ,𝑫𝑇 )},

where 𝑫𝑖 = {𝑑1, . . . , 𝑑𝐿} is the document list of 𝑞𝑖 ,
query reformulator (QR) and neural retrieval model
(NRM).

Output: The ranking results of each 𝑫𝑖 .
1 Pretrain NRM with the training collection by Equation 11.
2 while convergence condition is not attained do
3 Freeze the parameters of NRM and unfreeze QR.
4 for each sample (𝑞𝑖 ,𝑫𝑖 ) in S do
5 QR reformulates 𝑞𝑖 to 𝑞

′
𝑖
by Equation 4.

6 Compute the ranking metric 𝑅𝑖 based on the
ranking results of 𝑞′

𝑖
.

7 Train QR by Equation 5.
8 if epoch % TRAIN_RANKER_FRE == 0 then
9 Freeze the parameters of QR and unfreeze NRM.

10 for each sample (𝑞𝑖 ,𝑫𝑖 ) in S do
11 QR reformulates 𝑞𝑖 to 𝑞

′
𝑖
by Equation 4.

12 Train NRM with the sample (𝑞′
𝑖
,𝑫𝑖 ) by

Equation 11.

13 epoch = epoch + 1.

The final relevance score is computed with a standard ranking layer:
𝑓 (𝒒, 𝒅) = 𝑡𝑎𝑛ℎ(𝑤𝑟 · 𝜙 (𝑀) + 𝑏𝑟 ) (8)

with parameters𝑤𝑟 and 𝑏𝑟 and 𝑡𝑎𝑛ℎ activation layer. Compared
with BM25, KNRM captures semantic relevance signals and obtains
better retrieval performance [30].

3.3.2 BERT. BERT [8] is a pretrained contextualized transformer
based language model, which has shown state-of-the-art retrieval
performance in many IR-related tasks [23]. BERT concatenates
the query and document into a text sequence and feeds it into a
multi-layer pretrained transformer architecture:
𝐵𝐸𝑅𝑇 (𝒒, 𝒅) = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑠 ( [𝐶𝐿𝑆] ◦ 𝒒 ◦ [𝑆𝐸𝑃] ◦ 𝒅 ◦ [𝑆𝐸𝑃]) (9)
The special token representation [𝐶𝐿𝑆] in the last layer is con-

sidered as the matching feature between query 𝒒 and document 𝒅.
The ranking layer is applied to the matching feature to estimate
the final relevance score:

𝑓 (𝒒, 𝒅) = 𝑡𝑎𝑛ℎ(𝑤𝑟 · 𝐵𝐸𝑅𝑇𝐶𝐿𝑆 (𝒒, 𝒅) + 𝑏𝑟 ) (10)
where𝑤𝑟 and 𝑏𝑟 are the learning-to-rank parameters.

3.4 Cooperative Training Procedure
Note that we do not retrieve documents again by the reformulated
queries. Instead, we aim to optimize the ranking performance of the
retrieved documents from the original queries. Automatic query
reformulation module and neural retrieval model are learned based
on the feedback of each other. We propose an alternate training
strategy to train our pipeline, as detailed in Algorithm 1. We initial-
ize the neural retrieval model by training on the original training
collection. For the training process of CNIR, the query reformulator
is trained first with the reward obtained from the neural retrieval
model. It encourages the reformulator to reformulate queries with



Table 1: Statistics of the datasets. Test1 and Test2 indicate the
testing set of Tiangong-ST and Sogou-QCL, respectively.

Train Valid Test1 Test2

#queries 344,942 4,888 2,000 900
#sessions 143,155 2,000 2,000 na.
#avg. doc per query 9.60 9.58 9.59 17.78

better quality. Then, the reformulated queries are used to fine-tune
of the neural retrieval model, which facilitates the retrieval model
to better estimate the document relevance.

Twomodules in CNIR pipeline are alternately optimized until the
ranking performance converges. Specifically, we use the pairwise
learning-to-rank loss to train the neural retrieval models during
both the pretraining and fine-tuning stage:

L𝑟𝑎𝑛𝑘 = max(0, 1 − 𝑓 (𝑞, 𝑑+) + 𝑓 (𝑞, 𝑑−)) (11)
where 𝑑+ is a document that is more relevant to the query 𝑞 than

the document 𝑑−.

4 EXPERIMENTAL SETUP
4.1 Dataset
To evaluate the performance of our framework, we conduct experi-
ments on a large-scale public available benchmark data (Tiangong-
ST 2 [4]) and a released testing set from Sogou-QCL 3 [39]. Table 1
shows the statistics of the datasets. Tiangong-ST provides web
search session data from an 18-day search log. It contains weak
relevance labels (i.e., click relevance labels [31]) derived by six
different click models for all query-document pairs and human
relevance labels for documents in the last query of 2,000 sampled
sessions. To ensure efficiency when training the query reformulator,
we exploit document titles in both training and testing instead of
the full document content. Similar experimental setups have been
used in previous studies (e.g., [18]). Prior studies [5, 31] have shown
that weak relevance labels derived from click models can be used to
train and evaluate retrieval models. Since the Partially Sequential
Click Model (PSCM) [27] achieves the best relevance estimation
performance among the six click model alternatives, we employ
click labels from the PSCM for training and validation. Training
on weak relevance labels also enables our pipeline to obtain an
immediate reward about the ranking results.

We evaluate our framework on two datasets: Tiangong-ST test-
ing set and Sogou-QCL testing set. Tiangong-ST testing set is built
from the last query of 2,000 sampled sessions.We use click relevance
labels from the same PSCM and the provided five-graded human
annotated relevance labels for evaluation. In Sogou-QCL testing
set, we used click relevance labels from PSCM for evaluation.

Entity annotation: We utilize XLore [28] as our knowledge
graph foundation. XLore is an English-Chinese bilingual knowl-
edge graph built from EnglishWikipedia, ChineseWikipedia, Baidu
Baike and Hudong Baike. It contains 16,284,901 entities, 2,466,956
concepts and 446,236 relations. The relations have four types: sub-
class, instanceof and same, related, where the proportions are 2.6%,
3Pseudo click drawn from PSCM labels, where documents with top 29% click probability
(grade 1 or higher) are considered being clicked.
2http://www.thuir.cn/tiangong-st/.
3http://www.thuir.cn/sogouqcl/.
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Figure 4: The distribution of entity number in the query.

42.1%, 7.9%, 47.3%, respectively. The relations subclass and instanceof
are further categorized as Derivation type while same and related
are considered to be Equivalency type. These relations discover
more relevant items compared with PRF and thus provide poten-
tial to improve query reformulation. The distribution of the entity
number in the query in the training set is shown in Figure 4, where
over 95.9% of queries have at least one entity and the average entity
number in the query is 3.44.

Candidate terms: The candidate terms come from two sources:
pseudo relevance feedback and knowledge information. We use
the terms from top 3 documents retrieved by BM25 as the pseudo
relevance feedback terms (17.2 terms on average). Knowledge terms
are first filtered if they are duplicated with PRF terms. Specifically,
we keep the top 20 terms according to the embedding similarity
with the query terms as the knowledge enhanced candidate terms.
The number of expanded terms 𝐾 is set as 3 4.

4.2 Experimental Settings
Since our pipeline consists of automatic query reformulation and
neural retrieval model, we compare our pipeline with existing neu-
ral retrieval models and study the effectiveness of different query
reformulation methods in our pipeline .

4.2.1 Retrieval Model Baselines.
• BM25: A popular probabilistic bag-of-words retrieval function
that ranks a set of documents based on the query terms appearing
in each document [24].

• ARCII [14]: A neural retrieval model that maps the word em-
beddings of query and document to an aggregated embedding
by a CNN. we use a two-layer CNN, where the size of kernels
and pooling in both layers are set to (3 × 3) and (2 × 2). There
are 16/32 kernels in two layers.

• ARCI [14]: ARCI is a representation-based model which encodes
text information by CNNs. We use a three-layer CNN where the
filter windows sizes are 1 to 3 and there are 64 feature maps for
each filter.

• DSSM [16]: DSSM is also a representation-based model. It con-
sists of a word hashing layer, two non-linear hidden layers, and
an output layer. We use a three-layer DNN as in the original
paper of DSSM; the hidden number of each layer is set to 50.

• KESM [32]: KESM is knowledge-aware neural retrieval model
baseline, which models the salience of query entities in candidate

4We find expanding more than 3 terms do not have significant difference on retrieval
performance but it increases much training time. Thus expanding 3 terms is a suitable
setting in our work.

http://www.thuir.cn/tiangong-st/
http://www.thuir.cn/sogouqcl/


Table 2: Retrieval performance of our CNIR pipeline with existing retrieval models. The subscript 𝑃 and 𝐾 denote the PRF
and Knowledge enhanced candidate term set, respectively. †, 1 and 2 indicate statistically significant improvements over the
strongest baseline BERT, the original ranker in CNIR (i.e., KNRM or BERT) and the corresponding CNIR𝑝 . (p-value ≤ 0.05)

PSCM (Tiangong-ST) HUMAN (Tiangong-ST) PSCM (Sogou-QCL)

MAP ERR ndcg@5 ndcg@10 MAP ERR ndcg@5 ndcg@10 MAP ERR ndcg@5 ndcg@10

BM25 0.4577 0.2928 0.4474 0.6207 0.7743 0.4390 0.6269 0.7890 0.6064 0.4322 0.4790 0.5949
ARCII 0.6803 0.3650 0.6866 0.7854 0.7819 0.4581 0.6889 0.8285 0.6035 0.4283 0.4821 0.6011
ARCI 0.6929 0.3944 0.7012 0.7946 0.7854 0.4673 0.7043 0.8256 0.6023 0.4345 0.4904 0.6056
DSSM 0.7112 0.4312 0.7143 0.8043 0.7842 0.4701 0.7016 0.8253 0.6056 0.4408 0.4989 0.6135
KESM 0.7294 0.4793 0.7447 0.8459 0.7847 0.4789 0.6989 0.8345 0.6171 0.4526 0.5163 0.6293
EDRM 0.7971 0.4912 0.8106 0.8645 0.7984 0.5032 0.7135 0.8389 0.6224 0.4752 0.5519 0.6422
KNRM 0.7748 0.4948 0.7885 0.8507 0.8051 0.5002 0.7119 0.8374 0.6044 0.4485 0.4960 0.6099
CNIR𝑃 + KNRM 0.79011 0.5020 0.80981 0.86211 0.8071 0.51751 0.7169 0.8451 0.62451 0.47081 0.54151 0.63821
CNIR𝐾 + KNRM 0.81351,2 0.52311,2,† 0.83341,2 0.88451,2 0.8097 0.52571 0.7212 0.85741 0.63981,2 0.48921,2 0.57411,2 0.65321,2
BERT 0.8273 0.5012 0.8422 0.8822 0.8086 0.5267 0.7275 0.8511 0.6549 0.5070 0.5771 0.6722
CNIR𝑃 + BERT 0.84751 0.52241 0.86931 0.90311 0.8093 0.5277 0.7285 0.8519 0.67271 0.52771 0.58861 0.69471
CNIR𝐾 + BERT 0.87351,2 0.54261,2 0.88641,2 0.90731 0.8104 0.53831,2 0.74051,2 0.86491,2 0.68601,2 0.53671,2 0.59801,2 0.70631,2

documents. We set the dimension of word and entity embedding
as 50 and remains other parameter settings as the original paper.

• EDRM [19]: EDRM is another knowledge-aware neural retrieval
model, which considers both semantic similarity and entity rela-
tionship. We set the dimension of word and entity embedding as
50 and remains other parameter settings as the original paper.

• KNRM [31] : We use 11 kernels as the default setting in the
original paper (10 soft-matching and 1 exact-matching kernels).

• BERT [8] : The state-of-the-art neural retrieval model. We use
the pretrained 12-layer bert-base-chinese5 model.

4.2.2 Automatic Query Reformulation Baselines.
• TFIDF: We extract the terms with top 𝐾 TFIDF values and add
them to the original queries to test the retrieval performance.

• RM: RM is the Lavrenko’s relevance models [6], which is a pop-
ular relevance model for query reformulation. We follow the
setting in [37] and set the parameter 𝜆 = 0.5.

• SL: Following [3], we implement a recurrent neural network
(RNN) as the Supervised Learning baseline (SL). We feed query
terms into RNN and take the last output embedding as the query
representation. Then it is concatenated with the candidate terms
to form the state representation, which is feed into a feed-forward
neural network to estimate the probability of this word to be
chosen. The term is marked as relevant if (𝑅′ − 𝑅) > 0.3, where
𝑅′ and 𝑅 are the retrieval performance of the reformulated query
and the original query, respectively.

• RL-CNN [22]: The recent Reinforcement Learning (RL) query
reformulation method. To fairly compare its performance, the
CNN architecture is the same as our query reformulator. When
it is applied on knowledge enhanced candidate terms, it is the
same as our query reformulator in Section 3.2.2.

4.2.3 Parameter settings. The parameters of the query reformula-
tor are optimized by Adagrad optimizer, with a batch size of 50 and
a learning rate of 1e-5. Neural retrieval models are trained with
Adam optimizer. The learning rate of KNRM during pretraining
and fine-tuning is 1e-3 and 1e-4 while BERT always uses a learning

5https://github.com/google-research/bert/blob/master/multilingual.md

rate of 3e-6. The dimension of the word embeddings, entity embed-
ding are both 50. Word embeddings are pretrained on a Chinese
Wikipedia dataset while entity embeddings are pretrained on the
given graph structure by node2vec [10]6. For the CNN layer in the
query reformulator, the filter windows sizes are 1 to 3 and there
are 50 feature maps for each filter. Early stopping with a patience
of 10 epochs is adopted during the training process. For each query,
we sample 5 possible reformulated queries, i.e.,𝑀 = 5. For neural
retrieval models, KNRM and BERT are updated after the query
reformulator learns for 10 and 20 epochs, respectively. The source
code is publicly available7.

5 EVALUATION RESULTS
In this section, we present our experimental results to answer the
following research questions:
(RQ1) How does our pipeline perform compared to existing neural

retrieval models?
(RQ2) How does our pipeline perform when using other query

reformulation methods?
(RQ3) Does cooperative training strategy boost the ranking perfor-

mance of our pipeline?
(RQ4) How efficient is our pipeline in both training and testing?

5.1 Overall ranking performance
This section aims to answer 𝑹𝑸1. We first compare our pipeline
with different retrieval model baselines, which includes BM25, neu-
ral IR models and knowledge-aware neural IR models (KESM and
EDRM). The results are shown in Table 2.

It is observed that our CNIR pipeline conducted on PRF and
Knowledge candidate terms (CNIR𝑃 and CNIR𝐾 ) can outperform
BM25, neural IR models and knowledge-aware neural IR models
in most evaluation metrics. This shows the retrieval power of our
pipeline across different retrieval models. For the comparison with
the original neural retrieval model in CNIR pipeline, we find CNIR
can significantly improves the ranking performance of KNRM and
BERT in most evaluation metrics. Though, the improvements over
6We do not use the popular TransE [2] to pretrain entity embedding because the
number of relation types in XLore is small.
7https://github.com/lixsh6/WSDM2022-CNIR.

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/lixsh6/WSDM2022-CNIR


Table 3: Comparison with other automatic query reformu-
lation methods in CNIR𝐾 . † indicate significant improve-
ments over the original ranker (Raw). (p-value ≤ 0.05)

Tiangong-ST Sogou-QCL

ndcg@5 ndcg@10 ndcg@5 ndcg@10
BM25 as ranker

Raw 0.4474 0.6207 0.4790 0.5949
TFIDF 0.4435 0.6318 0.4112 0.5305
RM 0.4174 0.6165 0.3892 0.4978
SL 0.4694† 0.6384† 0.5053† 0.6271†
RL-CNN 0.4815† 0.6275 0.5124† 0.6242†

KNRM as ranker

Raw 0.7885 0.8507 0.4960 0.6099
TFIDF 0.7313 0.7905 0.4760 0.5829
RM 0.7283 0.7823 0.4693 0.5702
SL 0.8105† 0.8671† 0.5312† 0.6254†
CNIR(RL-CNN) 0.8334† 0.8845† 0.5741† 0.6532†
BERT as ranker

Raw 0.8422 0.8822 0.5771 0.6722
TFIDF 0.8252 0.8626 0.5471 0.6322
RM 0.8193 0.8593 0.5413 0.6315
SL 0.8538† 0.8823 0.5874† 0.6863†
CNIR(RL-CNN) 0.8864† 0.9073† 0.5980† 0.7063†

human annotated labels in Tiangong-ST are not all significant, it
may be because that our pipeline CNIR is trained with pseudo rel-
evance label PSCM, which is somehow inconsistent with human
labels. In general, it illustrates that our pipeline with additional
automatic query reformulation can effectively improve the ranking
performance of the original neural retrieval model. Query refor-
mulator, with the goal of optimizing the ranking metric of a given
document list, can learn to generate a better query that represents
users’ information needs. Due to the improved query, the neural
retrieval model can also estimate the relevance of each document
better and improve the ranking performance again. Two modules
learn from each other and continuously optimize the ranking per-
formance during training.

We also compare our pipeline when incorporating knowledge
information into automatic query reformulation. Note CNIR𝐾 is
not only different with CNIR𝑃 from the perspective of candidate
term construction, but also the additional entity inputs to the CNN
architecture in Equation 1. It is observed that when using knowl-
edge information CNIR𝐾 can outperform CNIR𝑃 significantly in
most evaluation metrics on KNRM and BERT. On human annotated
labels in Tiangong-ST, CNIR𝐾 is also superior to the original BERT
significantly on ERR, ndcg@5,10. It suggests that the performance
of automatic query reformulation decides the upper bound of rank-
ing performance in our pipeline. If automatic query reformulation
is improved, the ranking performance of the pipeline can be better
during the cooperative learning process.

5.2 Analysis on query reformulation
This section aims to answer 𝑹𝑸2. We alter the RL based automatic
query reformulation method in our pipeline to compare the ef-
fectiveness of other query reformulation methods. In addition to
neural retrieval models, we also include BM25 as the retrieval model

Table 4: Ranking performance when freezing the parame-
ters of neural retrieval model.

Tiangong-ST Sogou-QCL

ndcg@5 ndcg@10 ndcg@5 ndcg@10
KNRM as ranker
CNIR𝑃 (Freeze) 0.7764 0.8412 0.5342 0.6289
CNIR𝑃 0.8089 0.8621 0.5415 0.6382
CNIR𝐾 (Freeze) 0.8123 0.8615 0.5351 0.6270
CNIR𝐾 0.8334 0.8845 0.5741 0.6532
BERT as ranker
CNIR𝑃 (Freeze) 0.8451 0.8844 0.5711 0.6873
CNIR𝑃 0.8693 0.9031 0.5886 0.6947
CNIR𝐾 (Freeze) 0.8421 0.8852 0.5732 0.6892
CNIR𝐾 0.8864 0.9073 0.5980 0.7063

in our pipeline. The results are shown in Table 3. In the scenario
with BM25 ranker, our pipeline deteriorates the traditional query
reformulation optimization [3, 22] where retrieval models do not
require to be trained. 𝑅𝑎𝑤 indicates that the original retrieval model
without automatic query reformulation. In the scenario with neural
retrieval models, we compare the rule-based query reformulation
strategy𝑇𝐹𝐼𝐷𝐹 ,𝑅𝑀 and a supervised learningmethod 𝑆𝐿. Note our
query reformulator has the same structure with RL-CNN, RL-CNN
with KNRM or BERT indicates our CNIR pipeline.

We find it is hard to improve the ranking performance when
applying our pipeline on BM25, rule-based methods cannot improve
the ranking performance of BM25. It suggests that both rule-based
methods cannot capture the effective terms in relationship with
the original query. Supervised learning and reinforcement learning
methods learn to reformulate queries according to the feedback
of ranking performance, thus are effective to improve the ranking
performance of the original ranker BM25. Since RL-CNN learns
with a continuous reward against the discrete signal in SL, RL-CNN
can distinguish the useful terms better for query reformulation and
thus achieves better ranking performance.

When applying neural retrieval models in our pipeline, we find
the ranking performance is consistent to the quality of automatic
query reformulation methods. Rule-based query reformulation is
not effective in our pipeline while supervised learning and reinforce-
ment learning methods contribute to better ranking performance.
This phenomenon suggests that the quality of automatic query
reformulation methods decides how well the whole pipeline can
achieve. This also motivates us to build a knowledge enhanced
query reformulator to further improve the ranking performance.

5.3 Analysis on cooperative training
This section aims to answer 𝑹𝑸3. We aim to understand how our
pipeline performs when it deteriorates to the traditional automatic
query reformulation optimization (i.e., the retrieval models are
not required to be trained.) We freeze the parameters of neural
retrieval models and only train the query reformulator to validate
the necessity of our proposed cooperative training strategy. The
results are shown in Table 4.

It is found that regardless of candidate terms construction, if
KNRM and BERT are not fine-tuned during the training, they cannot
perform well on the reformulated queries. It is because neural
retrieval models are not trained with these reformulated queries.



Table 5: Comparison of time consumption over Tiangong-ST
testing set when using different retrieval frameworks.

#params
Training

(total time)
Testing

(full test set)

BM25 n.a n.a 1.2s
RL-CNN 5M 3.2h 1.3s

KNRM 5M n.a 1.3s
CNIR𝐾 + KNRM 10M 9.4h 1.4s

BERT 103M n.a 49.5s
CNIR𝐾 + BERT 108M 38.3h 52.2s

The relevance estimation of these queries may not be accurate
and thus yields a wrong signal to train query reformulator. In
this scenario, the learning of query reformulator is limited by the
ranking power of current neural retrieval models. Ideally, when
the power of the query reformulator achieves a upper bound after
certain epochs, it captures the possible reformulated queries that the
current retrieval models can dowell. Thus, it is necessary to conduct
cooperative training strategy to make sure both query reformulator
and neural retrieval models can be optimized continuously.

5.4 Time efficiency
This section aims to answer 𝑹𝑸4. Since our pipeline exploits addi-
tional automatic query reformulation module compared to other
retrieval models, we aim to understand whether it increases accept-
able time overheads. We report the time consumption of different
retrieval frameworks, as shown in Table 5. Automatic query refor-
mulation is based on knowledge enhanced candidate terms.

The parameter number of our query reformulator is about 5
million. Neural retrieval model is the key module in our pipeline
while the parameters in query reformulator is far less than those
in the neural retrieval models. Therefore, neural retrieval models
with larger complexity require more training time in our pipeline.
We can observe that the query reformulator only increases negli-
gible time on the original rankers during inference. However, our
pipeline brings significant improvements to the original neural
retrieval models. As reported in Table 2, CNIR𝐾 + KNRM can per-
form closely to BERT while its efficiency is substantially superior
to BERT. This makes our framework computationally applicable in
practical ranking systems.

6 LIMITATIONS
Despite we find our CNIR pipeline is effective to boost the ranking
performance, we admit some limitations of our work and share
some directions for the future work.

Reranking vs first stage retrieval: Our experiments are con-
ducted in a reranking setting rather than first stage retrieval. Pre-
vious studies showed automatic query reformulation benefits in
improving recall in the first stage retrieval [1], but it is not validated
in our experiments. The limited improvements when applying on
BM25 in Table 3 may also be because rule-based query reformu-
lation is more effective in the first stage retrieval rather than the
reranking scenario. Although we do not have experiments in the
first stage retrieval, it does not mean that our CNIR pipeline is
not effective in the first stage retrieval. In the future, we aim to

incorporate embedding retrieval models [15] to further improve
the first stage retrieval performance.

Query anchoring vs query rewriting: As discussed in Sec-
tion 2, query reformulation is categorized into query anchoring
and query rewriting. In our experiments, we only focus on query
anchoring. Ideally, a good reformulated query that represents users’
information needs clearly should not be limited with the original
query terms. Therefore, using query rewriting technique remains
to be investigated in our framework. The key challenge is to bal-
ance the tradeoff between identifying the useless words or mistake
words and misjudging the keywords in the original query.

7 CONCLUSION
This paper presents a cooperative neural information retrieval
pipeline (CNIR) with knowledge enhanced automatic query re-
formulation. Different from traditional neural information retrieval
framework, our pipeline sequentially reformulates a query first and
then submits the reformulated query to neural retrieval models. Au-
tomatic query reformulation, which is designed by reinforcement
learning, learns to reformulate a query according to the ranking
results from neural retrieval models. The reformulated query can
better represent user information needs compared to the original
query and thus be used in the training of neural retrieval models to
further optimize the ranking performance. In the proposed pipeline,
we simultaneously optimize the quality of reformulated queries and
ranking performance with an alternate training strategy. Experi-
ments show that the alternate training of both modules in CNIR are
effective to improve the ranking performance and our pipeline can
outperform existing retrieval model baselines. To further improve
the ranking performance, we incorporate knowledge information
into automatic query reformulation and yield a better CNIR pipeline
with better ranking performance. We find that the quality of auto-
matic query reformulation module decides how well the pipeline
can achieve. Further detailed analysis evaluates the effectiveness
of different query reformulation strategies and time overheads in
both training and testing. We find our pipeline can improve exist-
ing retrieval models significantly while only increase negligible
inference (or ranking) time, which is computationally applicable
for practical ranking systems. Our work is a new framework to
build neural retrieval models and provides a better understanding
of how to use automatic query reformulation to guide the learning
of neural retrieval models.

Despite we show different advantages of our CNIR pipeline, we
also point out two limitations in our work, as discussed in Section 6.
In the future, we aim to focus on these two challenges and build a
better ranking system with the proposed framework.
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